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Neutron star structure and collective excitations of finite nuclei
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A method is introduced that establishes relations between properties of collective excitations in finite nuclei and
the phase transition density nt and pressure Pt at the inner edge separating the liquid core and the solid crust of a
neutron star. A theoretical framework that includes the thermodynamic method, relativistic nuclear energy density
functionals, and the quasiparticle random-phase approximation is employed in a self-consistent calculation of
(nt ,Pt ) and collective excitations in nuclei. Covariance analysis shows that properties of charge-exchange dipole
transitions, isovector giant dipole and quadrupole resonances, and pygmy dipole transitions are correlated with the
core-crust transition density and pressure. A set of relativistic nuclear energy density functionals, characterized
by systematic variation of the density dependence of the symmetry energy of nuclear matter, is used to constrain
possible values for (nt ,Pt ). By comparing the calculated excitation energies of giant resonances, energy-weighted
pygmy dipole strength, and dipole polarizability with available data, we obtain the weighted average values:
nt = 0.0955 ± 0.0007 fm−3 and Pt = 0.59 ± 0.05 MeV fm−3. This approach crucially depends on experimental
results for collective excitations in nuclei and, therefore, accurate measurements are necessary to further constrain
the structure of the crust of neutron stars.
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Probing the structure of the crust of a neutron star presents
an important open problem in astrophysics. A solid crust of
≈1 km thickness, composed of nonuniform neutron-rich
matter, is located above a liquid core [1]. The crust presents
an interface between observable surface phenomena and the
invisible core of the star, and its structure can be related
to interesting effects, such as glitches in the rotational
period of pulsars, thermal relaxation after matter accretion,
quasiperiodic oscillations, and anisotropic surface cooling [2].
The inner crust comprises the region from the density at which
neutrons drip out from nuclei, to the inner edge separating
the solid crust from the homogeneous liquid core. While the
density at which neutrons drip out from nuclei is rather well
determined, the transition density at the inner edge is much
less certain because of insufficient knowledge of the equation
of state of neutron-rich nuclear matter.

The phase transition density nt and pressure Pt at the inner
edge separating the liquid core and the solid crust determine
some of the key properties of neutron stars. More precisely,
the crustal fraction of the moment of inertia of a neutron star
depends strongly on the value of Pt , and less pronounced on
nt . This fraction is particularly interesting because it can be
inferred from observations of pulsar glitches. Additionally,
radiation of gravitational waves by a neutron star exhibits a
strong dependence on the size of the crust, as well as on the
location of the interface between the crust and the core. The
structure of the pasta phase of the inner crust, which plays
an important role in various static and dynamic properties of
a neutron star, also depends on nt and consequently on the
corresponding equation of state.

A number of theoretical studies have shown that the
core-crust transition density and pressure are highly sensitive
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to the poorly constrained density dependence of the nuclear
matter symmetry energy [3–6]. The symmetry energy that
governs the composition of the neutron star crust also
determines the thickness of the neutron skin rnp = rn − rp

in nuclei. In Ref. [3] an inverse correlation was found between
the liquid-to-solid phase transition density for neutron-rich
matter and the neutron-skin thickness of 208Pb. Additional
correlations between rnp and neutron star properties have also
been investigated [7], including the neutron star radii [8], the
threshold density at the onset of the direct Urca process [9], and
the crustal moment of inertia [7,10]. Correlations between rnp

and a variety of neutron star properties have recently been
studied using covariance analysis based on energy density
functionals [11]. As pointed out by Horowitz and Piekarewicz
[3], an accurate measurement of the neutron radius of 208Pb
by means of parity-violating electron scattering may have
important implications for the structure of the crust of neutron
stars. Recently the parity radius experiment (PREX) provided
a model-independent evidence for the neutron skin in 208Pb
[12]. However, since the experimental uncertainty of the PREX
neutron-skin thickness is very large (rnp = 0.33+0.16

−0.18 fm), it
will be useful to explore additional experimental constraints
for neutron star properties.

The purpose of this Rapid Communication is to establish
an alternative method to determine neutron star properties
by using collective excitations in finite nuclei that correlate
with rnp and provide constraints on the symmetry energy. Of
particular importance are the liquid-to-solid transition density
and pressure, that is, quantities that determine the inner region
of the crust. Recent experimental studies of giant resonances,
pygmy dipole resonances, and other modes of excitation in
nuclei, yielded a wealth of data that constrain the nuclear
symmetry energy and neutron-skin thickness [13]. Since there
is a direct relation between the liquid-to-solid transition density
and the neutron radius of 208Pb [3], one expects that an analysis
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of the collective response of finite nuclei could also provide
useful information about the crust of neutron stars. This
assumption will be put to the test in a framework that includes
the thermodynamic method, relativistic nuclear energy density
functionals, and covariance analysis.

To determine the liquid-to-solid transition density for
neutron-rich matter, the usual approach is to find the density
at which the uniform liquid becomes unstable against small-
amplitude density fluctuations, indicating the formation of
nuclear clusters. In this way a lower bound to the true
transition density nt is obtained [14]. The procedures used
to determine nt include the dynamic method [5,14,15], the
thermodynamic method [4,16–18], and the random-phase
approximation (RPA) [3]. For the purpose of the present study
the thermodynamic method will be employed. The constraint
that determines the transition density is given by the inequality
[4,16]

C(n) = n2 d2V

dn2
+ 2n

dV

dn
+ (1 − 2x)2

[
n2 d2Esym

dn2

+ 2n
dEsym

dn
− 2

1

Esym

(
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dEsym
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)2]
> 0, (1)

where n, V , x and Esym, denote the baryon density, the
energy per particle of symmetric nuclear matter, the proton
fraction, and the symmetry energy, respectively. The transition
density nt is determined by solving the equation C(nt ) = 0,
and the corresponding transition pressure reads Pt (nt ,xt ) =
Pb(nt ,xt ) + Pe(nt ,xt ), where Pb, Pe are the baryon and
electron contributions, respectively. xt denotes the proton
fraction that corresponds to nt , and is computed using the
condition of β equilibrium [4]. For the analysis of correlations
between the transition density and pressure (nt ,Pt ) and
observables that characterize collective excitations in finite
nuclei, we consistently employ a relativistic nuclear energy
density functional (RNEDF) to compute the energy per particle
of symmetric nuclear matter and the symmetry energy, and
in the RPA calculation of strength functions in finite nuclei.
In this work the universal RNEDF with density-dependent
meson-nucleon couplings [19] is used, and excitations in
spherical nuclei are analyzed in the relativistic quasiparticle
random-phase approximation (RQRPA) [20]. The density
dependence of the symmetry energy can be expressed in terms
of coefficients of a Taylor expansion around nuclear matter
saturation density n0:

Esym(n) = Esym(n0) + L

(
n − n0

3n0

)
+ · · · , (2)

where Esym(n0) ≡ J is the symmetry energy at saturation,
and L denotes the slope parameter. It has been shown that
the parameters J ,L correlate not only with the neutron-
skin thickness of nuclei [21,22], but also with neutron star
properties [11,23].

To assess the information content on the neutron star
liquid-to-solid transition density and pressure of observables
that characterize collective excitations in nuclei, the thermody-
namic method, the RNEDF, and covariance analysis [24] are
used to calculate correlations between quantities of interest.
Covariance analysis is the least biased and most complete
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FIG. 1. (Color online) Pearson product-moment correlation co-
efficients between the neutron star crust liquid-to-solid transition
density nt (shaded bars - thin lines), and various observables
of collective excitations for 208Pb and nuclear matter properties.
The corresponding correlation coefficients for the pressure Pt are
displayed by thick (red) bars.

approach that can be used to identify correlations between
physical observables [11,24]. For the purpose of a covariance
analysis the DDME-min1 parametrization of the RNEDF has
been developed by fitting to ground-state data, that is, binding
energies, charge radii, diffraction radii, and surface thickness
of 17 spherical nuclei, from 16O to 214Pb [25]. Figure 1
shows the corresponding Pearson product-moment correlation
coefficients [24] between the neutron star transition density
nt (and pressure Pt ) and various quantities that characterize
nuclear matter and finite nuclei. The following equilibrium
nuclear matter properties are included: the binding energy
at saturation density E(n0), the effective mass m/m∗, the
incompressibility K , the symmetry energy J , and the slope of
the symmetry energy at saturation L [Eq. (2)]. Characteristic
quantities of various modes of excitation of 208Pb are also taken
into consideration: the excitation energies of the isoscalar giant
monopole resonance (ISGMR) and isoscalar giant quadrupole
resonance (ISGQR), the dipole polarizability (αD), the overall
isovector dipole transition strength (m0), and the respective
energy-weighted dipole transition strength (m1), the excitation
energies of the isovector giant quadrupole resonance (IVGQR)
and isovector giant dipole resonance (IVGDR), the m1 moment
(PDR m1), and the excitation energy (PDR - E) of the
pygmy dipole strength function. In addition, the neutron-skin
thickness (rnp) in 208Pb is also included. The present covariance
analysis confirms the strong linear correlation between nt

and the neutron-skin thickness of 208Pb, as already shown
in Ref. [3], and also displays a similar correlation between
Pt and rnp. The results shown in Fig. 1 also indicate that
collective excitations in finite nuclei are strongly correlated
to the neutron star properties nt and Pt . To constrain possible
values of (nt ,Pt ), of particular interest are observables that
simultaneously correlate with both quantities. These include
the overall isovector dipole transition strength m0, the IVGDR
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FIG. 2. (Color online) Constraints of the symmetry energy at
saturation J and the slope parameter L, obtained from a comparison
of RNEDF results and data on AGDR [35] and IVGQR [32] excitation
energies (208Pb), the dipole polarizability αD of 208Pb [33], and the
PDR energy-weighted strength (68Ni [34], 130,132Sn [30]).

and IVGQR excitation energies, the PDR energy-weighted
transition strength, and the dipole polarizability.

Figure 1 shows that the liquid-to-solid transition density
and pressure are also correlated with the symmetry energy
coefficients J and L. It is, therefore, interesting to analyze
how various excitation modes in nuclei, which limit possible
values of rnp, provide constraints on the density dependence
of the symmetry energy. Similar studies have recently been
performed for different modes of excitation using the frame-
work of energy density functionals (e.g., Refs. [26–28]). In
the present analysis a consistent set of RNEDFs that span
a range of values J = 30–38 MeV and L = 30–110.8 MeV
[29] is employed in a calculation of collective excitations.
The set of RNEDFs was adjusted to accurately reproduce
nuclear matter properties, binding energies, and charge radii
of a standard set of spherical nuclei, but with constrained
values for the symmetry energy J and slope parameter L
[29]. These functionals were recently used to constrain the
density dependence of the nuclear symmetry energy and
the neutron-skin thickness from the observed pygmy dipole
strength (130,132Sn) [30], and the anti-analog giant dipole
resonance (AGDR) (208Pb) [31]. By performing self-consistent
relativistic mean-field calculations for nuclear ground states,
and the corresponding RQRPA for collective excitations, we
have computed the AGDR and IVGQR excitation energies
in 208Pb, the dipole polarizability αD of 208Pb, and the
PDR transition strength in 68Ni. For the set of RNEDFs,
linear correlations are established between the calculated
characteristics of collective excitations and the symmetry
energy J and slope parameter L, in agreement with the results
of the covariance analysis shown in Fig. 1. These correlations,
together with the corresponding experimental results on the
excitation strengths and energies [31–34], provide independent
constraints on J and L, shown in Fig. 2. For comparison we
also include the results of a previous study that was based
on the same set of RNEDFs, but used data on the PDR in
130,132Sn [30]. Figure 2 shows that all calculated excitation

0.09 0.095 0.1 0.105 0.11
0

0.2

0.4

0.6

0.8

1

IVGQR

PDR

MDI (Krastev, Li 2010)

DBHF+Bonn B

RNEDF (2010)

DDME

D ( 208Pb)

AGDR (208Pb)

nt [fm
-3]

P
t 
[M

eV
fm

-3
]

(208Pb)

(68Ni)

FIG. 3. (Color online) The liquid-to-solid transition pressure Pt

for neutron-rich matter as a function of the transition density nt

calculated using the RNEDF and experimental data for AGDR [31]
and IVGQR [32] excitation energies (208Pb), the dipole polarizability
αD (208Pb) [33], and the PDR energy-weighted strength (68Ni) [34].
Previous results shown for comparison include MDI [5,35] and
DBHF + Bonn B interactions [36], and the RNEDF calculation [4].

properties consistently constrain possible values of J and L,
with differences attributed to variations of the experimental
uncertainties. It is interesting to note that all results overlap
in a narrow region of the (J,L) plane. The weighted average
yields J = 32.5 ± 0.5 MeV and L = 49.9 ± 4.7 MeV. More
accurate experimental results would, of course, further reduce
the uncertainties shown in Fig. 2.

In the next step we have used the same set of RNEDFs to
compute the liquid-to-solid transition density and pressure in
the thermodynamic approach of Eq. (1). In Fig. 3 the transition
pressure Pt is plotted as a function of the transition density nt ,
and we notice the particular linear dependence predicted by the
DDME set of relativistic functionals. The rectangles denote
the values of Pt and nt , that is, the corresponding energy
density functionals that in a consistent RQRPA calculation
reproduce data on collective excitations within experimental
uncertainties: the AGDR [31] and IVGQR [32] excitation
energies (208Pb), the dipole polarizability αD (208Pb) [33], and
the PDR energy-weighted strength (68Ni) [34]. One notices
that collective excitations provide rather stringent constraints
on the possible values of Pt and nt , and there is even a small
region in the (Pt ,nt ) plane in which all constraints overlap.
Obviously, more accurate measurements of charge-exchange
modes and pygmy dipole strength would further reduce the
current uncertainties but, nevertheless, the weighted average
from the present analysis yields nt = 0.0955 ± 0.0007 fm−3

and Pt = 0.59 ± 0.05 MeV fm−3.
For comparison, Fig. 3 also includes constraints on (Pt ,nt )

obtained by other methods, based on modified Gogny (MDI)
interactions [5,35], Dirac-Brueckner-Hartree-Fock (DBHF)
calculations [36], and RNEDF calculations with constraints
from the empirical range for the slope parameter L and
neutron-skin thickness in Sn isotopes and 208Pb [4]. We
note that the RNEDFs used in Ref. [4] differ from the ones
employed in the present study. The analysis of Ref. [4] was
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based on effective Lagrangians with point-coupling interaction
terms rather than the meson-exchange interactions used in this
study, and strength and density dependence of the interaction
terms were adjusted in a different way. The resulting range
0.086 � nt < 0.090 fm−3 [4] was slightly below the values
deduced in the present work. A previous study based on the
A18 + δv + UIX∗ interaction predicted a somewhat lower
value for the transition density: nt = 0.087 fm−3 [37];
whereas the constraints obtained in the present analysis are
consistent with the result based on the nonrelativistic micro-
scopic equation of state of Friedman and Pandharipande [38]:
nt = 0.096 fm−3 [39].

In conclusion, we have introduced a method to determine
properties of a neutron star crust from a set of observables
on collective excitations of finite nuclei. Using covariance
analysis based on the RNEDF, it is shown that the neutron
star liquid-to-solid phase transition density and pressure
are correlated with properties of collective excitations in
finite nuclei. A set of RNEDFs characterized by systematic
variation of the density dependence of the symmetry energy
is used in a self-consistent RPA calculation of the AGDR and

IVGQR excitation energies (208Pb), the dipole polarizability
αD (208Pb), and the PDR energy-weighted strength (68Ni).
Using the thermodynamic method, the same set of RNEDFs
predicts a particular linear dependence of the phase transition
density nt and pressure Pt at the inner edge between the liquid
core and the solid crust of a neutron star. By comparing the
corresponding RPA theoretical values on collective excitations
in nuclei with experimental data, rather stringent constraints on
the possible values are obtained: nt = 0.0955 ± 0.0007 fm−3

and Pt = 0.59 ± 0.05 MeV fm−3. Although the present
analysis is based on a single family of RNEDFs, it introduces
a novel method and demonstrates the feasibility of the
proposed approach. Further extensive studies using a larger
set of nonrelativistic and relativistic functionals, including
also other modes of excitation, will provide more robust
quantitative estimates of the liquid-to-solid transition density
and pressure. This method crucially depends on experimental
uncertainties of observables that characterize collective modes
of excitation and, therefore, accurate measurements are nec-
essary to further constrain the structure of the neutron star
crust.
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