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Abstract
In cells, dynamic microtubules organize into asters or spindles to assist
positioning of organelles. Two types of forces are suggested to contribute to
the positioning process: (i) microtubule-growth based pushing forces; and (ii)
motor protein mediated pulling forces. In this paper, we present a general theory
to account for aster positioning in a confinement of arbitrary shape. The theory
takes account of microtubule nucleation, growth, catastrophe, slipping, as well as
interaction with cortical force generators. We calculate microtubule distributions
and forces acting on microtubule organizing centers in a sphere and in an
ellipsoid. Positioning mechanisms based on both pushing forces and pulling
forces can be distinguished in our theory for different parameter regimes or
in different geometries. In addition, we investigate positioning of microtubule
asters in the case of asymmetric distribution of motors. This analysis enables us
to characterize situations relevant for Caenorrhabditis elegans embryos.
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1. Introduction

Microtubule asters are cellular structures formed by radial arrays of microtubules nucleated
from an organizing center, with microtubule plus ends pointing to the cell boundary. The
function of microtubule asters is generally considered as to help the organizing center find
its correct position inside the confining space of various shaped cells [1]. Positioning of
microtubule asters is achieved by distinct mechanisms in different cells. In the fission yeast
Schizosaccharomyces pombe, centering of the nucleus during interphase is governed by pushing
forces generated by microtubules polymerizing against the cell cortex [2–4]. In animal cells,
cytoplasmic dynein, a minus-end motor protein, mediates pulling forces on the cell cortex that
play an important role in the positioning of centrosomes and spindles. For instance, in a single-
cell-stage Caenorrhabditis elegans (C. elegans) embryo, asymmetric positioning of the mitotic
spindle results from the asymmetric activity of cortex-anchored dyneins [5–7]. Moreover,
pulling forces generated by cortical dyneins are also responsible for spindle oscillations
that occur during asymmetric spindle positioning [8–10]. Such spindle oscillations require a
restoring force generated by a centering mechanism. This force can be characterized by a
centering stiffness [8]. Recent studies have shown that a ternary complex LIN-5-GPR-1/2-G,
which is responsible for anchoring dyneins to the cortex, is critical for correct positioning of
mitotic spindles in C. elegans embryo [11]. Another ternary complex [NuMA]-LGN-G of the
same function has also been found in human cells [11, 12]. This demonstrates that dynein-
dependent cortical pulling forces, at least in part, control the spindle positioning in these cells.
In other cells, such as sea urchin and amphibian eggs or in mammalian cells, pulling forces,
generated by dynein motors and acting on microtubules, are also essential for the centering
of centrosomes [13–16] and for the alignment of mitotic spindles along the long axis of the
cell [17–19]. Recently it has been suggested that dyneins could also generate pulling forces
via friction associated with the transport of organelles along the microtubules lateral surface
[14, 15, 20]. In general, cells with different geometries or sizes may use different strategies to
accomplish the correct positioning of organizing centers.

Both pushing and pulling forces have been suggested to contribute to the positioning of
microtubule asters. The force velocity relation of growing microtubules against a rigid object
has been determined in vitro [21]. It was also shown that dynein motors can capture microtubule
ends and exert pulling forces [22, 23]. Two key mechanisms have been proposed to explain the
ability of pushing forces to position the organizing center to the center of a cell: (i) there are
more microtubules pushing against the boundary proximal to the organizing center than that
distal to the organizing center due to microtubule length distributions resulting from microtubule
dynamic instability [24]; and (ii) shorter microtubules can generate larger pushing forces than
longer microtubules before they buckle [25]. A centering mechanism based on pulling forces
associated with friction due to organelle transport along the microtubule lattice relies on the fact
that longer microtubules give rise to larger forces [19, 26]. However, pulling forces generated
at microtubule tips can also lead to centering forces if more microtubules are pulling from the
side distal to the organizing center. This can happen when there are only a limited number of
force generators interacting with microtubule tips [27] or when microtubules reorient toward the
distal side of the organizing center after they touch and briefly slip along the cell boundary [22].
We have recently shown that the effects of pushing and pulling forces depend on cell geometry
and on the degree of microtubule slipping [22, 28]. In a single elongated geometry, pulling and
pushing forces may play different roles along the long and short axes [28].
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Our work is an extension of previous work where centering by pushing and pulling forces
was discussed in relation to experiments on microtubule asters in artificial microchambers
[22, 28]. Here, we develop a general framework that applies to one, two and three dimensions.
Our previous work is extended in several ways: we now include effects of microtubule
catastrophes before they reach the cell boundary. Such catastrophes help pushing forces to
result in stable centering. We now also take the force–velocity relation of pushing microtubules
into account, in addition to the effects of length dependent microtubule buckling. We obtain
analytical expressions for centering stiffness by pushing and pulling forces in a sphere and a
circle and in one dimension. Finally, we discuss asymmetric distributions of force generators
that can induce a positioning of the spindle away from the center. We can relate this asymmetric
situation to asymmetric spindle positioning in the C. elegans embryo.

2. Mechanics of microtubule asters in a three-dimensional confinement

In our description of microtubule aster mechanics, microtubules are nucleated from an
organizing center at a fixed position r that is confined in a volume bounded by a curved surface.
This boundary surface is parameterized as R(u1, u2), where u1 and u2 are two parameters.
The vector L(u1, u2) = R(u1, u2) − r extends from the organizing center to the boundary,
with L = |L| denoting the distance between them, and L̂ = L/L the unit vector defining the
microtubule orientation (figure 1). We define the metric tensor gi j = ei · e j , i, j = 1, 2, and its
determinant g = det (gi j), where ei = ∂R/∂ui are the tangent vectors. The unit vector normal to
the boundary is given by m = ±(e1 × e2)/|e1 × e2|, where the sign is chosen that the vector is
pointing outward.

We distinguish three populations of microtubules: (i) cytoplasmic microtubules that have
not touched the boundary; (ii) microtubules that are in contact with the boundary and pushing
against it; and (iii) microtubules that are in contact with the boundary and pulled by force
generators. Cytoplasmic microtubules are described by the volume density distribution of
microtubule tips ρ(q) at position q. The equation that governs the evolution of ρ(q) reads

∂ρ

∂t
= ν0δ

3(q − r) − ∇ · J − kcatρ, (1)

where ν0 denotes the nucleation rate of microtubules from the organizing center, δ3(q) is the
three-dimensional Dirac delta function and kcat denotes the catastrophe rate of microtubules
in the cytoplasm. The current density of microtubule tips reads J(q) = ρ(q)vgb(q), where
vg denotes the microtubule’s growing velocity in the cytoplasm, and b(q) = (q − r)/|q − r|
denotes the unit vector pointing in the direction of the microtubule. Pushing and pulling
microtubules are described by their surface densities, n+(u1, u2) and n−(u1, u2, ). The number
of pushing and pulling microtubules in contact with the boundary within an area element
dS = g1/2 du1 du2 is n± dS. These densities obey the following equations:

∂n+

∂t
= m · J|R − kcn

+
− kbn+

− D · j, (2)

∂n−

∂t
= kbn+

− koffn
−. (3)

Here kc denotes the catastrophe rate of pushing microtubules at the boundary, kb denotes
the binding rate of pushing microtubules to the force generators and koff denotes the
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Figure 1. Schematic representation of a microtubule aster in a confinement of arbitrary
shape. The blue dot represents the organizing center located at position r and the
gray mesh represents the boundary R of the confinement. The tangential vectors at
the surface are denoted by e1 and e2 and the normal vector is denoted by m. Three
microtubules are shown as green rods. The short microtubule with the microtubule tip at
the position q inside the confinement represents a cytoplasmic microtubule. The other
two microtubules are in contact with the boundary. Inset 1 shows a pulling microtubule
that is captured by a cortical force generator (magenta). Inset 2 shows a pushing
microtubule that is slipping on the boundary at a velocity v‖. The arrows indicate the
direction of the force acting on the microtubule end.

detachment rate of pulling microtubules from the force generators. The source term,
m · J|R = m(u1, u2) · J(R(u1, u2)), in equation (2) describes the flux of arriving cytoplasmic
microtubules at position R(u1, u2) on the boundary where they start pushing. The pushing force
drives microtubule slipping at the boundary and the slipping is described by the surface current
j = n+v‖, where v‖ is the slipping velocity. The covariant divergence of the surface current is
D · j = ∂i(g1/2 j i)g−1/2, where j i

= j · ei are the contravariant components of the vector j and ei

is the dual vector of ei . The slipping velocity and the pushing force are related by

v‖ = f+
‖
/ξ, (4)

where ξ is the friction coefficient associated with slipping and f+
‖
= f+

− (f+
· m) m is the

tangential component of the pushing force f+
= f +L̂. The surface current of microtubule tips

j = n+v‖ then reads

j =
f +n+

ξ
[L̂ − m(L̂ · m)]. (5)

If a microtubule grows against the boundary, it generates a pushing force f+
= f +L̂ in the

direction of the microtubule. The growth rate dlm/dt of the microtubule depends on the
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polymerization force fP, where lm denotes the length of the microtubule [21]. For simplicity,
we describe this dependence by a linear force velocity relationship

dlm

dt
= vg(1 − fP/ fs). (6)

For straight microtubules, the slipping velocity and the growth rate of microtubules are related
by dlm/dt = v‖ · L. Combining this relation with equations (4) and (6), we obtain the magnitude
of the pushing force f +

= fP as

fP =
fs

fs

vgξ
[1 − (m · L̂)2] + 1

. (7)

Equations (1)–(3) together with the surface current j given by equations (5) and (7) define the
dynamic equations for the microtubule distribution.

To determine the force acting on the microtubule organizing center, we solve
equations (1)–(3) at steady state ∂tρ = 0, ∂tn±

= 0 to obtain the surface density of pushing
microtubules and pulling microtubules n+ and n−. We impose the condition that the total number
of the three populations of microtubules is a constant M , which sets the value of the nucleation
rate ν0 (appendix A). The net force acting on the organizing center located at position r is given
by F(r) = F+(r) + F−(r), where

F±(r) = ∓

∮
dSn± f ±L̂ (8)

are the net pushing and pulling forces, respectively. The magnitude of the pulling force is
denoted by f −. The direction of pulling forces is along the microtubule’s orientation L̂ and
the direction of pushing forces is in the opposite direction −L̂.

The net forces acting on organizing centers at different positions r define a force field
F(r). The gradient of this force field is given by the stiffness tensor Tαβ = ∂β Fα, where
α, β = x, y, z label the components of the tensor in Cartesian coordinates. The stiffness tensor
Tαβ = −Sαβ + Aαβ can be split into a symmetric part Sαβ and an antisymmetric part Aαβ , where

Sαβ = −
1
2 (Tαβ + Tβα), Aαβ =

1
2 (Tαβ − Tβα). (9)

The eigenvalues of the symmetric tensor Sαβ describe the effective stiffness along directions
defined by the eigenvectors. The antisymmetric tensor Aαβ describes the local rotation of the
force field. In the case that Aαβ = 0, the force field is conservative and can be written as the
gradient of a potential F(r) = −∇8, where 8(r) = −

∫ r
r0

F(r′) · dr′ and r0 is an arbitrary point
inside the confinement. However, in general the antisymmetric tensor Aαβ is nonzero and the
force field is nonconservative.

So far we have ignored microtubule buckling. If the microtubule polymerization force fP

exceeds the buckling force fE = π 2κL−2, where κ denotes the bending rigidity, the magnitude
of pushing forces is limited by fE. This effect can be described by choosing

f +
=

{
fP if fP < fE,

fE if fP > fE.
(10)

Using equation (10) for the magnitude of pushing force f + in equations (5) and (8), we can
calculate the net force F(r) taking into account effect of microtubule buckling.

5



New J. Phys. 16 (2014) 013018 R Ma et al

Equations (1)–(9) constitute a general description of microtubule aster mechanics inside a
three-dimensional confining space. In the following, we apply our theory to different geometries
to illustrate the impact of microtubule dynamics or motor distributions on the positioning
behavior of microtubule asters. We choose sphere and ellipsoid because these two geometries
are of great biological relevance.

3. Mechanics of microtubule asters in a sphere

We first consider microtubule asters confined in a sphere of radius R0. From equations (2)
and (3) we determine the microtubule distribution for an organizing center displaced from the
sphere center by a distance z along the z-axis (figure 2(A)). Resulting microtubule distributions
have rotational symmetry with respect to the z-axis. The direction of microtubules is described
by a unit vector L̂ = (sin θ cos φ, sin θ sin φ, cos θ), parameterized by two angles θ and φ.
Detailed calculations in this (θ, φ) coordinate are shown in appendix B. It is convenient to
introduce the number of microtubules per solid angle σ = ndS/d�, where d� = sin θ dθ dφ is
the solid angle element and n = n+ + n−.

Typical distributions of microtubules are shown in figures 2(B) and (C). For small
cytoplasmic microtubule catastrophe rate kcat, almost all microtubules reach the boundary. In
this case, microtubules are concentrated at the boundary farther from the microtubule organizing
center where π/2 < θ < π , which is referred to as the distal boundary (figure 2(B)). At the
boundary closer to the microtubule organizing center where 0 < θ < π/2, which is referred
to as the proximal boundary, the density σ is lower (figure 2(B)). This angular distribution
is the result of microtubule reorientation, which occurs due to microtubule slipping along the
sphere surface. For increased cytoplasmic catastrophe rate kcat, the number of microtubules
reaching the boundary decreases with increased distance between the organizing center and the
cell boundary. This leads to less microtubules arriving at the distal boundary. Therefore, for
sufficiently large cytoplasmic catastrophe rate kcat, the microtubule distribution will be inversed
and there will be more microtubules touching the proximal boundary than the distal boundary
(figure 2(C)).

Different microtubule distributions result in different net pulling and pushing forces acting
on the organizing center. If more microtubules are contacting the distal boundary as compared
to the proximal boundary, more microtubules are also pulling from the distal boundary. Because
at steady state, the surface density of pulling microtubules and pushing microtubules are related
by koffn−

= kbn+. The fraction of each population of microtubules is fixed. The net pulling force
is thus oriented toward the distal boundary, i.e. toward the center (figure 2(D), green line).
By contrast the net pushing force is directed away from the center due to more microtubules
pushing against the distal boundary (figure 2(D), magenta line). Note that if the buckling effect
is taken into account, pushing forces can also be centering, as will be discussed later. If more
microtubules are touching the proximal boundary as compared to the distal boundary, pulling
and pushing forces exchange their roles (figure 3(E)).

Our calculations thus reveal that the magnitude and the direction of net pushing and
pulling forces depend on the relative strength of microtubule catastrophe in the cytoplasm and
microtubule slipping at the boundary. To reveal the role of all the parameters on the forces, we
calculate the stiffness tensor Tαβ at r = 0. Because the force field has spherical symmetry and is
thus pointing in the radial direction, the antisymmetric part Aαβ of the stiffness tensor vanishes
and the symmetric part Sαβ = κPδαβ is isotropic. Here δαβ denotes the Kronecker delta symbol
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Figure 2. The microtubule distribution and forces acting on an organizing center
in a sphere. (A) The coordinate system used to describe the angular distribution of
microtubules in a sphere. (B), (C) The angular distribution of microtubules for an
organizing center displaced 10 µm from the center. The cytoplasmic catastrophe rate is
kcat = 0.001 s−1 in (B) and kcat = 0.1 s−1 in (C). (D), (E) Forces acting on a microtubule
organizing center along the z-axis. The pushing (magenta), pulling (green) and net
(black) forces on the organizing center are plotted at different positions along the z-axis.
The black triangle indicates the 10 µm displacement used for drawing the microtubule
distributions. The white quadrants indicate a force pointing toward the center and
the gray quadrants indicate a force pointing away from the center. The cytoplasmic
catastrophe rate is kcat = 0.001 s−1 in (D) and kcat = 0.1 s−1 in (E). The radius of the
sphere is 15 µm. Other parameters are listed in table 1, with kc = 0.5 andkb = 0.25 s−1.

and κP denotes the stiffness. We find that κP = κ+
P + κ−

P , where

κ+
P =

fs

d

ν0

vg

e−kcat R0/vg

kb + kc

(
kcat −

d − 1

(kb + kc)τ
2
P

)
, (11)

κ−

P = −
f −

d

kb

koff

ν0

vg

e−kcat R0/vg

kb + kc

(
kcat −

d − 1

(kb + kc)τ
2
P

)
(12)

are the stiffness related to pushing and pulling forces, respectively (appendix C). Here τP =

R0ξ
1/2( fsvg)

−1/2 is a characteristic time which is the geometric mean of the duration it takes for
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Figure 3. Stability diagram of microtubule asters at the center of a sphere. (A) The
stability of microtubule asters at the center of a sphere as a function of the cortical
catastrophe rate kc and motor binding rate kb is shown, with white regions indicating
that asters at the center are stable and gray regions indicating that asters at the center are
unstable. Texts in each panel indicate the stability and the dominating forces. (B) Values
of the stiffness for the net force κP at different motor binding rates kb. Values of κP are
plotted at different scales separated by the symbol ≈. For kb = 0.1 s−1, the stiffness is
a constant zero. Results in (A) and (B) are obtained by using the polymerization force
f + given by equation (7). (C) The same plot as in (A) but the results are obtained by
describing the pushing force with the buckling force fE = π2κL−2. Two dashed lines
indicate the boundary where values of the stiffness for the pushing force κ+

E = 0 and for
the pulling force κ−

E = 0. (D) The same plot as in (B) but the results are obtained by
describing the pushing force by the buckling force. The radius of the sphere is 15 µm.
Other parameters are listed in table 1.

microtubules to grow from the center to the boundary and to slide the same distance along the
boundary. The parameter d with d = 3 is the space dimension.

Asters can be either stable with κP > 0 or unstable with κP < 0 in the center and aster
positioning can be dominated by either pulling or pushing forces. The combination of these
possibilities gives rise to four regions in the stability diagram shown in figure 3(A) as a
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function of motor binding rate kb and microtubule cortical catastrophe rate kc. Different
regions are separated by straight lines along which κP = 0. One of the lines is kb = k∗

b with
arbitrary kc, where k∗

b = koff fs/ f −. This line separates regions where pulling forces are dominant
from regions where pushing forces are dominant. The second line is kb + kc = k∗, where
k∗

= 2(kcatτ
2
P )−1. This line separates regions where pulling forces pointing toward the center

and pushing forces pointing away from the center (κ−

P > 0, κ+
P < 0) from regions where the

direction of pushing and pulling forces are opposite (κ−

P < 0, κ+
P > 0). Two limiting cases

can be discussed: (i) if the microtubule cytoplasmic catastrophe is zero, kcat = 0, centering
is only mediated by pulling forces. In this case, centering is stable if kb > k∗

b independent of
kc and unstable if kb < k∗

b . (ii) If microtubule cytoplasmic catastrophe is sufficiently frequent,
kcat > 2 f −( fskoffτ

2
P )−1, centering is only mediated by pushing forces. In this case, centering is

stable if kb + kc > k∗ and kb < k∗

b and unstable if kb + kc < k∗ or kb > k∗

b . To further understand
the impact of parameters on the centering stiffness, we plot in figure 3(B) the magnitude of the
stiffness as a function of kc for different kb. The stiffness κP changes from large and positive
values to small and negative values as the cortical catastrophe rate kc increases, for large enough
binding rate, kb > k∗. This shows that a small cortical catastrophe rate kc is required to generate
large centering stiffness by pulling forces.

We now discuss the effect of buckling. Buckling becomes important if the polymerization
force fP given in equation (7) exceeds the buckling limit fE. This happens for large cells with
radius R0 > πκ

1/2
b f −1/2

s , because in the vicinity of the sphere center z � R0, the polymerization
force (7) fP = fs + O(z2) and the buckling force fE = fE0(1 + 2z cos θ R−1

0 ) + O(z2), where
fE0 = π 2κ R−2

0 is the buckling force for a microtubule with a length of the sphere radius R0.
For a large sphere, R0 > πκ

1/2
b f −1/2

s , the pushing force acting on the organizing center in the
vicinity of the sphere center will be limited by the buckling force. In this case, the centering
stiffness associated with pushing and pulling forces are

κ+
E =

fE0

d

ν0

vg

e−kcat R0/vg

kb + kc

(
kcat −

d − 1

(kb + kc)τ
2
E

+ 2
vg

R0

)
, (13)

κ−

E = −
f −

d

kb

koff

ν0

vg

e−kcat R0/vg

kb + kc

(
kcat −

d − 1

(kb + kc)τ
2
E

)
, (14)

where τE = R0ξ
1/2( fE0vg)

−1/2. In the diagram describing stability of centering for the case of
equations (13) and (14), there is one region where positioning of asters at the sphere center is
stable (figure 3(C)). Within this region there is a sub-region where both pushing and pulling
forces lead to centering (κ−

E > 0, κ+
E > 0). This happens when more microtubules are touching

the distal boundary than the proximal boundary, and thus pulling forces alone are stably
centering. However, because the anisotropy of microtubule distribution is weak in this case,
the pushing force exerted by a smaller number of shorter microtubules in contact with the
proximal boundary is still larger than the pushing force exerted by more and longer microtubules
in contact with the distal boundary. Therefore the pushing forces alone are also stably centering.
The effect of buckling forces on the magnitude of the stiffness is shown in figure 3(D). We find
that the overall dependence of κE on kb and kc is similar to the κP in figure 3(B). Their difference
mainly occurs for small kb for which the pushing force plays an important role in positioning.
The stiffness κ+

E related to pushing forces, compared to the stiffness κ+
P for which buckling effect
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Figure 4. Displacement of microtubule asters from the center of a sphere in the
case of spatially asymmetric binding rates. (A) Schematic illustration of the spatially
asymmetric binding rate and the resulting microtubule aster displacement. The
increasing brightness of the layer (magenta) at the boundary from left to right indicates
the increasing binding rate. (B) Forces acting on organizing centers along the z-axis of
a sphere. The point where the net force is zero corresponds to the displacement. The
binding rate kP = 0.5 s−1 for the orange curve and kP = 5 s−1 for the blue curve. (C), (D)
The displacement of organizing centers as a function of the ratio of kP and kA. The
orange and blue dots correspond to the displacement obtained from the orange and blue
curves in (B), respectively. The radius of the sphere is 15 µm. Other parameters are
listed in table 1 with kP = 0.5 s−1 for (B) and kP = 5 s−1 for (C).

is neglected, is strongly enhanced. This is reflected in figure 3(D) in which κE becomes positive
as kc increases, while κP in figure 3(B) remains negative for the motor binding rate kb = 0.01 s−1.

In situations where the microtubule binding rate to motors kb is varied at the boundary,
corresponding for example to an asymmetric distribution of motors at the boundary, microtubule
asters might be displaced away from the center. A typical example is that a large number of
motors are located on one side of the sphere, and on the opposite side the motor density is low.
To investigate the positioning of microtubule asters in this case, we calculate the net force acting
on the organizing center with a spatially varied binding rate kb(θ) = (kP + kA)/2 + (kP − kA)(z +
L cos θ)(2R0)

−1 where kP and kA are the binding rates at two points at opposite sides on the
sphere. For kP 6= kA, the center of the sphere is no longer a stationary, force-free position. Using
parameter values for which the positioning is stable and dominated by pulling forces in the
symmetric case, kP = kA, positioning is also stable, but at a location with a distance z = 1 from
the center for kP 6= kA (figure 4(B)) and closer to the boundary where the binding rate is larger.
The distance 1 of stable positions of the organizing center as a function of kP/kA is shown
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in figures 4(C) and (D). We find that for increased cortical catastrophe rates, corresponding
to reduced slipping, displacements 1 are increased. This is because without slipping, pulling
microtubules will concentrate at the boundary with larger binding rate and pushing microtubules
will concentrate at the boundary with lower binding rate. This distribution always creates a force
pointing toward the boundary with the larger binding rate. Thus the microtubule organizing
center will be positioned to the boundary with the larger binding rate. Microtubule slipping
reduces this decentering effect and allows a force-free position with a small displacement 1.
Compared with kc, kP has smaller impact on the displacement (compare figures 4(C) and (D)).
But for increasing values of kP, the stiffness at the force-free position decreases (compare the
orange and blues line in figure 4(B)). This also happens in the symmetric case for large binding
rate kb.

4. Comparison with one and two dimensional confinement

We can also discuss stabilities of asters in the center of lower dimensional confinement. The
centering stiffness related to pushing and pulling forces in a circle or in a one-dimensional
geometry also obeys equations (11)–(14), with d = 2 for a circle, and d = 1 for a one-
dimensional geometry. The stability diagram for a circular geometry is the same to that in a
sphere in figure 2, except that k∗

= (kcatτ
2
P )−1, which is half of the value of k∗ for a sphere,

while k∗

b remains the same. This means that the region where asters are stable and positioning is
dominated by pulling forces is reduced in d = 2 as compared to d = 3. This is related to the fact
that slipping only occurs along a line on a circle. Thus the microtubule anisotropy induced by
microtubule reorientation is weaker for a circle as compared to a sphere where slipping occurs in
two dimensions. For a one dimensional confinement d = 1, k∗ becomes zero while k∗

b does not
change. In the stability diagram, centering of microtubule asters is stable if kb < k∗

b , and unstable
if kb > k∗

b . This means only pushing forces can center the microtubule aster, as suggested in
[24, 29].

5. Mechanics of microtubule asters in an ellipsoid

In order to study the role of the shape of the geometry, we apply our general theory, given in
section 2, to investigate positioning of microtubule asters confined in an ellipsoid. An ellipsoid,
with semi-axes (a, a, a(1 + γ )), has lower symmetry than a sphere. Here γ is a parameter which
is zero for a sphere and nonzero for an ellipsoid. The number of microtubules per solid angle
σ can be expressed with two angles, σ = σ(θ, φ) (figure 5(A)). We limit our study to the case
γ > 0 in which the long axis of the ellipsoid is along the z-axis. We find that the distribution of
microtubules exhibits different features for organizing centers placed along the z-axis and along
the x-axis of the ellipsoid. Along the z-axis, when the organizing center is slightly displaced
from the center, microtubules are concentrated at the two poles where θ = 0 or π , while they are
depleted for intermediate angles (figure 5(B)). However, if the organizing center is displaced far
from the center, microtubules are depleted at the pole for θ = 0 (figure 5(C)). For displacements
along the x-axis, microtubules are concentrated at positions that are the farthest from the
organizing center, irrespective whether the displacement of the organizing center is large or
small. This concentration corresponds to peaks of σ as a function of θ for φ = π (figure 5(D),
blue line).
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Figure 5. The microtubule distribution and forces acting on an organizing center in
an ellipsoid. (A) The coordinate system used to describe the angular distribution of
microtubules in an ellipsoid. (B)–(D) The angular distribution of microtubules. The
displacement of the organizing center is 5 µm in (B) and 20 µm in (C) along the
z-axis, 7.5 µm in (D) along the x-axis. Inner figures show the angular distribution
of microtubules in a schematic way. (E), (F) Forces acting on microtubule organizing
centers in an ellipsoid. The pushing (magenta), pulling (green) and net (black) forces are
plotted at different positions along the z-axis (E) and the x-axis (F). The black triangle
indicates the position used for drawing the microtubule distributions. The above letters
indicate the subfigures showing the corresponding distribution in (B)–(D). The white
quadrants indicate a force pointing toward the center and the gray quadrants indicate
a force pointing away from the center. Lengths of the three principal axes (x, y, z) of
the ellipsoid are 30 µm, 30 µm and 50 µm. Other parameters are listed in table 1, with
kb = 0.25 s−1 and kc = 0.5 s−1.

Distinct features of microtubule distributions for organizing centers placed along the long
axis and the short axis lead to different force behaviors along these two axes. The difference
is characterized in figures 5(E) and (F) where the forces acting on organizing centers along
the two axes are shown for an ellipsoid with γ = 2/3. Using parameters listed in table 1, we
find that along the long axis, in the vicinity of the center, forces due to pulling are weaker
than forces due to pushing even though there are more pulling microtubules than pushing
microtubules. This is because microtubules concentrate at both sides (θ = 0 and π , figure 5(B)).
Pulling forces from the two sides have the same magnitude and are thus almost balanced,
while pushing forces generated by microtubules in contact with the proximal side have larger
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Figure 6. The magnitude of the centering stiffness in an ellipsoid. (A), (B) The
magnitude of stiffness as a function the elongation parameter γ along the long axis
(A) and along the short axis (B). Contributions to the stiffness from pushing forces
(magenta), pulling forces (green) and net forces (black) are shown, respectively. The
black triangle indicates the value of γ = 2/3 used in figure 5. Lengths of the three
principal axes of the ellipsoid are 30, 30 and 30(1 + γ ) µm. Other parameters are listed
in table 1, with kb = 0.25 s−1 and kc = 0.5 s−1.

magnitude than microtubules in contact with the distal side. However, for an organizing center
far from the center, forces due to pulling are stronger than forces due to pushing. This is because
of the accumulation of microtubules at the distal side (θ = π ) and depletion of microtubules
at the proximal side (θ = 0). Along the short axis, forces due to pulling point toward the
center while forces due to pushing point away from the center, regardless of the distance of
the organizing center from the ellipsoid center. This is because microtubules accumulate at the
opposite side of the displacement of organizing centers. Note that if buckling is considered, the
pushing force may point toward the center as well.

Forces acting on microtubule organizing centers behave differently in a sphere and in an
ellipsoid. One difference is that the symmetric part Sαβ (r = 0) of the stiffness tensor, which
is isotropic in a sphere, becomes anisotropic in an ellipsoid due to the broken symmetry. In
detail, Sαβ (r = 0) is a diagonal matrix, with the stiffness component along the long axis Szz = κL

and along the short axis Sxx = Syy = κS. We distinguish contributions to the stiffness from the
pushing force, denoted by κ+

L and κ+
S , and from the pulling force, denoted by κ−

L and κ−

S . The
value of these stiffness components varies as the shape changes from a sphere to an ellipsoid, i.e.
the elongation parameter γ increases from zero to positive values (figure 6). Along the long axis,
κ+

L increases from negative values to positive values and then decreases. At a point for which
κ+

L = κ−

L , contributions from the two types of forces are equal, and beyond which the pushing
force becomes stronger than the pulling force (figure 6(A)). We have discussed such a situation
in figure 5. However, along the short axis, κ+

S remains negative and κ−

S remains positive, as in the
case of a sphere for all γ . Note that κ+

S can be positive if buckling effects are considered. Another
difference between forces acting on organizing centers in an ellipsoid and in a sphere is that the
force field F(r), which is conservative in a sphere, becomes nonconservative in an ellipsoid
(figure 7(A)). In order to see this, we calculate the antisymmetric part Aαβ of the stiffness
tensor. Because of symmetry, the components Axy, Ayx , Ayz, Azy of the antisymmetric tensor
vanish, and the remaining components Axz = (∂z Fx − ∂x Fz)/2 and Azx = −Axz are related to
the vorticity of the force field ω = ∇ × F by the equation ω = 2Axzey . We find that the vorticity
has the largest magnitude in the neighborhood of the two poles of the ellipsoid with γ = 2/3
(figure 7(B)). In regions where xz < 0, the vorticity is positive, implying clockwise rotation of
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Figure 7. Force field in an ellipsoidal geometry and the vorticity of the force field.
(A) The force field F(r) in the plane y = 0. Lengths of arrows indicate the magnitude
of the forces. (B) Magnitude of the vorticity of the force field ω = ∇ × F(r). Positive
values correspond to rotation around the y-axis (clockwise) and negative values
correspond to rotation around the −y-axis (counterclockwise). Lengths of the three
principal axes (x, y, z) of the ellipsoid are 30, 30 and 50 µm. Parameters are listed in
table 1, with kb = 0.25 and kc = 0.5 s−1.

the force field. While in regions xz > 0, the vorticity is negative, implying counter-clockwise
rotation of the force field. These are illustrated in figure 7 where the force field in an ellipsoid
and the corresponding vorticity are shown, demonstrating that the force field is nonconservative.

6. Discussion

In this paper, we presented a general theory for the mechanics and positioning of a microtubule
aster in an arbitrarily shaped confinement. Using differential geometry, we characterized
processes taking place at the boundary, including microtubule slipping, catastrophe and
interaction with cortical force generators. We investigated how the dynamic properties of
microtubules and the geometry of the confinement influence the forces acting on the microtubule
organizing center. We showed that in a spherical geometry and a circular geometry, centering of
microtubule organizing centers depends on two competing factors: microtubule reorientation at
the boundary and microtubule catastrophe in the cytoplasm. Microtubule reorientation leads to
overall pulling forces pointing toward the center and overall pushing forces pointing away from
the center, while microtubule catastrophe in the cytoplasm has the opposite effect. Thus pulling
forces together with microtubule reorientation or pushing forces together with microtubule
catastrophe in the cytoplasm contribute to stable centering of microtubule organizing centers.
The effect of geometry on the positioning forces was demonstrated by studying asters confined
in an ellipsoid. The positioning forces along the long axis behave differently as compared to
forces along the short axis. For pulling forces, centering stiffness is high along the short axis.
While reliable centering along the long axis is better achieved using pushing forces. We also
investigated the influence of the distribution of force generators on the positioning forces.
Studying asters confined in a sphere with larger binding rate at one side of the surface as
compared to the other, we found that microtubule organizing centers are positioned away from
the center at a position closer to the boundary with higher binding rates.
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BA

C D

Figure 8. Schematic diagram of astral and spindle microtubules in a C. elegans embryo
and their approximations with a single aster in a sphere. (A) Schematic illustration of
microtubule distributions in a oval-shaped geometry with homogenous binding rate at
the two-half spheres. Astral microtubules (green rods) extend from two centrosomes
(blue dots) and point toward the edge. The central thick rod connecting the two
centrosomes represents the mitotic spindle. (B) Approximation of astral microtubules
in (A) with a single aster in a sphere. (C) The same plot as in (A) but with spatially
asymmetric binding rates at the two-half spheres. The increasing brightness of the layer
(magenta) at the two half-spheres from left to right indicates the increasing binding rate.
The mitotic spindle is displaced toward the right side. (D) Approximation of the astral
microtubules in (C) with a single aster in a sphere displaced away from the center.

The study of aster positioning in a sphere with asymmetric binding rate can be related
to the positioning of mitotic spindles in the C. elegans embryo. A mitotic spindle consists of
three types of microtubules. Between the two spindle poles, kinetochore microtubules and polar
microtubules form a relatively rigid bundle structure. Astral microtubules are mainly located
in the two half-spheres of the oval-shaped embryo (figure 8(A)). Therefore, for simplicity we
consider the mitotic spindle in the C. elegans embryo to be structurally analogous to a single
microtubule aster in a sphere. In this simplification, the two spindle poles are represented by a
single pole and the orientation of the spindle is ignored (see figures 8(A) and (B)). Experiments
have shown that the midpoint of the two spindle poles, separated by a distance of around 20 µm,
is displaced approximately 4 µm from the cell center along the 50 µm-long anterior–posterior
axis during anaphase [9]. This displacement has been suggested to be the result of 50% more
force generators at the posterior cortex than at the anterior cortex [7]. Asymmetric distribution
of force generators at the cortex corresponds in our model to a spatially asymmetric binding rate
at the surface (figure 8(C)). Therefore our findings that asters tend to be positioned away from
the center of a sphere and closer to the boundary with higher binding rates provides a possible
explanation for the asymmetric positioning of mitotic spindles in the C. elegans embryo (see
figures 8(C) and (D)).
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Table 1. List of parameters.

Parameters Value Source

Detachment rate of microtubules from force generators koff = 0.1 s−1 [8]
Growth velocity of microtubules vg = 1 µm s−1 [33]
Pulling force generated by force generators f −

= 5 pN [22]
Microtubule stalling force fs = 5 pN [21]
Microtubule bending rigidity κb = 30 pN µm2 [25]
Number of microtubules M = 2000 [30]
Catastrophe rate of microtubules in the cytoplasm kcat = 0.001 s−1 [10]a

Sliding friction coefficient of microtubules ξ = 1 pN s µm−1 [34]b

a Estimation from the reported rarely occurred cytoplasmic catastrophe events.
b Calculated as the rotational friction of a cylinder of length 15 µm and diameter 25 nm in a
viscous media that has 100 times the viscosity of water.

The parameter values listed in table 1 have been determined by experiments of the C.
elegans embryo or have been estimated indirectly. The remaining unknown parameters are
kA, kP and kc. Figure 4 showed how the spindle displacement 1 depends on the ratio kA/kP. The
observation that the number of force generators at the posterior cortex is 50% more than that at
the anterior cortex suggests kP/kA = 1.5. The observed displacement 1 = 4 µm is consistent
with kc = 0.5 and 0.5 s−1 < kP < 5 s−1 (figures 4(C) and (D)). However, we found that the
stiffness of positioning is higher for kP = 0.5 s−1 as compared to kP = 5 s−1, which suggests
spindle positioning is more reliable for kP = 0.5 s−1. Considering the uncertainty of the friction
coefficient ξ (ten times within the value in table 1), we estimate kc lies between 0.05 and 5 s−1.
This is consistent with the precision estimated in the existing literatures [10].

In this work we have not considered the fact that cortical binding sites might be saturated
by the high density of microtubules reaching the cortex. This fact could also lead to a centering
mechanism of microtubule asters by pulling forces [27]. We can incorporate this mechanism in
our theory by a density dependent microtubule binding rate kb(n−) = k0

b(1 − n−/nmax), where
nmax denotes the saturated surface density of pulling microtubules, k0

b denotes the binding rate
if all binding sites are empty. The resulting equations are nonlinear with respect to the surface
densities.

The results of this work correspond to a mean-field description. They characterize the
average behavior of centering if many instances of the system are realized. Here we do
not include a discussion of fluctuations which can become important when the number of
microtubules is small. However in a C. elegans spindle there are more than a 1000 microtubules
and the system behaves reliably [30]. Here, we have only considered the case where the cortical
catastrophe rate kc is force independent. Taking a possible force dependence of this rate into
account, as shown in vitro and in vivo [31, 32], will change the time that microtubules contact
the boundary and thus changing the net force. This, however, does not change our results of the
centering stiffness equations (11) and (12) in a sphere for which the pushing force is caused by
microtubule polymerization. Because the polymerization force fP = fs + O(z2) in the vicinity of
the sphere center for z � R0, and the second order contribution does not influence the stiffness
derived from linear analysis. On the contrary, the force-dependent catastrophe rate might change
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our results of the centering stiffness equations (13) and (14) for which the pushing force is
caused by microtubule buckling. Investigation of these effects will be our future effort.

In summary, our work provides a theoretical framework to investigate positioning
mechanisms of microtubule asters in a confined geometry. The theory allows us to predict
the force acting on microtubule organizing centers in an arbitrarily shaped cell for given
dynamical properties of microtubules. These predictions, together with future experiments, will
help elucidate the positioning mechanisms of microtubule asters in different cell types.
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Appendix A. Steady state nucleation rate

The nucleation rate ν0 is determined by the condition that the total number of microtubules
extended from the organizing center is a constant M at steady state ∂tρ = ∂tn+

= ∂tn−
= 0. Note

that equations (1)–(3) have the scaling property that if ρ, n+, n− are the solutions for a given
nucleation rate ν0, then λρ, λn+, λn− are the solutions for the nucleation rate λν0. Therefore
we can choose a particular nucleation rate, for instance, ν∗

0 , and calculate the corresponding
solutions ρ∗, n+∗, n−∗. The total number of cytoplasmic microtubules, pushing microtubules
and pulling microtubules is then M∗

=
∫

ρ∗ dV +
∫

n+∗ dS +
∫

n−∗ dS. The nucleation rate ν0

that satisfies the condition that the total number of microtubules is M then reads

ν0 = ν∗

0

M

M∗
. (A.1)

Appendix B. Equations (1)–(3) in the spherical coordinate centered at the microtubule
organizing center

In order to solve equations (1)–(3), we choose a spherical coordinate system (θ, φ), in which the
microtubule orientation L̂ is described by L̂ = (sin θ cos φ, sin θ sin φ, cos θ), and the position
q of microtubule tips is described by q = r + lL̂, where l is the distance from the organizing
center to the microtubule tip. With l as the variable, equation (1) can be simplified into

∂tρ =
ν0

4π

δ(l)

l2
−

1

l2
∂l(l

2ρvg) − kcρ. (B.1)

Note that for different microtubule orientations specified by (θ, φ), ρ(l) is defined on the interval
l ∈ [0, L(θ, φ)].

We next express equations (2) and (3) in the spherical coordinate. As the current density
of microtubule tips in equation (2) reads J = ρ(l)vgb, the source term in equation (2) in the
(θ, φ) coordinate becomes m · J|R = ρ(L)vgm · L̂, where the dot product of the normal vector
m and the unit vector of microtubule orientation is m · L̂ = (d�L2)/dS = L2 sin θ/

√
g, with the

determinant of the metric tensor g = L4 sin2 θ + L2(∂θ L)2sin2θ + L2(∂φ L)2. The surface current
of microtubule tips at the boundary is j = v‖n+, where the slipping velocity of microtubule tips
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v‖ is given by v‖ = f+
‖
/ξ . Here the tangential component of the pushing force f+

‖
is

f+
‖
= f +L̂ · (eθeθ + eφeφ), (B.2)

where eθ =
∂ R
∂θ

and eφ =
∂ R
∂φ

are the tangent vectors and eθ and eφ are the corresponding dual
vectors. Thus the θ component of the surface current j reads

j θ
= j · eθ

=
n+

ξ
f+
‖
· eθ

=
n+ f +

ξ
(gθθ L̂ · eθ + gθφL̂ · eφ), (B.3)

where gi j
= ei

· e j , i, j = θ, φ. Using equations eθ =
∂R
∂θ

=
∂L
∂θ

=
∂(L̂L)

∂θ
and gi j

= (gi j)
−1, we

obtain

j θ
=

n+ f +

ξ

L2 sin2 θ∂θ L

g
. (B.4)

Through similar procedures we can also get the φ component of the surface current j,

jφ
=

n+ f +

ξ

L2∂φ L

g
. (B.5)

Note that j θ has the same sign as ∂θ L and jφ has the same sign as ∂φ L . This implies that
microtubules slip toward the direction where the distance between the organizing center and
the cell boundary becomes larger. Since in curvilinear coordinate system, the divergence reads
D · j =

1
√

g ∂i(
√

g j i), equations (2) and (3) are transformed into

∂n+

∂t
= ρ(L)vgL2 sin θ

√
g

− kcn
+
− kbn+

−
1

√
g

[∂θ(
√

g j θ) + ∂φ(
√

g jφ)], (B.6)

∂n−

∂t
= kbn+

− koffn
−. (B.7)

We use a finite difference method to numerically solve equations (B.1), (B.6) and (B.7) at steady
state, ∂tρ = ∂tn±

= 0. The resulting force F(r) acting on the microtubule organizing center is
then obtained via equation (8).

Appendix C. Centering stiffness in a sphere

Because the symmetric part Sαβ(r = 0) = κδαβ of the stiffness tensor is isotropic, we show
here the derivation of the value of the stiffness κ = Szz = −

∂ Fz

∂z . Assume the organizing center
is displaced along the z-axis by a small distance z, due to rotational symmetry around the
z-axis, the solution to equations (B.6) and (B.7) is φ independent, n±(θ, φ) = n±(θ). We expand
the distance between the organizing center and the sphere boundary L(θ) as a series of z,
L(θ) = R0 − z cos θ + O(z2), as well as the pushing force f +(θ) = f +

0 (θ) + f +
1 (θ)z + O(z2). The

solution is expanded as series of z as well, n+(θ) = n+
0(θ) + n+

1(θ)z + O(z2). Substituting these
expansions into equation (B.6) and arranging all terms according to the order of z, we get the
perturbative solution to the first order

n+
0

√
g =

ν0

4π

e−kcat R0/vg

kb + kc
sin θ, (C.1)
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n+
1

√
g =

ν0

4π

e−kcat R0/vg

kb + kc

(
kcat

vg
−

2 f +
0

ξ R2
0(kc + kb)

)
sin θ cos θ. (C.2)

Here we have used the fact that the steady state solution to equation (B.1) is ρ(l)l2
=

ν0
4πvg

e−kcatl/vg . According to equation (8), the z component of the pushing force and the pulling
force are

F+
z = −

∫ 2π

0
dφ

∫ π

0
dθ( f +

0 + f +
1 z)(n+

0 + n+
1z) cos θ

√
g + O(z3), (C.3)

F−

z =
kb

koff

∫ 2π

0
dφ

∫ π

0
dθ f −(n+

0 + n+
1z) cos θ

√
g + O(z3). (C.4)

The stiffness κ+
= −∂z F+

z and κ−
= −∂z F−

z thus are

κ+
=

∫ 2π

0
dφ

∫ π

0
dθ( f +

0 n+
1 + f +

1 n+
0) cos θ

√
g, (C.5)

κ−
= −

kb

koff

∫ 2π

0
dφ

∫ π

0
dθ f −n+

1 cos θ
√

g. (C.6)

For the pushing force described by equation (7), f +
= fs + O(z2). For the pushing force limited

by microtubule buckling, f +
= fE0(1 + 2 cos θ z/R0) + O(z2). Substituting these expansions and

equations (C.1) and (C.2) into equations (C.5) and (C.6), we get the stiffness values expressed
in equations (11)–(14).
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