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Quasielastic backscattering and barrier distributions for the 6,7Li + 64Zn systems
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Excitation functions of quasielastic scattering at backward angles were measured for the weakly bound
6Li and 7Li projectiles on a 64Zn target at energies around the Coulomb barrier. The corresponding barrier
distributions were derived from the experimental cross sections. The experimental data were analyzed within
the coupled-channel model using a double-folding potential as the bare potential. Inelastic excitations of the
target, the 7Li first-excited state, and 6,7Li resonant state(s), corresponding to sequential breakup, were included
in the calculations. The comparison between the data and coupled-channel predictions shows that the effects
of channels not included in the calculations, such as direct breakup and transfers, are much larger for 6Li than
for 7Li.
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I. INTRODUCTION

The influence of breakup on the elastic scattering and fusion
for systems involving weakly bound nuclei at energies around
the Coulomb barrier has been widely studied in the last decades
(see, e.g., Refs. [1–3]).

Useful information about effects of couplings to various
channels on the fusion cross section may be obtained from
the barrier distribution extracted from the measured fusion
excitation function. The fusion barrier distribution has been
defined by Rowley et al. [4] as

Dfus(E) = d2

dE2
[Eσfus(E)]. (1)

The extraction of the barrier distribution by taking the second
derivative of the quantity Eσfus(E) with respect to E requires
very precise measurements of the fusion cross sections.

Similar information on the role of the channel couplings
in the fusion process can be obtained from the measurement
of quasielastic (QEL) scattering at backward angles [5–7].
QEL scattering is defined as the sum of elastic and inelastic
scattering, and all other direct processes, such as transfer and
breakup. Fusion is related to the probability of transmission
through the barrier for angular momentum L = 0, T0(E), and
large-angle QEL scattering is related to the reflection proba-
bility, R0(E). Because of the conservation of the reaction flux,
T0(E) + R0(E) = 1, QEL backscattering can be considered
as complementary to fusion. The barrier distribution of QEL
scattering (Dqel) is defined as [7]

Dqel(E) = − d

dE

[
dσqel

dσRuth
(E)

]
, (2)
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where (dσqel/dσRuth) is the ratio of the QEL scattering and
Rutherford differential cross sections at a fixed backward
angle. Another representation of barrier distribution was
proposed in Ref. [8],

Del(E) = − d

dE

[√
dσel

dσRuth
(E)

]
, (3)

where (dσel/dσRuth) is the ratio of the elastic scattering and
Rutherford differential cross sections at a fixed backward
angle. The advantage of these methods is that they require
numerical evaluation of first derivatives rather than second
derivatives as in the case of fusion. Furthermore, in most cases,
it is easier to measure QEL/elastic scattering than fusion cross
sections.

The barrier distribution method has been applied to many
heavy-ion systems involving tightly bound nuclei [9] (for more
recent studies see, e.g., Ref. [10] and references therein). The
barrier distributions from QEL and elastic scattering for several
systems have been compared with those derived from fusion
(see, e.g., Refs. [11,12]). These comparisons showed that Del

and Dqel are similar to Dfus for tightly bound systems.
In reactions with weakly bound projectiles the breakup

channel is expected to play an important role. The projectile
breakup may be accompanied by a process called incomplete
fusion (ICF) [1], where part of the broken projectile is absorbed
by the target. The process where none of the breakup fragments
is captured by the target is called noncapture breakup (NCBU).
If the QEL cross section includes NCBU and ICF, the
distribution Dqel can be associated with the complete fusion
(CF) barrier distribution [13]. If only NCBU is included in the
QEL cross section, the distribution Dqel is equivalent to that
derived from the total fusion cross section [13]. Zagrebaev
recently suggested [14] that, if the breakup processes, and
possibly other important reaction channels, are not included in
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the QEL cross section, the distribution Dqel, extracted from the
elastic + inelastic backscattering, provides information about
the “total-reaction threshold distribution,” and not about the
fusion barriers (see also Ref. [15]).

Several studies of fusion barrier distributions for systems
with weakly bound projectiles have been reported about
a decade ago [16–19]. QEL and elastic-scattering barrier
distributions for systems involving weakly bound nuclei have
been studied only recently [12,20–26], with the exception of
Ref. [17].

Signorini et al. [17] found that the barrier distribution for
9Be + 209Bi obtained from elastic-scattering data, as defined
by Eq. (3), is broader than that derived from CF data. Lin
et al. [12] measured the excitation functions of QEL and elastic
scattering at backward angles for the systems 6,7Li + 208Pb. It
was shown that the barrier distributions extracted from the
excitation functions of the QEL scattering, including breakup,
are almost the same as those extracted from the CF excitation
functions. Jia et al. [26] compared the barrier distribution
extracted from the sum of elastic and inelastic scattering with
the CF barrier distribution for 9Be + 208Pb. It was found that
the effects of breakup in the QEL scattering are large.

The experimental QEL-scattering excitation functions and
barrier distributions for the 6Li + 144Sm [20] and 6Li + 232Th
[21] systems were analyzed within the coupled-channel (CC)
model. It was shown that sequential breakup of 6Li through
the first resonant state is an important channel to be included
in the calculations, but it is not enough to reproduce the
data. In Ref. [22] the large-angle QEL-scattering data for the
7Li + 144Sm and 6Li + 144Sm systems were compared with
continuum discretized coupled-channel (CDCC) calculations.
It was concluded that in order to explain the measured
excitation functions and the extracted barrier distributions the
breakup channel has to be included in calculations.

References [23–25] report on measurements of elastic
backscattering excitation functions for 6,7Li projectiles on 28Si,
58Ni, 116,120Sn, and 208Pb targets. The experimental barrier
distributions were used to constrain the energy dependence
of the optical potential at near- and sub-barrier energies.
The CDCC calculations show that the effects of coupling to
continuum are large for 6Li and much smaller for 7Li.

In summary, excitation functions for QEL and/or elastic
scattering at backward angles have been measured, and cor-
responding barrier distributions derived, for several systems
involving the weakly bound nuclei 6,7Li and 9Be. Usually, the
experimental data have been analyzed within the CC or CDCC
models. The results show that the barrier distribution method
is a useful tool to study the effects of coupling among different
reaction channels at near-barrier energies.

With the aim to further investigate the dynamics of reactions
induced by weakly bound nuclei, we have recently started a
systematic study of the 6,7Li + 64Zn systems at energies around
the Coulomb barrier. We already measured the 6Li + 64Zn
elastic-scattering angular distributions at Ec.m. ≈ 11–18 MeV
[27]. The experimental data were analyzed within the optical
model to study the energy dependence of the interaction
potential. The results obtained suggest the presence of a
breakup-threshold anomaly, usually explained as due to the
strong coupling to the breakup channel. We also measured the

total fusion cross sections for these systems in the energy
range Ec.m. ≈ 9–28 MeV [28]. It has been observed that
heavy residue production is dominated by CF at above-barrier
energies whereas processes like ICF and/or transfer become
dominant at sub-barrier energies.

In the present article we describe the measurement of
the backward-angle QEL-scattering excitation functions and
the corresponding barrier distributions for the 6,7Li + 64Zn
systems at energies 8 � Ec.m. � 18 MeV. Furthermore, we
analyze these experimental data in the framework of CC
calculations.

This article is organized as follows: In Sec. II we present the
experimental details and experimental results for the excitation
functions and barrier distributions. In Sec. III we compare
these results with CC calculations. In Sec. IV we discuss our
results. Summary and conclusions are given in Sec. V.

II. EXPERIMENTAL DETAILS

A. Experimental setup

The measurements were performed at the Laboratori
Nazionali del Sud, INFN, in Catania, Italy. The 6Li and 7Li
beams were delivered by the SMP Tandem Van de Graaff
accelerator.

The target was 99.4% enriched 64Zn evaporated onto a
∼15 μg/cm2 thick carbon backing. The target thickness was
∼140 μg/cm2 in the 6Li + 64Zn experiment and ∼70 μg/cm2

in the 7Li + 64Zn experiment. A thin 209Bi backing layer,
2–5 μg/cm2, was also present in the targets. Backscattering
events were detected and charge identified by four silicon
telescopes. The telescopes were mounted at approximately
±160◦ and ±170◦ relative to the beam direction. The angular
opening of these telescopes with respect to the target center
was 1.5◦ and 1.8◦, respectively. Two monitor telescopes placed
at ±25◦, with an angular opening of ∼0.2◦, were used for
normalization purposes. Two additional monitor telescopes,
with an angular opening of ∼0.6◦, were set at ±45◦. Each
telescope consisted of a ∼10-μm-thick �E detector followed
by an E detector with a thickness in the range 100–500 μm.
The stability of the electronics was continuously controlled
during the whole measurement using a precise pulse generator.

The beam was defined by a circular collimator with a
diameter of 1.5 mm, placed 17 cm upstream of the target, and
a rectangular aperture of 3 × 3 mm2, located 155 cm upstream
of the target. Beam currents varied from 2 to 10 pnA. The
length of the measurements at low energies was such that the
statistical error of the number of counts in the elastic peak at
±170◦ was ∼1%. For the highest energies the cross sections at
backward angles are very small and the statistical uncertainties
were ∼7%.

Excitation functions of QEL scattering were measured in
the energy range Elab = 9–20 MeV in steps of 0.5 MeV. In
the 6Li + 64Zn experiment the point at 19.5 MeV was not
measured.

B. Data analysis and results

Figure 1 shows a typical two-dimensional �E versus resid-
ual energy Eres spectrum for the 6Li + 64Zn system measured
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FIG. 1. (Color online) Typical �E-Eres spectrum for the 6Li +
64Zn system measured at Elab = 13 MeV, θlab = 170.2◦.

at 13 MeV with the telescope placed at θlab = 170.2◦. Events
corresponding to Z = 1, 2, and 3 can be clearly separated.
Figure 2 shows the projection on the total-energy axis for
events associated with Z = 3. The peaks corresponding to the
elastic and inelastic scattering to the 0.99 MeV 2+ state of 64Zn
could be resolved and are well separated from the scattering
on 209Bi.

A two-dimensional spectrum �E-E for events correspond-
ing to Z = 3 from the 7Li + 64Zn reaction at Elab = 16 MeV
and θlab = 170.2◦ is shown in Fig. 3. The events corresponding
to the elastic scattering and inelastic scattering to the 0.48 MeV
1/2− state of 7Li and the 0.99 MeV 2+ state of 64Zn, as well as
64Zn(7Li,6Li)65Zn one-neutron (1n) transfer are clearly visible.

The mass resolution of the telescopes was not good enough
to separate 6Li from 7Li. However, the transfer to the the
low-lying states of 65Zn with excitations Ex < 0.21 MeV is
kinematically well separated from the elastic and inelastic
scattering. (The Q value for the 1n stripping between the
ground states is +0.73 MeV.)

For the events associated with Z = 3, the Q-value spectra
for the 6,7Li + 64Zn scattering were calculated using two-body
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FIG. 2. (Color online) Projection of events with Z = 3 of Fig. 1
on the total-energy axis.
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FIG. 3. (Color online) Two-dimensional �E-E spectrum for
events with Z = 3 from the 7Li + 64Zn reaction at Elab = 16 MeV,
θlab = 170.2◦.

kinematics. Then the spectra were integrated over a Q-value
window that includes the events of interest. In the case of
the 6Li + 64Zn reaction the elastic scattering and inelastic
excitation of the 64Zn 2+ state were included. In the case of
7Li + 64Zn, the QEL scattering was defined as the sum of the
elastic scattering, inelastic excitation of the 7Li 1/2− and 64Zn
2+ states, and 1n transfer to the 65Zn states. The excitations
of 65Zn covered by the QEL Q-value window were in the
range from 0 to ∼2.2–2.5 MeV, depending on the angle and
beam energy. The QEL events for the case shown in Fig. 3 are
indicated by the box.

The events with Z = 1 and Z = 2 may come from different
reaction channels, such as noncapture breakup, incomplete
fusion, transfer, and evaporation, as well as from reactions
with carbon backing and target impurities. Since it was not
possible to identify clearly the origins of these events, they
were not considered in the analysis of QEL processes.

Absolute values of the QEL cross sections were obtained
by assuming that the scattering at ±25◦, where two monitor
detectors were placed, is pure Rutherford. At lower energies,
the elastic-scattering events corresponding to 64Zn and 209Bi
were not separated for these forward angles. The number of
counts corresponding to the 6,7Li + 209Bi scattering in the
forward monitors was then determined from the scattering in
the monitors placed at ±45◦, by assuming that the 6,7Li + 209Bi
scattering is pure Rutherford for all monitor detectors.

The ratios of the solid angles between monitors and
telescopes were determined by the Rutherford scattering of
6Li and 7Li on a gold target at low energies. The ratio of the
QEL scattering to the Rutherford cross section is obtained
from the expression

dσqel

dσRuth
(θtel)=

[
Ntel(θtel)

Nmon(θmon)

][
(dσRuth/d�)(θmon)

(dσRuth/d�)(θtel)

][
��mon

��tel

]
,

(4)

where[
��mon

��tel

]
=

[
NAu

mon(θmon)

NAu
tel (θtel)

][
(dσRuth/d�)Au(θtel)

(dσRuth/d�)Au(θmon)

]
. (5)
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FIG. 4. (Color online) (a) Ratio of measured backward-angle
cross sections to Rutherford cross sections for elastic (filled squares),
inelastic 64Zn(2+

1 ) (filled triangles), and quasielastic (filled circles)
scattering for 6Li + 64Zn system. (b) Barrier distributions derived
from the elastic and quasielastic excitation functions.

Here, Nmon(θmon) and Ntel(θtel) are the number of detected
events in the monitor detector (at angle θmon) and telescope
(at angle θtel), respectively, and ��mon and ��tel are the
corresponding solid angles. The superscript Au refers to the
6,7Li + 197Au scattering.

The QEL barrier distribution can be obtained from the QEL
backward scattering excitation function by using Eq. (2). The
cross section appearing in Eq. (2) should be at θc.m. ∼ 180◦.
Therefore, the center-of-mass energies Ec.m. were corrected by
the angle-dependent centrifugal potential (see, e.g., Ref. [7]).
The final QEL scattering cross sections as a function of Ec.m.

(the mean value of the energies corrected by the centrifugal
potential at the detector angles) were obtained by averaging the
cross sections for the four detectors at θtel = ±160◦ and ±170◦.
The first derivative of the experimental excitation functions in
Eq. (2) were obtained by using a least-squares linear fit method
[29]. The straight lines are fit to three successive experimental
points and the derivatives are obtained from the slopes of these
lines.

As mentioned in Sec. I, since not all relevant reaction
channels are included in the QEL processes, the derived
barrier distribution does not correspond to the fusion barrier
distribution, but reflects the reaction threshold distribution
[14]. However, we will focus here on the effects of couplings
between different reaction channels at near-barrier energies
and not on the relations between distributions given by Eqs. (1),
(2), and (3).

Figures 4 and 5 show the measured excitation functions
and barrier distributions for the 6Li + 64Zn and 7Li + 64Zn
systems, respectively. [It should be noted that the barrier
distribution corresponding to the elastic-scattering excitation
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FIG. 5. (Color online) (a) Ratio of measured backward-angle
cross sections to Rutherford cross sections for elastic (filled squares),
inelastic 64Zn(2+

1 ) (filled triangles), inelastic 7Li(1/2−
1 ) (empty

circles), and quasielastic (filled circles) scattering and 1n transfer
to the low-lying states of 65Zn (stars) for 7Li + 64Zn system. (b)
Barrier distributions derived from elastic and quasielastic excitation
functions.

function was derived using the same relation as for the QEL
scattering, Eq. (2), for the purpose of easier comparison
between the elastic and QEL scattering data.] One observes
that the effect of nonelastic processes on the barrier distribution
is a very slight shift to higher energies and a decrease of its
height.

At the lowest energies the inelastic-scattering cross section
is small compared to the background originating from the tail
of the elastic peak. The background under the inelastic peak(s)
was estimated from the neighboring part of the spectrum, on
the left side of the peak(s), and subtracted. Furthermore, the
elastic and its adjacent inelastic peak were not well separated
at the lowest energies. Therefore, the estimated uncertainties
in the peak separation were included in the experimental errors
of the cross sections for the inelastic excitation of the target in
Fig. 4 and projectile in Fig. 5. The errors shown for the other
excitation functions in Figs. 4 and 5 are only statistical.

As noted above, the elastic- and inelastic-scattering events
for the 7Li + 64Zn system cannot be separated from the 1n
transfer events. Because of that the extracted cross sections
for inelastic scattering could be overestimated due to the 1n
transfer “background” by ∼10–20%. The elastic-scattering
cross sections for 7Li + 64Zn were extracted from the spectra
measured with the telescopes at +160◦ and −170◦ for which
the overlap of the 6Li and 7Li events was somewhat smaller.
The uncertainty in the extracted cross sections due to the 1n
transfer background increases with energy and could amount
to 8% at the highest energies.
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III. COUPLED-CHANNEL CALCULATIONS

The experimental data for QEL excitation functions and
barrier distributions were analyzed within the coupled-channel
(CC) method. The calculations were carried out using the code
FRESCO [30].

Two low-lying collective states of the target were included
in the CC calculations: the 2+ state at 0.992 MeV and the 3−
state at 2.998 MeV. For the 6Li projectile, the 3+ (2.186 MeV)
and 2+ (4.312 MeV) unbound resonant states were taken
into account. For the 7Li projectile, we included the first-
excited state 1/2− (0.478 MeV) and the resonant state 7/2−
(4.652 MeV).

The diagonal potential used in the CC calculations has the
following form:

V (r) = VC(r) + Vbare(r) + iWbare(r), (6)

where VC(r) is the Coulomb potential, and Vbare(r) + iWbare(r)
is the nuclear “bare” potential. The Coulomb potential of a
uniformly charged sphere with radius RC = 1.25 × (A1/3

P +
A

1/3
T ), where AP and AT are the mass numbers of the projectile

and target, respectively, was used as VC(r). The real part of the
bare potential was taken to be the double-folding potential,
Vbare(r) = VDF(r),

VDF(r) =
∫∫

drP drT ρP (rP )ρT (rT )vNN (|r + rT − rP |),
(7)

where ρP (rP ) and ρT (rT ) are the projectile and target ground-
state densities, respectively, and vNN is the effective nucleon-
nucleon interaction.

For vNN we used the M3Y-Reid interaction with the zero-
range exchange term in the energy-independent form [31]. The
matter densities for 6Li and 64Zn were derived from the charge
distributions for these nuclei by assuming that the neutrons and
protons are distributed similarly [31]. The charge distribution
for 6Li was taken from Ref. [32] and for 64Zn we used a two-
parameter Fermi (2pF) distribution from Refs. [33,34]. The
matter density of 7Li was taken from Ref. [35]. The double-
folding potentials were calculated using the code DEPOT [36].

The imaginary part of the bare potential was of Woods-
Saxon form with parameters [44] W0 = 50 MeV, RW = 1.0 ×
(A1/3

P + A
1/3
T ) fm, and aW = 0.3 fm. This very-short-range

imaginary potential simulates the ingoing-wave boundary
condition to account for the fusion process [45].

The nuclear coupling potentials for inelastic scattering were
also obtained by the double-folding method, using Eq. (7) but
with a transition density replacing the ground-state density of
the excited nucleus and with the ground-state density of the
other nucleus. A simple derivative form was used for the radial
part of the transition density (see, e.g., Ref. [46]),

ρλ
if (r) = −δλ

if

d

dr
ρ0(r), (8)

where ρ0(r) is the ground-state density, δλ
if is the nuclear

deformation length for transition between states i and f , and
λ is the multipolarity of the transition.

The Coulomb reduced matrix elements 〈Jf ‖Eλ‖Ji〉 were
obtained from the experimental values of the reduced transition

probability B(Eλ) (see Refs. [30,47]). The deformation
lengths for nuclear transitions were derived from the Coulomb
matrix elements assuming a collective model and that the
neutron and proton distributions have the same shape and the
same deformation lengths. The rotational model gives for a
rotational band with band-head K

〈Jf ‖Eλ‖Ji〉 = δλ
if

√
2Ji + 1〈JiK, λ0|Jf K〉 (λ + 2)Z

〈
rλ−1
p

〉
4π

,

(9)〈
rλ−1
p

〉 =
∫

ρ0
p(r)rλ+1dr∫
ρ0

p(r)r2dr
, (10)

where ρ0
p(r) is the proton part of the ground state density (see

also Refs. [46,47]). Reorientation couplings were also taken
into account. The diagonal matrix elements 〈J‖E2‖J 〉 were
obtained from the spectroscopic electric quadrupole moments
Qs , when available, or from the nondiagonal matrix elements
assuming a rotational model. The parameters relevant for the
present CC calculations are summarized in Table I.

The QEL excitation functions were calculated at the same
energies and angles for which the experimental cross sections
were measured and the theoretical barrier distributions were
derived using the same procedure that was applied to the
experimental data.

Results of the CC calculations are compared with experi-
mental data in Figs. 6 and 7. The dotted lines in these figures
represent the results of the calculations without any coupling.
The thin solid lines are the results of the CC calculations taking
into account the inelastic channels included in the experimental
QEL cross sections: the excitation of the 64Zn 2+

1 state in the
case of the 6Li + 64Zn system and the 64Zn 2+

1 and 7Li 1/2−
1

states in the case of the 7Li + 64Zn system. The reorientation
of the target 2+

1 excited state and projectile 3/2−
1 ground state

were also taken into account. The thick solid lines represent the
results when the couplings to the projectile resonant state(s)
and the target 3−

1 state are also included in the calculations.
The no-coupling calculations are far from the experimental

data for both the excitation functions and the barrier dis-
tributions. When the target 2+

1 excited state is included in
calculations the agreement with the experimental data is not
much better, as can be seen in Fig. 6 for the 6Li + 64Zn
system. By including the couplings to the 6Li resonant states
and the 64Zn 3−

1 state the results for the QEL excitation
function change significantly. However, the agreement with
the experimental excitation function is still poor and the
influence of these channels on the barrier distribution is
small. Note that for the 7Li + 64Zn system the cross sections
for the inelastic excitation of the 7Li first-excited state are
also included in the QEL cross sections. The inclusion of
this channel and the reorientation of the 7Li ground state
in the CC calculations moves the predictions in the correct
direction. In particular, the agreement with the experimental
barrier distribution improves significantly. The influence of
the included channels is to reduce the height and broaden the
barrier distribution. However, the height is still overestimated.
The thick solid curves in Fig. 7 show the results when the
couplings to the 64Zn 3−

1 excited state and the 7Li 7/2−
1

resonant state are also considered. The inclusion of these
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TABLE I. Experimental values of quadrupole moments Qs and reduced transition probabilities B(Eλ) used in the present CC analysis for
the calculations of the Coulomb matrix elements and nuclear deformation lengths δλ

ij for inelastic transitions in 6Li, 7Li, and 64Zn. (δλ
ij )expt are

“experimental” deformation lengths for 6Li [37].

Nucleus Transition λ Qs B(Eλ, Ji → Jf ) Ref. δλ
if (δλ

if )expt

(Ji → Jf ) (e fm2) (e2 fm2λ) (fm) (fm)

6Li (1+ → 1+) 2 −0.0806 [38] −0.122 −0.76
(1+ → 3+) 2 25.6 [39] −3.854 −2.04
(3+ → 3+)a 2 −3.854 −1.53
(1+ → 2+) 2 7.9 [39] −1.915 −1.95
(2+ → 2+)a 2 −1.915 −0.98

7Li (3/2− → 3/2−) 2 −4.00 [38,40] 2.961
(3/2− → 1/2−) 2 7.27 [40] 2.830
(3/2− → 7/2−) 2 17.5 [41] 2.738
(7/2− → 7/2−)a 2 2.738

64Zn (0+ → 2+) 2 1680 [42] 1.163
(2+ → 2+) 2 −32 [42] 1.002
(0+ → 3−) 3 34000 [43] 1.023

aCoulomb matrix elements for these reorientation terms are determined from B(E2) assuming the rotational model.

couplings improves the prediction for the QEL excitation
function and has a small effect on the barrier distribution.

It should be noted that the contribution of the 1n transfer
channel (7Li, 6Li) was included in the experimental QEL
excitation function, but was not included in our calculations.
It can be seen from Fig. 5 that the contribution of the transfer
to the low-lying states of 65Zn, Ex < 0.21 MeV, to the QEL
excitation function is small. However, as can be seen from
Fig. 3, the contribution of the transfer to the 65Zn states with
higher excitations, Ex � 0.8 MeV, might be appreciable. In
any case, the effects of the transfer channel couplings on the
elastic and inelastic scattering cannot be excluded.
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FIG. 6. (Color online) (a) Quasielastic backscattering excitation
function and (b) quasielastic barrier distribution for 6Li + 64Zn
system. The lines are results of CC calculations (see text for details).

As noted in several papers, e.g., Refs. [37,48,49], the
deformation length for the transition 1+

1 → 3+
1 in 6Li derived

from the reduced transition probability B(E2) is much larger
than the values obtained in different CC analyses of 6Li
scattering. Figure 8 shows the results of calculations for the
6Li + 64Zn system obtained by using the nuclear deformation
lengths taken from Ref. [37], where they were adjusted to fit
the 6Li scattering data. By comparing with results of Fig. 6, one
can observe that the agreement between the calculations and
the data worsened. This suggests that disagreement between
CC calculations and data for 6Li is presumably caused by other
effects; not by the uncertainties in the deformation lengths.
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FIG. 7. (Color online) (a) Quasielastic backscattering excitation
function and (b) quasielastic barrier distribution for 7Li + 64Zn
system. The lines are results of CC calculations (see text for details).
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deformation lengths for transitions in 6Li (see text for details).

We have also derived the components of the QEL barrier
distributions from the excitation functions for inelastic chan-
nels. The elastic- and inelastic-scattering excitation functions
obtained from the CC calculations and the corresponding “par-
tial” barrier distributions are compared with the experimental
data in Figs. 9 and 10.

For the 6Li + 64Zn system, the CC calculations obtained by
using two different sets of deformation lengths for transitions
in 6Li are shown in Fig. 9. As in the QEL case, the calculations
do not reproduce the experimental data, neither for the elastic
nor for the inelastic scattering.

For the 7Li + 64Zn system the agreement of the CC
calculations with the experimental excitation function for
elastic scattering is better than for QEL scattering. The
agreement with the experimental barrier distributions for the
elastic scattering is similar to that for the QEL scattering,
and it is much better than for the the case of the 6Li
projectile. The agreement for the target 64Zn(2+

1 ) inelastic
scattering seems reasonable, for both the excitation function
and barrier distribution, as the experimental cross sections are
probably overestimated. On the other hand, the calculations
do not reproduce well the experimental data for the 7Li(1/2−

1 )
inelastic scattering. Better agreement for the elastic-scattering
excitation function compared with the QEL case is due to the
very small cross sections predicted for this inelastic channel
and partially to the contribution of the 1n transfer channel to
the experimental QEL cross sections.

IV. DISCUSSION

It is important to mention that we used a bare nuclear
potential, consisting of a double-folding real and a short-range
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FIG. 9. (Color online) (a) Excitation functions of elastic (filled
squares) and inelastic 64Zn(2+

1 ) (filled triangles) backscattering
and corresponding contributions to the QEL barrier distribution in
panels (b) and (c), respectively, for 6Li + 64Zn system. The lines
represent the CC calculations using deformation lengths obtained
from the Coulomb matrix elements (solid lines) and “experimental”
deformation lengths (dashed lines) for transitions in 6Li (see text for
details).

imaginary part. We did not use any surface imaginary potential.
Therefore, all nonelastic processes which occur at the nuclear
surface should be taken into account explicitly. We considered
the relevant inelastic excitations of the projectile and target
with coupling strengths taken from the literature. Discrepan-
cies between our CC calculations and experimental results for
excitation functions and corresponding barrier distributions
could then be attributed to the effects of the channels not
taken into account in the CC calculations, such as transfers
and direct breakup reactions. The 6Li and 7Li nuclei have the
pronounced cluster structure α + d and α + t , respectively,
with low cluster separation energy: Sα = 1.47 MeV for 6Li
and 2.47 MeV for 7Li. Therefore, the breakup and/or cluster
transfer channels are expected to be important.

Comparison of Fig. 7 with Figs. 6 or 8, and of Fig. 10
with Fig. 9, shows that the CC calculations for the 7Li + 64Zn
system agree better with the data than for 6Li + 64Zn. One also
observes that the barrier distribution for the 6Li + 64Zn system
is broader than that for 7Li + 64Zn. The observed differences
could be ascribed to different effects of the couplings to
breakup and/or transfer channels, smaller for 7Li than for 6Li.

The above conclusions are consistent with recent theoretical
calculations for elastic scattering [50] and (quasi)elastic
scattering and barrier distributions [22–25]. Theoretical CDCC
calculations for the 6,7Li + 59Co reactions at near-barrier
energies indicate that the breakup cross sections are a small
fraction of the total reaction cross sections but the coupling

054606-7



M. ZADRO et al. PHYSICAL REVIEW C 87, 054606 (2013)

10
-3

10
-2

10
-1

1
dσ

/d
σ R

ut
h

7Li+64Zn

(a)
elastic
64Zn(2+

1)
7Li(1/2-

1)

0

0.2

D
qe

l (
M

eV
-1

)

(b)

elastic

-0.01

0

0.01

D
qe

l (
M

eV
-1

)

(c)

inel. 64Zn(2+
1)

-0.01

0

0.01

10 15 20

Ec.m. (MeV)

D
qe

l (
M

eV
-1

)

(d)

inel. 7Li(1/2-
1)

FIG. 10. (Color online) (a) Excitation functions of elastic (filled
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1 ) (filled triangles), and inelastic 7Li(1/2−
1 )

(empty circles) backscattering and the corresponding contributions to
the QEL barrier distribution in panels (b), (c), and (d), respectively,
for 7Li + 64Zn system. The lines are results of CC calculations.

to the breakup channel has an important effect on the elastic
scattering [50]. The influence of breakup on the elastic channel
is stronger for 6Li than 7Li. In Refs. [22–25] the effects of
breakup on (quasi)elastic scattering and the corresponding
barrier distributions have been studied for different targets
within the CDCC method. It was found that these effects are
large for 6Li and small for 7Li.

Results of recent investigations of the breakup processes in
the 6,7Li + 65Cu [51], 6,7Li + 208Pb [52], and 7Li + 209Bi [53]
reactions show that the breakup following nucleon transfer
is the dominant breakup mechanism at sub-barrier energies
(see also Ref [54]). The channels that could be important
for our systems are, for example, the (6Li, 5Li) one-neutron

stripping (Q = 2.32 MeV), the (6Li,5He) one-proton stripping
(Q = −0.49 MeV), and the (7Li, 8Be) one-proton pickup
(Q = 9.54 MeV) followed by the breakup of the unbound
nuclei 5Li, 5He, and 8Be, respectively.

Hence, our CC calculations should be extended by in-
cluding direct breakup (by using CDCC), transfer channels,
and transfers followed by breakup, within coupled reaction
channels (CRCs). Furthermore, the simultaneous analysis of
experimental angular distributions, excitation functions, and
corresponding barrier distributions for different reaction chan-
nels could help to better understand the reaction mechanisms
of the weakly bound 6Li and 7Li nuclei at near-barrier energies.

V. SUMMARY AND CONCLUSIONS

The QEL excitation functions at backward angles have been
measured for the 6,7Li + 64Zn systems and the corresponding
barrier distributions were derived. The experimental cross
sections and barrier distributions have been compared with the
results of coupled-channel calculations using a double-folding
bare potential. The nuclear transition potentials were also
double-folding potentials calculated with a transition density
of the corresponding nucleus. Inelastic excitations of the target,
excitation of the 7Li first-excited state, and sequential breakup
through the 6,7Li resonant state(s) were considered in the
calculations. The discrepancies between the experimental data
and the CC calculations which include two main collective
states of the target, 2+ and 3−, are large. In the case of
the 7Li + 64Zn system the inclusion of the reorientation of
the 7Li ground state and excitation of its first-excited state
improve the agreement with the data, particularly for the
barrier distribution. In the case of the 6Li + 64Zn system, the
coupling to the 6Li resonant states improves the predictions
but the agreement with the experimental data is still very poor
for both the excitation function and the corresponding barrier
distribution.

The discrepancies between CC calculations and experimen-
tal data suggest that some important reaction channels were not
taken into account. Couplings to the direct breakup, transfer
channels, as well as breakup triggered by transfer might be
responsible for the observed disagreements.
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