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In finance, one usually deals not with prices but with growth rates
R, defined as the difference in logarithm between two consecutive
prices. Here we consider not the trading volume, but rather the
volume growth rate R̃, the difference in logarithm between two
consecutive values of trading volume. To this end, we use several
methods to analyze the properties of volume changes |R̃|, and their
relationship to price changes |R|. We analyze 14, 981 daily record-
ings of the Standard and Poor’s (S & P) 500 Index over the 59-year
period 1950–2009, and find power-law cross-correlations between
|R| and |R̃| by using detrended cross-correlation analysis (DCCA).
We introduce a joint stochastic process that models these cross-
correlations. Motivated by the relationship between |R| and |R̃|,
we estimate the tail exponent α̃ of the probability density func-
tion P(|R̃|) ∼ |R̃|−1−α̃ for both the S & P 500 Index as well as the
collection of 1819 constituents of the New York Stock Exchange
Composite Index on 17 July 2009. As a new method to estimate α̃,
we calculate the time intervals τq between events where R̃ > q.
We demonstrate that τ̄q, the average of τq, obeys τ̄q ∼ qα̃. We
find α̃ ≈ 3. Furthermore, by aggregating all τq values of 28 global
financial indices, we also observe an approximate inverse cubic law.

econophysics | finance | volatility

T here is a saying on Wall Street that “it takes volume to move
stock prices.” A number of studies have analyzed the relation-

ship between price changes and the trading volume in financial
markets (1–14). Some of these studies (1, 3–6) have found a posi-
tive relationship between price change and the trading volume. In
order to explain this relationship, Clarke assumed that the daily
price change is the sum of a random number of uncorrelated intra-
day price changes (3), so predicted that the variance of the daily
price change is proportional to the average number of daily trans-
actions. If the number of transactions is proportional to the trading
volume, then the trading volume is proportional to the variance
of the daily price change.

The cumulative distribution function (cdf) of the absolute
logarithmic price change |R| obeys a power law

P(|R| > x) ∼ x−α. [1]

It is believed (15–18) that α ≈ 3 (“inverse cubic law”), outside the
range α < 2 characterizing a Lévy distribution (18, 19). A parallel
analysis of Q, the volume traded, yields a power law (20–28)

P(Q > x) ∼ x−αQ . [2]

To our knowledge, the logarithmic volume change—R̃ and its rela-
tion to the logarithmic price change R—has not been analyzed, and
this analysis is our focus here.

Data Analyzed
A. We analyze the Standard and Poor’s (S & P) 500 Index

recorded daily over the 59-year period January 1950–July 2009
(14,981 total data points).

B. We also analyze 1,819 New York Stock Exchange (NYSE)
Composite members comprising this index on 17 July 2009,
recorded at one-day intervals (6,794,830 total data points).

Both data sets are taken from http://finance.yahoo.com. Dif-
ferent companies comprising the NYSE Composite Index have
time series of different lengths. The average time series length
is 3,735 data points, the shortest time series is 10 data points,
and the longest is 11,966 data points. If the data display
scale-independence, then the same scaling law should hold
for different time periods.

C. We also analyze 28 worldwide financial indices from
http://finance.yahoo.com, recorded daily.

(i) Eleven European indices (ATX, BEL20, CAC 40, DAX,
AEX General, OSE All Share, MIBTel, Madrid General,
Stockholm General, Swiss Market, FTSE 100),

(ii) Twelve Asian indices (All Ordinaries, Shanghai Com-
posite, Hang Seng, BSE 30, Jakarta Composite, KLSE
Composite, Nikkei 225, NZSE 50, Straits Times, Seoul
Composite, Taiwan Weighted, TA-100), and

(iii) Five American and Latin American indices (MerVal,
Bovespa, S & P TSX Composite, IPC, S & P 500 Index).

For each of the 1,819 companies and 28 indices, we calculate
over the time interval of one day the logarithmic change in price
S(t),

Rt ≡ ln
(

S(t + 1)
S(t)

)
, [3]

and also the logarithmic change in trading volume Q(t) (29),

R̃t ≡ ln
(

Q(t + 1)
Q(t)

)
. [4]

For each of the 3,694 time series, we also calculate the absolute val-
ues |Rt| and |R̃t| and define the “price volatility” (30) and “volume
volatility,” respectively,

VR ≡ |Rt|
σR

[5]

and

VR̃ ≡ |R̃t|
σR̃

, [6]

where σR ≡ (〈|Rt|2〉−〈|Rt|〉2)1/2 and σR̃ ≡ (〈|R̃t|2〉−〈|R̃t|〉2)1/2 are
the respective standard deviations.

Methods
Recently, several papers have studied the return intervals
τ between consecutive price fluctuations above a volatility
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threshold q. The probability density function (pdf) of return
intervals Pq(τ) scales with the mean return interval τ as (31–33)

Pq(τ) = τ−1f
(τ

τ

)
, [7]

where f (x) is a stretched exponential. Similar scaling was found on
the intratrade time scale for q = 0 (34). In this paper, we analyze
either (i) separate indices or (ii) aggregated data mimicking the
market as a whole. In case i, e.g., the S & P 500 Index for any q, we
calculate all the τ values between consecutive index fluctuations
and calculate the average return interval τ. In case ii, we estimate
average market behavior, e.g., by analyzing all the 500 members
of the S & P 500 Index. For each q and each company, we calculate
all τq values and their average.

For any given value of Q in order to improve statistics, we
aggregate all the τ values in one dataset and calculate τ. If the
pdf of large volatilities is asymptotically power-law distributed,
P(|x|) ∼ |x|−1−α, and P(|x̃|) ∼ |x̃|−1−α̃, we propose an estimator
that relates the mean return intervals τq with α, where τq is calcu-
lated for both case i and case ii. Because on average there is one
volatility above threshold q for every τq volatilities, then

1/τq ≈
∫ ∞

q
P(|x|)d|x| = P(|x| > q) ∼ q−α. [8]

For both case i and case ii, we calculate τq for varying q, and obtain
an estimate for α through the relationship

τq ∝ qα. [9]

We compare our estimate for α in the above procedure with the
α value obtained from P(|R| > Q), by using an alternative method
of Hill (35). If the pdf follows a power law P(x) ∼ Ax−(1+α), we esti-
mate the power-law exponent α by sorting the normalized returns
by their size, x1 > x2 > . . . > xN , with the result (35)

α = (N − 1)

[
N−1∑
i=1

ln
xi

xN

]−1

, [10]

where N − 1 is the number of tail data points. We employ the
criterion that N does not exceed 10% of the sample size which, to
a good extent, ensures that the sample is restricted to the tail part
of the pdf (36).

A new method based on detrended covariance, detrended cross-
correlations analysis (DCCA), has recently been proposed (37).
To quantify power-law cross-correlations in nonstationary time
series, consider two long-range cross-correlated time series {yi}
and {y′

i} of equal length N , and compute two integrated signals
Yk ≡ ∑k

i=1 yi and Y ′
k ≡ ∑k

i=1 y′
i, where k = 1, . . . , N . We divide the

entire time series into N − n overlapping boxes, each containing
n + 1 values. For both time series, in each box that starts at i and
ends at i+n, define the “local trend” to be the ordinate of a linear
least-squares fit. We define the “detrended walk” as the difference
between the original walk and the local trend.

Next, calculate the covariance of the residuals in each box
f 2
DCCA(n, i) ≡ 1

n−1

∑i+n
k=i(Yk − Y ′

k,i)(Yk − Y ′
k,i). Calculate the

detrended covariance by summing over all overlapping N−n boxes
of size n,

F2
DCCA(n) ≡

N−n∑
i=1

f 2
DCCA(n, i). [11]

If cross-correlations decay as a power law, the corresponding
detrended covariances are either always positive or always neg-
ative, and the square root of the detrended covariance grows with
time window n as

FDCCA(n) ∝ nλDCCA , [12]

Fig. 1. Autocorrelations and cross-correlations in absolute values of price
changes |Rt | of Eq. 3 and trading-volume changes |R̃t | of Eq. 4 for daily returns
of the S & P 500 Index. (A) The cross-correlation function C(R, R̃) between
R and R̃, and the cross-correlation function C(|R|, |R̃|) between |R| and |R̃|.
(B) For R(t), and R̃(t), we show the rms of the detrended variance FDFA(n)
for |R| and |R̃| and also the rms of the detrended covariance (37), FDCCA(n).
The two DFA exponents λ|R| and λ|R̃| imply that power-law autocorrelations

exist in both |R| and |R̃|. The DCCA exponent implies the presence of power-
law cross-correlations. Power-law cross-correlations between |R| and |R̃| imply
that current price changes depend upon previous changes but also upon
previous volume changes and vice versa.

where λDCCA is the cross-correlation exponent. If, however, the
detrended covariance oscillates around zero as a function of the
time scale n, there are no long-range cross-correlations.

When only one random walk is analyzed (Yk = Y ′
k), the

detrended covariance F2
DCCA(n) reduces to the detrended variance

FDFA(n) ∝ nλDFA [13]

used in the detrended fluctuation analysis (DFA) method (38).

Results of Analysis
We first investigate the daily closing values of the S & P 500 Index
adjusted for stock splits together with their trading volumes. In
Fig. 1A, we show the cross-correlation function between |Rt| and
|R̃t| and the cross-correlation function between Rt and R̃t. The
solid lines are 95% confidence interval for the autocorrelations
of an independent and identically distributed random variables
(i.i.d.) process. The cross-correlation function between Rt and R̃t
is practically negligible and stays within the 95% confidence inter-
val. On the contrary, the cross-correlation function between |Rt|

22080 www.pnas.org / cgi / doi / 10.1073 / pnas.0911983106 Podobnik et al.
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and |R̃t| is significantly different than zero at the 5% level for more
than 50 time lags.

In Fig. 1B we find, by using the DFA method (38, 39), that
not only |Rt| (30, 40), but also |R̃t| exhibit power-law autocorre-
lations. As an indicator that there is an association between |Rt|
and |R̃t|, we note that during market crashes large changes in price
are associated with large changes in market volume. To confirm
comovement between |Rt| and |R̃t|, in Fig. 1B we demonstrate
that |Rt| and |R̃t| are power-law cross-correlated with the DCCA
cross-correlation exponent (see Methods section) close to the DFA
exponent (38, 39) corresponding to |Rt|. Thus, we find the cross-
correlations between |Rt+n| and |R̃t| not only at zero time scale
(n = 0) but for a large range of time scales.

Having analyzed cross-correlations between corresponding
(absolute) changes in prices and volumes, we now investigate the
pdf of the absolute value of R̃t of Eq. 4. In order to test whether
exponential or power-law functional form better fits the data, in
Figs. 2 A and B we show the pdf P(R̃) in both linear–log and log–
log plot. In Fig. 2A we see that the tail substantially deviates from
the central part of pdf which we fit by exponential function. In
Fig. 2B, we find that the tails of the pdf can be well described by
a power law R̃1+α̃ with exponent α̃ = 3 ± 0.16, which supports an
inverse cubic law—virtually the same as found for average stock
price returns (15–17), and individual companies (18).

In order to justify the previous finding, we employ two additional
methods. First, we introduce a method (described in Methods by
Eqs. 8 and 9) for a single financial index. We analyze the proba-
bility that a trading volume change R̃ has an absolute value larger
than a given threshold, q. We analyze the time series of the S & P
500 Index for 14,922 data points. First, we define different thresh-
olds, ranging from 2 σ to 8 σ. For each q, we calculate the mean
return interval, τ̄. In Fig. 2C, we find that q and τ̄ follow the power
law of Eq. 9, where α̃ = 2.97 ± 0.02. We note that the better the
power law relation between τ̄q and q in Fig. 2C, the better the
power-law approximation P(|R̃| > x) ≈ x−α̃ for the tail of the pdf
P(|R̃|). In order to confirm our finding that P(|R̃|) follows a power
law P(|R̃|) ≈ R̃−α̃−1 where α̃ ≈ 3 obtained in Figs. 2 A and B,
we also apply a third method, the Hill estimator (35), to a single
time series of the S & P 500 Index. We obtain α̃ = 2.80 ± 0.07,
consistent with the results in Figs. 2 A and B.

Next, by using the procedure described in case ii of Methods,
we analyze 1,819 different time series of Eq. 4, each representing
one of the 1,819 members of the NYSE Composite Index. For
each company, we calculate the normalized |R̃t| volatility of trad-
ing volume changes of each company (see Eq. 6). In Figs. 3 A and
B, we show the pdf in both linear–log and log–log plot. In Fig. 3A,
we see that the broad central region of the pdf, from 2 σ up to 15
σ, is fit by an exponential function. However, the far tail deviates
from the exponential fit. In Fig. 3B, we find that the tails of the
pdf from 15 σ up to 25 σ, are described by a power law R̃1+α̃ with
exponent α̃ = 3.65 ± 1.00.

Then, by employing the method described by Eqs. 8 and 9 we
define different thresholds, q, ranging from 2 σ to 8 σ (different
range than in Fig. 3A). We choose the lowest q equal to 2 because
we employ the criterion that N does not exceed 10% of the sam-
ple size (36). For each q, and each company, we calculate the time
series of return intervals, τq. For a given q, we then collect all the τ
values obtained from all companies in one unique dataset— mim-
icking the market as a whole — and calculate the average return
interval, τ̄q. In Fig. 3C we find that q and τ̄q follow an approximate
inverse cubic law of Eq. 9, where α̃ = 3.11 ± 0.11. Our method is
sensitive to data insufficiency, so we show the results only up to 8 σ.
Clearly, this method gives the α̃ value for the market as a whole, not
the α̃ values for particular companies. By joining all the normal-
ized volatilities |VR̃| obtained from 1,819 time series in one unique
dataset, we estimate Hill’s exponent of Eq. 10, α̃ = 2.82 ± 0.003,

Fig. 2. Pdf P(|R̃|) of absolute value of differences in logarithm of trading
volume, R̃, of Eq. 4 for the S & P 500 Index. (A) A log–linear plot P(|R̃|).
The solid line is an exponential fit. The tail part of pdf deviates from the
fit in the central part. (B) Log–log plot of the pdf. The broad tail part can
be explained by a power law R̃1+α̃ with α̃ = 3 ± 0.16. (C) For the absolute
values of changes in trading volume (see Eq. 4), the average return interval
τ vs. threshold q (in units of standard deviation σ) follows a power law, with
exponent α̃ = 2.97 ± 0.02. The power law is consistent with inverse cubic law
of the pdf.

consistent with the value of the exponent obtained by using the
method of Eqs. 8 and 9.

In the previous analysis, we consider time series of the compa-
nies comprising the NYSE Composite Index of different lengths
(from 10 to 11,966 data points). In order to prove that the Hill
exponent of Eq. 10 is not affected by the shortest time series,

Podobnik et al. PNAS December 29, 2009 vol. 106 no. 52 22081



Fig. 3. Pdf of absolute value of differences in logarithm of trading volume,
R̃, of Eq. 4 for the members of the NYSE Composite Index. We use the method
described in the Methods section—case ii—for normalized volatilities of Eq. 6.
(A) From 1 σ to 15 σ we show the linear–log plot of the pdf P(R̃). The straight
line is exponential fit. The far tail of pdf deviates from the fit in the central
region of pdf. (B) Log–log plot of pdf from 15 σ to 25 σ. The tail part of the pdf
can be explained by a power law R̃1+α̃ with α̃ = 4.2±0.26. (C) For the absolute
values of changes in trading volume (see Eq. 4), we show the average return
interval τ̄q versus threshold q (in units of a standard deviation). Up to 8 σ, we
show a power law with exponent α̃ = 3.11 ± 0.12 which leads to the inverse
cubic law.

we next analyze only the time series longer than 3,000 data
points (1,128 firms in total). For the Hill exponent, we obtain
α̃ = 2.81 ± 0.003, which is practically the same value as the one
(α̃ = 2.82 ± 0.003) we obtained when short time series were
considered as well.

We also perform the method of Hill (35), and the method
of Eqs. 8 and 9, for the 500 members of the S & P 500 Index
comprising the index in July 2009. There are in total 2, 601, 247
data points for R̃ of Eq. 6. For the thresholds, q, ranging from 2 σ
to 10 σ, we find that q and τ follow for this range an approximate
inverse cubic law of Eq. 9, where α̃ = 3.1 ± 0.12. We estimate the
Hill exponent of Eq. 10 to be α̃ = 2.86 ± 0.005, with the lowest
Q = 2.

In order to find the functional form for trading-volume changes
at the world level, we analyze 28 worldwide financial indices by
using the procedure described in Methods (case ii). For each q, and
for each of the 28 indices, we calculate the values for the return
interval τ. Then for a given q, we collect all the τ values obtained
for all indices and calculate the average return interval τ̄q. In Fig.
4A, we find a functional dependence between q and τ, which can be
approximated by a power law with exponent α̃ = 2.41 ± 0.06. We
also calculate τ vs. q for different levels of financial aggregation.

Finally, in addition to trading-volume changes, we employ
for stock price changes our procedure for identifying power-law
behavior in the pdf tails described in Methods (case ii). The pdf of

Fig. 4. Power-law correlations for worldwide financial indices in (Upper)
absolute values of price changes (|R̃|) and (Lower) absolute values of trading-
volume changes (|R|). We use the method described by Eqs. 7 and 8. (Upper)
The average return interval τ̄ vs. threshold q (in units of standard deviation)
for absolute values of trading-volume changes. For each of 28 worldwide
financial indices, we calculate the corresponding τ̄q values. Then we collect
all the τ̄ values obtained from different indices, and show τ̄q versus q. Up to
eight standard deviations, we find a power law with exponent α̃ = 2.41±0.06.
(Lower) The average return interval τ̄q vs. threshold q for absolute values of
price changes (see Eq. 3) for different levels of aggregation. For each of five
different types of aggregation reported, we find that τ̄ versus q exhibits a
power law with an exponent very close to α = 3.

22082 www.pnas.org / cgi / doi / 10.1073 / pnas.0911983106 Podobnik et al.
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stock price changes, calculated for an “average” stock, is believed
to follow P(R) ≈ R−(1+α) where α ≈ 3, as empirically found for a
wide range of different stock markets (15, 17).

Next, we test whether this law holds more generally. To this end,
we analyze the absolute values of price changes, |Rt| (see Eq. 3),
for five different levels of financial aggregation: (i) Europe, (ii)
Asia, (iii) North and South America, (iv) the world without the
U.S.A, and (v) the entire world. For each level of aggregation, we
find that the average return interval τ̄q ∼ q−3.

Model
In order to model long-range cross-correlations between |Rt| and
|R̃t|, we introduce a new joint process for price changes

εt = σtηt [14]

σ2
t = ω + αε2

t−1 + βσ2
t−1 + γ̃ε̃2

t−1 [15]

and for trading-volume changes

ε̃t = σ̃tη̃t [16]

σ̃2
t = ω̃ + α̃ε̃2

t−1 + β̃σ̃2
t−1 + γε2

t−1. [17]

If γ = γ̃ = 0, Eqs. 14–17 reduce to two separate processes of ref.
41. Here, ηt and η̃t are two i.i.d. stochastic processes each cho-
sen as Gaussian distribution with zero mean and unit variance.
In order to fit two time series, we define free parameters ω, α, β,
γ, ω̃, α̃, β̃, γ̃, which we assume to be positive (41). The process
of Eqs. 14–17 is based on the generalized autoregressive condi-
tional heteroscedasticity (GARCH) process (obtained from Eqs.
14 and 15 when γ̃ = 0) introduced to simulate long-range autocor-
relations through β 
= 0. The GARCH process also generates the
power-law tails as often found in empirical data (see refs. 15–18),
and also Fig. 2B. In the process of Eqs. 14–17, we obtain cross-
correlations because the time-dependent standard deviation σt for
price changes depends not only on its past values (through α and
β), but also on past values of trading-volume errors (γ̃). Similarly,
σ̃t for trading-volume changes depends not only on its past values
(through α̃ and β̃) but also on past values of price errors (γ).

For the joint stochastic process of Eqs. 14–17 with β = β̃ = 0.65,
α = α̃ = 0.14, γ = γ̃ = 0.2, we show in Fig. 5A the cross-
correlated time series of Eqs. 15 and 17. In Fig. 5B, we show the
autocorrelation function for |εt| and the cross-correlation func-
tion, which practically overlap because of the choice of
parameters.

If stationarity is assumed, we calculate the expectation of Eqs.
15 and 17 and because, e.g., E(σ2

t ) = E(σ2
t−1) = E(ε2

t−1) = σ2
0, we

obtain σ2
0(1−α−β) = ω+γ̃σ̃2

0 and similarly σ̃2
0(1−α̃−β̃) = ω̃+γσ2

0.
So stationarity generally assumes that α + β < 1 as found for the
GARCH process (41). However, for the choice of parameters in
the previous paragraph for which σ0 = σ̃0 stationarity assumes
that σ2

0(1 − α − β − γ̃) = ω. This result explains why the persis-
tence of variance measured by α + β should become negligible in
the presence of volume in the GARCH process (10). In order to
have finite σ2

0, we must assume α + β + γ̃ < 1.
It is also possible to consider integrated generalized

autoregressive conditional heteroskedasticity (IGARCH) and
fractionally integrated generalized autoregressive conditional
heteroskedasticity (FIGARCH) processes with joint processes

Fig. 5. Cross-correlations between two time series generated from the sto-
chastic process of Eqs. 14–17, with β = β̃ = 0.65, α = α̃ = 0.14, γ = γ̃ = 0.2, and
ω = ω̃ = 0.01. In A, we show the time series ε and ε̃ of Eqs. 14–17, where the
latter time series is shifted for clarity. These two time series follow each other
due to the terms γ 
= 0 and γ̃ 
= 0. In B, we show the autocorrelation function
A(n) for |εt | and the cross-correlation function C(|ε̃|, |ε|). The 95% confidence
intervals for no cross-correlations are shown (solid lines) along with the best
exponential fit of A(n) (dotted curve).

for price and volume change, a potential avenue for future
research (46).

Summary
In order to investigate possible relations between price changes
and volume changes, we analyze the properties of |R̃|, the logarith-
mic volume change. We hypothesize that the underlying processes
for logarithmic price change |R| and logarithmic volume change
|R̃| are similar. Consequently, we use the traditional methods that
are used to analyze changes in trading price to analyze changes in
trading volume. Two major empirical findings are:

(i) we analyze a well-known U.S. financial index, the S & P
500 Index over the 59-year period 1950–2009, and find power-
law cross-correlations between |R̃| and |R|. We find no cross-
correlations between R̃ and R; and

(ii) we demonstrate that, at different levels of aggregation, rang-
ing from the S & P 500 Index to an aggregation of different world-
wide financial indices, |R̃| approximately follows the same cubic
law as |R|. Also, we find that the central region of the pdf, P(|R̃|),
follows an exponential function as reported for annually recorded
variables, such as gross domestic product (42, 43), company sales
(44), and stock prices (45).

In addition to empirical findings, we offer two theoretical
results:

(i) to estimate the tail exponent α̃ for the pdf of |R̃|, we develop
an estimator which relates α̃ of the cdf P(|R̃| > x) ≈ x−α̃ to
the average return interval τq between two consecutive volatilities
above a threshold q (31); and

(ii) we introduce a joint stochastic process for modeling simul-
taneously |R| and |R̃|, which generates the cross-correlations
between |R| and |R̃|. We also provide conditions for stationarity.
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