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Abstract: This paper reviews several various approaches to macroscopic 
pedestrian modelling. It describes hydrodynamic models based on similarity of 
pedestrian flow with fluids and gases; first-order flow models that use fundamental 
diagrams and conservation equation; and a model similar to LWR vehicular traffic 
model, which allows non-classical shocks. At the end of the paper there is stated a 
comparison of described models, intended to find appropriate macroscopic model 
to eventually be a part of a hybrid model. The future work of the author is outlined. 
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1 INTRODUCTION 

Pedestrian simulation has wide usage in praxis these days. People tend to group in relatively small 
places. Very crowded places can be transportation terminals – airports, railway stations, subways, but 
also theatres, stadiums, etc. There comes a need to solve building trafficability and a layout of serving 
points, information tables, emergency exits, etc. It can not only help to save financial resources, but 
also human lives.   

However, the choice of modelling method can be difficult. We have to consider especially purpose of 
the simulation and needed degree of granularity. Granularity in this context means the degree of the 
modelling detail. From this point of view models are divided into microscopic, mesoscopic and 
macroscopic. Each has its pros and cons. Microscopic models model pedestrians in great detail, 
distinguish individuals and their interactions. Macroscopic models on the other hand model pedestrian 
flow as a whole and can be used in situations, where human interaction is not closely studied. 
Mesoscopic modeling usually consist of simplification of dynamics with less data demand. It 
combines microscopic aspects (they can deal with individual pedestrians) and macroscopic aspects, 
such as flow dynamics. Therefore very interesting and also effective alternative seems to be the 
creation of a hybrid simulation model that would allow to flexibly define and modify the granularity 
for different areas of modeled scene.  

The simulation tool PedSim for pedestrian movement [11][12] is being developed at the Department 
of Transportation Networks at Faculty of Management Science and Informatics for several years. The 
goal is to develop a complex, generic, agent based 3D tool for modeling pedestrians’ movement. The 
utilization of the model can be found in evacuation and design evaluation scenarios of airports, 
transportation terminals etc. This tool utilizes microscopic and mesoscopic models of pedestrian 
movement so far. Our goal is to add macroscopic model as well, and create a hybrid simulation model. 
Macroscopic modelling will be used in areas, which are not statistically important, or where human 
interaction observation is not necessary. Microscopic and macroscopic display of PedSim is depicted 
on figure 1. 

 

Fig. 1. Left – microscopic movement in PedSim. Right – macroscopic movement in PedSim. Flow is moving 
through edges of macroscopic graph. No individuals are distinguished, we can only see value of crowd density in 

the edge determined by corresponding color (color palette from blue to red, red is the highest density). 

This paper provides a review of several macroscopic flow models. Their advantage is, that they do not 
require as much computational power as microscopic methods. At the end of the article there is a 
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comparison of described models. This provides an information, which one of models is the most 
suitable for our purpose of creating a hybrid simulation model for PedSim simulation tool.  

2 HYDRODYNAMIC MODELS 

Hydrodynamic models [8] use analogy with fluids or gases to describe density and speed changes in 
time. These models are based on a fact, that pedestrian flows and their mesoscopic and macroscopic 
characteristics are driven by physical laws similar to those valid for dynamics of compressed fluid or 
gases. 

This analogy was studied by number of scientists, who derived some hydrodynamic models out of it. 
Some of these models, similar to physical ones, are called gas-kinetic models (Boltzmann-like 
approach, is used mostly for traffic modelling). They describe pedestrian dynamics using distribution 
function of speed. Other, macroscopic models, use Navier-Stokes type of equations or equations of 
pedestrian conservation. 

Compared to traffic hydrodynamic models, the number of pedestrian models is low, since the 
complexity of human behavior is much larger than vehicle one. 

2.1 HELBING’S FLUID-DYNAMIC MODEL 

Dirk Helbing [6] presented his fluid-dynamic model for the collective movement of pedestrians in 
1992. It is based on Boltzmann-like gas-kinetic model. The first one to apply this kind of model on 
pedestrian crowds was Henderson [7]. However, he assumed a conservation of momentum and energy, 
what was quite unrealistic. 

Pedestrian here belongs into type µ of motion, if he wants to walk approximately with the velocity	ݒԦ଴. 

Density ߩොఓ൫ݔԦ, ,Ԧఓݒ Ԧఓݒ
଴,  ൯ describes a number ఓܰ of pedestrians of type µ, who are present within anݐ

area A=A(ݔԦ) around a place ݔԦ, with intended velocity of approximately ݒԦఓ
଴, while the actual velocity is 

approximately ݒԦఓ. It is defined as:  

,Ԧݔොఓ൫ߩ ,Ԧఓݒ Ԧఓݒ
଴, ൯ݐ ≡ ,Ԧݔොஜ൫ߩ ,ሬԦఓݑ ൯ݐ ∶ൌ

ஜܰ൫࣯ሺݔԦሻ ൈ ࣰ൫ݑሬԦఓ൯, ൯ݐ

ܣ ∙ ܸ
 

(1) 

࣯ሺݔԦሻ is a neighborhood around place ݔԦ, which represents all accessible (public) places ݔԦ.  

࣯ሺݔԦሻ ∶ൌ ሼݔԦ∗ ∈ ࣧ: ∗Ԧݔ‖ െ ‖Ԧݔ ൑  ሽ (2)ݎ

Similarly, ࣰ൫ݑሬԦஜ൯ is a neighborhood of ൫ݑሬԦஜ൯ ൌ ൫ݑሬԦஜ, Ԧఓݒ
଴൯, with a volume V = V	൫ݑሬԦஜ൯.  

Next the continuity equations have been established: 

ොఓߩ݀

ݐ݀
≡
ොఓߩ߲

ݐ߲
൅ Ԧఓ൯ݒොఓߩ௫Ԧ൫׏ ൅ ௩ሬԦഋ׏ ൭ߩොఓ

Ԧ݂
ஜ

݉ఓ
൱ ൅ Ԧఓݒොఓߩ௩ሬԦഋబ൫׏

଴൯ ∶ൌ
ොఓߩ
଴ െ ොఓߩ

߬ఓ
൅෍ መܵ

ఓ௩ ൅

௩

෍ܥመఓ௩ ൅ Ԧఓݍ
௩

. (3) 
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These can be interpreted as gas-kinetic equations. ݉ఓ	denotes the average mass of type µ pedestrians. 

The force Ԧ݂ஜ ൌ ݉ఓݒԦఓ can often be neglected.  

The change of density ߩොఓ over time is influenced by four facts: 

 The tendency of pedestrians to reach their intended velocity ݒԦఓ
଴. 

 Interactions among pedestrians. 

 Changes of pedestrian types when turning right or left or when at a crossing. 

 The density gain or loss per time unit. 

By multiplication of (3) by ߰ఓ൫ݒԦఓ൯ ൌ ݉ఓ,݉ఓݒԦఓ or ݉ఓݒఓ,௜
ଶ /2, and integration over ݑሬԦఓ, we obtain 

following equations: 

߲〈߷ఓ〉

ݐ߲
ൌ െ

߲

ఓ,ఈݔ߲
൫〈߷ఓ〉〈ݒఓ,ఈ〉൯ ൅ ܳఓሺ1ሻ ൅෍൤

݉ఓ

݉௩

〈߷ఓ〉߯ఓ
௩ఓ
ሺ1ሻ െ 〈߷ఓ〉߯ఓ

ఓ௩
ሺ1ሻ൨

௩

 (4) 

for the mass density, 

߲〈߷ఓ〉〈ݒఓ,ఉ〉

ݐ߲
ൌ െ

߲

ఓ,ఈݔ߲
൫〈߷ఓ〉〈ݒఓ,ఈ〉〈ݒఓ,ఉ〉 ൅ ൯〈ఓ,ఈఉߩ〉 ൅ 〈߷ఓ〉

〈 ఓ݂,ఉ〉
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1
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଴ 〉 െ ൯〈ఓ,ఉݒ〉 																													
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1
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(5) 

for the momentum density, and 
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(6) 

for the energy density. Here, the density of pedestrians of type µ is 〈ߩఓ〉, their velocity 〈ݒఓ〉, and the 

variance of their velocity components ݒఓ,௜ (at place ݔԦ and time t) is 〈൫ݒߜఓ,௜൯
ଶ
〉. 〈߷ఓ〉 ∶ൌ ݉ఓ〈ߩఓ〉 stands 

for the mass density, the mean momentum density 〈ߩఓ〉〈݉ఓݒԦఓ〉 ൌ 〈߷ఓ〉〈ݒԦఓ〉, and the mean energy 

density 〈߳ఓ,௜〉 ൌ 〈ఓߩ〉 〈
௠ഋ

ଶ
ఓ,௜ݒ
ଶ 〉 ൌ 〈߷ఓ〉

௩ഋ,೔
మ

ଶ
൅ 〈߷ఓ〉 〈

൫ఋ௩ഋ,೔൯
మ

ଶ
〉. 

Equations (4), (5) and (6) represent the known hydrodynamic equations. Within there is also an 
interaction between pedestrians of type µ and v included. Detailed explanation of equations is 
described in [6]. 
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2.2 HUGHES’S MODEL 

Roger L. Hughes [9][10] proposed a model resulting from three hypotheses: 

Hypothesis 1. The speed at which pedestrians walk is determined solely by the density of surrounding 
pedestrians, the behavioral characteristics of the pedestrians, and the ground on which they walk. 

The velocity components (u,v) of a pedestrian are given by 

ݑ ൌ ݂ሺߩሻ߶෠௫,          ݒ ൌ ݂ሺߩሻ߶෠௬ (7) 

where ߶෠௫ and ߶෠௬ are the direction cosines of the motion and f(ρ) is a speed of pedestrian as a function 

of density. 

Hypothesis 2. Pedestrians have a common sense of the task (called potential) that they face to reach 
their common destination, such that any two individuals at different locations having the same 
potential would see no advantage to exchanging places. 

Thus the direction of a motion of the pedestrian is perpendicular to his potential, i.e. the direction 
cosines are 

߶෠௫ ൌ
െሺ߲߶/߲ݔሻ

ඥሺ߲߶/߲ݔሻଶ ൅ ሺ߲߶/߲ݕሻଶ
߶෠௬ ൌ

െሺ߲߶/߲ݕሻ

ඥሺ߲߶/߲ݔሻଶ ൅ ሺ߲߶/߲ݕሻଶ
, (8) 

where ϕ is potential. This hypothesis is applicable for pedestrian flows, because they can visually 
access the situation. 

Hypothesis 3. Pedestrians seek to minimize their estimated travel time but temper this behavior to 
avoid extreme densities. This tempering is assumed to be separable, such that pedestrians minimize the 
product of their travel time as a function of density. 

The distance between pedestrians’ potentials must be proportional to pedestrian speed, thus 

1

ඥሺ߲߶/߲ݔሻଶ ൅ ሺ߲߶/߲ݕሻଶ
ൌ ඥݑଶ ൅  ଶ (9)ݒ

with potential scaled appropriately. 

Equations (7)-(9) with the usual continuity equation are combined into equations for pedestrian flow 

െ
ߩ߲

ݐ߲
൅
߲

ݔ߲
൬݃ߩሺߩሻ݂ଶሺߩሻ

߲߶

ݔ߲
൰ ൅

߲

ݕ߲
൬݃ߩሺߩሻ݂ଶሺߩሻ

߲߶

ݕ߲
൰ ൌ 0 (10) 

and 

݃ሺߩሻ݂ሺߩሻ ൌ
1

ඥሺ߲߶/߲ݔሻଶ ൅ ሺ߲߶/߲ݕሻଶ
 (11) 

where factor ݃ሺߩሻ stands for the tempering behaviour at high densities. 
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This formulation can easily be extended to multiple pedestrian types crows. ݂ሺߩሻ and ݃ሺߩሻ can be 

approximated by: 

݂ሺߩሻ ൌ

ە
ۖ
ۖ
۔

ۖ
ۖ
ۓ

,ܣ ߩ ൑ ௧௥௔௡௦ߩ

ඨܣ
௧௥௔௡௦ߩ
ߩ

	 , ௧௥௔௡௦ߩ																														 ൏ ߩ ൑ ௠௔௫ߩ

ඨܣ
௠௔௫ߩ௖௥௜௧ሺߩ௧௥௔௡௦ߩ െ ሻߩ

௠௔௫ߩଶሺߩ െ ௖௥௜௧ሻߩ
, ௖௥௜௧ߩ ൏ ߩ ൑ ௠௔௫ߩ

 (12) 

and 

݃ሺߩሻ ൌ ቐ

1, ߩ ൑ ௖௥௜௧ߩ
௠௔௫ߩሺߩ െ ௖௥௜௧ሻߩ

௠௔௫ߩ௖௥௜௧ሺߩ െ ሻߩ
, ௖௥௜௧ߩ ൏ ߩ ൑ ௠௔௫ߩ

 (13) 

where typically A = 1.4 ms-1, ߩ௧௥௔௡௦ = 0.8 ms-1, ߩ௖௥௜௧ = 3.0 ms-1, and ߩ௠௔௫ = 5.0 ms-1. 

3 FIRST-ORDER FLOW MODELS 

The first-order pedestrian flow theory [1][4][5] is based on combination of a fundamental diagram and 
the conservation of pedestrians. Fundamental diagram represents flow-density relation. 

3.1 DAAMEN-HOOGENDOORN-BOVY 

The fundamental diagrams here [4][5] are derived from cumulative flow plots – functions N(x,t) that 
represent counted number of pedestrians that pass a cross-section x from an arbitrary starting point. 
The flow q in a cross-section x in time period t1 to t2 equals: 

,ݔሺݍ ݋ݐ	ଵݐ ଶሻݐ ൌ
ܰሺݔ, ଶሻݐ െ ܰሺݔ, ଵሻݐ

ଶݐ െ ଵݐ
 (14) 

The density at point x in time t is derived from fundamental relation between speed u, density k and 
flow q: 

݇ሺݔ, ሻݐ ൌ
,ݔሺݍ ሻݐ

,ݔሺݑ ሻݐ
 (15) 

In [5] the three-dimensional cell C with dimensions X×Y×T is considered. For every trajectory passing 
the cell, the three quantities are determined: 

1. The travel time TTi – duration of pedestrian i in the cell. 0 < TTi ≤ T 
2. The travelled distance Di in the x-direction – the distance pedestrian i walks in x-direction 

while staying in the cell. 0 < Di ≤ X 
3. The travelled distance Zi in the y-direction – the distance pedestrian i walks in y-direction 

while staying in the cell. 0 < Zi ≤ X 

From these quantities, the following equations are generalized: 
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݇ ൌ
∑ ܶ ௜ܶ௜∈஼

ܻܺܶ
 (16) 

  

௫ݍ ൌ
∑ ௜௜∈஼ܦ

ܻܺܶ
ܽ݊݀ ௬ݍ ൌ

∑ ܼ௜௜∈஼

ܻܺܶ
 

(17) 

  

where k is density in generalized form in P/m2 and q is definition of flow in x and y direction (in 
P/ms). If TTi = T, then: 

݇ሺݔ, ሻݐ ൌ
∑ ܶ ௜ܶ௜∈஼

ܻܺܶ
ൌ

݊ܶ

ܻܺܶ
ൌ

݊

ܻܺ
 (18) 

where n is the number of pedestrians in area X×Y at time t. The same holds for flow definitions. 

Pedestrian speeds in x and y directions can easily be determined: 

௫ݒ ൌ
௫ݍ
݇
ൌ

∑ ௜௜∈஼ܦ

∑ ܶ ௜ܶ௜∈஼
ܽ݊݀ ௬ݒ ൌ

௬ݍ
݇
ൌ

∑ ܼ௜௜∈஼

∑ ܶ ௜ܶ௜∈஼
 (19) 

Based on the data of narrow bottleneck experiment, the fundamental graph has been constructed. 

 

Fig. 2. Fundamental diagram for pedestrian traffic for bottleneck experiment. [5] 

3.2 BRUNO ET. AL. 

Bruno et. al. [1] proposed physical framework based on several features of pedestrian behaviour: 

(f1) pedestrians are active agents, i.e. in normal (non-panic) situations, their shared objective is to walk 

with the maximum velocity towards a target ࣮ (doors, exits, etc.), while avoiding obstacles and 

crowded zones. They actively determine their walking direction and velocity and are not 
passively subjected to the laws of inertia; 
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(f2) pedestrians are intelligent agents, so their mind evaluates, selects, makes synthesis of its 
perceptions according to various psychological criteria. 

(f3) Pedestrians under normal conditions do not perceive the real world locally in space, but have the 
ability to see up to a given extent around them. The area required for perception, evaluation and 
reaction is called sensory region and is notated as Rs;  

(f4) pedestrians react after a reflex time delay τ1 from the perception time, which is needed for reaction 
to the actual conditions, while a volitional time delay τ2 is required to adopt walking strategies 
and to scan visual field. τ1 ≪ τ2 ≪ T, T is the reference macroscopic time scale required to cross 
the walking area at maximum walking speed vM; 

(f5) from the previous it comes, that pedestrians in a given position at a given time react to perceived 
conditions in front of them at a delayed time, i.e. in a non-local way in both space and time. 

(f6) Pedestrians are anisotropic agents, they distinguish between ahead and behind. In normal 
situations they are essentially sensitive to what happens in a visual field focused on their direction 
of movement; 

(f7) walking pedestrians adapt their sensory region’s depth and width to their travel purpose and 
walking speed. 

Features f1-f2 are about intelligent behavior, features f3-f5 about non-local behavior, and features f6-
f7 about anisotropic behavior. 

3.2.1 PHYSICAL MODELLING FRAMEWORK 

The proposed model is expressed by a mass conservation equation for a control mass M in time t: 
ܯܦ

ݐܦ
ൌ 0  (20) 

To describe a system dynamics, the velocity field of the moving mass should be a state variable or be a 
priori known. First-order models relate the velocity field to the mass itself. 

The velocity field v in the point x ߳ Ω at time t: 

,ܠሺܞ ሻݐ ൌ ,ܠሺݒ ,ܠ௩ሺ܍ሻݐ ሻݐ  (21) 

where ݒ is the magnitude of v (i.e. the walking speed) and ev is a unit vector of walking direction. The 

walking direction is modelled as the superposition of two contributors: 
- the desired direction identified by the unit vector ed; 
- the interaction direction – the direction, the pedestrian would follow to avoid crowded areas. 

It is identified by the unit vector ei, which, unlike ed, evolves in time. 

The desired direction is a priori determined. The interaction direction is instead obtained through a 
perception process. The resulting walking direction ev is: 

௩܍ ൌ
ௗ܍ߠ ൅ ሺ1 െ ௜܍ሻߠ
ௗ܍ߠ| ൅ ሺ1 െ |௜܍ሻߠ

, (22) 
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Where θ ߳ [0, 1] is a dimensionless parameter – weight of pedestrian’s attitude to prioritize the 

walking area layout or the crowd conditions.  

The walking speed ݒ is determined by: 

ݒ ൌ ெݒ ቊ1 െ exp ቈെߛ ቆ
1

௣ߩ
െ

1

ெߩ
ቇ቉ቋ , (23) 

where ݒெ is the free speed, ߩெ is the jam density, γ is an exponent, that makes the relation sensitive to 

different travel purposes, ߩ௣ ൌ ,ܠ௣ሺߩ  .ሻ is the perceived densityݐ

The sensory region ܴ௦ ൌ ܴ௦ሺܠ, ,ௗ܍ ,ߜ  തሻ is modelled as a portion of ball centered in x with radius δ andߙ

angular span 2ߙത. In the 1D case the definition is simple: 

ܴ௦ሺݔ, ሻߜ ൌ ሾݔ, ݔ ൅ ሿߜ ⊆ ሾ0, ሿܮ , (24) 

where the interval Ω = [0, L] is the 1D domain. It is assumed that the depth δ depends on the walking 

speed only, while the width 2ߙത is a constant. The radius δ is expressed as a function of the local 

delayed walking speed. 

,ܠሺߜ ሻݐ ൌ ݒሺߜ ሺܠ, ݐ െ ߬ଵሻሻ (25) 

The constitutive law linking δ to the walking speed is as follows: 

ሻݒሺߜ ൌ
∆௦
ெݒ

൅  ଴ (26)ߜ

where ∆௦ and δ0 are understood as the macroscopic counterparts of d(ݒெ) and δ0 . It is assumed that δ0 

is constant equaling a given fraction of the reference length L. 

The visual field width ߙത varies in range [0, 90°]. The crowd density and the interaction direction (in 
2D setting) come from an intelligent evaluation process. 

4 COLOMBO-ROSINI MODEL 

A macroscopic model presented by [2][3] can be used to describe real situations, such as crowd 
evacuating a corridor. It is a one-dimensional model built on a Couchy problem for the nonlinear 
hyperbolic conservation law 

߲௧ߩ	 ൅	߲௫݂ሺߩሻ ൌ 0, ݔ ∈ Թ, ݐ ൐ 0, (27) 

which reminds of the Lighthill-Whitham-Richards (LWR) model of vehicular traffic. Furthermore, it 
is able to reproduce the Braess’ paradox for pedestrians and was experimentally confirmed by an 
empirical study. 

When the density grows above the maximum value, it is assumed, that unlike vehicles, pedestrians can 
still move but feel overcompressed. As described in [2], this allows to define a concept of solution to 
the above conservation law in which non-classical shocks are admitted.   
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5 COMPARISON OF MACROSCOPIC MODELS 

Described models were compared from several points of view, as stated in table 1. They are all based 
on physical laws. 

Helbing’s model is based on fluid-dynamics. As one of a few it is applicable also on panic situations, 
what allows us to model evacuations. Different types of pedestrians are distinguished here. This model 
describes developments of walking lanes, propagation of waves and behavior on a dance floor. It has 
wide application possibilities. Only problem can arise in places with very low densities. The greatest 
disadvantage, however, is the fact, that the model has not been validated. 

Hugh’s model is based on well-defined hypotheses. It describes time-dependent waves and Braess’ 
paradox. This model also has problem with low densities. It has been properly validated, but cannot be 
used in panic situations.  

Daamen’s model is based on flow-density diagram. It has been validated only by laboratory 
experiments. It is applicable on pedestrian traffic, but not on panic situations. No apparent problems 
have been described. 

Bruno et. al. designed model based on physical model and crowd dynamics. It is the only model which 
recognizes individual pedestrians. It can be used for pedestrian traffic modelling, but does not support 
panic situations. The diffusive effect is explained. 

Colombo-Rosini model is based on LWR model. It described phenomena of shock waves and Braess’ 
paradox. Its advantage is applicability to panic situations and evacuations.  

Since our simulation tool PedSim focuses on evacuation and evaluation scenarios mostly at large 
transportation terminals, a good choice seems to be the Colombo-Rosini model, which allows panic 
situations. As the only model from described ones, this one is focused on evacuations. Unlike 
Helbing’s model, which also allows panic situations, Colombo-Rosini model has been properly 
validated. 
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 HELBING HUGH 
DAAMEN 

et. al. 
BRUNO et. 

al. 
COLOMBO-

ROSINI 

Model based on Fluid-dynamics 
Well-defined 
observations 
(hypotheses) 

Flow-density 
diagram 

Physical 
model and 

crowd 
dynamics 

Altered LWR 
model 

Possible problems Low densities Low densities 
Not 

described 
Not described 

Describes only 
one dimensional 

movements 

Applicable to panic 
situations 

Yes  No No  No  Yes 

Recognizes 
individuals 

Only groups of 
different types 

No No Yes No 

Value of variables Physical meaning 
Physical 
meaning 

Physical 
meaning 

Physical 
meaning 

Physical 
meaning 

Parameters 
calibration 

By inspection Typical values By inspection By inspection By inspection 

Validated No Yes 
Laboratory 
experiments 

Yes Yes 

Phenomena 
explained 

Development of 
walking lanes, 

propagation of waves, 
behavior on a dance 

floor 

Time-dependent 
waves, Braess’ 

paradox 

None 
described 

Diffusive 
effect  

Braess’ paradox, 
shock waves 

Possible applications 
Town- and traffic-

planning 
Crowd motion 

Pedestrian 
traffic 

Pedestrian 
traffic 

Evacuation 

Table 1. Comparison of macroscopic models. 

6 CONCLUSION 

Macroscopic models save computation time significantly. They are convenient to use when pedestrian 
to pedestrian interaction is not needed to be closely studied.  

At the Department of Transportation Networks of Faculty of Management Science and Informatics of 
University of Žilina we are developing a simulation tool PedSim [11, 12] for simulating pedestrian 
movement. Our goal is to create hybrid model – combination of microscopic and macroscopic model. 
Microscopic model will be used in complicated areas or areas of interest, and macroscopic in the rest. 
From the comparison of several flow models we can see, that the most suitable one is Colombo-Rosini 
model, which is applicable to panic situations and evacuations.  

The future work will be focused on implementation and calibration of selected macroscopic model 
into PedSim simulation tool. Finally, the transitions and synchronization between microscopic and 
macroscopic models will be solved and hybrid model will be created. 
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