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Abstract— Common approaches for vehicle localization pro-
pose to match LiDAR data or 2D features from cameras to
a prior 3D LiDAR map. Yet, these methods require both
heavy computational power often provided by GPU, and a first
rough localization estimate via GNSS to be performed online.
Moreover, storing and accessing 3D dense LiDAR maps can be
challenging in case of city-wide coverage.

In this paper, we address the problem of camera global
relocalization in a prior 3D line-feature map from a single
image, in a GNSS denied context and with no prior pose
estimation. We propose a dual contribution.

(1) We introduce a novel pose estimation method from
lines, (i.e. Perspective-n-Line or PnL), with a known vertical
direction. Our method benefits a Gauss-Newton optimization
scheme to compensate the sensor-induced vertical direction
errors, and refine the overall pose. Our algorithm requires
at least 3 lines to output a pose (P3L) and requires no
reformulation to operate with a higher number of lines.

(2) We propose a RANSAC (RANdom SAmple Consensus)
2D-3D line matching and outliers removal algorithm requiring
solely one 2D-3D line pair to operate, i.e. RANSAC1. Our
method reduces the number of iteration required to match
features and can be easily modified to exhaustively test all
feature combinations.

We evaluate the robustness of our algorithms with a synthetic
data, and on a challenging sub-sequence of the KITTI dataset.

I. INTRODUCTION

Recently, a significant effort has been put into autonomous
driving technology to meet safety and efficiency standards.
One of the key aspects in autonomous driving is to accurately
localize a vehicle on a local scale. Knowing this exact
location and orientation, also called pose, is the first step to
path planning and navigation. This step is often handled by
matching sensor data against a prior map of the environment.

3D maps are commonly acquired with LiDAR (Light
Detection and Ranging) sensors. Depending on the model,
they output either a sparse or dense depth map of the
environment in the form of a point cloud.

A common approach for vehicle localization is to equip
the vehicle with a LiDAR sensor, and match the sensor data
with the embed environment map. A high-end LiDAR sensor
dedicated to autonomous navigation, such as the Velodyne
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Fig. 1: Image from the vehicle (top), with manually extracted
2D features (green), reprojection of 3D features with the
estimated pose (blue) and reprojected 3D features with the
ground truth pose (yellow). Reconstructed 3D point cloud of
the KITTI sequence used (bottom)

HDL-64e, can span up to a million measurement points per
second, and an acquisition of only a few minutes can lead to
an uncompressed point cloud of several gigabytes. Because
of the size of the point cloud map, matching directly sensor
data is a challenging process. Moreover, these kind of sensors
often cost several times the value of the vehicle carrying
them.

While GNSS (Global Satellite Navigation System) pro-
vides reliable information about the global vehicle location,
it can suffers inaccuracies of several meters on a local scale
when confronted to multi-path effects in urban canyons or
with low satellite coverage, making GNSS localization insuf-
ficient on its own. To increase localization accuracy, GNSS
can be coupled with an inertial measurement unit (or IMU)
with vehicle kinematic-aware filters, and to a ground GNSS
antenna (e.g. RTK-GPS). While requiring costly hardware,
this method can produce a centimetric localization, but drifts
over time in case of degraded or lost GNSS signal.

Our work focuses on estimating the pose of a monocular
camera in a prior 3D-lines map. When replacing a dense 3D
LiDAR map with a line-feature map, we drastically reduce
the storage space needed while allowing an increased overall
map size. Moreover, by using geometric features such as
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lines, we rely on time-invariant information. While methods
focusing on photometric appearance might struggle over
night and day illumination changes, building and street shape
are less likely to change over a long period of time.

Because we rely solely on a monocular camera and an
affordable IMU sensor for pose estimation, we avoid the
substantial cost of a LiDAR sensor. Over the sequence we
selected in the KITTI dataset, we show that even a minimalist
3D feature map is sufficient to estimate the vehicle pose
online, without the use of a GNSS for a rough pose estimate.

In this paper, our first contribution is a perspective-n-Line
algorithm relying on a prior 3D lines map and known vertical
direction to accurately estimate the pose a vehicle from a
single image. Our algorithm requires only 3 2D-3D line
correspondence to operate, and formulates the PnL problem
as a set of linear equations that are solved using a linear
least squares method, followed by a Gauss-Newton-based
pose refinement.

Our second contribution is a RANSAC algorithm requiring
a single line correspondence to match 2D and 3D line
features, i.e. RANSAC1. We combine these two approaches,
and we rely on a prior 3D feature map to leverage the vehicle
relocalization in a GNSS-denied environment. We evaluate
our algorithms on synthetic data and on a challenging
sequence of the KITTI odometry dataset.

II. RELATED WORK

Most of the work regarding visual localization is targeted
towards matching photometric features of the environment.
This matching process can be either performed by comparing
image descriptors, such as SURF [1] or SIFT [2], or by
comparing image intensity value directly. However, this
approach rapidly become ineffective when the environment
appearance varies, e.g. in case of seasonal change, or with
night and day lighting conditions. To solve this issue, [3]
propose to store multiple images of the same place over time.
[4] rely on a similarity matrix to match trajectories.

Aside from photometric feature comparison, other local-
ization methods rely on geometric feature matching from
LiDAR map. [5] localize a vehicle in an urban environment
by comparing a camera image to a set of synthetic images
computed from the intensity values of a LiDAR map. Final
result is obtained by maximizing the mutual information, and
provides a 3 DoF (degree of Freedom) pose. [6] present a 6
DoF camera pose by combining photometric and geometric
data into their appearance prior map, which they use to
render and match a view to a live camera image through
normalized information distance minimization.

The topic of camera pose estimation from geometric
features is itself a well studied subject in computer vision.
However, feature matching is often assumed, which is un-
practical for outdoor vehicle localization.

When related to point features, pose estimation is referred
as Perspective-n-Points (or PnP) [7] [8] [9] [10]. Pose
estimation from lines, or PnL, is a less studied subject.
PnL methods formulate the pose estimation problem as a
system of linear or polynomial equations, that is solved by

minimizing an algebraic or geometric error (e.g. reprojection
error).

PnL is introduced by [7] and [11] in 1989. [11] state that
the problem can only be solved with a minimum of three
2D/3D line correspondences, i.e. P3L, spanning a least 8
solutions, while [7] propose the first closed-form solution to
PnL with a polynomial approach.

In a more recent work, [12] propose a PnL formulation
relying on a lifting approach to linearize a polynomial system
formed with the elements of the rotation matrix. Using 3
line-correspondences, [13] present a PnL method spanning
23 solutions, but more robust to noise, and operating with
a minimum of 3 lines. [14] introduce a P4L algorithm
operating on 3-line subsets. They recover solutions from the
derivatives of a 16th order cost function.

[15] extend the work from [14] with ASPnL (Accurate
Subset based PnL), which is outlier-sensitive, but is more
accurate with a small dataset. ASPnL includes a Gauss-
Newton pose refinement.

[16] [17] present a DLT-based (Direct Linear Transform)
PnL algorithm, inspired by the work of [18]. They parameter-
ize lines using the Plücker line representation. Because their
method relies on singular value decomposition to estimate
the pose, is very efficient and accurate for a dataset with a
very high number of lines (hundreds to thousands), but is
inaccurate for a small dataset.

Some of the most recent work assume that the camera
setup is coupled with an Inertial Measurement Unit (IMU),
that provides a vertical direction vector, or up-vector. [19]
introduced NPnLUpL and NPnLUpC (N-camera PnL Up-
vector Linear and Cubic), and rely on modified Plücker
coordinates of lines to formulate the PnL problem as a set of
linear or cubic equations. Their algorithms are designed to
operate in a multi-camera setup with known correspondences
between 2D lines across all cameras, but can be used in a
monocular setup.

While outliers rejection schemes exist within the PnL
literature, feature matching is often assumed. [14] handles
unknown feature correspondence using weak pose prior. [10]
propose an outliers rejection algorithm for PnP based on
algebraic error minimization. This method inspired the work
of [15] and [17], and handles efficiently large dataset but is
less accurate with small and noisy datasets.

Aside from algebraic error minimization, other outliers re-
jection methods rely on a statistical approach. [20] proposed
the RANSAC (RAndom SAmple Consensus) algorithm in
1991. The key idea is to select a random sample of the
dataset to estimate the parameters of a model and validate
the parameters on the entire dataset. This process is iterated
until a minimal error criterion is met. [15] present RANSAC3
and RANSAC4 algorithms, but the runtime of the two
methods for a high number of lines is problematic for online
applications.

In this paper, we handle both the line matching and outliers
rejection process by introducing a RANSAC1 algorithm
relying on a known vertical direction. By reducing the
number of lines to be considered by the RANSAC algorithm



Fig. 2: 3D line and its projection onto the image plane. Points
A and B form the 3D line L in the world frame {W}. 2D
line l in the coordinate system {C} lies at the intersection of
the projection plane and the image plane Π and is defined
by the normal u of the projection plane.

from lines, we leverage the runtime issue of the latter
RANSAC3 and RANSAC4 methods. We extend our work to
a pose estimation from lines algorithm, with a known vertical
direction. We parameterize lines with Plücker coordinates, in
the same manner as [16], but propose a linear formulation,
that we solve with a least squares solver. We also propose a
subsequent Gauss-Newton based pose refinement scheme.

III. THE PERSPECTIVE-N-LINE PROBLEM

In this section, we use the pinhole camera model, and we
assume that an IMU calibrated with our camera provides the
vertical direction (i.e. two of the three rotations are known).

A. 3D Line parameterization

We parameterize the lines in Plücker coordinates, as shown
in Fig. 2.

The Plücker representation of a 3D line L can be ex-
pressed from two 3D points in homogeneous coordinates
A = (a1,a2,a3,a4)

T and B = (b1,b2,b3,b4)
T . L is a homo-

geneous 6-vector L = (UT ,VT )T such as:

L = (L1,L2,L3,L4,L5,L6)
T (1)

where
U = (a1,a2,a3)× (b1,b2,b3)

V = a4.(b1,b2,b3)−b4.(a1,a2,a3),
(2)

and ’×’ represents the cross-product. U is the normal vector
to the projection plane Π. In Plücker coordinates, L must
satisfy the bilinear constraint UT .V = 0.

LW in the world frame {W} can be expressed in the
camera frame {C} with the line motion matrix M6×6 as:

LC = M.LW (3)

with
M =

(
R −R.T[×]

03×3 R

)
. (4)

’[×]’ is the skew symmetric matrix of a 3-vector. T =
(tx, ty, tz)T represents a translation vector and R is a 3× 3
rotation matrix.

B. Line projection

The 3D line lW is projected onto the image plane Π in the
camera frame {C} using the projection matrix P such as :

P =
(
R −R.T[×].

)
(5)

We obtain the projected 2D line lC such as

lC ∼ P.LW , (6)

where lC = (l1, l2, l3)T . We use here the same parameteriza-
tion as [16], derived from [21]. This framework provides a
linear projection, that can easily be used as input for a linear
least squares pose solver.

C. Pose estimation with a known vertical direction

Let li = (li1, li2, li3)T be the 2D projection of the 3D line
Li = (Li1,Li2,Li3,Li4,Li5,Li6)

T , li and Li being the ith ele-
ment of a n pairs of lines dataset. We have Li = (UT

i ,VT
i )

T .
Pose estimation through P3L requires solving a 6DoF

problem, i.e estimation three rotations ρ , θ , ψ and three
translations tx, ty, and tz. With a prior knowledge of the up-
vector, two of the three rotation are known, reducing the
problem to a 4 DoF problem.

By definition, LC
i lies on the projection plane of the 2D

line li, leading to the constraint

(RCW .VW
i )T .lCi = 0, (7)

where RCW is the rotation matrix composed with the remain-
ing rotation to be determined, such as

RCW = Rz.Ry.Rx

=

cz −sz 0
sz cz 0
0 0 1

 .Ry.Rx
(8)

where cz = cos(ψ) and sz = sin(ψ). With a known up-vector,
only the two unknowns cz and sz remain. This means that two
line correspondences are required to obtain a unique solution
for the complete rotation.

In a noiseless case, we directly obtain RCW . However, real
data can lead to a badly scaled rotation matrix R̃, which
does not satisfy the trigonometric constraint. We enforce this
constraint with a singular value decomposition of the rotation
matrix R̃, such as

U.Σ.V∗ = R̃
RCW = U.V∗T (9)

In order to estimate the translation vector TCW , we refor-
mulate (6) into

lC[×].P.L
W = 03×1. (10)

For a single 2D/3D line correspondence, we obtain from
(10) a rank deficient system of three equations [18]. We
need to stack the equations from at least three 2D/3D line
correspondences to obtain a rank 3 linear system and recover



the three remaining unknowns tx, ty and tz. We rearrange this
linear system such as

M.TCW = N, (11)

each column of M being respectively expressed in term
of tx, ty and tz. TCW is the translation matrix such as
TCW = (tx, ty, tz)T , and N contains all terms independent from
tx, ty and tz. We finally solve (11) using a linear least squares
method, i.e.

TCW = (MT .M)−1MT .N. (12)

We refer to this method as VPnL LS (Vertical Perspective-
n-Line with Least Squares solver).

D. Gauss-Newton optimization for the rotation and the
translation

In our PnL formulation, the rotation and translation are
sequentially estimated. We propose rotation and translation
refinement methods that can also be sequentially applied to
the estimated pose.

Our PnL method relies on the known up-vector to estimate
the complete pose. However, the up-vector is prone to sensor
error. For this reason, our rotation optimization scheme
refines the PnL-estimated rotation angle ψ , as well as the
up vector.

Let AW and BW be two 3D points in the world frame
defining the 3D line LW , and lC be its projection in the
camera frame. VW and VC are respectively the 3D line
direction in the world and camera frames. For a set of n
lines, we express the constraint (7) as a set of n functions
f = ( f1, ..., fn) depending on the three rotations ρ , θ and ψ

defined as in (8), so that

fi(RCW ) = (RCW .VW
i )T .li = 0. (13)

We can then derive this function for each rotation angle
ρ , θ and ψ and form a jacobian matrix. We then proceed
with a Gauss-Newton optimization scheme.

Any point included in the 3D line LW is included in the
projection plane of lC. We express this constraint similarly
to (13) in a set of n functions g = (g1, ...,gn) to refine the
translation estimation in

gi(TCW ) = (RCW .AW
i +TCW )T .li = 0. (14)

We rely on this geometric constraint to compose a second
jacobian matrix, which we use to optimize the translation.
When coupled with our PnL algorithm, these two optimiza-
tions are referred as VPnL GN (GN stands for Gauss-Newton
solver).

We observed that both our optimizations converge for
a very small number of iterations. For this reason, we
empirically choose to stop the algorithms after 20 iterations.

E. Line pairing and outliers rejection with RANSAC1
Algorithm 1 presents the line pairing process with outliers

rejection. First, a random 2D-3D pair of lines is set as
quadratic system of equations such as{

liT .RCW.Vj

c2
z + s2

z = 1
. (15)

Algorithm 1 RANSAC1 Pairing

1: procedure PAIRING
2: input:
3: li = normalized 2D line, i = 1..n
4: Vj = normalized direction of the 3D line in Plücker

coord., j = 1..m
5: criterion = loop break threshold
6: output:
7: RCW1 = Rotation matrix World → Camera (first

solution)
8: RCW2 = Second solution
9: εεε1 = error vector such as liT .RCW1.Vj, length m.n

10: εεε2 = second error vector, using RCW2
11: ε1 = first quantile of εεε1
12: ε2 = first quantile of εεε2
13:
14: Algorithm :
15: for k = 1..m.n do
16: From all m.n 2D-3D pair, select one at index k
17: Estimate RCW1 and RCW2 with a quadratic equa-

tion solver
18: From RCW1 and RCW2, estimate εεε1 and εεε2 ∀

possible pairs
19: Split each error vector εεε1 and εεε2 into

m.n
6

quantiles
20: Extract ε1 and ε2
21: if (min(ε1,ε2) < criterion then
22: if min(ε1,ε2) = ε1 then
23: return line pairs for εεε1 < criterion
24: else
25: return line pairs for εεε2 < criterion

Solving this quadratic system provides two rotation matrix
RCW1 and RCW2 expressing rotation between the world
frame to the camera frame. For each orientation proposition
and all possible pairs of lines, we compute an error vector
εεε of size m.n.

We split εεε1 and εεε2 into (m.n)/6 quantiles, m.n being the
number of unique 2D/3D line combinations, and observe
the value of the first quantile. If this value is smaller than
the given threshold, we assume that the pairs returning
the smallest error are highly probable inliers, and stop the
algorithm. If not, we iterate until this condition is met, or
all line pairs have been examined. In the latter case, we still
return the pairs that generated the smallest error over all
iterations. Note here that the number of quantiles (m.n)/6 is
found empirically.

IV. RESULTS

A. Synthetic data

In this section, we evaluate quantitatively the performance
and robustness of the different steps of our method.

a) Synthetic dataset setup: For this synthetic dataset,
we simulate a 640×480 pixel camera with 655 pixel of focal
length and no radial or tangential distortion.



We generate a set of random 2D pairs of points on the
image plane, each pair defining a 2D line being at least 70
pixel long. Each line is expressed in metric coordinates using
the camera intrinsic parameters, and is then given a depth
between 2 and 20 meters. We finally express the previously
obtained 3D lines in the world frame {W} by applying the
transform TrCW = [RCW (ρ,θ ,ψ)|TCW ] with ρ , θ , ψ being
random rotations between 0 rad and 2π rad, and TCW being
a random translation between 2 to 20m around the camera
optical center.

In order to evaluate the robustness to noise, a normally
distributed noise is added to the endpoints of 2D and 3D
lines, displacing the points by respectively σ pixels and σ3D
mm. This modifies both the position and direction of the
lines.

IMU sensors are prone to inaccuracies when measuring
the vertical direction, with errors between 0.02°for high-end
IMUs, to 0.5°for low-cost sensors. For a fair comparison with
methods estimating the complete pose instead of relying on
the vertical direction, we add a constant 0.5°noise to the up-
vector used as input for the PnL algorithms.

As for metrics, we measure the translation error, ie. the
euclidean distance between the estimated location and the
ground truth location. We also refer to rotation error as
defined in [22], ie. Rerror = arccos((tr(RR̂T )− 1)/2), with
R the ground truth rotation and R̂ the estimated rotation.
We consider the recall rate, ie. the number of correct pairs
returned over the number of correct pairs possible for a given
image, and the precision rate, ie. the number of correct pairs
returned over the number of pairs returned.

We compare our PnL algorithm with optimization,
VPnL GN, and without, VPnL LS, with the ASPnL algo-
rithm from [15], NPnLUpL and NPnLUpC from [19]. While
the two latter are designed for multiview pose estimation,
they accept a single view configuration as input. ASPnL
estimates the 6 DoF pose, and both our algorithms and
NPnLUpL consider a 4 DoF problem.

NPnPUpL, NPnLUpC and ASPnL are known to be very
sensitive to outliers, and do not include an outliers rejection
scheme. For this reason, we compare our RANSAC1 algo-
rithm to RANSAC3 and RLPnL Enull from [15]. Because
the two latter algorithms do not include feature pairing, we
can only evaluate the performance against outliers. To do so,
we introduce outliers into the synthetic dataset, from none
to 60 %, with a fixed 2D noise of 5 pixels and an up-vector
noise or 0.5 °.

b) PnL algorithm evaluation: Fig.3 show a noise ro-
bustness evaluation of our methods in comparison with
ASPnL, LPnLUpL and LPnLUpC.

With our test setup, ASPnL performs better in the noise-
less case, because it does not suffer the up-vector error.
Otherwise, regarding translation error, our two PnL algo-
rithm outperform all other considered algorithms. In term
of rotation error, when confronted to 2D noise up to 20
pixels, our algorithms perform better at first, then similarly
to NPnLUpL. In case of 3D noise, our two algorithms lead
to similar results for noise up to 200 mm. With a higher
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Fig. 3: Rotation and translation errors in case of 2D and 3D
noises. VPnL LS is our PnL formulation with a known verti-
cal direction and a linear least squares solver only. VPnL GN
is the same method with Gauss-Newton optimization on the
complete pose. ASPnL refers to [15] method, and NPnLUpL
is the PnL linear formulation of [19] operating on a single-
camera setup. Left column evaluates robustness against 2D
noise, right column evaluates robustness against 3D noise.

3D noise, VPnL LS is outperformed by both LPnLUpL
and LPnLUpC, but VPnL GN provides similar results than
NPnLUpL.

In Fig.4, we show how the number of lines impacts the
pose estimation in terms of rotation and translation error.
For a medium 2D or 3D noise and a number of line
pairs between 4 to 40, both our algorithms outperform the
others. Performance increase up to 20 lines, where accuracy
increases slower.

Overall, we suggest a hybrid use of VPnL GN and
VPnL LS.

When confronted to high 3D noise (more then 500mm),
rotation refinement provides a more accurate rotation esti-
mate, while our linear VPnL LS provides a more accurate
translation.

In case of moderate 2D or 3D noise, the complete pose
refinement VPnL GN performs better.

Finally, with low 2D or 3D noise, we suggest the use of
VPnL LS.

c) RANSAC1 as outliers removal module: Fig.5 shows
the robustness of our RANSAC1 algorithm to outliers in
presence of moderate 2D or 3D noise and high noise on the
up-vector. When combined with our two PnL methods, we
observe a rotation and translation error similar to Fig.3, when
RANSAC3 and RLPnL Enull show resulst unsuitable for
vehicle application. Moreover, as seen in I, our RANSAC1
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Fig. 4: Impact of the number of lines on the rotation and
translation errors for 2D and 3D noise. Comparison between
ASPnL, VPnL LS, VPnL GN, NPnLUpL and NPnLUpC.
Left column evaluates the impact of the number of lines with
2D line endpoints having a 10 pixel noise. Right columns
evaluates the impact of the number of lines with a 100 mm
3D noise on all 3D line endpoints.

algorithm shows runtime an order of magnitude smaller than
RANSAC3, and comparable to a non-iterative algorithm such
as RLPnL Enull. Finally, we observed in our test case a
100% precision, i.e. rate of correctly matched lines for our
RANSAC1 algorithm.

TABLE I: Runtime results on a simulation dataset

Method Runtime (ms)
VPnL LS 1.9
VPnL GN 3.6

RLPnL Enull 2.1
RANSAC3 45.8

B. Experiment on real data

In this section, we evaluate simultaneously our PnL
method as well as our pairing/outliers rejection algorithms
with real data using the KITTI dataset [23]. The KITTI
dataset provides images from high resolution color and
grayscale stereo camera. The image acquisition is synchro-
nized with a Velodyne HDL-64-E, providing a 3D point
cloud. Additionally, the camera pose in the world frame is
provided by an OXTS RT3003 inertial and GPS navigation
system.

Among the various sequences in the odometry section of
KITTI, we selected in the sequence 00 a challenging sub-
sequence composed 50 images with two consecutive sharp
turns, taking place in an urban environment, starting from
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Fig. 5: Evaluation of RANSAC1, RANSAC3 and
RLPnL Enull as outliers removal module in presence
of 2D and 3D noise. Constant 0.5° noise on the up-vector.
500 tests per outlier step.

image 1223 to image 1276. We recomposed a unique 3D
point cloud for the entire sub-sequence using the GPS/IMU
pose. The KITTI dataset is known to be prone to GPS/IMU
errors for small sub-sequences, especially in challenging
consecutive turns.

For this reason, we used the 3DTK toolkit [24], that took
as input the GPS/IMU poses and the multiple point clouds
of our sequence, and produced a concatenated point cloud
with the estimated camera poses over the sequence.

To illustrate the KITTI ground truth inaccuracies on short
sequences, we compared the last pose of our sequence in the
KITTI dataset to the 3DTK corresponding pose. As seen in
6, we observed a 54cm translation error and a 5.40°error.

We extracted a set of 17 3D lines on this global point
cloud, creating this way a map of 3D lines which our vehicle
has to localize itself in. We used our RANSAC1 algorithm
to match this 3D feature set to 2D lines manually extracted
from all images of our sequence. We extracted between 4 to 7
lines per image. Each extracted 2D line has a correspondence
in the 3D lines map. We finally localize the camera in our 3D
lines map using our pairing and pose estimation algorithms.

Because of the vehicle turns in the sequence, all 3D lines
do not have 2D correspondence on each image. This means
that for each pose estimation, our pairing algorithm has to
deal with 58% up to 76% outliers.

To illustrate the GPS/IMU pose errors, Fig.6 compares
the KITTI poses ground truth and the 3DTK poses, as
well as the results of our PnL algorithm. We observe that
the consecutive PnL-estimated poses are consistent with the
3DTK poses. It is to be noted that all the PnL-estimated
poses are independently estimated, ie. no filter was applied
over the trajectory.



Fig. 6: Comparison between PnL-estimated trajectory and
ground truth

TABLE II: Numerical results over 54 poses

Result Value
Mean rotation error (°) 0.56

Mean translation error (m) 0.161
Mean recall rate (%) 100

Mean precision rate (%) 100
Mean runtime (ms) 13.5

Results on table II show that our PnL method coupled
with our pairing algorithm achieves a mean translation error
of 16.1cm, with a mean rotation error of 0.51°, for a 100%
precision rate and 100% recall rate. Over the entire sequence,
we measure a mean runtime for the combined line matching,
pose estimation and pose refinement of 13.5 ms.

V. CONCLUSION

In this paper, we presented and evaluated a line-based
pose estimation algorithm and a pairing/outliers removal
algorithm relying on a known vertical direction. Using these
two combined algorithm, we are able to localize a car in 3D
lines map of an urban environment with only a very small
number of 2D and 3D feature correspondences, and from
a single image. Over a challenging sequence of the KITTI
dataset, where the GPS/IMU provided ground truth poses
with inaccuracies up to 54cm and 5°, we located successfully
our vehicle within 16cm and with 0.5°error.

With a prior acquisition of a 3D feature map, our algo-
rithms can be used to rapidly relocate a vehicle where a
GNSS/IMU localization operates in degraded mode because
of signal loss.
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