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ABSTRACT

In this paper, we propose to extract the multi-scaled and
rotation-insensitive deep features to address the issues of
object multi-solutions and rotations in geospatial object de-
tection. To this end, we develop a novel object detection
framework where a rotation-insensitive convolution neural
network is applied for extracting multi-scaled and direction-
insensitive feature representation and then the learned fea-
tures can be fed into the ensemble classifier learning with
fast feature pyramid. Such a non-end-to-end learning strategy
intuitively reduces the computational cost without the addi-
tional performance loss, yielding an effective and efficient
light-weight object detection framework. Experimental re-
sults conducted on the NWPU VHR-10 dataset demonstrate
that the proposed framework outperforms several state-of-
the-art baselines.

Index Terms— Deep learning, direction-insensitive,
geospatial object detection, light-weight, multi-scaled, op-
tical remote sensing imagery.

1. INTRODUCTION

Recently, the processing and analysis of optical remote sens-
ing imagery (RSI) [1, 2, 3, 4] have achieved a growing in-
terest, particularly for geospatial object detection. However,
optical RSI inevitably suffers from all kinds of deformations,
e.g., variabilities in viewpoint, scaling, and direction, which
have always been challenging. The feature representation of
the traditional manual feature extraction methods is incom-
plete [5]. They not only fail to simultaneously extract the
local and global features [6] of the object but also generate
deep semantic information with high discrimination. In re-
cent years, the explosive growth of deep learning algorithms
[7, 8, 9] with automatic learning ability dramatically improve
object detection performance in optical RSIs. However, the
single receptive field of a convolutional layer and the direc-

tion sensitivity of convolutional kernel limit its generalization
ability, while the strong distinguishability of features requires
extremely high computational cost. Therefore, it is important
to develop a light-weight feature learning method.

More specifically, a light-weight object detection frame-
work (LW-ODF) is proposed to extract multi-scaled and
rotation-insensitive features by the rotation-insensitive convo-
lution neural network and to more effectively and efficiently
detect objects with the fast feature pyraimd. The workflow
of the LW-ODF is illustrated in Fig. 1. Two main technical
contributions proposed in this paper are: 1) The low-levels
feature maps processed by the scale and direction insensi-
tive modules are fed to the AdaBoost classifier to generate
a light-weight detector that is insensitive to scale and direc-
tion for optical RSIs. 2) In the testing phase, fast feature
pyramid generated by a power law instead of finely sampled
are adopted to implement object detection in optical RSIs
without sacrificing performance.

2. METHODOLOGY

The purpose of this work is to develop a light-weight object
detection framework for optical RSIs. It is insensitive to
large-range of scale and direction variation. The flow chart
of the proposed LW-ODF is illustrated in Fig. 1, which con-
sists of three phases: network selection, multi-scaled and
direction-insensitive feature extraction, and detection with
fast feature pyramid. The details of our framework are dis-
cussed in the following sections.

2.1. Base Network : VGG-16

The LW-ODF is an improved convolution channel features
(CCF) [10]. Similarly, we use a VGG-16 network as the pre-
trained network and perform the fine-tuning on the NWPU
VHR-10 dataset [11] for further feature extraction .
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Fig. 1. The workflow of the proposed LF-ODF.

To our knowledge, the VGG-16 is computationally ex-
pensive, as massive parameters need to be updated. Conse-
quently, we selected the low-level conv 3 of the VGG-16 as
input, and additionally add a 7-layer network inspired by the
inception module in order to discriminate the feature repre-
sentation together with a relatively low computational cost.
Table 1 details our network architecture in each layer.

2.2. Scale and Direction insensitive Module

1. Direction insensitive Module: Geospatial objects in-
evitably suffer from various deformations, such as shift,
rotation. This leads to the performance degradation when
using VGG-16-like base networks. Inspired by [12, 13], we
rotate the training samples with different angles and feed
them into the network training. The main idea to construct
the rotation-invariant features is to enforce these rotated sam-
ples to share a same feature representation. For that, the new
object function can be defined as follows

J(θ, ϕ) = min
θ,ϕ

n∑
i=1

ω̃iexp(−θϕ(xi)yi)

+
λ

2N

∑
xi∈X

‖ Fa(xi)− Fa(gφxi) ‖22,
(1)

where ϕ and θ are sub-classifier and network weights, respec-
tively. f̃(xi) denotes the output of the classifier. xi is ith sam-
ple and yi is the corresponding label. Fa(gφxi) represents the

averaged feature map defined as 1
K

∑K
j=1 Fa(gφxi), where

Fa(xi) is the feature map of rotated sample.
2. Scale insensitive Module: The single receptive field of

a convolutional layer usually fails to detect the objects with
varying resolutions. This motivates us to extract the multi-
scaled feature maps [14] with the use of the different-size con-
volutional kernels. We experimentally and empirically select
three intermediate layers as the final feature representation.
More specifically, The features in the shallow layer are used
for the small-scale objects while the deeper features might be
used for the large-scale ones.

2.3. Detection with fast feature pyramid

The image pyramid is a simple but effective method used
to solve the scale problem in object detection. This can be
achieved by sliding a fixed-sized window over a finely sam-
pled image pyramid, leading to an expensive computational
cost in general. To speed up the feature pyramid generation,
we mathematically estimate a scaling factor by following a
power law proposed by [5] to fast and automatically perform
the feature pyramid. The resulting expression is

P(F, s) ≈ Ω(R(F, s)) = R(F, s) · s−λΩ , (2)

where F denotes the feature maps, and R(F, s) is a re-
sampled feature of F by s. λ is a scaling factor to be esti-
mated. The size of the sliding window is set to 3 × 3, 6 × 3,
3× 6 according to three aspect ratios, i.e., 2:1, 1:1, and 1:2.
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Table 1. The network architecture in feature extraction of our LW-ODF.

No. Layer Setting
Patch size #1× 1 #1× 1 #1× 1 3× 3

Active Padding Output
/Stride /#3× 3 /#5× 5 /1× 1

0
VGG-16/

56× 56× 256
Conv 3

1 max 2× 2/2 valid 28× 28× 256

2 inception1 Stride=1 128 128/192 32/96 32/64 same 28× 28× 480

3 relu/ RELU valid 28× 28× 480

4 max 3× 3/2 valid 14× 14× 480

5 inception2 Stride=1 192 96/208 16/48 32/64 same 14× 14× 512

6 relu/ RELU valid 14× 14× 512

7 max/ 3× 3/2 valid 7× 7× 512

Table 2. Quantitative performance comparisons on NWPU VHR-10 dataset. The best is shown in bold.
Method COPD [11] BOW-SVM [15] Exemplar [16] ACF [5] YOLO1 [17] YOLO2 [18] CCF [10] Ours
AP 0.5490 0.1394 0.4644 0.5399 0.6584 0.7846 0.6282 0.8125
Mean Times/s 2.00 3.5 2.4 0.67 0.15 0.12 1.9 0.92

Baseball diamond 0.8259 0.3215 0.7023 0.7592 0.8428 0.9221 0.8215 0.9507
Ground track field 0.8525 0.0210 0.2535 0.7320 0.8729 0.9657 0.8005 0.9700
Basketball court 0.3528 0.0033 0.4528 0.3901 0.8195 0.8432 0.6000 0.7900
Airplane 0.6230 0.0902 0.8389 0.6470 0.5992 0.8667 0.7200 0.8957
Ship 0.6910 0.3712 0.3700 0.5207 0.6175 0.8329 0.5891 0.8571
Storage tank 0.6459 0.3587 0.7102 0.7990 0.2786 0.4198 0.8620 0.6476
Tennis court 0.3235 0.0121 0.3028 0.2980 0.5734 0.6400 0.3610 0.6250
Harbor 0.5580 0.1364 0.3295 0.5434 0.7421 0.7887 0.6300 0.8002
Bridge 0.1496 0.0004 0.2328 0.3700 0.7195 0.8790 0.4551 0.8259
Vehicle 0.4408 0.0795 0.4515 0.3400 0.5187 0.6879 0.4429 0.7623

3. EXPERIMENTS

3.1. Dataset Description

The NWPU VHR-10 dataset is a publicly available bench-
marking 10-class geospatial object detection dataset. These
ten classes of objects are obtained from two different res-
olution data. One is 715 color images acquired from 0.5
to 2m Google Earth and another is 85 pan-sharpened color
infrared images from the 0.08m Vaihingen dataset. In this
dataset, all objects labels were manually annotated with axis-
aligned bounding boxed. In the experiment, the NWPU VHR-
10 dataset was expanded by performing a rotation operation
(i,e., 0◦ to 180◦ at a 45◦ interval), and a color space conver-
sion of HSV to avoid over-fitting. All experiments were im-
plemented by a PC with an Intel single-core i7 CPU, NVIDIA
GTX-1070 GPU (4 GB RAM) and 32 GB RAM.

3.2. Results and Analysis

Table 2 lists the quantitative results of the eight state-of-the-
art baselines. Accordingly, we can have the following con-
clusions: 1) BOW-SVM is only robust to the spatial varia-
tions of the objects, but ignores the spatial background mod-
eling between local features. The generalization capabilities

of Exemplar-SVM, COPD, and ACF are limited due to the
sensitivity of the HOG to the object rotation. 2) YOLO re-
constructs the object detection into a single regression prob-
lem, which can speed up the object detection task, but small
and dense objects are not well detected and located. It can re-
duce the probability of detecting the background as an object,
but it causes a low recall rate. Therefore, it is necessary to use
multiple feature maps to complete the detection in parallel. 3)
The AP value of CCF after adding the scale and direction in-
sensitive modules increased by 5 percent to the original CCF,
which directly verifies the effectiveness of the algorithm for
optical remote sensing object detection. In addition, the local
connection and weight-sharing of convolution layer replace
the full-connection layer, breaking the network’s limitation to
the size of the input image.

Fig. 2 visualizes some detection results, where each class
is marked by a rectangular box of different colors, that is,
the yellow and orange rectangle stand for missed objects and
false objects, respectively. It is clear to show in this figure
that a small number of unknown objects in the sea is wrongly
recognized as a bridge, while those with low detection scores
can be removed by the pull-up threshold. Some vehicles, e.g.,
trucks, fail to be detected. This can be explained by insuffi-
cient representation capability.
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Fig. 2. Some detection results (false positive in yellow, true positive in other colors) by using the proposed method on the
NWPU VHR-10 dataset.

4. CONCLUSION AND OUTLOOK

This paper proposes a light-weight object detection frame-
work, called LW-ODF. LW-ODF is capable of automatically
extracting the features instead of those hand-crafted methods
[19, 20], which is robust to the scale and direction of the ob-
jects owing to the use of rotation-invariant CNN and the de-
sign of the multi-scaled features. The experimental results
on the NWPU VHR-10 dataset show the superiority and ef-
fectiveness of the proposed LW-ODF. The AP value is higher
than YOLO2 only about 3%, the possible reason is that the
feature representation ability is insufficient. Therefore, we
will improve the feature representation capabilities by uti-
lizing a more powerful network, e.g., ResNet, or enhancing
the quality of the input images [21], or introducing the multi-
modal data [22] in the future.
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