A/C-APU - Ein wasserstoffbasiertes Klimaaggregat zur Reichweitenerhöhung von Brennstoffzellenfahrzeugen

8. VDI-Fachkonferenz Thermomanagement in elektromotorisch angetriebenen PKW

R. Hegner¹, C. Weckerle², H. Dittus¹, I. Bürger², M. Schier¹, H.E. Friedrich¹ Deutsches Zentrum für Luft- und Raumfahrt e.V.

Deutsches Zentrum für Luft- und Raumfar

¹Institut für Fahrzeugkonzepte

²Institut für Technische Thermodynamik

Knowledge for Tomorrow

Motivation

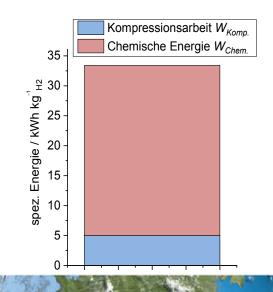
 Bei Elektrofahrzeugen (EVs) werden für die Kabinenklimatisierung elektrisch betriebene Systeme eingesetzt (z.B. Klimakompressor und PTC-Heizer)

→ Reichweitenreduktion

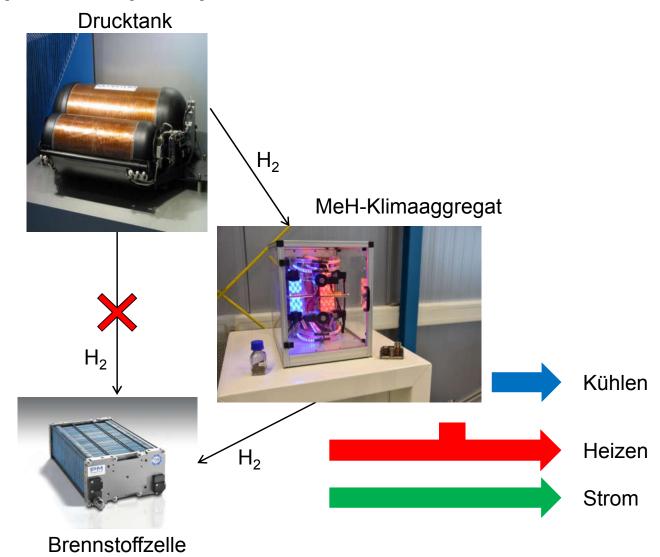
Verbot der Verwendung des Kältemittels R 134a oder anderer Kältemittel mit GWP>150 (Global Warming Potential, GWP) ab 2017.

Bei Brennstoffzellenfahrzeugen:

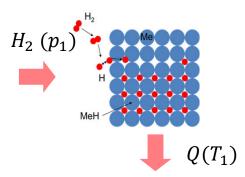
 Ungenutzte Kompressionsarbeit (Druckdifferenz) im Wasserstoff-Drucktank

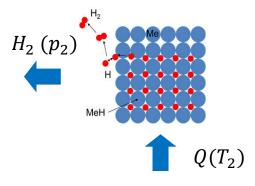

$$\frac{W_{\text{Komp.}}}{W_{\text{Chem.}}} = 15 \%$$

Driving range and time Mitsubishi i-MiEV (ÖAMTC / ADAC)


EU F-Gas Regulation

Ziele

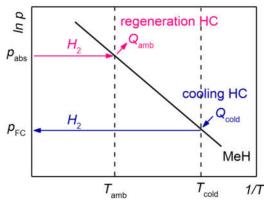

- Entwicklung eines wasserstoffbasierten Energiewandlungssystems mit Metallhydridreaktoren (MeH)
- Bereitstellung von Strom, Wärme und Kälte
- Steigerung des TRL auf 5
- Vorteile eines MeH-Klimaaggregats
 - Flexibles Kühlen und Heizen
 - Nutzung von Druckenergie
 - Wasserstoff nicht klimaschädlich
 - Wasserstoff wird nicht verbraucht



Metallhydride – physikalisches Prinzip

Absorption:

Desorption:

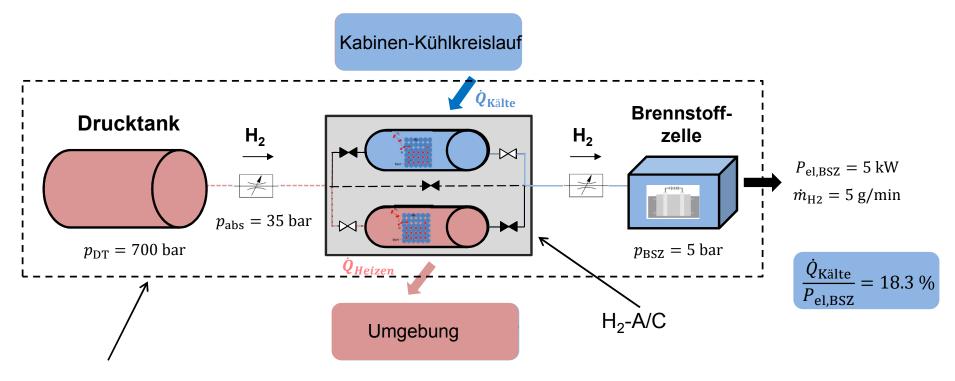


Reversible Gas-Feststoff-Reaktion:

exotherm

$$Me_{(s)} + H2_{(g)} \Leftrightarrow MeH_{(s)} + \Delta H$$

endotherm


Reaktionstemperatur abhängig vom Wasserstoffdruck:

- Einsatz als Kältemaschine oder Wärmepumpe
 - hohe Leistungsdichte durch hohe Reaktionsenthalpie und geringe Zyklenzeiten

Funktionsprinzip A/C-APU und alternierender Reaktorbetrieb

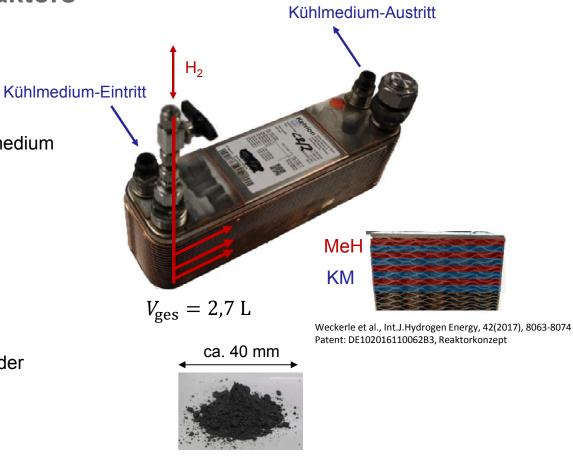
Air-Conditioning-Auxiliary-Power-Unit A/C-APU

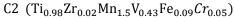
Design des realisierten Plattenreaktors

Optimierter Wärmetransport

- Mittlerer Transportweg 0,9 mm
- Hoher Wärmeübergangskoeff. an Kühlmedium

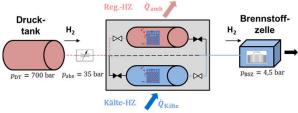
Homogenisierter Stofftransport

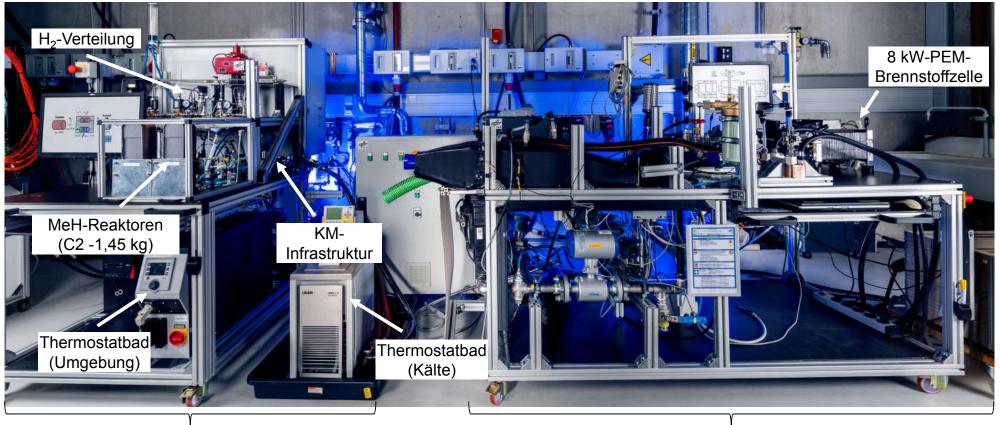

- Integrierter Sintermetallfilter
- Hohe Porösität (67%)


Mechanische Stabilität

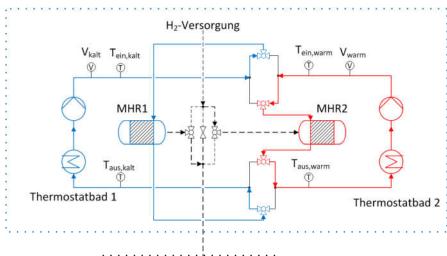
- $-p_{max} = 55 bar$
- MeH 20 x vorzykliert (Berücksichtigung der Hydridausdehnung).

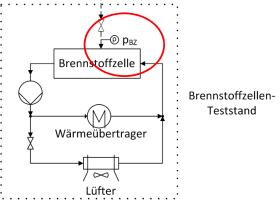
Reaktormasse


- $m_{\text{Reaktor}} = 4 \text{ kg}, m_{\text{MeH}} = 1,45 \text{ kg}$

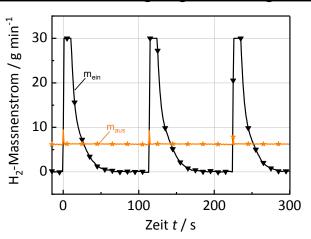


Experimenteller Aufbau Abbildung des Fahrzeug-Energiesystems

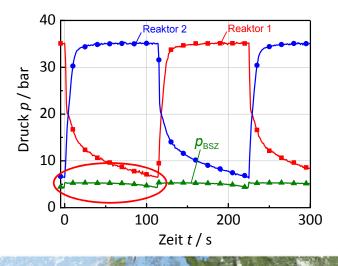



MH-Teststand BSZ-Teststand

Ergebnisse Kühlbetrieb


- Wasserstoff

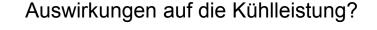
Reaktor-Teststand

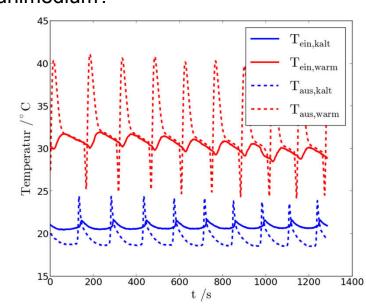


Kontinuierliche Versorgung der BZ gewährleistet?

V

Automatisierter Umschaltvorgang möglich?






Ergebnisse Kühlbetrieb

- Kühlmedium

Welches Temperaturprofil ergibt sich im Kühlmedium?

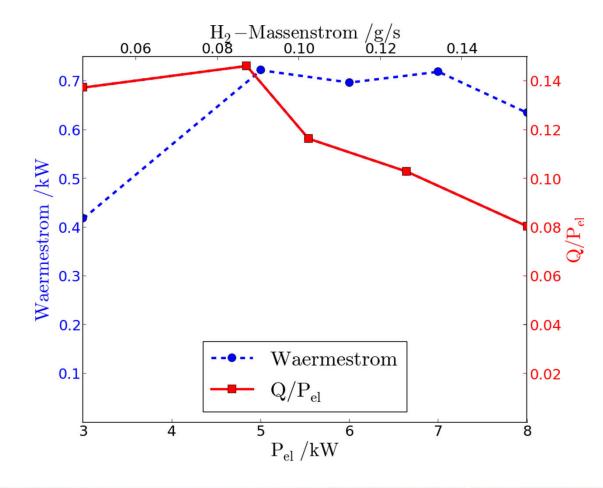
Verlustleistung durch Wechsel der HZ

Kälteleistung

$$\frac{\bar{q}_{\text{WTF}}}{P_{el}} = 14 \% < 18 \%$$

- Wärmeeintrag im Kühlmedium während des Zyklenwechsels
- Optimierungsmöglichkeiten: → Optimiertes Reaktordesign (geringe therm. Masse)
 - → Systemoptimierung (Ventilsteuerung)

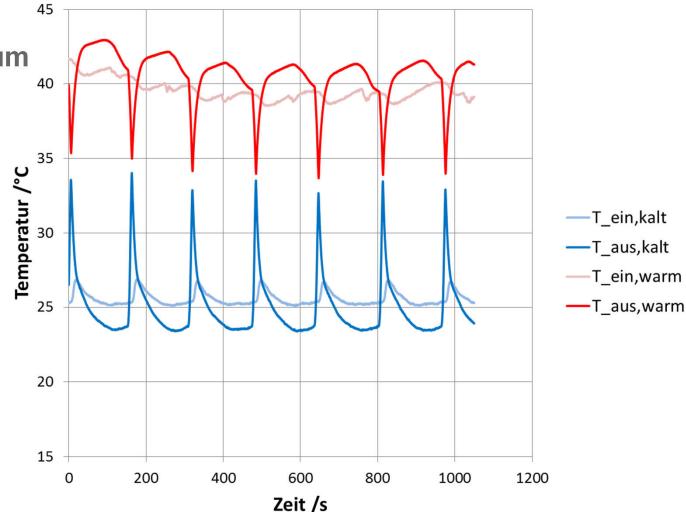
Systemintegration Zusammenhang zwischen el. BZ-Leistung und therm. Leistung


■ Randbedingungen Kühlmedium: T_{ein,warm}=30°C, T_{ein,kalt}=20°C

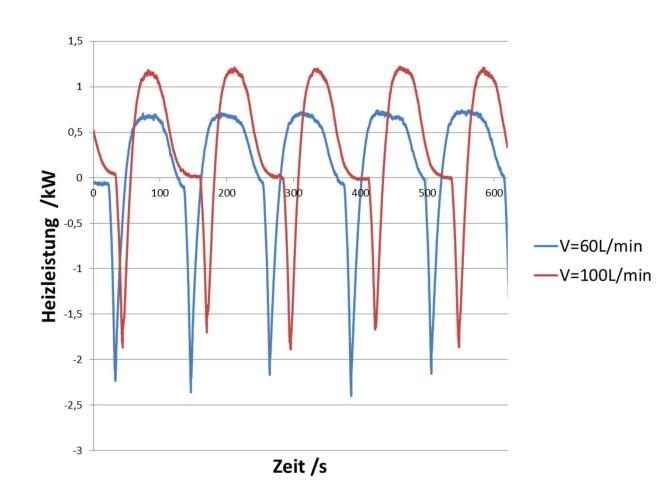
Ergebnisse:

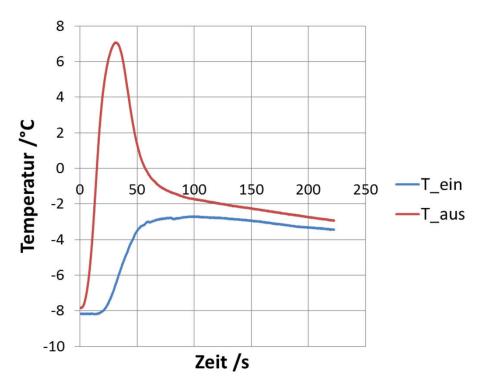
- Maximale Kühlleistung: 0.72 kW bei P_{el} = 5 kW
- Hohe Kühlleistung zwischen P_{el} 5 und 7 kW
- Bei P_{el} > 7 kW: Sinkende Kühlleistung durch häufiges Umtemperieren

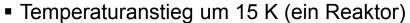
Systemdesign A/C-APU erfordert:

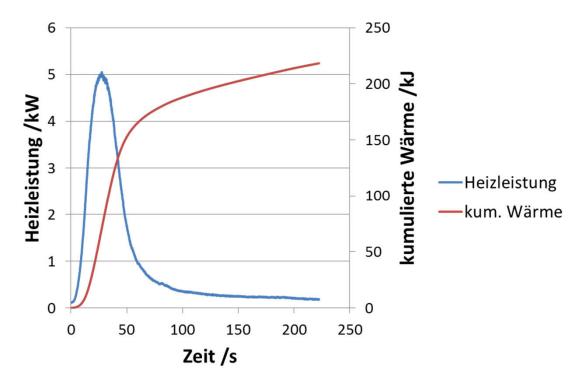

- → Definition Auslegungspunkt H₂-Massenstrom
- →Optimierung der Reaktorgrößen für Auslegungspunkt

Ergebnisse Heizbetrieb Temperaturprofil Kühlmedium

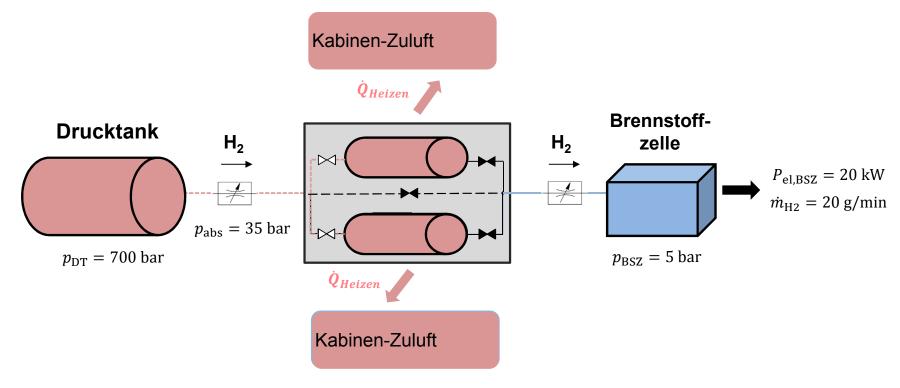

- Auslegungspunkt im Heizbetrieb:
 25°C, mögliche Wärmequellen:
 - Kabinenabluft
 - Batterie-Kühlkreislauf
 - Brennstoffzellen-Kühlkreislauf
- Randbedingungen:
 - P_{el}=5 kW
 - V_{H2}=60 L_N/min
 - T_{warm}=40°C
 - T_{kalt}=25°C
- Gleichmäßiges Temperaturprofil im warmen Kühlmittelkreislauf durch H₂-Durchflussregler


Ergebnisse Heizbetrieb Wärmestromprofil


- Heizleistung abhängig von H₂-Massenstrom am MeH-Reaktor
- Heißseitenreaktor ist entkoppelt von BZ-H₂-Massenstrom
- → Zusätzlicher Freiheitsgrad und höhere Flexibilität im Heizbetrieb



Kaltstartverhalten (Boost-Betrieb): Einzelreaktor bei $T_U = -8$ °C

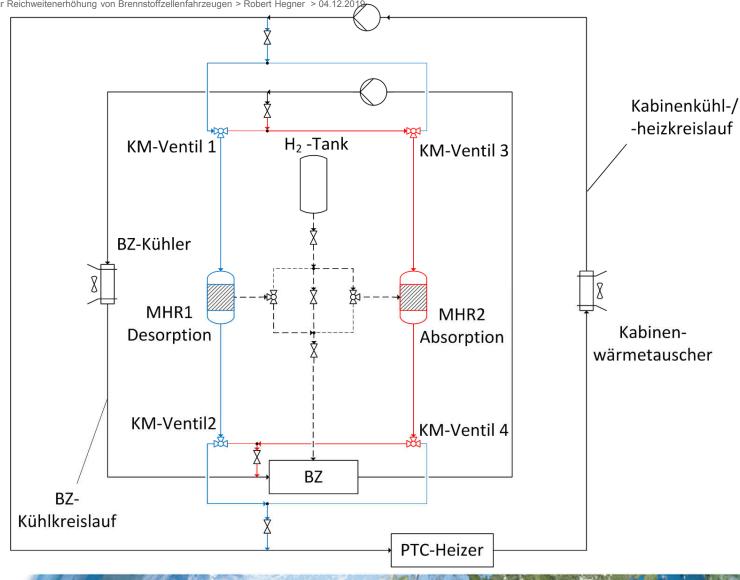

Sinkt anschließend aufgrund von Thermostatbad

- Bis zu 5 kW Heizleistung innerhalb von 30 s
- Mittelwert für 60 s: 2,8 kW

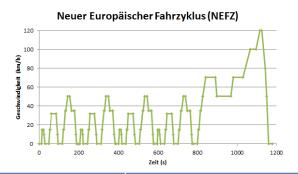
Use-Cases

Case-Scenarios im Elektrofahrzeug

Kabinen-Heizen


Kabinen-Kühlen

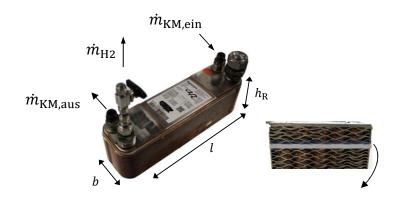
Boost-Heizen/ (Schnellkühlen)

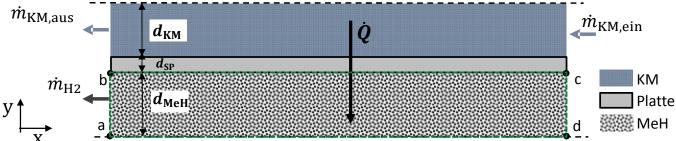

Integrationskonzept

- Kopplung der H₂-A/C mit dem BZ- und Kabinen-Kühlkreislauf
- Bypass für hohe BZ-Leistungen
- Betrieb für alle Use-Cases möglich

Betriebsstrategie mit Wärmequellen & -senken

	Energiestrom	Fahrtbeginn (Boost-Betrieb)		Kontinuierliches Fahren		Standzeiten		Fahrtende	
		Winter	Sommer	Winter	Sommer	Winter	Sommer	Winter	Sommer
	Wärme	2x Kabine/BZ	-	Kabine	BZ	Kabine	BZ	-	Umge- bung
	Kälte	-	2x Kabine	BZ	Kabine	BZ	Kabine	Umge- bung	-
	Strom	Batterie/Motor		Batterie/Motor		Batterie/PTC/HVAC		Batterie/PTC	



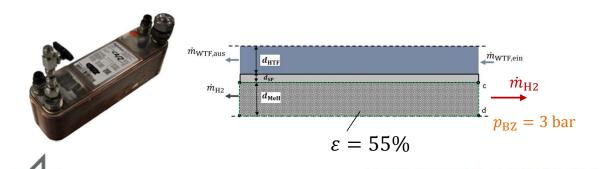


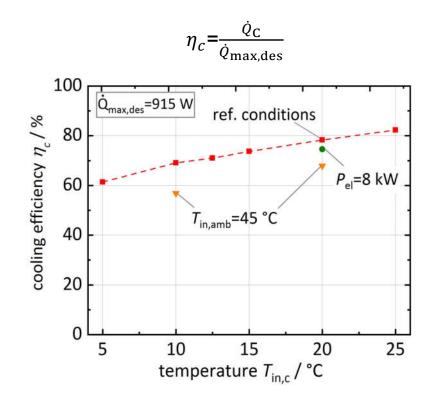
Reaktordesign - Aufbau des Modells

N = 18 MeH-Schichten skaliert.

Ergebnisse des Einzelspalts (Desorption) werden auf Reaktor mit

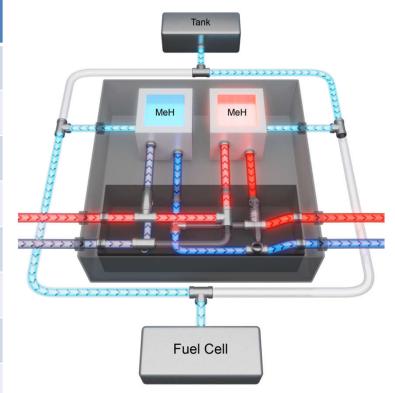
Mathematische Beschreibung des Modells (fünf gek. DGL):


- Reaktionskinetik
- Energiebilanz:
 - MeH-Schicht
 - Platte
 - Kühlmedium
- Massenerhaltung Wasserstoff



Reaktordesign

- Identifizierte Optimierungspotentiale


- Verbesserung des Massenverhältnisses: $k = m_{
 m MH}/m_{
 m R}$
 - → Reduzierung der Porosität von aktuell 67%
 - → Optimale MH-Schichtdicke: ca. 4 mm
- Erhöhung der Materialausnutzung:
 - → Reduzierung des H₂-Transportweges
 - → Reduzierung des BZ-Eingangsdrucks

Kenndaten experimenteller Aufbau und Entwicklungspotentiale

Parameter	Prüfstand	Potential
El. BZ-Leistung	< 8 kW	< 25 kW
Gesamtvolumen H ₂ -A/C	24	17 l
Gesamtmasse H ₂ -A/C	40 kg	27 kg
Reaktorvolumen	2.7	41
Reaktormasse	8 kg	11 kg
Max. H ₂ -Massenstrom	0.16 g/s	1.1 g/s
Max. Heiz- & Kühlleistung	0.803 kW	5 kW
Max. Q/P _{el}	0.14 (@ 5 kW _{el})	0.18

Zusammenfassung

- Offene Klimaanlage vielversprechendes Klimatisierungskonzept für BSZ-Fahrzeuge:
 - System wird von vorliegender Kompressionsarbeit angetrieben.
 - kontinuierliche Kälte/Wärme sowie "Boostfunktion".
- Plattenreaktor (sensible Masse vs. WT-Limitierung) vielversprechendes Reaktorkonzept; Metallhydrid C2 als geeignetes Material identifiziert und charakterisiert.
- Mögliche Systemintegration:
 - A/C-APU: Klimaaggregat und Range-Extender für batterielektrisch betriebene Fahrzeuge
 - H₂-Klimaanlage: Direkte Integration in BSZ-Fahrzeug
- Reaktormodellierung zeigt weitere Entwicklungspotentiale
- Weltweit erstes Proof-of-Concept der MeH-Reaktoren mit einer 8 kW-BZ durchgeführt:
 - Kälteleistung von $\frac{\dot{q}_{\text{WTF}}}{P_{\text{el}}} = 14 \%$
 - Heizleistung von $\frac{\dot{Q}_{\text{WTF}}}{P_{\text{el}}} = 10 \%$
 - Boost-Funktion: bis zu 5 kW Wärmestrom für 60 s → Temperaturanstieg um 15 K

Vielen Dank für die Aufmerksamkeit!

Ansprechpartner:

Robert Hegner 0711 6862 8832 robert.hegner@dlr.de

Knowledge for Tomorrow

