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a b s t r a c t 

A major source of input uncertainties in the simulation of turbulent spray combustion is introduced by 

the need to specify the state of the liquid spray after primary breakup, i.e. a spray boundary condition for 

the lagrangian transport equations. To further enhance the credibility and predictive capabilities of such 

simulations, output uncertainties should be reported in addition to the quantities of interest. Therefore, 

this paper presents results from a comprehensive quantification of uncertainties from the specification 

of a spray boundary condition and numerical approximation errors. A well characterized lab-scale spray 

flame is studied by means of an Euler-Lagrange simulation framework using detailed finite rate chem- 

istry. As direct Monte Carlo sampling of the simulation model is prohibitive, non-intrusive Polynomial 

Chaos expansion (PCE) is used for forward propagation of the uncertainties. Uncertain input parameters 

are prioritized in a screening study, which allows for a reduction of the parameter space. The compu- 

tation of probabilistic bounds reveals an extensive uncertainty region around the deterministic reference 

simulation. In an a posteriori sensitivity analysis, the majority of this variance is traced back to the un- 

certain spray cone angle of the atomizer. The explicit computation of input uncertainties finally allows 

for an evaluation of total predictive uncertainty in the case considered. 

© 2019 The Author(s). Published by Elsevier Inc. on behalf of The Combustion Institute. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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1. Introduction 

With the ever increasing availability of high performance com-

puting capacities, high fidelity numerical combustion simulation

is emerging as a powerful tool for the design, analysis and op-

timization of gas turbine combustors and associated combustion

processes. This trend is motivated by the need for a reduction in

tournaround time and cost in the design process as well as a de-

tailed understanding of physical mechanisms in order to reduce

pollutant emissions. Therefore, enormous progress has been made

in numerical modeling of reacting flows [1–3] . Nonetheless, nu-

merical modeling of turbulent spray combustion still involves ma-

jor challenges stemming from the wide range of the characteris-

tic scales of droplet dynamics, evaporation and mixing processes

as well as two-phase interaction [4] . Rigorous model validation

against experimental data represents a key feature to tackle these

problems. Among the various approaches guiding the validation

process [5–7] , uncertainty quantification (UQ) methods have the

potential to help understand sensitivities of simulation results to
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odeling uncertainties and therefore improve the models towards

etter physical representation [2] . 

Moreover, the various models involved require input quantities

uch as boundary conditions for the liquid phase which might be

ncertain as they are difficult to measure in accompanying exper-

ments. In an industrial design process, some of these quantities

ay be even unknown a priori , as they depend on the final design.

n such cases, accurate quantification of simulation uncertainties

s crucial for simulation credibility. As liquid fuel combustion will

etain its importance for the aviation industry due to the high vol-

metric and mass energy density of liquid fuels, uncertainty quan-

ification for spray combustion simulation is required to enable risk

nformed decision making in the design process of new combustor

oncepts. 

In the general framework of UQ, uncertainties are classified as

ither aleatoric or epistemic. While the first describes an inherent

ariation in a quantity that could be characterized by a probabil-

ty density function (PDF), the latter refers to uncertainties due

o lack of knowledge [6] . The key part of a UQ analysis is then

he propagation of the uncertainties through the simulation model.

his requires transitioning from single computations to sampling

ased non-deterministic or probabilistic approaches. Due to the

igh computational costs in spray combustion simulation, the
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l  

t  
irect use of the high fidelity simulation as the forward model

or inference purposes is excluded. Thus, efficient techniques to

ropagate uncertainty of a large number of parameters through

imulation tools become necessary. While sensitivity analysis can

elp reduce the stochastic dimension of the problem and overcome

he curse of dimensionality, surrogate models or stochastic expan-

ions replacing the high fidelity simulation model are able to dras-

ically reduce computation time in uncertainty propagation. From

he class of stochastic expansion methods, Polynomial Chaos Ex-

ansion (PCE) [8] has drawn increasing attention for the use in

Q [9–11] . This method relies on a functional representation of

andom variables as an expansion in terms of orthogonal basis

unctions and is built on an efficient sparse sampling of the un-

ertain parameter space. 

Although the future need for UQ in combustion simulations is

ecognized in the scientific community [2,3] , only a few studies re-

arding its application can be found in the literature: The role of

ensitivity and uncertainty analysis in combustion model valida-

ion was highlighted in the work of Mueller et al. [12] and John-

on et al. [13] . UQ was utilized in the analysis of sub-phenomena

f combustion including acoustics [14] , chemical kinetics [11] , fuel

vaporation [15] and spray boundary conditions [16] . The influ-

nce of uncertainties in chemical kinetics on a flamelet based

arge Eddy Simulation (LES) of a methane jet flame was ana-

yzed through stochastic collocation by Mueller et al. [17] . Pei

t al. [18] conducted global sensitivity analysis for a URANS model

f the Engine Combustion Network Spray A case to deduce the

nfluence of spray parameters on integral quantities such as igni-

ion delay and flame lift off height. Mueller et al. [19] and Tang

t al. [20] combined PCE and LES of single phase flow to quantify

he influence of boundary conditions on soot evolution and forced

gnition, respectively. PCE based UQ was applied to an LES of a tur-

ulent methane/hydrogen bluff-body flame by Khalil et al. [21] fo-

using on LES modeling parameters, e.g. Smagorinsky constant C s .

D marginal PDFs of mean axial velocity and temperature at a po-

ition in the flame were presented, showcasing the computational

fficiency of PCE based UQ. Results from PCE based UQ were also

eported by Masquelet et al. [22] for an industrial scale aviation

as turbine combustor. For the construction of the PCE, they con-

ucted a series of flamelet based LES, assuming fast evaporation of

he fuel and therefore neglecting the multiphase spray regime. 

However, to the authors’ knowledge, no study is available aim-

ng on comprehensive uncertainty quantification of spray combus-

ion simulation including detailed modeling of the combustion and

ultiphase regime, with a distinct focus on the specification of

pray boundary conditions. As gas phase temperature distribution

s closely connected to thermal loads, acoustic instabilities and the

ormation of pollutants, special emphasis should be put on the

ssessment of simulation credibility for this Quantity of Interest

QoI). Moreover, gas phase temperature is known to be highly sen-

itive to the prescribed condition of the fuel spray after atomiza-

ion [23,24] . 

We therefore present a case study for the PCE based quan-

ification of uncertainties arising from the specification of spray

oundary conditions and numerical approximation errors of a

ANS model. The proposed workflow consists of (a) analysis of

nput uncertainties in the simulation model, (b) assessment of the

umerical error, (c) a screening study based on sensitivity analysis

o reduce the stochastic dimension, (d) estimation of the PCE

uality, (e) forward propagation of the input uncertainties through

CE, (f) determination of total output uncertainty. The predictive

apability of the simulation model under the given uncertainties

s appraised using experimental data. 

The paper is structured as follows. A brief summary of the sim-

lation framework is given in section 2 followed by the methods

sed for uncertainty quantification in section 3 . The target flame
or the case study is introduced in section 4 including a definition

f the considered UQ problem. Thereafter, results of the proposed

Q workflow are presented and discussed ( section 5 ). Finally, con-

luding remarks on the main findings are drawn in section 6 . 

. Computational platform 

A coupled Euler-Lagrange simulation framework consisting of

eparate solvers for the gaseous and dispersed spray phase is uti-

ized for the acquisition of RANS data. 

.1. Gas field solver 

The gaseous phase is calculated by the pressure-based DLR in-

ouse code THETA (Turbulent Heat Release Extension of the TAU

ode) [25,26] solving the incompressible, steady-state Reynolds Av-

raged Navier Stokes (RANS) equations including source terms for

hemical reactions. THETA is a 3D finite volume solver for struc-

ured and unstructured dual grids. The effect of turbulence on

he averaged quantities is modeled by the standard k − ε turbu-

ence model with canonical closure coefficients [27] . The convec-

ive and diffusive fluxes are discretized using second-order accu-

ate quadratic upwind differencing schemes. The SIMPLE algorithm

s applied to couple velocity and pressure. 

.2. Combustion modeling 

In order to close the chemical source term in the RANS equa-

ions, reactions of gaseous species are modeled by a Finite-Rate

hemistry combustion (FRC) model where a separate transport

quation is solved for each reactive scalar α [28] . The chemical

ource term from the FRC model is given by 

 

ω α〉 = M α

N r ∑ 

r=1 

(
ν ′′ 

α,r − ν ′ 
α,r 

)[ 〈
k f,r 

〉 N sp ∏ 

β=1 

C 
ν ′ 
β,r 

β
− 〈 k b,r 〉 

N sp ∏ 

β=1 

C 
ν ′′ 
β,r 

β

] 

. (1) 

 α is the molar mass of species α, N r the number of reactions

nd ν are the stoichiometric coefficients. Terms in square brackets

enote sources of reactions which are controlled by the forward

nd backward rate coefficients 〈 k f 〉 and 〈 k b 〉 . Modified Arrhenius

quations 

 

k r 〉 = A r 

〈
T b r 

〉
exp 

(
E a,r 

R 〈 T 〉 
)

(2) 

re used for the calculation of averaged reaction rate coefficients

ased on the pre-exponential constant A r , the temperature expo-

ent b r and the activation energy E a,r of the reaction r . In the

resent study, a detailed chemical reaction mechanism for ethanol

ccounting for 38 species and 228 reactions is used [29] . 

Fluctuations in temperature and species due to turbulence

re not resolved in the RANS context. Therefore, a turbulence-

hemistry interaction model based on an assumed probability den-

ity function (aPDF) approach is included [28] . Two additional

ransport equations are solved: one for the temperature variance

nd one for the sum of the species’ mass fraction variances. It

s assumed that the temperature fluctuation follows a clipped

aussian pdf while the species’ mass fractions fluctuations follow

 multivariate β-pdf [25] . Fluctuations are then included in the

ource term calculation in Eq. 1 . 

.3. Dispersed phase modeling 

The dispersed phase is computed using the DLR in-house simu-

ation code SPRAYSIM [30] which is based on a Lagrangian particle

racking approach. Therefore, subsets of physical fuel droplets with



28 B. Enderle, B. Rauch and F. Grimm et al. / Combustion and Flame 213 (2020) 26–38 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a  

t

3

 

a  

c  

e  

d

d  

w  

r  

d

o  

d

μ  

T  

t  

t

3

 

d  

s  

o  

M  

c  

c  

i  

ξ

S  

3

 

t  

p  

t  

t  

r  

o  

fi

Q  

w  

t

f  

ξ  

fi

α  

w〈
 

a

equal properties are replaced by numerical particles and simpli-

fied with a point source approximation. In this simplification par-

ticles are assumed to be discrete points providing point sources

and point forces to the gas field [31] . Lagrangian particle track-

ing requires solving the coupled ordinary differential equations

for particle position 

�
 x p , particle velocity �

 u p , particle diameter d p 
and temperature T p along the trajectory of each particle within

the gas field. The ODEs are solved in SPRAYSIM by a predictor-

corrector scheme with automatic step control. For a phase cou-

pling, sources for momentum, energy and species are exchanged

at runtime between THETA and SPRAYSIM via an iterative two-

way-coupling procedure. Evaporation of droplets is modeled using

the vaporization model of Abramzon and Sirignano [32] , secondary

breakup of droplets is accounted for through the Cascade Atomiza-

tion and Breakup (CAB) model [33] . Unresolved turbulent disper-

sion of droplets is included by a variant of the Gosman-Ioannides

model [34] . Further details on modeling and implementation in

SPRAYSIM are given in [35] and [36] . 

3. Non-Deterministic (probabilistic) approach for uncertainty 

quantification 

From a theoretical point of view, sources of uncertainties of a

given simulation model can be subdivided into three major cate-

gories, namely numerical uncertainties, model form and input un-

certainties [6] . Numerical uncertainties take errors into account

arising from the approximation of the differential equation based

model, such as discretization error, iterative convergence error or

round-off errors. Model form uncertainties stem from the pro-

cess of abstraction and formulation of the mathematical models

and can be categorized into omission, aggregation and substitution

types [6] . Finally, input uncertainties include parameters used in

the simulation model or its sub-models as well as data describing

the surrounding of the system, e.g. boundary conditions. 

The present study is focused on input uncertainties and numer-

ical uncertainties. While the latter is addressed by a rigorous error

analysis and extrapolation of the RANS model, input or parametric

uncertainties have to be propagated through the simulation model

M to determine variability and therefore uncertainties in the ob-

served quantities Q . We employ a non-intrusive strategy where M
is treated as a black-box problem and probabilistic behavior is in-

ferred from a finite number of random evaluations of M [7] . 

The most straight-forward technique to draw these random

evaluations is the well established Monte Carlo method [37] . The

main drawback is that this procedure requires a relatively large

number of system evaluations ( O(10 3 − 10 4 ) ) to yield reliable

statistics, making it prohibitive for large scale simulation prob-

lems. One way to overcome this limitation is to replace the high

fidelity simulation model by a suitable statistical emulator or sur-

rogate model M SM 

, taking into account minor approximation er-

rors [38] . Statistical measures are then computed from sampling of

the cheap-to-evaluate surrogate model or analytical relationships

as in the case of Polynomial Chaos Expansion. A summary of the

probabilistic methods used in the present study is given in the fol-

lowing. 

3.1. Sensitivity analysis 

Due to the high modeling demand in turbulent spray combus-

tion simulations, a large number of inputs for M exist in the case

considered resulting from modeling parameters as well as bound-

ary conditions. Morris One At a Time (MOAT) sensitivity analysis

is used to identify the most influential parameters in an a priori

screening study. Based on these results, the input parameter space

is reduced by fixing minor parameters to constant values [39] . Fol-

lowing the uncertainty quantification ( a posteriori ), Sobol’ indices
re calculated to assess the contribution of each parameter to the

otal uncertainty in the simulation. 

.1.1. Morris One At a Time (MOAT) 

In a MOAT analysis [40] , input parameters ξ i are varied one at

 time with a substantial variation step size � while the afore

hanged parameter remains at the changed value. An elementary

ffect associated to this variation is computed through the forward

ifference 

 i = 

Q 

(
ξ + �e i 

)
− Q 

(
ξ
)

�
, (3)

here e i is the coordinate vector of the changed parameter in the

espective variable subspace. The distribution of elementary effects

 i over the input parameter space represents the effect of input ξ i 

n the output Q . After generating r samples, mean μi and standard

eviation σ i of the elementary effect d i are approximated by 

i = 

1 

r 

r ∑ 

j=1 

d ( j) 
i 

and σi = 

√ 

1 

r 

r ∑ 

j=1 

(
d ( j) 

i 
− μi 

)2 
. (4)

he mean gives an indication of the overall effect of an input on

he output, standard deviation implies nonlinear effects or interac-

ions between parameters. Thus, ξ i can be ranked by μi and σ i . 

.1.2. Sobol’ indices 

Variance-based sensitivity methods such as Sobol’ in-

ices [41] offer a more detailed insight into the sensitivity

tructure of a given quantity of interest. This method is based

n the decomposition of the total variance V of a model output

 ( ξ) into contributions from the different inputs V [ M ( ξ) | ξi ] . We

onsider the first order indices S i which account for the direct

ontribution to the variance of M from ξ i , and the total-effect

ndex S T 
i 

[42] which also includes interaction effects of ξ i with

� = i : 

 i = 

V 

[
E 

[
M 

(
ξ
)| ξi 

]]
V 

[
M 

(
ξ
)] , S T i = 

V 

[
M 

(
ξ
)| ξ∼i 

]
V 

[
M 

(
ξ
)] . (5)

.2. Uncertainty propagation - Polynomial Chaos Expansion 

For the non-intrusive propagation of input uncertainties

hrough the simulation model the method of Polynomial Chaos Ex-

ansion (PCE) is adopted [8,43,44] . Quantities of Interest Q are in-

erpreted as random variables driven by n s inputs from the uncer-

ain input space 
. Within the framework of PCE, Q can be rep-

esented as a spectral expansion in terms of orthogonal functions

f a vector of standard random variables ξ = ( ξ1 , ., ξn s ) ∈ 
 having

nite variance. The general PC expansion is given as 

 = f 
(
ξ
)

= 

∞ ∑ 

k =0 

αk �k 

(
ξ
)
, (6)

here αk are the expansion coefficients or modes and �k are mul-

ivariate polynomials of ξ. It is required that the polynomials �k 

orm a complete orthogonal basis with respect to the measure on

. Taking advantage of this property an equation for the PCE coef-

cients can be derived as 

k = 

〈
f 
(
ξ
)
�k 

〉〈
�2 

k 

〉 , (7)

here 

f 
(
ξ
)
�k 

〉
≡

∫ 



�k ρ
(
ξ
)

f 
(
ξ
)
d ξ (8)

nd ρ is the density of ξ over 
 [44] . 
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Fig. 1. Schematic of the DSHC burner [46] . 
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Table 1 

Reported mean coflow properties. 

Case T cf [K] U c f [ m s −1 ] I cf [%] 
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However, for practical computations, the infinite series from

q. (6) is usually truncated to a certain total degree of p result-

ng in the approximation M PCE : 

f 
(
ξ
)

≈
P ∑ 

k =0 

αk �k 

(
ξ
)

= M PCE (9) 

ith cardinality P of 

 + 1 = 

(n s + p)! 

n s ! p! 
. (10)

ote that for a given PCE the corresponding mean E and variance

 can be computed directly from the PCE components as 

 [ M PCE ] = α0 and V [ M PCE ] = 

P ∑ 

k =1 

α2 
k 

〈
�2 

k 

〉
. (11)

onsequently, this allows to calculate the Sobol’ indices as pre-

ented in Eq. (5) analytically as a post-processing step of the PCE

oefficients without further sampling of the model [45] . 

. Test case and UQ problem 

The aforementioned methods are applied to the Delft Spray in

ot Coflow (DSHC) Flame [46] due to its simple geometry and

vailable comprehensive experimental and numerical results. As

epicted in Fig. 1 , the burner consists of a cylindrical hot coflow

enerator fed by the lean combustion of Dutch Natural Gas (DNG)

o increase the airflow temperature and dilute the air with com-

ustion products prior to the primary combustion zone. A com-

ercial hollow cone pressure swirl atomizer (Delavan WDA 0.5
PH) is installed in the center of the coflow generator. The atom-

zer forms a fine spray of ethanol droplets which quickly evapo-

ate and feed a stable lifted-off flame above the burner. For further

eference, a coordinate system is shown in Fig. 1 with its origin

laced at the atomizer orifice. 

Radial profiles of gas phase temperature and droplet sizes over

he reaction zone are available from Coherent Anti-Stokes Raman

cattering (CARS) and Phase Doppler Anemometry (PDA) measure-

ents, respectively [46] . Measurement data was collected at differ-

nt heights above the atomizer (z = { 15 , 20, 30, 40, 50, 60} mm).

n addition, gas phase velocity components, temperature and O 2 

olume fraction were measured along the radial direction at the

oflow exit (z = 0 mm ) to characterize the coflow after the sec-

ndary combustion zone. 

Different operating conditions of the burner were investigated

n the experiments. However, this study focuses on one of the

thanol spray in hot-diluted coflow cases, namely case H II . 

.1. Computational domain and gas phase boundary conditions 

In the computational domain, only the region above the atom-

zer is considered while the secondary DNG burner is not simu-

ated explicitly. Properties of the coflow after secondary combus-

ion are prescribed through a boundary condition based on the

adial profiles of temperature and its fluctuations, velocity com-

onents, turbulence properties and gas phase composition from

he experimental characterization. Resulting mean coflow proper-

ies are summarized in Table 1 . 

The computational domain is reduced to an axisymmetric 20 ◦

edge, due to the statistical rotational symmetry of the flame. A

egion of 300 mm axial and 150 mm radial extent is considered.

n ambient airstream with U amb. = 0 . 1 m s −1 surrounds the coflow

nlet for numerical stability. Three different grids are considered

n this study, all relying on the same fully structured, orthogonal

rid topology. The reference grid consists of approximately 80 · 10 3 

lements, while the coarse and the fine grid incorporate half and

wice the number of elements, respectively. Grid refinement strate-

ies proposed by Roache [5] where followed in order keep main

haracteristics of the grid consistent over the three levels of res-

lution. An overview of the grid cell spacing � along the axial

nd radial direction is given in Fig. 2 . For brevity, only every 10 th 

ridpoint is shown. In the reference grid, cell spacing ranges from

.5 mm in the liquid injection region ( R < 10 mm) to 2 mm at the

nd of the computational domain. The stream-wise grid points fol-

ow a linear expansion law up to a maximum cell size with a

rowth factor of 1.01. Therefore, strong clustering is achieved in

egions where droplet evaporation and flame stabilization occurs.

nless otherwise stated, all results in the following are computed

n the reference grid. 

.2. Dispersed phase boundary conditions 

To avoid the modeling and simulation of the complex phenom-

na such as liquid sheet breakup, ligament formation and droplet

ollision occurring in the dense spray region during primary atom-

zation of the liquid fuel [31] , a boundary condition for the droplets

n the dilute spray region is specified. Hence, properties of the

roplets after primary atomization have to be stated. 

In the simulation, a 20 ◦ segment of an injection disk with di-

meter d = 1 mm at a distance of z = 1 mm from the actual
in in 
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Fig. 2. Grid cell spacing along the axial ( �z ) and radial direction ( �R ) in the used 

structured grids. 

Fig. 3. Spray boundary condition and input parameters at the injection plane. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Nomenclature for parameters of the droplet boundary 

condition. 

D 0 : Mean droplet diameter in the RR distribution 

U D : Starting velocity of fuel droplets 

ϕ̄ : Mean trajectory angle of droplets 

ϕ′ : Trajectory dispersion angle 
¯T liq : Starting temperature of fuel droplets 

q : Spread of the RR distribution 
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atomizer orifice defines the boundary condition of the liquid

droplets. The distance z in resembles the mean liquid sheet breakup

length of the pressure-swirl atomizer under the given conditions

and is inferred from preliminary calculations with the LISA primary

breakup model [47] . An illustration of the input parameters and

geometric quantities at the injection disk is given in Fig. 3 : A mean

trajectory angle ϕ̄ resembling the half opening angle of the hol-

low cone is augmented with a dispersion angle ϕ′ since the effect

of flash boiling atomization as present in the H II case [46] tends

to increase the spray angle [48] . Furthermore, a constant absolute

droplet starting velocity U D and a liquid droplet temperature T liq is

set. The droplet size spectrum of the polydisperse spray is modeled

by a Rosin-Rammler (RR) distribution, 
 ( D ) = 1 − exp ( D 0 /D ) 
q with D 0 = SMD 

[ 
�
(

1 − 1 

q 

)] 
(12)

nd the size distribution factor q representing the spread of the

istribution. 

For the steady state simulations, approximately 20 · 10 3 

omputational particles with varying trajectory angle ϕ ∈
ϕ̄ − 0 . 5 ϕ 

′ ; ϕ̄ + 0 . 5 ϕ 

′ ] are sampled from the size distribution.

hus, an overall liquid mass flow of ˙ m liq = 0 . 081 kg s 
−1 

is injected

nto the computational domain. A nomenclature of the parameters

f the droplet boundary condition is given in Table 2 . 

.3. Characterization of uncertain input space 

Due to the fact that the gaseous phase boundary conditions

re precisely defined by the experimental characterization of the

oflow, the study on input uncertainties of the DSHC flame is fo-

used on the dispersed phase boundary condition. In the spray

oundary condition as defined in the previous section, six parame-

ers remain to be determined. As the measurement of droplet data

n the transition regime from dense to dilute spray is challenging

nd subject to large measurement errors [49] , the first available

ata is at a distance of z = 8 mm from the atomizer orifice. Fur-

hermore, some reported characteristics of the atomizer are either

ncomplete ( ϕ′ ), highly uncertain ( T liq ) or potentially wrong ( U liq ).

or example, Ma et al. [50] pointed out that using the droplet in-

ection velocity based on the experimental data of the atomizer,

he downstream velocity will be significantly over predicted. 

Consequently, parameters of the spray boundary condition have

o be calibrated against the downstream experimental data result-

ng in a best fit for the used simulation methods and models. As a

onsequence, different values for these parameters are found in the

iterature on simulations of the DSHC flame. Although in each of

he studies a slightly different scheme for the construction of the

pray boundary condition was utilized, main parameters as defined

reviously can be identified and compared: 

For a RANS simulation with a Flamelet Generated Manifold

FGM) combustion model, Ma et al. [51] computed the parameters

ith the LISA primary breakup model [47] . In a similar setup, Ja-

ali [52] considered slightly different inputs for the LISA model.

allot-Lavallée et al. [53] conducted an LES with a stochastic fields

ombustion model and derived a PDF for the injection angle as

 function of the droplet diameter. In a further LES/FGM study,

a et al. [50] proposed a conditional droplet injection model for

he DSHC case. A calibrated spray boundary condition for the

HETA/SPRAYSIM framework was presented using LES and FRC by

he authors [24] . As an example for the variation of input param-

ters over the mentioned studies, Fig. 4 gives a comparison of the

umulative drop size distribution from different simulations of the

SHC H II case. 

For the present study, we consider the six input parameters of

he spray boundary condition from Table 2 as uncertain. The un-

ertain input space is constructed from the respective minimum

nd maximum values found in the aforementioned literature as

hey all demonstrated good agreement with the experimental data

f the test case. Since no further information is available, all six
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Fig. 4. Cumulative drop size distributions from different simulations of DSHC H-II. 

Table 3 

Minimum and maximum bounds of the epistemic uncertain inputs. 

D 0 [ μm] U D [ m s −1 ] ϕ̄ [ ◦] ϕ′ [ ◦] T liq [K] q [ −] 

Minimum 40 27.3 30 6 300 3.0 

Maximum 45 35.7 40 20 310 3.5 

Exp. [46] – 51.7 a 30 b – 301 –

LES [24] 42.5 35.7 30 20 301 3 

a Liquid velocity at the atomizer exit ( U liq ) 
b Nominal value for Delavan WDA 0.5 GPH atomizer 

i  

c  

s  

T  

i  

r

 

q  

t  

a

5

 

v  

F  

c  

w  

u  

d  

p  

m  

o  

a

 

a

 

 

 

 

 

 

 

a  

b  

d  

Fig. 5. Radial profiles of mean gas phase temperature at z = 15 mm and z = 40 mm 

from LES [24] and RANS. 
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nput quantities are treated as purely epistemic interval-valued un-

ertainties, bounded by the respective minimum and maximum as

ummarized in Table 3 . Note that U D from the experiment given in

able 3 is not the droplet starting velocity but the calculated veloc-

ty of the liquid fuel at the atomizer exit based on fuel mass flow

ate, fuel density and injector exit diameter. 

Since gas phase temperature data is one of the major output

uantities of a spray combustion simulation, the radial tempera-

ure profiles at different heights above the atomizer are considered

s QoIs for the following case study. 

. Results 

A comparison of RANS simulation and LES results from a pre-

ious study [24] with the same simulation framework is given in

ig. 5 . In both cases, the same parameters for the spray boundary

ondition as depicted in Table 3 were applied. In the following, we

ill denote these RANS results as the deterministic reference sim-

lation. For brevity, only results at z = 15 mm and z = 40 mm are

isplayed. Due to the radial bias in the experimental data of tem-

erature [46] , especially in the region of strong gradients, experi-

ental results for both R < 0 mm and R > 0 mm are included. Based

n typical accuracy of CARS measurements [54,55] 5% error bars

re imposed on the experimental data. 

At both axial positions, three characteristic features of the flame

re visible [56] : 

(I) Gas phase temperature drops below the coflow tempera-

ture along the centerline due to strong evaporation of fuel

droplets and therefore absorption of enthalpy from the gas-

field 

(II) An inner and outer flame front characterized by strong radial

gradients in temperature 

(III) Maximum temperature increase with respect to the inlet

temperature stays below the self-ignition temperature of the

mixture (T si = 706 K) 

As evident from Fig. 5 , the RANS simulation is able to reproduce

ll of these characteristics. At z = 40 mm and further downstream,

oth simulations predict a higher flame spread leading to ra-

ial temperature deviations. This tendency was also reported
y [53] and [57] . Note that the spread is larger in the RANS than

n the LES. A major deviation of the RANS from both experiment

nd LES is found at the beginning of the inner averaged reaction

one ( R ≈ 5 mm). Considering that this deviation is present at all

xial positions it is concluded that this must be a systematic error

f the RANS. The absence of resolved unsteady flow structures

n the RANS and their influence on particle dispersion, droplet

vaporation and local fuel mixing could be a key factor causing

hese deviations. For example, Abani et al. [58] pointed out that

ANS models are prone to errors in the near injector region, where

hase-coupling effects play a significant role. Furthermore, one

hould keep in mind that the spatial grid resolution in this area

or the LES is well above the RANS. In the next section, it is shown

hat this area is subject to considerable numerical uncertainties.

till, the RANS simulation provides a suitable accuracy for the

ollowing uncertainty study. 

In terms of computational costs the RANS setup drastically re-

uces the required CPU hours by a factor of 70 for a single com-

utation compared to the LES. 

.1. Numerical uncertainties 

We use the reference RANS simulation from the previous

ection for a systematic evaluation of numerical uncertainties

n the used simulation approach. Generally speaking, these un-

ertainties arise from discretization error, iterative convergence

rror, roundoff error and errors due to computer programming

istakes [7] . The latter two are assumed to be negligible due

o previous and ongoing verification and validation efforts for

ur simulation framework. From the inspection of residuals and

heir convergence, iterative errors are expected to be in the or-

er of machine accuracy. Therefore, special emphasis is put on

iscretization errors stemming from spatial grid resolution. 

To evaluate this error, the grid convergence method proposed

y Roache [5] is adopted. It relies on the analysis of multiple so-

utions from a sequence of grids with decreasing grid spacing h .

or the case considered, a coarse ( f ) and fine ( f ) mesh with
3 1 
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Fig. 6. Results from grid convergence study and associated numerical uncertainties. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

U  

 

 

 

 

 

 

 

u  

t  

p  

f  

c

5

 

f  

a  

t  

b  

e  

i  

k  

o  

u  

o  

t

 

t  

 

o  

t  

p  

s  

n  

s  

u  

F

 

j  

i  

t  

t  

t  
respect to the reference ( f 2 ) is used, keeping the refinement ratio

r = h i +1 /h i constant at r = 

√ 

2 . The influence of grid resolution on

the radial temperature profiles is displayed in Fig. 6 (a). Highest

sensitivity is found at the beginning of the inner averaged reac-

tion zone ( R ≈ 5 mm) at both axial positions. Apart from that, the

solution is nearly insensitive to grid refinement at z = 40 mm . In

order to get a quantitative assessment of sensitivity to grid resolu-

tion, the temperature profiles are extrapolated to a hypothetical in-

finitely small grid spacing h = 0 using Richardson extrapolation [5] .

An observed order of convergence p is calculated by 

p ≡
log 

(
f 2 − f 1 
f 3 − f 2 

)
log r 

. (13)

As Stern et al. [59] pointed out, this equation is not robust espe-

cially in cases where the datapoints f i are nearly constant with

change in grid size or when f 2 − f 1 < f 3 − f 2 . We therefore limit

p to an interval [ p min , p max ] with p min = 0 . 5 and p max = 3 as rec-

ommended by [60] . The extrapolated solution is then determined

by 

f h =0 = f 1 + 

f 1 − f 2 
r p − 1 

. (14)

A cubic interpolation is used to transfer the medium and fine

grid solution to the coarse mesh locations. Extrapolated profiles

are included in Fig. 6 (a). The numerical error ε num 

= | f h =0 − f 2 |
is low and the reference grid f 2 represents an appropriate spa-

tial resolution of the problem. Based on εnum 

, numerical uncertain-

ties U num 

are estimated using the approach proposed by Roy and

Oberkampf [7] : 

 num 

= F s ε num 

= F s | f h =0 − f 2 | , (15)

with a safety factor F s which is recommended to be 1.25 for ex-

trapolations involving three or more grids. Resulting uncertainties

are included as error bars in the reference simulation results in

Fig. 6 (b). Note that the regions of highest numerical uncertainties

correspond to the scope of highest deviation between RANS and

LES as found in the previous section. Here, uncertainties in the

magnitude of 300 K are present. 
Following [6] , the calculated numerical uncertainties of the sim-

lated temperature profiles are treated as purely epistemic uncer-

ainties and will be added as an interval to the results of the later

ropagation of input uncertainties. We will use the reference grid

 2 for the further sensitivity analysis and propagation of input un-

ertainties. 

.2. Reduction of input parameter space: MOAT screening 

A screening of the input parameter space from Table 3 is per-

ormed using MOAT sensitivity analysis as described previously. As

 result, the influence of the input parameters on the gas phase

emperature can be assessed. For the MOAT screening a total num-

er of 28 RANS simulations are run resulting in r = 4 elementary

ffects for each of the 6 input parameters. According to [61] , r = 4

s the minimum value to place confidence in the method, while

eeping the computational expense at a minimum. For the analysis

f the results, the modified mean μ∗ as recommended by [62] is

sed instead of the original μ from Eq. (4) . For the computation

f μ∗ the absolute value of the elementary effect d i is considered

o overcome the effect of alternating signs in d i . 

MOAT analysis is performed for the radial profiles of tempera-

ure at the six axial positions where experimental data is available

(z = { 15 , 20, 30, 40, 50, 60} mm). This allows for a characterization

f the sensitivity with proceeding evaporation and reaction over

he flame. The results are shown in the upper plot of Fig. 7 . Data is

lotted in a μ∗ − σ space which enables a fast classification of sen-

itivities: linear or direct effects increase along the μ∗ axis while

on-linear or interaction effects advance along the σ axis. Con-

equently, high influence parameters are found on the right and

pper portion of the μ∗ − σ space. Labels at the data points in

ig. 7 indicate its z − position in the computational domain. 

Highest linear and interaction effects are visible for mean tra-

ectory angle ϕ̄ and dispersion angle ϕ′ although both decrease

n magnitude with increasing distance from the boundary condi-

ion. It is assumed that the strong interaction effect arises from

he fact that both parameters determine the opening angle of

he spray cone. As the effect of the other four parameters is
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Fig. 7. Standard deviation σ of elementary effects for temperature plotted against their modified mean μ∗ from MOAT analysis. Labels indicate axial positions z . 
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ubstantially smaller, a detail of the lower left portion of the
∗ − σ space is included in Fig. 7 . In contrast to ϕ̄ and ϕ′ , the

elative influence of liquid droplet temperature T liq , droplet start-

ng velocity U D , distribution factor q and mean droplet diameter D 0 

ises with increasing z − position . However, in particular T liq and q

ave only minor influence on the temperature when compared to

¯ and ϕ′ . It is therefore concluded that these two parameters can

e fixed to the reference values from Table 3 and neglected for the

ollowing uncertainty quantification. Thus, the uncertain input pa-

ameter space 
 is reduced to 
r comprising ϕ̄ , ϕ′ , D 0 and U D 

ith the respective bounds from Table 3 . 

.3. Surrogate modeling: PCE construction and testing 

For the propagation of input uncertainties a PCE approximation

f the RANS simulation model is constructed over the reduced in-

ut parameter space 
r . Sandia DAKOTA 6.4 [63] is utilized for the

onstruction and evaluation of PCE models. 

In order to apply the PCE framework to a specific problem,

 structure for the multivariate polynomials �k in the PCE must

e specified. As �k = f 
(
ξ
)

this choice depends on the structure

f the random input ξ. An overview of suitable polynomial ba-

is functions with corresponding probability distributions of ξ is

iven in the generalized Wiener–Askey scheme [64] . For the PCE

onstruction, we define the uncertain inputs to be uniformly dis-

ributed over 
r and therefore apply the uniform transformation
i ∼ U(−1 , 1) corresponding to Legendre polynomials for �k . Note

hat this is only valid under the assumption of uncorrelated inputs.

The main computational effort has to be put in the calculation

f PCE coefficients αk through the evaluation of the spectral pro-

ection from Eq. (8) . We use multidimensional numerical integra-

ion based on the Smolyak sparse grid tensorization method [8] in

ombination with a nested Gauss–Patterson quadrature rule [65] .

n the sparse grid approach, different grid levels are considered,

orresponding to different orders of accuracy of the resulting PCE.

 level-1 expansion (L1) of the four-dimensional input space 
r re-

uires 9 quadrature points which increases to 49 points for a level-

 expansion (L2). Each quadrature point requires an evaluation of

he RANS simulation model. Due to the choice of a nested quadra-

ure rule, points of the L1 expansion are a subset of the L2 points.

ote that a level-2 expansion of the original six-dimensional input

pace 
 would require 97 points which highlights the importance

f a priori sensitivity analysis and reduction of stochastic dimen-

ion. 

PCE accuracy is examined through holdout validation against

dditional RANS model evaluations independent from the quadra-

ure points. From a previous study [66] , 40 holdout datasets are

vailable. These test points were distributed over 
r using a low

iscrepancy Sobol sequence [67] which allows for a consistent

valuation of PCE prediction quality. A qualitative comparison of

adial temperature profiles from RANS simulation and PCE with

ifferent expansion order at an exemplary holdout test point is
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Fig. 8. Comparison of temperature profiles from RANS simulation and PCE predic- 

tion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. PCE prediction error εPCE . 

Table 4 

Sampling statistics over the reduced input space 
r : LHS / an- 

alytical solution 

Case μ σ γ

D 0 [ μm] 42.5 / 42.5 2.0835 / 2.0833 4 · 10 −6 / 0 

U D [ m s −1 ] 35 / 35 0.1455 / 0.1455 3 · 10 −4 / 0 

ϕ̄ [ ◦] 13 / 13 0.2851 / 0.2851 2 · 10 −5 / 0 

ϕ′ [ ◦] 31.5 / 31.5 5.8806 / 5.8801 5 · 10 −6 / 0 

 

t  

o  

a  

1  

m  

v  

i  

d  

r  

c

 

a  

t  

a  

t  

t  

S  

a  

c  

p  

a

 

b  

1  

w  

o  

e  

p  
given in Fig. 8 . Both expansions are able to predict the data with

high accuracy at both axial positions. Minor improvements are

achieved when considering an L2 expansion instead of L1. At z =
15 mm both expansions fail to precisely meet the transition from

the flame front to the coflow ( r = 15 mm ) . Note that this behavior

is also found when analyzing the other holdout datasets. 

A quantitative representation of PCE accuracy is calcu-

lated using the normalized root mean squared error ε PCE =
|| M PCE − M || 2 / ||M|| 2 which resembles the mean relative devia-

tion between PCE and RANS over the 40 holdout datasets. Radial

profiles of the error at z = 15 mm are displayed in the upper part

of Fig. 9 for the two expansion levels. Mean error stays below 10%

for the L1 case and reduces to a maximum of 6% in the L2 case. As

discussed previously, maximum error is found in the flame-coflow

transition region. Certainly, this region profits the most from the

L2 expansion. A comparison of εPCE from the L2 expansion at two

different axial positions is illustrated in the lower part of Fig. 9 :

Prediction quality is increased at the further downstream position.

This tendency is also present at the other axial positions which are

not shown here for brevity. 

Considering that the PCE approximation will reduce the com-

puting time for uncertainty quantification by several orders of

magnitude, the accuracy of the L2 expansion is seen as sufficient. 

5.4. Forward propagation of input uncertainties 

Uncertainties in the output quantities of interest, i.e. temper-

ature profiles, can now be quantified via a forward propagation

of the input uncertainties in 
r using the L2 PCE as a surro-

gate model. All four input parameters are treated as purely epis-

temic interval-valued uncertainties bounded by the minimum and

maximum as summarized in Table 3 . Due to the epistemic nature

of the input uncertainties, the Probability Bounds Analysis frame-

work (PBA) [6,68] is utilized. Within this framework, minimum

and maximum bounds for a QoI are computed rather than precise

distribution functions. This is motivated by the lack of knowledge

arising from the imprecise probability distribution function in the

input of the forward propagation. 
Bounds are obtained by Latin Hypercube Sampling (LHS) [37] of

he PCE surrogate model over 
r . A space filling, uniform sampling

ver 
r is required in PBA, since each sample from 
r is treated as

 possible value instead of a value associated with a probability [6] .

0 4 samples are drawn from the PCE surrogate model within a few

inutes of computing time. Sampling statistics regarding mean μ,

ariance σ and skewness γ of the LHS sampling are summarized

n Table 4 and compared to the analytical solution of a uniform

istribution. All moments are approximated with very high accu-

acy using 10 4 samples. The sample size is therefore seen as suffi-

ient. 

Resulting temperature realizations and corresponding bounds

re shown in Fig. 10 . As a consequence of the PBA framework and

he epistemic input all realizations are assigned an equal prob-

bility of unity. Therefore, the gray area represents the uncer-

ainty region in the temperature results given the uncertainties in

he input. In addition, the deterministic reference simulation from

ection 5.1 is indicated by dashed lines. Highest uncertainties exist

round the region of peak temperature at all axial positions indi-

ating that the spray input parameters significantly influence the

osition of the flame. Over all radial positions in the flame region

n uncertainty level between 100K and 1400K is found. 

Regions exist where the UQ based simulation is unable to

racket the experimental data, especially at 5 < R < 10 mm for z =
5 and 20 mm. Reason for this could be further uncertainties

hich are not included in the analysis, a general modeling error

f the used simulation model or uncertainties and measurement

rrors in the experimental data which are probably larger than re-

orted. Since a major deviation between RANS and LES and high
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Fig. 10. PCE based uncertainty regions for DSHC H II case. 

Table 5 

Computing time statistics for the used UQ 

methods. 

Case Runs CPU hours [h] 

L2 PCE of 
 97 32600 

L2 PCE of 
r 49 16500 

MOAT of 
 28 9500 
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umerical uncertainties in this region were found in the previous

ections, it is most likely that a modeling error in the RANS is

ropagated through the PCE surrogate model. In contrast, the bias

n experimental data for R < 10 mm at z = 30 and 40 mm prohibits

 definitive evaluation of simulation credibility at this position as

xperimental data for R > 0 mm is within the uncertainty region

ut not the portion from R < 0 mm. 

Oscillating bounds around the peak temperature at z = 15 and

0 mm coincide with high PCE prediction errors as evident from

ig. 9 . Hence, they are assumed to be a result of outliners in the

ncertainty propagation. 

.4.1. Effects of parameter reduction 

In order to assess the influence of parameter space reduction

n the PBA results, an L2 PCE expansion of the original parame-

er space 
 is calculated and used for forward propagation, too.

esulting bounds are compared to the outcome of the reduced pa-

ameter space 
r in Fig. 11 . No significant deviations between the

wo bounded areas are observable, confirming that the parameter

eduction does not affect the results of the PBA in the case consid-

red. As already suspected in the MOAT analysis, the four parame-

ers in 
r essentially contribute to the variance in the temperature

rofiles. 

Computing time statistics for the different methods in the UQ

rocess are summarized in Table 5 . L2 PCE of 
 corresponds to

he aforementioned sampling of the full parameter space. Based

n the statistics it is deduced that the proposed workflow of

arameter space reduction (MOAT) and sampling of the reduced
arameter space 
r already results in a 20% reduction in com-

uting time, although the parameter space is only slightly reduced

rom six to four parameters. Note that this reduction increases in

ases with further parameter reduction. 

In the following, results from the PBA over 
r are again used

or further analysis. 

.5. A posteriori sensitivity analysis 

To appraise the contribution of the uncertain input parameters

o the high variance in the simulation results indicated by the un-

ertainty region, first order and total order Sobol’ indices are de-

ived from the PC expansion following Eq. (5) . For a simplified in-

erpretation, indices are aggregated over the radial coordinate by

eighting the local index S ( r ) with the local variance in PCE tem-

erature predictions [69] : 

 = 

∫ 
R V [ M PCE (r) ] S(r)d r ∫ 

R V [ M PCE (r) ] d r 
(16) 

ggregated Sobol’ indices S for temperature at different axial posi-

ions are given in Fig. 12 . Solid bars illustrate first order indices S ,

.e. the direct contribution of a parameter to the variance, whereas

ugmented hatched bars indicate total indices S T which include in-

eractions with other parameters. As a result, it follows that S T ≥ S .

ean injection angle ϕ̄ is identified as the dominant parameter

ver all axial positions, causing more than 60 ◦ of variance in tem-

erature. Close to the injector, U D demonstrates some influence,

et with decreasing magnitude. The minor influence of ϕ′ rises

ith increasing z position. It should be pointed out that differences

etween S and S T are only observable for ϕ̄ and U D , which indi-

ates a coupled effect between the two parameters. 

To clarify the influence of ϕ, profiles of local Sobol’ indices S ( r )

re shown in Fig. 13 for z = 40 mm . Highest S for ϕ are present

t the outer flame region ( R > 25 mm). Here, influence of other

arameters are negligible. As ϕ̄ corresponds to the spray cone

pening angle, ϕ̄ primarily determines the radial position of liq-

id droplets. In the outer flame region, this is closely connected to
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Fig. 11. Probability bounds of computed temperature profiles for the full ( 
) and reduced ( 
r ) input parameter space. 

Fig. 12. Aggregated Sobol’ indices for temperature. Hatched bars indicate total in- 

dices. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. Local Sobol’ indices for temperature at z = 40 mm. 
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the supply of gaseous ethanol to the reaction zone. Consequently,

changes in ϕ̄ shift and stretch the temperature profile along R and

cause high uncertainties in the outer flame region. In contrast, in-

fluence of ϕ̄ drops in the inner flame region and the droplet di-

ameter D becomes more dominant. This reaction zone is formed

by the fuel rich premixed reaction of ethanol vapor as a result of

strong evaporation of droplets [56] . As D is the only uncertain pa-

rameter directly connected to evaporation, it influences the evap-

oration process in this region and contributes to the variance in

temperature. 

Note that the discussed phenomena are also found at the other

axial positions. 

5.6. Determination of total uncertainty 

Finally, total uncertainty in the considered simulation is de-

termined using the method of composite probability boxes ( p -

boxes) [7] . Due to the functional nature of the output QoI, this is

only illustrated exemplarily at three distinct points in the simu-

lation domain. Results are presented in Fig. 14 . A p -box consists

of the cumulative distribution function (CDF) of the QoI which was
btained by propagating the input uncertainty with the help of the

CE surrogate model. Furthermore, numerical uncertainties U num . 

nd PCE prediction errors U PCE from Sections 5.1 and 5.3 are ap-

ended to both sides of the CDF. This is motivated by the epis-

emic nature of these uncertainties [6] . Again, the CDF from input

ncertainties is given as brackets without a probability structure

nside the p -box as a result of the interval-valued input. Owing to

he deterministic approach, results from the reference simulation

re shown as Dirac pulses (dashed vertical lines). 

At all three positions total predictive uncertainty is primar-

ly due to the uncertainties in the model inputs. Additional PCE

ncertainty is visible at the first two positions, while numerical
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Fig. 14. Probability box for temperature: ( ) U in , ( ) U in + U num , ( ) U in + 

U num + U PCE , ( ) det. ref. simulation, ( • ) exp. R > 0 mm. 
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ncertainties are negligible compared to the magnitude of U in . .

ven when considering all three types of uncertainties, experimen-

al data at z = 40 , R = 17 mm ( Fig. 14 (c)) cannot be met by the

imulation which further affirms the presence of a general mod-

ling error. While the calibrated deterministic simulation precisely

eets the experiment in Fig. 14 (b), the uncertainty quantification

eveals notable uncertainties of 500 K at this position. 

. Summary and conclusions 

The present study successfully demonstrated the use of non-

ntrusive Polynomial Chaos Expansion for forward uncertainty

uantification and sensitivity analysis in the simulation of turbu-

ent spray combustion. Profiles of temperature over the reaction

one in a laboratory scale spray flame were considered as out-

ut quantities of interest. Since major input uncertainties arise

rom the parameters of the spray boundary condition, they were

reated as epistemic uncertainties with the respective bounds de-

ived from an analysis of existing simulations in literature. Uncer-

ainties in the used RANS simulation model and the PCE surro-

ate model were evaluated by means of solution extrapolation and

oldout validation, respectively. Based on the findings of an a pri-

ri MOAT sensitivity analysis, the stochastic dimension of the in-

ut was reduced to the four most influential parameters. The com-

utational inexpensive PCE surrogate models were explored using

atin Hypercube Sampling to obtain probabilistic bounds of the QoI

nder the given uncertainties. Thus, an extensive uncertainty re-

ion around the deterministic reference simulation was revealed.

egions were identified where the UQ based simulation is unable

o bracket the experimental data. This was attributed to a general

odeling error. From an a posteriori sensitivity analysis, the major-

ty of variance in the QoI was connected to the spray cone angle of

he atomizer which controls the position of the droplets and trans-

ort of gaseous fuel to the reaction zone. 

On the basis of these findings we draw the following conclu-

ions: 

• PCE enables non-intrusive probabilistic methods for complex

applications with minor loss in accuracy compared to the high

fidelity simulation model. 

• The comparison of all sources of uncertainties confirmed that

the total predictive uncertainty in the case considered is pri-

marily due to the input uncertainties. 
• Systematic uncertainty quantification requires identification 

and adequate characterization of all sources of uncertainties.

Therefore, a precise definition of input uncertainties by means

of PDFs should be included in the design of validation experi-

ments. 

• UQ studies can provide guidelines for the improvement of ex-

periments. In the case presented, a precise experimental mea-

surement of the spray mean trajectory angle ϕ̄ would signifi-

cantly decrease the uncertainties in the simulation. 

As the goal of this study was to demonstrate the ability and

pplicability of available UQ tools to spray combustion simulation,

ot all effects in the QoI were described and discussed. A thorough

hysical interpretation including additional QoIs (gas field veloc-

ty, evaporated mass fraction) will be subject to future work. Fur-

hermore, one has to keep in mind that results from a UQ study

ust always be interpreted with respect to the assumption on

ounds and distributions made for the uncertain input space. In

he present work, these were derived taking into account the find-

ngs of existing simulations in literature. Other approaches could

nclude reported uncertainties from experiments or expert knowl-

dge based on experience and empirical data. 

Finally, it should be pointed out that model form uncertainties

ere not considered. However, as spray combustion simulation in-

olves a variety of strongly coupled models, model form uncertain-

ies could be a significant contributor to the total uncertainty in

he QoI [7] and should be therefore included in a future study. 

It was shown that UQ methods help to understand sensitiv-

ties of simulation results and provide a more reliable basis for

alidation against experimental data and evaluation of simulation

redibility. In the engineering application these methods present

uantitative information about the confidence in the predicted

erformance from a simulation model. On that basis, risk informed

ecision making is facilitated to safely meet performance targets

uch as emissions or efficiency. 
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