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ABSTRACT

We report the discovery, by the Next Generation Transit Survey (NGTS), of two hot-Jupiters
NGTS-8b and NGTS-9b. These orbit a V = 13.68 K0V star (Teff = 5241 ± 50 K) with a period
of 2.49970 days, and a V = 12.80 F8V star (Teff = 6330 ± 130 K) in 4.43527 days, respectively.
The transits were independently verified by follow-up photometric observations with the SAAO
1.0-m and Euler telescopes, and we report on the planetary parameters using HARPS, FEROS
and CORALIE radial velocities. NGTS-8b has a mass, 0.93 +0.04

−0.03 MJ and a radius, 1.09 ± 0.03 RJ

similar to Jupiter, resulting in a density of 0.89 +0.08
−0.07 g cm−3. This is in contrast to NGTS-9b, which

has a mass of 2.90 ± 0.17 MJ and a radius of 1.07 ± 0.06 RJ , resulting in a much greater density of
2.93+0.53

−0.49 g cm−3. Statistically, the planetary parameters put both objects in the regime where they
would be expected to exhibit larger than predicted radii. However, we find that their radii are in
agreement with predictions by theoretical non-inflated models.

Key words: techniques: photometric, stars: individual: NGTS-8 and NGTS-9 plan-
etary systems, planets and satellites: detection
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1 INTRODUCTION

Hot-Jupiters are giant gas exoplanets similar to Jupiter, but
with a shorter orbital period, inferior to 10 days. While rare,
these planets are the easiest to detect from ground-based
surveys due to their relatively deep transits (∼ 1%), their
large radial velocity (RV) signals, and their short periods,
which make hot-Jupiters important targets in order to un-
derstand the structure, composition and evolution of plane-
tary systems.

From the currently observed population of exoplanets
with known radii, masses and orbital distances, the evolu-
tion of planetary radii has been modelled (e.g. Fortney et al.
2007; Baraffe et al. 2008). These models, where the ef-
fects of stellar irradiation and heavy element cores are
included, agree with observations at low stellar irra-
diation. However, the observed radii of highly irradi-
ated gas giants are discrepant with theoretical expecta-
tions. For instance, at fluxes greater than 2 × 105 W m−2

(Miller & Fortney 2011; Demory & Seager 2011) the gas
giants are increasingly found with anomalously large
radii. This is the case for the hot-Jupiters WASP-17 b,
WASP-121 b and Kepler-435 b, which all have measured
radii R> 1.8 RJ(Anderson et al. 2011; Almenara et al. 2015;
Delrez et al. 2016). A number of possible mechanisms
have been postulated to explain these inflated plane-
tary radii including kinetic heating (Guillot & Showman
2002), enhanced atmospheric opacities (Burrows et al.
2007), double diffusive convection (Chabrier & Baraffe
2007), Ohmic heating through magnetohydrodynamic
effects (Batygin & Stevenson 2010; Perna et al. 2010;
Wu & Lithwick 2012; Ginzburg & Sari 2016), tidal dissi-
pation (Bodenheimer et al. 2001; Bodenheimer et al. 2003;
Arras & Socrates 2010; Jermyn et al. 2017) and vertical ad-
vection of potential temperature (Youdin & Mitchell 2010;
Tremblin et al. 2017). However, the exact mechanisms re-
sponsible are still, as yet, unidentified and the problem re-
mains unsolved. In order to perform robust statistical studies
of hot-Jupiter radii and constrain the dominant ‘inflation’
mechanisms at work (e.g. as done by Sestovic et al. 2018)
we need to increase the sample of planets spanning a range
of planetary masses, radii, stellar irradiation levels, as well
as planetary system ages.

In this paper we present two hot-Jupiters that appear
to be non-inflated, despite being highly irradiated with an
incident flux greater than 2×105 W m−2 (like many inflated
planets). In §2, the NGTS discovery data is described. §3
explains the photometric follow-up campaigns and §4 re-
ports the mass determination via RV monitoring from spec-
troscopy. §5 details the analysis of the stellar parameters,
presents the stellar activity and its relation with the stellar
rotation and shows the global modelling process to charac-
terize the planets. §6 presents an investigation regarding the
incident flux, the planetary mass and the radius. Finally we
finish with our conclusions in §7.

2 DISCOVERY PHOTOMETRY FROM NGTS

The Next Generation Transit Survey (NGTS), operat-
ing since early 2016, is a wide-field transit survey lo-
cated at ESO’s Paranal Observatory in Chile, whose pri-

mary goal is to discover Neptune-sized or bigger exoplan-
ets. NGTS has a fully robotized array of twelve 20 cm
Newtonian telescopes, and each telescope is equipped with
2K×2K e2V deep-depleted Andor IKon-L CCD cameras
with 13.5 µm pixels and an instantaneous field of view of
8 deg2. For a description of this facility and its capabil-
ities, optimised for detecting planets, we refer the reader
to Wheatley et al. (2018). NGTS has already detected
4 hot-Jupiters: NGTS-1b (Bayliss et al. 2018), NGTS-2b
(Raynard et al. 2018), NGTS-3Ab (Günther et al. 2018)
and NGTS-6b (Vines et al. 2019). Here we report the latest
hot-Jupiter discoveries from NGTS: NGTS-8b and NGTS-
9b.

NGTS-8 was observed using a single NGTS camera
(#811) over a 227 night baseline between the 21st of April
2016 and the 3rd of December 2016. NGTS-9 was also ob-
served using a single camera (#806) over a 234 night base-
line between the 8th of October 2016 and the 29th of May
2017. A total of 177 799 and 167 933 images were obtained,
respectively, each with an exposure time of 10 s. These data
were taken using the custom NGTS filter (520 – 890 nm)
(Wheatley et al. 2018) and the telescope was auto-guided
using an improved version of the DONUTS auto-guiding
algorithm (McCormac et al. 2013). The data were reduced
and aperture photometry was extracted using the CASU-
Tools1 photometry package. A total of 177120 and 166043
valid data-points were extracted from the raw images and
then de-trended for nightly trends, such as atmospheric ex-
tinction, using our implementation of the SysRem algorithm
(Tamuz et al. 2005).

Both datasets were searched for transit-like signals us-
ing orion, an optimized implementation of the box-least-
squares (BLS) fitting algorithm (Collier Cameron et al.
2006). A 1.6% deep transit signal was detected at a period
of 2.49970 days for the K0V star, NGTS-8, and a 0.6% deep
transit signal at 4.43527 days for the F8V star, NGTS-9.
These periods were distinguished from other aliases using
the photometry and spectroscopy follow-up – see Section 3
and Section 4 for details. The detrended NGTS data for the
two stars, phase-folded on the planetary orbital periods, are
shown in Figure 1 and Figure 2. A sample of the NGTS re-
duced photometric measurements are presented in Table 1
and Table 2, with the full data available electronically from
the journal.

The NGTS data were searched for signs that would in-
dicate that the planetary candidates were false positives.
No evidence for a secondary eclipse or out-of-transit varia-
tions indicating an eclipsing binary system were identified in
the NGTS light curves of the two stars. However, for both
sources, some stars were found to be in close proximity to our
targets. Using Gaia we confirmed that these nearby stars did
not appreciably dilute the light from NGTS-8 or NGTS-9,
and also confirmed that NGTS-8 and NGTS-9 were not gi-
ants stars – see Section 5.1.1 for details. Based on the NGTS
detection, NGTS-8 and NGTS-9 were followed-up with fur-
ther photometry and spectroscopy to confirm the planetary
nature of the system and to measure the planetary param-
eters, which we report on in the next section.

1 http://casu.ast.cam.ac.uk/surveys-projects/software-release
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NGTS-8b and NGTS-9b 3

Figure 1. From top to bottom: Figure 1.a represents the NGTS

discovery light curve of NGTS-8b with residuals, phase-folded on
the orbital period and zoomed on the transit. Figure 1.b represnts

the ingress and mid-transit of NGTS-8b observed with SAAO,
with residuals. Figure 1.c represents the ingress and mid transit
of NGTS-8b observed with Euler, with residuals. For all the plots,

the blue data points are binned every 7 min to aid visualisation.
The red lines show 20 light curve models generated from randomly

drawn posterior samples of the allesfitter fit.

Figure 2. From top to bottom: Figure 2.a represents the NGTS
discovery light curve of NGTS-9b with residuals, phase-folded on

the orbital period and zoomed on the transit. Figure 2.b rep-
resents the full transit of NGTS-9b observed with SAAO, with

residuals. This image uses night 20181221, where ingress and mid-

transit can be seen, and night 20190103, with mid-transit and
egress. For both figures, the blue data points are binned every

10 min to aid visualisation. Figure 2.c represents the full transit

of NGTS-9b observed with Euler, with residuals. The data was
taken on a 100sec cadence, shown in blue. For all the plots, the

red lines show 20 light curve models generated from randomly

drawn posterior samples of the allesfitter fit.
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Table 1. A sample of the photometric data of NGTS-8 from
NGTS, SAAO and Eulercam. The full dataset is available elec-

tronically from the journal.

Time Relative Flux Filter Instrument
(BJD-2450000) flux error

7499.8655 1.0179 0.0221 NGTS NGTS
7499.8657 1.0320 0.0221 NGTS NGTS

7499.8658 1.0016 0.0220 NGTS NGTS

7499.8660 0.9964 0.0220 NGTS NGTS
7499.8661 0.9911 0.0220 NGTS NGTS

7499.8663 0.9995 0.0220 NGTS NGTS

7499.8664 0.9892 0.0220 NGTS NGTS
7499.8666 1.0054 0.0220 NGTS NGTS

7499.8667 0.9910 0.0219 NGTS NGTS
7499.8669 0.9901 0.0219 NGTS NGTS

... ... ... ... ...

Table 2. A sample of the photometric data of NGTS-9 from

NGTS, SAAO and Eulercam. The full dataset is available elec-
tronically from the journal.

Time Relative Flux Filter Instrument

(BJD-2450000) flux error

7669.8612 0.9871 0.0087 NGTS NGTS

7669.8614 1.0027 0.0087 NGTS NGTS
7669.8617 0.9919 0.0087 NGTS NGTS

7669.8618 0.9848 0.0087 NGTS NGTS

7669.8620 1.0107 0.0087 NGTS NGTS
7669.8621 1.0014 0.0087 NGTS NGTS

7669.8623 0.9956 0.0087 NGTS NGTS

7669.8624 1.0167 0.0087 NGTS NGTS
7669.8626 1.0076 0.0087 NGTS NGTS

7669.8627 1.0000 0.0087 NGTS NGTS

... ... ... ... ...

3 FOLLOW-UP PHOTOMETRY

3.1 SAAO photometry

Follow-up photometry of NGTS-8 was obtained with the
1.0 m Elizabeth telescope at the South African Astronomi-
cal Observatory (SAAO) on 2017 July 17 and 2017 July 18,
utilising the frame-transfer CCD Sutherland High-speed Op-
tical Camera ”SHOC’n’awe”(Coppejans et al. 2013, SHOC).

With a pixel scale of 0.167 arcsec/pixel, the SHOC cam-
eras on the 1 m telescope were binned 4 × 4 pixels in the
X and Y directions. The field of view of its instruments is
2.85′ × 2.85′. This allow to observe simultaneously the tar-
get and a comparison star of similar brightness for differ-
ential photometry. The data, obtained using a z′ filter with
an exposure of 30 s, were bias and flat field corrected. This
was performed in python using the standard procedure with
the CCDPROC package (Craig et al. 2015). Then, using the
‘SEP’ package (Barbary 2016), the aperture photometry of
both the target and the comparison star were extracted. Fi-
nally, the sky background was measured and substracted
using the SEP background map.

We also obtained two follow-up light curves of NGTS-9
on 2018 December 21 and 2019 January 30, with the same
telescope and instrument set-up as described above. This
time the data were obtained with an I filter and an ex-
posure time of 20 s. The data were reduced with the local

SAAO SHOC pipeline, which is driven by python scripts
running iraf tasks (pyfits and pyraf), and incorporating
the usual bias and flat-field calibrations. Aperture photom-
etry was performed using the Starlink package autopho-
tom. For the first observation of NGTS-9 we used a 4 pixel
radius aperture that maximised the signal/noise, and the
background was measured in an annulus surrounding this
aperture with inner and outer radii of 7 and 9 pixels, respec-
tively. Two comparison stars were then used to perform dif-
ferential photometry on the target. The 2019 January 30 ob-
servation was obtained in slightly poorer seeing conditions,
and we therefore utilised a 6 pixel aperture, a correspond-
ingly larger background annulus, and only one comparison
star for differential photometry.

The transits of these two exoplanets observed from
SAAO are shown in Figures 1.b and 2.b. Regarding NGTS-8,
only a partial transit was observed with SAAO. For NGTS-
9, 2 nights were combined: night 20181221, where ingress
and mid-transit were seen, and night 20190103, where mid-
transit and egress were seen. While only partial transits were
observed, these SAAO data were able to confirm the tran-
sits and the consistency of the transit depths and were used
to revise the orbital ephemerides for subsequent follow-up
observations. In particular, the 2017 July observations of
NGTS-8 were helpful in confirming the orbital period and
ruling out aliases of similar power in the original NGTS data.

3.2 Eulercam

We also observed both objects with Eulercam (Lendl et al.
2012) on the 1.2 m Euler Telescope at La Silla Observatory.
NGTS-8 was observed on the 21st of August 2017, 502 expo-
sures were acquired using the Cousins-I filter, an exposure
time of 12 s and a defocus of 0.05 mm. NGTS-9 was observed
on the 12th of January 2019. We acquired 134 images using
the Gunn-R filter, a 100 s exposure time and no defocus.
For both target, their data were reduce using the standard
procedure of bias subtraction and flat field correction. The
aperture photometry as well as x- and y-position, FWHM,
airmass and sky background of the target star were extracted
using the PyRAF implementation of the phot routine. The
comparison stars and the photometric aperture radius were
carefully chosen in order to reduce the RMS in the scatter
out of transit.

Using both follow-up photometry for the 2 stars, we
can conclude that the nearby stars did not blend with the
two targets. The Euler data for the two stars are shown
in Figures 1.c and 2.c. Regarding NGTS-8, only a partial
transit was observed with Euler. Concerning NGTS-9, the
full transit was observed, with some systematics that were
removed using a Gaussian process. Again, these data confirm
the transits as we see the ingress or the full transit around
the predicted times.

4 SPECTROSCOPY

4.1 NGTS-8

NGTS-8 was observed with the HARPS spectrograph
(Mayor et al. 2003) on the ESO 3.6 m telescope at La Silla
Observatory, Chile, between the 5th of August 2017 and the
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Table 3. A summary of the follow-up photometry of NGTS-8 and NGTS-9.

Night Instrument Target Nimages Exptime Binning Filter Comment

(seconds) (X×Y)

20170717 Shoc’n’awe NGTS-8b 676 30 4 × 4 z’ shown in Figure 1.b

20170718 Shoc’n’awe NGTS-8b 606 60 4 × 4 z’ no transit observed

20170821 Eulercam NGTS-8b 502 12 1 × 1 IC shown in Figure 1.c
20181221 Shoc’n’awe NGTS-9b 550 20 4 × 4 I shown in Figure 2.b

20190103 Shoc’n’awe NGTS-9b 648 20 4 × 4 I shown in Figure 2.b

20190112 Eulercam NGTS-9b 134 100 1 × 1 RG shown in Figure 2.c

28th of October 2017 under programmes 099.C-0303 and
0100.C-0474. We used the high-efficiency mode, EGGS, due
to the faintness of the host star and large expected RV ampli-
tude. The exposure times for each spectrum varied between
1800 and 1200 s resulting in a signal-to-noise (SNR), mea-
sured around 550 nm, of 10-15 per exposure. The standard
HARPS data reduction software (DRS) was used to mea-
sure the RVs of NGTS-8 at each epoch. This was done via
cross-correlation with a K0 binary mask.

Three additional spectra were obtained with FEROS
(Kaufer & Pasquini 1998), mounted on the MPG 2.2 m tele-
scope at La Silla Observatory, Chile, on the 20th and 21st
of August 2017. All spectra were obtained with an expo-
sure time of 1800 s, and the data were reduced using the
FEROS routine of the CERES pipeline (Brahm et al. 2017).
CERES also performed a radial velocity extraction, by cross-
correlating the spectra with a G2 binary mask. The resulting
SNR of the spectra, taken around 550 nm per resolution el-
ement, was around 45.

The RVs from both HARPS and FEROS are listed in
Table 4, along with their associated error, FWHM and bi-
sector span. While not presented in this table, the error on
the BIS and on the FWHM were calculated using the same
standard treatment as done previously (West et al. 2018).
The errors for the BIS and for the FWHM are set to equal
twice the error and 2.3548 times the error on the RV, re-
spectively. The RV measurements of NGTS-8, shown phase
folded in Figure 3, are in phase with the period detected by
orion, with a semi-amplitude of K = 149.95± 3.56 m s−1.
This indicates a transiting planet with the mass of a hot-
Jupiter. No evidence of a correlation between the RVs and
the measured bisector spans or FWHMs were found, with a
Spearman correlation of -0.05 and -0.21, respectively. Thus,
the RV signal does not originate from cool stellar spots or a
blended eclipsing binary (Queloz et al. 2001b).

4.2 NGTS-9

NGTS-9 was observed with the CORALIE spectrograph
(Queloz et al. 2001a) on the 1.2 m Euler telescope at La Silla
Observatory, Chile, between the 24th of December 2017 and
the 5th of April 2018. Exposure times of either 1800 or 2700 s
were used depending on seeing and general observing con-
ditions at the time. RVs were calculated with a G2 binary
mask using the standard data reduction pipelines. Initial
analysis, shown phase folded in Figure 4, confirm the plan-
etary nature of the candidate with a mass of a hot-Jupiter.
The RV variations are in phase with the period detected by
orion with a semi-amplitude of K = 293.44± 15.08 m s−1.
Correlations between RVs and bisector span and FWHM

Figure 3. Phase folded radial velocity data in km s−1 and resid-

uals from HARPS, in blue, and FEROS, in orange, for NGTS-8.

The red lines show 50 light curve models generated from randomly
drawn posterior samples of the allesfitter fit.

were also checked but no evidence for any such correlations
was found, with a Spearman correlation of -0.05 and -0.15,
respectively. The CORALIE RVs for NGTS-9 are listed in
Table 5, along with their associated error, FWHM and bi-
sector span.

5 ANALYSIS

5.1 Stellar Properties

5.1.1 Gaia

To obtain astrometric information for NGTS-8 and NGTS-9
we crossmatched both sources with Gaia DR2. To check the
quality of the astrometric solutions we calculated the unit
weight error (UWE) and then renormalised UWE (RUWE).
We find that both sources pass the filters recommended by
the Gaia team (RUWE< 1.4, see Lindegren et al. 2018, for
a discussion on the recommended UWE filters). Along with
this, the two targets also have zero astrometric noise, giving
us confidence that they are both single sources without evi-
dence of unresolved binarity. They also pass the photometric
filters specified by Arenou et al. (2018) to identify blended
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6 J. C. Costes et al.

Table 4. HARPS and FEROS radial velocities for NGTS-8.

JDB RV RV error FWHM BIS Exptime Instrument

(-2400000) (km s−1) (km s−1) (km s−1) (km s−1) (s)

57970.7400 15.4538 0.0141 7.0583 -0.1398 1800 HARPS

57979.7893 15.7466 0.0084 6.9506 -0.0254 1800 HARPS

57980.7591 15.4692 0.0096 6.9007 -0.0021 1800 HARPS
57986.8002 15.3768 0.0147 10.4776 0.0000 1800 FEROS

57986.8147 15.4527 0.0147 10.4080 0.0360 1800 FEROS
57987.8182 15.1913 0.0108 10.5177 -0.0620 1800 FEROS

57993.6958 15.5568 0.0089 6.9108 0.0092 1800 HARPS

57994.6689 15.7472 0.0093 6.9062 -0.0238 1800 HARPS
57998.7907 15.5861 0.0109 6.9314 -0.0221 1200 HARPS

58023.6064 15.5259 0.0082 6.9028 -0.0128 1800 HARPS

58025.5985 15.4713 0.0057 6.9379 -0.0243 1800 HARPS
58026.7251 15.7423 0.0091 6.8863 -0.0141 1800 HARPS

58052.5954 15.6232 0.0107 6.9310 -0.0558 1200 HARPS

58054.6266 15.7407 0.0073 6.9014 -0.0074 1200 HARPS

Table 5. CORALIE radial velocities for NGTS-9.

JDB RV RV error FWHM BIS Exptime Instrument
(-2400000) (km s−1) (km s−1) (km s−1) (km s−1) (s)

58111.8084 35.4749 0.0369 11.7616 -0.2434 2700 CORALIE
58113.7093 36.0010 0.0411 11.9519 0.0337 2700 CORALIE

58118.6806 36.0550 0.0418 12.0847 0.0198 2700 CORALIE

58129.8234 35.5313 0.0702 11.8283 0.0679 1800 CORALIE
58169.7427 35.4951 0.0448 12.0594 0.0809 2700 CORALIE

58172.5402 36.0431 0.0497 12.0437 -0.0176 2700 CORALIE

58195.5527 35.6563 0.0450 11.8628 -0.0829 2700 CORALIE
58201.7069 35.6593 0.0735 12.1195 0.0072 1800 CORALIE

58202.7184 36.0204 0.0382 11.9054 -0.0995 2700 CORALIE

58207.5924 36.0663 0.0410 11.7546 -0.0344 2700 CORALIE
58208.5990 35.7431 0.0561 11.8260 -0.0614 2700 CORALIE

58209.5025 35.5571 0.0513 12.0882 0.0690 2700 CORALIE
58210.4972 35.7017 0.0624 12.1724 0.0087 1800 CORALIE

58211.5079 36.0788 0.0566 11.8893 0.2033 1800 CORALIE

58212.5487 36.0007 0.0556 12.0946 -0.1138 1800 CORALIE
58214.4983 35.5283 0.0796 12.3596 0.1707 1800 CORALIE

stars. With the Gaia information for each source, we calcu-
late the absolute magnitude and plot their positions on the
Hertzsprung-Russell diagram in Figure 5, where we can see
that both NGTS-8 and NGTS-9 lie in the region expected
for single main sequence stars.

5.1.2 SPECIES

The stacked spectra for both targets were also analyzed us-
ing SPECIES (Soto & Jenkins 2018), a python tool to derive
stellar parameters in an automated fashion from high reso-
lution echelle spectra. By measuring the equivalent widths
(EWs) for a list of irons lines, and by using the ATLAS9
model atmospheres (Castelli & Kurucz 2004), SPECIES first
solves the radiative transfer equation using MOOG (Sneden
1973). From an iterative process, SPECIES derives then the
atmospheric parameters (Teff , log g, [Fe/H]) of our target.
By interpolation through a grid of MIST isochrones (Dotter
2016), the mass and radius are estimated, using a Bayesian
approach. This method delivers an estimate of the age of
the system as well. However, due to the fact that solar-type
stars spend most of their lives in the evolutionary stage and

because the dependence of their effective temperature and
luminosity with the age of the system is weak, the estima-
tion of the age of the system is very unconstrained for main
sequence stars. Finally, SPECIES derives the rotational and
macroturbulent velocities from the stellar temperature and
by line-fitting to a set of five absorption lines. Parameters
found by SPECIES for both targets are displayed in Table 6
and Table 7.

5.2 Stellar Activity and Rotation on NGTS-8

In addition to modeling the stellar parameters, we also at-
tempted to search for stellar activity and rotation signals.
As mentioned earlier, the out-of-eclipse light curves of both
targets show no appreciable variability, and there are no
correlations with the measured RVs and the bisector or the
FWHM for the two targets – see Section 4. Nonetheless, de-
termining the stellar rotation period, along with knowledge
of the stellar radius and v sin i∗, can enable the inclination
angle of the stellar rotation axis to be constrained. This
can enable misaligned star-planet systems to be identified
(Watson et al. 2010).
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Figure 4. Phase folded radial velocity data in km s−1 and resid-

uals from CORALIE for NGTS-9. The red lines show 50 light
curve models generated from randomly drawn posterior samples

of the allesfitter fit.

Figure 5. HR diagram using Gaia DR2 absolute magnitude. The

K0V star, NGTS-8, is shown in red and the F8V, NGTS-9 in light
blue.

In order to put constraints on the stellar rotation pe-
riod, two methods were used. The first one consists of us-
ing the activity of the star. Using the formulae described
in Lovis et al. (2011), the logR′HK was measured for each
individual HARPS spectrum. Since the logR′HK of NGTS-
9, an F8V star, was not measurable, we will only focus on
the K0V star, NGTS-8, in this section. The calculated value

Table 6. Stellar Properties for NGTS-8.

Property Value Source

Astrometric Properties
R.A. 21h55m54.s2 2MASS

Dec −14◦04′05.′′85 2MASS

2MASS I.D. 21555419-1404062 2MASS
Gaia source I.D. 6840435777723109888 Gaia DR2

µR.A. (mas y−1) 21.363 ± 0.047 Gaia DR2

µDec. (mas y−1) −10.194 ± 0.048 Gaia DR2
parallax (mas) 2.3027 ± 0.0299 Gaia DR2

Photometric Properties
V (mag) 13.68 ± 0.06 APASS

B (mag) 14.59 ± 0.03 APASS
g (mag) 14.12 ± 0.03 APASS

r (mag) 13.43 ± 0.06 APASS

i (mag) 13.21 ± 0.06 APASS
G (mag) 13.4954 ± 0.0003 Gaia DR2

GRP (mag) 12.8780 ± 0.0006 Gaia DR2

GBP (mag) 13.9606 ± 0.0015 Gaia DR2
J (mag) 12.14 ± 0.02 2MASS

H (mag) 11.75 ± 0.02 2MASS

K (mag) 11.64 ± 0.02 2MASS
W1 (mag) 11.59 ± 0.02 WISE

W2 (mag) 11.62 ± 0.02 WISE

W3 (mag) 11.86 ± 0.38 WISE

Derived Properties
Spectral type K0V Gaia DR2

Teff (K) 5241 ± 50 SPECIES

[Fe/H] 0.24 ± 0.09 SPECIES
v sin i∗ (km s−1) 3.56 ± 0.67 SPECIES

vmac (km s−1) 1.49 ± 0.64 SPECIES

log g 4.41 ± 0.03 SPECIES

Ms(M�) 0.89 +0.05
−0.04 SPECIES

Rs(R�) 0.98 ± 0.02 SPECIES

Age (Gyrs) 12.48 +3.23
−3.68 SPECIES

Distance (pc) 434.273 ± 5.639 Gaia DR2

2MASS (Skrutskie et al. 2006); APASS (Henden & Munari 2014);

WISE (Wright et al. 2010);
Gaia DR2 (Gaia Collaboration et al. 2018)

of the logR′HK varied between −4.643 and −5.053 in the
individual spectra due to a low signal-to-noise ratio in the
blue band, with a mean value of −4.783. In order to increase
the precision of the measured data, a stacked spectrum of
all the spectra was created. Figure 6 shows this spectrum,
zoomed on the H (3933.664 Å) and K (3968.470 Å) bands,
represented with dashed lines. Using this spectrum, we found
a value of −4.817±0.110 for the logR′HK . Finally, using the
relation from Noyes et al. (1984), the stellar rotation period
of NGTS-8 was derived to be 37.7± 4.1 days.

Our second approach used the v sin i∗ of the star mea-
sured from SPECIES and assumed that the stellar inclination
angle, i∗, was 90◦ (i.e. sin(i∗) = 1). This then enables an up-
per limit to be placed on the stellar rotation period when the
stellar radius is known (e.g. Watson et al. 2010). An upper
limit of 13.92±2.64 days was found, which is discrepant with
our previous result by almost 5 sigma and would rule out
the long rotation period inferred from the logR′HK measure-
ment. Even adopting the most extreme individual logR′HK

measurement implies a stellar rotation period greater than
26 days.
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8 J. C. Costes et al.

Table 7. Stellar Properties for NGTS-9.

Property Value Source

Astrometric Properties
R.A. 09h27m41.s0 2MASS

Dec −19◦20′50.′′33 2MASS

2MASS I.D. 09274096-1920515 2MASS
Gaia source I.D. 5678340222972504832 Gaia DR2

µR.A. (mas y−1) −6.078 ± 0.057 Gaia DR2

µDec. (mas y−1) 1.723 ± 0.063 Gaia DR2
parallax (mas) 1.6136 ± 0.0416 Gaia DR2

Photometric Properties
V (mag) 12.80 ± 0.02 APASS

B (mag) 13.36 ± 0.04 APASS
g (mag) 13.03 ± 0.05 APASS

r (mag) 12.65 ± 0.02 APASS

i (mag) 12.55 ± 0.07 APASS
G (mag) 12.6547 ± 0.0002 Gaia DR2

GRP (mag) 12.2157 ± 0.0013 Gaia DR2

GBP (mag) 12.9503 ± 0.0015 Gaia DR2
J (mag) 11.71 ± 0.03 2MASS

H (mag) 11.49 ± 0.02 2MASS

K (mag) 11.45 ± 0.02 2MASS
W1 (mag) 11.39 ± 0.02 WISE

W2 (mag) 11.42 ± 0.02 WISE

W3 (mag) 11.58 ± 0.20 WISE

Derived Properties
Spectral type F8V Gaia DR2

Teff (K) 6330 ± 130 SPECIES

[Fe/H] 0.31 ± 0.15 SPECIES
v sin i∗ (km s−1) 6.38 ± 1.05 SPECIES

vmac (km s−1) 5.47 ± 1.05 SPECIES

log g 4.37 ± 0.20 SPECIES
Ms(M�) 1.34 ± 0.05 SPECIES

Rs(R�) 1.38 ± 0.04 SPECIES

Age (Gyrs) 0.96 ± 0.60 SPECIES
Distance (pc) 619.732 ± 15.977 Gaia DR2

2MASS (Skrutskie et al. 2006); APASS (Henden & Munari 2014);

WISE (Wright et al. 2010);

Gaia DR2 (Gaia Collaboration et al. 2018)

Given this discrepancy, we decided to verify the v sin i∗
value measured by SPECIES with another technique. We
did this by taking a stellar spectrum of a slowly rotating
star of the same spectral type as NGTS-8 and artificially
broadening it by different v sin i∗ amounts (using a Gray ro-
tational broadening profile). The projected rotational broad-
ening of NGTS-8 was then measured using an optimal-
subtraction technique in which the broadened template spec-
tra were multiplied by a constant and then subtracted from
the NGTS-8 spectrum. This is done after correcting for ra-
dial velocity shifts and re-interpolating to a constant veloc-
ity scale. The value of the rotational broadening is then the
one that minimises the scatter in the residual spectrum af-
ter performing the optimal subtraction. For our template
spectrum, we used α Cen B, which has a spectral type very
close to NGTS-8 and a low rotation rate. We constructed
the template spectrum by stacking archival HARPS spectra
taken over 1 night when α Cen B was known to be inactive.
The result of this analysis yielded a value consistent with
that found by SPECIES.

Adopting the firm upper-limit on the stellar rota-

Figure 6. Stacked spectrum of NGTS-8 from HARPS, zoomed
on the H (3933.664 Å) and K (3968.470 Å) bands, represented

with dashed lines.

tion period from the v sin i∗ measurement would ordinar-
ily lead to a much higher logR′HK level than the one ob-
served. While no definitive answer can explain this dif-
ference, some systems hosting hot-Jupiters are known to
have suppressed Ca II H & K re-emission (e.g. WASP-12 –
Fossati et al. 2013), leading to a lower measured value of
the logR′HK . However, these systems generally contain hot-
Jupiters very close to filling their Roche lobes, which is not
the case for our planet, NGTS-8b. We therefore conclude
that the most likely explanation of the discrepancy is that
we have caught NGTS-8 in an extended low-activity state.

5.3 Global Modelling

Analysis of the different photometric and spectroscopic data
was performed on NGTS-8 and NGTS-9 data using alles-

fitter (Günther & Daylan 2019, and in prep.). allesfit-
ter is a user-friendly and publicly available software package
for modeling data from photometric and RV instruments.
Its generative model can account for multi-star systems,
stellar flares, star spots and multiple exoplanets. For this,
it constructs an inference framework that unites the ver-
satile packages ellc (light curve and RV models; Maxted
2016), aflare (flare model; Davenport et al. 2014), dynesty
(nested samplingl; Speagle 2019), emcee (MCMC sampling;
Foreman-Mackey et al. 2013), and celerite (GP models;
Foreman-Mackey et al. 2017). allesfitter is accesible at
https://github.com/MNGuenther/allesfitter.

For NGTS-8 and NGTS-9, the Nested Sampling ap-
proach (see Skilling 2004) was used, which enables simul-
taneous fitting of the transit light curves and radial veloc-
ity data. In particular, we fit for the following astrophysical
parameters: a planet’s orbital period P , the transit epoch
TC , the radius ratio Rp/R?, the sum of radii over the semi-
major axis (Rp + R?)/a, the cosine of the inclination cos i,
the eccentricity and argument of periastron parameterized
as
√
e sinω and

√
e cosω, and the RV semi-amplitude K. For

the transit light curve modeling, a quadratic limb-darkening
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law was adopted parameterized after Kipping (2013) as u1

and u2. Systematic trends in the transit light curves were
modeled by a Gaussian process with Matern 3/2 kernels pa-
rameterized by the GP’s amplitude ln ρ and time scale lnσ.
For both planets, all photometric data were used for the fits
as well as all spectroscopic data, with instrumental offsets
taken into account, relevant for NGTS-8 where HARPS and
FEROS data were combined for the modelling.

We find that NGTS-8b has a mass of 0.93 +0.04
−0.03 MJ

and a radius 1.09± 0.03 RJ , while NGTS-9b has a mass of
2.90± 0.17 MJ and a radius 1.07± 0.06 RJ . The results of
the fits for the two planets are summarized in Tables 8 and 9
and shown in earlier plots. Figure 1 shows (in red) 20 light
curve models generated from randomly drawn posterior sam-
ples of the allesfitter fit to the NGTS, SAAO and Euler
light curves, respectively, for NGTS-8. In the same way, Fig-
ure 2 shows the photometric data of NGTS, SAAO and Eu-
ler, respectively, for NGTS-9, with (in red) 20 light curve
models generated from randomly drawn posterior samples
of the allesfitter fit. For the RV data, Figure 3 shows
the modelling of HARPS, blue points, and FEROS, orange
points, for NGTS-8 and Figure 4 shows the modelling of the
CORALIE data for NGTS-9.

In order to check our results, we also performed another
analysis of the photometric data from NGTS and available
spectroscopic data on NGTS-8 and NGTS-9 using the EX-
Oplanet traNsits and rAdIal veLocity fittER (EXO-NAILER –
Espinoza et al. 2016). Using the Markov chain Monte Carlo
(MCMC) with a total of 250 walkers for 20000 jumps and
5000 burn-in steps, the modelling was done assuming pure
white-noise for the inputted light curves. A logarithmic limb-
darkening law was adopted with limb-darkening coefficients
taken from Claret et al. (2013), and sampled according to
Espinoza & Jordán (2015). The results from this second
analysis all agreed, within the error bars, with those found
from allesfitter.

5.4 TESS

During the preparation of this manuscript TESS photome-
try was released for NGTS-9, which was observed in Sector
8. In response to this data release, we re-analysed, using
all available data, NGTS-9 with allesfitter. The TESS
photometric data is presented in Figure 7 with the mod-
els generated from the fit. We confirmed that using TESS
data in our modelling of NGTS-9 did not change or improve
the values obtained, and thus the TESS data was not taken
into account in the analysis presented in this work. The fact
that TESS does not improve the results can be explained
by the magnitude of NGTS-9, V = 12.80 ± 0.02. At these
magnitudes we have found that NGTS and TESS perform
similarly (Wheatley et al. 2018). No TESS data is available
for NGTS-8.

6 DISCUSSION

As outlined in the introduction, at incident fluxes
greater than 2 × 105 W m−2 (Miller & Fortney 2011;
Demory & Seager 2011), hot-Jupiters are increasingly found
with radii that are significantly larger than theoreti-
cally predicted (Anderson et al. 2011; Delrez et al. 2016;

Figure 7. TESS light curve of NGTS-9b with residuals. The blue

data points are binned every 7 min to aid visualisation. The red
lines show 20 light curve models generated from randomly drawn

posterior samples of the allesfitter fit.

Table 8. Planetary properties for NGTS-8b using allesfitter.

Property Value

P (days) 2.49970 ± 0.00001
TC (BJD) 2457500.17830 ± 0.00072

T14 (hours) 2.61 ± 0.06

a/R∗ 7.60 ± 0.18
R/R∗ 0.114 ± 0.002

K (m s−1) 149.95 ± 3.56

e 0.010 +0.014
−0.010

i (degrees) 86.9 ± 0.5

Mp(MJ ) 0.93 +0.04
−0.03

Rp(RJ ) 1.09 ± 0.03

ρp (g cm−3) 0.89 +0.08
−0.07

a (AU) 0.035 ± 0.001

Teq (K) 1345 ± 19

Table 9. Planetary properties for NGTS-9b using allesfitter.

Property Value

P (days) 4.43527 ± 0.00002

TC (BJD) 2457671.81086 ± 0.00265

T14 (hours) 2.05 ± 0.07
a/R∗ 9.06 ± 0.31

R/R∗ 0.080 ± 0.004

K (m s−1) 293.44 ± 15.08

e 0.060+0.076
−0.052

i (degrees) 84.1 ± 0.4
Mp(MJ ) 2.90 ± 0.17

Rp(RJ ) 1.07 ± 0.06

ρp (g cm−3) 2.93+0.53
−0.49

a (AU) 0.058+0.003
−0.002

Teq (K) 1448 ± 36
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Almenara et al. 2015). Using Gaia DR2 measurements for
the stellar luminosity and the orbital parameters listed in
Tables 6 and 8 for NGTS-8b and listed in Tables 7 and 9
for NGTS-9b, we calculated the flux received by both plan-
ets to be greater than this limit (6.85 ± 0.45 × 105 W m−2

and 9.92 ± 1.09 × 105 W m−2 for NGTS-8b and NGTS-9b,
respectively). Thus, the stellar irradiation levels received by
both of these planets puts them firmly in the regime where
we might expect them to exhibit larger than predicted plan-
etary radii.

Sestovic et al. (2018) conducted a statistical inves-
tigation on hot-Jupiter radii and found that above a
threshold in incident flux (2× 105 W m−2 Miller & Fortney
2011; Demory & Seager 2011), the observed radius fol-
low the thermal evolution models (Miller & Fortney 2011;
Thorngren et al. 2016) with the addition of an inflation pa-
rameter, ∆R. This observed radius ‘inflation’ is dependent
on both the incident stellar flux and the mass of the planet.
They proposed a flux-mass-radius relationship that has dis-
tinct forms for 4 different planetary mass regimes: below
0.37 MJ , between 0.37 – 0.98 MJ , between 0.98 – 2.50 MJ

and over 2.50 MJ . Using these relationships, we calculated
what would be the expected radius inflation (∆R) values
for our two planets. For NGTS-8b, its mass lies on the
edge of two regimes in Sestovic et al. (2018) (Mp< 0.98 MJ

and Mp> 0.98 MJ), we thus determined predicted ∆Rs from
both relationships of 0.24± 0.02 and 0.02± 0.01 RJ , respec-
tively. While the first value would suggest a highly inflated
radius, the second value however suggests almost no infla-
tion. Concerning NGTS-9b, the predicted radius inflation,
∆R, is 0.18±0.01 RJ . Thus, from the work of Sestovic et al.
(2018), these two planets would be expected to exhibit plan-
etary radii larger than predicted.

We finally compared the observed planetary radii of
NGTS-8b and NGTS-9b to the mass-radius models of
Baraffe et al. (2008) and Fortney et al. (2007) who present,
assuming a solar-type star, tables of planetary radii as a
function of core mass, mass of the planet, orbital separation
and age of the system. Since neither of the host stars of the
planets presented here are solar-like, we had to renormalise
the orbital separation in order to keep the same incident flux.
In this scenario, the distance from their host star would be
equal to 0.044 AU and 0.038 AU for NGTS-8b and NGTS-9b,
respectively. As one can see in Tables 10 and 11, both models
seem consistent and correctly predict the measured radius
of NGTS-8b, 1.09± 0.03 RJ , and NGTS-9b, 1.07± 0.06 RJ ,
using the described parameters.

To conclude, even if both planets are in a regime where
we expect planets to exhibit larger than predicted radii, our
two planets are non-inflated hot-Jupiters. This could be due
to the planets being enriched with heavy elements, yielding
a more compact structure and thus a smaller radius, like
HD 149026b (Sato et al. 2005).

7 CONCLUSIONS

We have presented the latest discovery by the Next Gen-
eration Transit Survey (NGTS) of two non-inflated hot-
Jupiters: NGTS-8b and NGTS-9b. NGTS, SAAO and Eu-
ler photometric data and spectroscopic data from HARPS,
FEROS and CORALIE were used to confirm the detection of

Figure 8. Shows NGTS-8b and NGTS-9b in the planetary radius

vs planetary mass plot, in regards with all exoplanets from the
NASA Exoplanet Archive with radius uncertainty below 10% or

mass uncertainty below 50% and with an incident flux received by

the planets greater than 2×105 W m−2. The background and the
dotted black lines represents the point density per grid element.

these two planets. By combining some of these data, an anal-
ysis of the transiting planets was performed using alles-

fitter and confirmed with EXO-NAILER. From this model,
both planets have orbits consistent with being circular, as
expected for such short period hot-Jupiters. The character-
istic of the planets were calculated such as: NGTS-8b with
a mass of 0.93 +0.04

−0.03 MJ and a radius 1.09± 0.03 RJ , and
NGTS-9b with a mass of 2.90± 0.17 MJ and a radius of
1.07± 0.06 RJ . Figure 8 shows these discoveries in compar-
ison to known planets with radius higher than 0.4 RJ .

A study of the rotational period of the K0V star, NGTS-
8, was performed using different models and despite a sig-
nificant discrepancy that we assume is due to an extended
low activity of the star, we measured an upper limit of
13.92 ± 2.64 days. While its host is considerably fainter,
our analysis also suggests that its planet, NGTS-8b, could
have similar properties to HD 189733b, one of the best
studied hot-Jupiters. Further observations of NGTS-8b will
allow direct comparisons to be drawn between these two
hot-Jupiters. The upcoming launch of JWST will enable
high-precision observations of NGTS-8b’s full-phase curve,
which would be of particular interest due to the efficient
dayside to nightside heat recirculation that HD 189733b ex-
hibits relative to other hot-Jupiters (Knutson et al. 2007;
Schwartz et al. 2017).

Concerning NGTS-9b, the planet is highly irradiated,
with an incident flux around 9.59 ± 0.74 × 105 W m−2, yet
non-inflated. This radius could be due to the planet being
extremely enriched with heavy elements, explaining its den-
sity, 2.93+0.53

−0.49 g cm−3, one of the highest compare to planets
with similar masses, as shown in Figure 8.
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Table 10. A summary of the mass-radius model for NGTS-8b with radius 1.09 ± 0.03 RJ .

Model Mass of the Orbital Age of the Mass fraction of Core Radius

planet (MJ ) separation (AU) system (Gyrs) heavy material mass (%) (RJ )

Baraffe et al. (2008) 1 0.045 8.93 - 10.00 0.02 - 0.1 1.025 - 1.074

Fortney et al. (2007) 1 0.045 4.5 0 - 25 1.050 - 1.107

Table 11. A summary of the mass-radius model for NGTS-9b with radius 1.07 ± 0.06 RJ .

Model Mass of the Orbital Age of the Mass fraction of Core Radius

planet (MJ ) separation (AU) system (Gyrs) heavy material mass (%) (RJ )
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