IMPROVED EARTH OBSERVATION DATA RETRIEVAL THROUGH HASHING
ALGORITHMS

A.-C.Grivei', C.Viduva' ,and M.Datcu'?,

"University Politehnica of Bucharest (UPB), Romania
2Remote Sensing Technology Institute, German Aerospace Center (DLR), Germany

ABSTRACT

Throughout the years, a wide range of satellite mission en-
abled the creation of a huge amount of Earth Observation
(EO) data carrying complex information, whose exploitation
is left behind due to the lack of handling capabilities. Com-
putational resources are hardly keeping up with content anal-
ysis and information retrieval. In order to increase the search
speed through data warehouses for knowledge discovery, new
indexing methods are required to handle both the size and
the informational complexity of EO data. Feature extraction
algorithms are able to describe the image content, yet, they
require a very complex database. In this paper, we propose a
methodology that combines feature extraction, hashing meth-
ods and optimized indexing to convert the images characteris-
tics into hash codes in an effort to speed up the search process.
For our experiments, we run our procedure on a data-set com-
posed of several Sentinel-2 acquisitions form across Europe
and we assess the query times.

Index Terms— image hashing, Earth Observation, database
queries, content based image retrieval

1. INTRODUCTION

Data provided by the multitude of EO satellite missions, such
as ones coordinated by USGS (United States Geological Sur-
vey) or ESA (European Space Agency), sums up to vast quan-
tities. The wide variety of sensors produces data with variable
spatial and spectral resolutions, and use different acquisition
methods (passive, active). Finding an efficient method to ac-
cess all the data can be cumbersome. In order to store and
index the data in such a manner in which the contained in-
formation can be easily and rapidly retrieved, any proposed
solution must be highly scalable as the active EO missions
provide increasing amounts of data.

In order to optimize the retrieval time for the data, hashing
algorithms can be employed to map the high-dimensional fea-
ture vectors to a compact binary hash code which can be struc-
tured into an index table. Two kernel-based nonlinear hashing
methods for remote sensing are introduced in [1]. First one

A. C. Grivei e-mail: alex.grivei@ymail.com
M. Datcu e-mail: mihai.datcu@dlr.de.

978-1-5386-9154-0/19/$31.00 ©2019 IEEE

5909

(KULSH, kernel-based unsupervised locality-sensitive hash-
ing) uses unlabeled images to define hash functions while the
second (KSLSH, kernel-based supervised hashing) relies on
semantics extracted from annotated images. They use the
BOVW (Bag of Visual Words) method obtained from 100.000
random SIFT (scale-invariant feature transform) descriptors.
The hashes are searched through a linear scan and both re-
trieval time and storage costs are improved.

The iterative quantization (ITQ) algorithm is introduced
in [2] as a solution to create similarity-preserving binary
codes for efficient similarity search in large-scale image col-
lections. The algorithm uses multi-class spectral clustering
and use the CIFAR data set [3] containing 32x32 pixels mul-
timedia images.

A product quantization method for approximate nearest
neighbor search is presented in [4]. Combined with an in-
verted file system provides high efficiency. The scalability of
the approach was tested on SIFT and GIST descriptors and
validated on a two billion vectors dataset.

PRH (Partial Randomness Hashing) [5] proposes random
projections to map the images to a lower Hamming space in a
data-independent manner; then a transformation weight ma-
trix is learned based on the training data set of 28x28 pixels
SAR (synthetic aperture radar) images. Finally the Hamming
ranking search outperforms: mean average precision (MAP),
precision of the top K returned examples and precision-recall
curves.

In this paper, we present a fast content based image re-
trieval (CBIR) method for huge volumes of EO data. The
workflow is based on a combination of feature extraction, im-
age hashing and database indexing. Through this method the
size and complexity of the database used to store EO can be
reduced. Also the average query time is just under 0.4 s for
over 20 million stored samples (binary codes). The paper is
structured as follows. Section two presents the tested EO data
set (Sentinel-2). The proposed method is detailed in Section
three, while the overall results are offered in Section four. The
conclusions regarding the proposed workflow are presented in
the last Section.

IGARSS 2019

Fig. 1: Test data set composed of four 109.8km x 109.8km
Sentinel-2 images which cover portions of South Italy, North-
West Bosnia, Est Slovenia, South-Est Austria, Central-South
Czech Republic and a 40km x 78km image from the Southern
part of Romania spanning between the cities Bucharest and
Ploiesti.

2. USED DATASET

In order to test our method, we built a data set containing five
Sentinel-2 images [6] from different countries across Europe,
as seen in Fig. 1. We chose to do so in order to have a high
diversity of land cover classes and to make it easier to extrap-
olate the resulted dataset to the entire surface of the European
continent. The Sentinel-2 satellites have multiple sensors on
board and acquire data over a wide spectral range and at three
spatial resolutions 10 m, 20 m and 60 m, each acquisition cov-
ering approx. 12.000 sq km. In order to determine the maxi-
mum amount of spatial information and to define and extract
as many semantic classes as possible we kept the four 10 m
bands (B2, B3, B4, and B8). As such, the data set is com-
posed of 4 images (sized of 109.8km x 109.8km) acquired
over South Italy, North-West Bosnia, Est Slovenia, South-Est
Austria, Central-South Czech Republic and a smaller image
(sized of 40km x 78km) which covers the Southern part Ro-
mania spanning between the cities Bucharest and Ploiesti. We
used all the images to build our encoder, but only used the
image over Romania for our tests. The image was manually
annotated as seen in Fig. 2. We considered a set of seven
semantic classes, as one can usually distinguish in medium
resolution EO acquisitions: High Density Population, For-
est, Water, Fragmented Agriculture, Low Density Population,

Fig. 2: a) Training data set: the smallest image of our data
set, the Sentinel-2 image over Bucharest, Ploiesti and the ge-
ographical area between the two cities. b) Reference map
containing 7 classes (manual annotation): High Density Pop-
ulation, Forest, Water, Fragmented Agriculture, Low Density
Population, Agriculture, Mountain.

Agriculture, and Mountain.

For our initial tests we divided the five images in 5 x 5
pixel (or 50m x 50m) patches across all four bands. From
each patch we applied different feature extraction algorithms
which are presented in Section three. Considering the size of
each image, 1.248.000 patches are generated for our training
image while for each of the other four larger images, a num-
ber of 4.822.416 patches are generated resulting in a total of
20.537.664 patches. These were all ingested in the database
used for the tests.

3. USED METHOD

The overall goal of our method is to reduce the dimensional-
ity of the extracted feature vectors and improve the retrieval
times from huge databases. We try to accomplish this through
a combination of feature extraction algorithms, hash code
generation and optimal indexing methods for the obtained
hashes. The overall work flow of our method is presented in
Fig.3 and contains two main phases.

The first phase starts with the extraction of fixed sized
patches from the entire dataset. From each patch feature vec-
tors are obtained. These are used to build an encoder for the
generation of binary hash codes. The resulted hashes are used
to build a binary index tree which further improves the query
times, by reducing the number of tested hash codes.

5910

FEATURE
EXTRACTION

. >

EXTRACTION [

—>

FEATURE
VECTORS

FEATURE
EXTRACTION

>

QUERY AREA
PATCH

EXTRACTION FEATURE

VECTORS

PATCH BUILD
ENCODER

USE TRAINED
ENCODER TO
OBTAIN HASHES
FROM FEATURE
VECTORS

QUERY
RESULTS
CREATE

| DATABASE | |
(/s
HASH BUILD

CODES INDEXER

CH[;ADS:S q INDEXER 9 Yy & 4
y § 4
y F 4

ENCODER

USE INDEXER TO
OBTAIN
SIMILAR HASH
CODES

Fig. 3: Method flow chart. The top data flow represents the creation of the encoder and goes from left to right. It starts with
the extraction of application defined patch sizes, followed by feature extraction algorithms. The hashing encoder uses the
obtained feature vectors to build an optimal transformation from feature vectors to hash codes. Based on the generated hashed
an indexing system is created in order to improve data extraction, and data is added to the database. The bottom data flow
is used during the CBIR phase. From left to right, the zone of interest is selected and decomposed in an optimal number of
patches with the same size as the ones used in the previous phase. Feature vectors are extracted, hashes are obtained using the
previously created encoder, and the hash codes are used for the database interrogations.

The second stage of the method envisages a CBIR ap-
proach starting with the selection of an area of interest. The
zone is divided in the patches which are fully contained in the
selected area. The encoder resulted in the previous stage is
used to generate appropriate hash codes. These in turn are
used to query the database and obtain the resulted patches.

For our initial test we used a feature vector represented
by a combination of spectral indices for water (MNDWTI -
Modified Normalized Difference Water Index), vegetation
(NDVI - Normalized Difference Vegetation Index) and build
up (NDBI - Normalized Difference Build-Up Index). The
spectral indexes are computed using their specific methods
for each pixel in a patch. The size of the resulted feature
vector, for a patch of 5 x 5pixels, is 75 (25 MNDWI values
+ 25 NDVI values + 25 NDBI values).

For the hash encoder we used the PQI (Product Quantiza-
tion Indexer) algorithm [7] which was provided by the HDIdx
Python library [8]. The purpose of the algorithm is to reduce
the size of a feature vector through quantization, which is a
destructive process. It reduces the size of a feature vector
from 75 double (64 bit) values to just 64 bits. The compact
binary codes resulted from the compressed original feature
vectors are indexed in the database using a binary tree. In
order to improve the query results return time we perform ap-
proximate nearest neighbor (NN) searches instead of exact
NN searches.

4. EXPERIMENTS AND RESULTS

In order to verify our method, we used the dataset presented
in Section two. The entire data set was used to train the en-

5911

Average response time (s)

=== Number of gored data elements

Fig. 4: Average response time for a query with a database of
different sizes.

coder with a wide range of possible semantic classes. The
image over Bucharest has been used in the performance anal-
ysis phase. All of the algorithms were verified using an In-
tel i7 3.6GHz quad core, eight thread machine with 32GB of
RAM. This enabled us to use the entire data set and load all
the feature vectors in memory.

In order to verify the scalability of the method we made
a set of experiments with variable number of ingested hashes
and we computed the returned accuracies for each of the seven
annotated classes. The average response time needed to re-
turn the first 100 elements from the database for a query is
given in Fig. 4. As it can be observed, the method has a
linear dependency from 1.2 million to 20 million samples in
the database. The algorithm was run using Python which can
have some speed impediments and the presented times can be

Table 1: Average accuracy per class

‘ Queries ‘ Response time (s) ‘ Average Accuracy ‘ Class 1 ‘ Class 2 ‘ Class 3 ‘ Class 4 ‘ Class 5 ‘ Class 6 ‘ Class 7 ‘

1 0.018957125 52.57142857 60 100 40 20 20 100 20
5 0.090606 55.77142857 56.8 86 94.4 332 23.2 87.2 9.6
10 0.186791625 60.8 68 96.2 71.6 45.6 57.2 56.4 24.6
20 0.356107625 55.94285714 62.8 95.6 64.9 41.9 35.8 76.7 13.9
40 0.70321075 57.29444444 57.1 95.6 66.35 35.55 29.45 60.2 18.7
80 1.405936 56.49642857 59.85 95.65 82.75 | 43.025 | 31.925 | 66.625 | 15.65

further improved by rewriting the algorithm in C or cuda.

We also analyzed the average returned accuracy for each
of the annotated classes. The overall results are presented in
Table 1. We tested the framework on parallel queries ranging
from 1 to 80. The average accuracy is around 55% but this is
due to the fact that some of the classes performed very poorly
in comparison to the rest. The best performing class was the
Forest class with an average accuracy of 94% while the worst
was the Mountain class with an average accuracy of 17%.

The overall results can be further improved by increas-
ing the size of the patch in order to offer more information
for the feature extraction algorithms. The purpose is to ex-
tend the experiments to different patch sizes, feature extrac-
tion algorithms, hashing algorithms and indexing methods.
Although, the small patch size of 5 x 5 pixels has generated
a large amount of data elements for our tests, it is clearly not
suited to distinguish between the annotated semantic classes.

5. CONCLUSIONS

Storing feature vectors in databases can be cumbersome
and searches based on distance computations can be very
slow. Hashing promises to be a good method to improve
the retrieval time for content based queries form databases.
Combined and rightfully adjusted, they can provide enhanced
performances in terms of speed and relevance for the target
classes.

The processing overhead is increased in the ingestion
phase when each added element needs to have its hash code
computed and added to the database. In turn, the database
search times are reduced in the query phase due to the sim-
plified computations needed.

The quality of the hash encoder is proportional to the size
of the training dataset. Considering the total amount of data
generated by the Sentinel-2 mission and the overall variety of
classes, the training process can be an issue due to the fact
that the training data must be as exhaustive as possible.

6. REFERENCES

[1] B. Demir and L. Bruzzone, ‘“Hashing-based scal-
able remote sensing image search and retrieval in large

5912

archives,” IEEE Transactions on Geoscience and Remote
Sensing, pp. 892-904, 2016.

[2] A. Gordo Y. Gong, S. Lazebnik and F. Perronnin, “Itera-
tive quantization: A procrustean approach to learning bi-
nary codes for large-scale image retrieval,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, pp.
2916-2929, 2013.

[3] A. Krizhevsky, “Learning multiple layers of features
from tiny images,” technical report, Univ. of Toronto,
20009.

[4] M. Douze H. Jegou and C. Schmid, “Product quantiza-
tion for nearest neighbor search,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, pp. 117-128,
2011.

[5] P. Li and P. Ren, “Partial randomness hashing for large-
scale remote sensing image retrieval,” IEEE Geoscience
and Remote Sensing Letters, pp. 464-468, 2017.

[6] “Sentinel-2 product
https://sentinel.esa.int/documents/2479
04/68521 1/Sentinel-2-Products-Specification-Document.

specifications,”’

[7]1 M. Douze H. Jegou and C. Schmid, “Product quantiza-
tion for nearest neighbor search,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, pp. 117-128,
2011.

[8] “Hdidx library,” https://pypi.python.org/pypi/hdidx/.

