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ABSTRACT
Deep learning algorithms are widely used in remote sensing
image scene understanding. Generally, a large-scale anno-
tated dataset is essential to train a deep neural network for
classification. In practical terms, however, a large amount of
unknown remote sensing images obtained from different sen-
sors need to be understood which may vary from resolution,
geolocation and imaging conditions compared with annotated
datasets. In this paper, an unsupervised domain adaptation
framework based on ResNet-18 is presented to transfer the
knowledge of an existing annotated land cover dataset to other
remote sensing data, decreasing the discrepancy among im-
ages across sensors. The results show a significant improve-
ment in scene understanding of new remote sensing images.

Index Terms— land use classification, remote sensing
images, transfer learning, domain adaptation

1. INTRODUCTION

Land cover classification is an important issue in remote sens-
ing image understanding. Recently, in remote sensing scene
understanding field, most researches have focused on learn-
ing hierarchical feature representations. Both unsupervised
feature learning based methods, like sparse coding [1], and
supervised deep learning methods, like convolutional neural
networks (CNNs) [2] are conducted to find a good feature
representation of land covers. The supervised deep learning
methods all outperform the state-of-the-art methods with var-
ious public land cover annotated datasets [3]. Transfer learn-
ing is also applied to remote sensing data to overcome the dif-
ficulty of limited training samples [4]. However, those meth-
ods usually use the same dataset for training and testing. In
practical applications, we are facing a large amount of un-
known remote sensing data to be understood, collected from
various sensors either in satellite or aircraft, with different res-
olution, imaging conditions and geolocations.

According to most existed approaches, once coming new
remote sensing data from other sensors or observation meth-

ods, a new task-specific system would have to be designed.
Having accumulated such remote sensing land cover datasets
[5, 6, 7], it would be great if a deep network can learn from
the existing remote sensing data and transfer the knowledge
to understand the land covers of newly coming images which
will be much more efficient. In this paper, we propose a deep
residual network based framework, trying to quickly under-
stand new unknown remote sensing data with deep transfer
learning and domain adaptation approach.

2. DATASETS DESCRIPTION

Three remote sensing land cover datasets are explored in this
paper, UC Merced Land Use dataset (UCM)[5], AID [6] and
NWPU-RESISC45 (NWPU) [7]. In this section, we will give
a brief introduction to these datasets and compare them in
scale, resolution, obtained sensors, and geolocations.
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Fig. 1. Some examples of harbor/port and dense residential
in UCM, AID and NWPU datasets, with different resolution,
imaging conditions and geolocations.

UCM is the smallest land cover dataset among them, with
21 land use classes and 100 images per class. It was collected
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Fig. 2. The proposed framework based on ResNet-18.

Table 1. The Comparison of UCM, AID and NWPU Datasets

Dataset UCM AID NWPU

Resolution 0.3048 m 0.5∼8 m 0.2∼30m

Classes 21 30 45

Total Number 2100 10000 31500

Obtained Aerial
imagery

Google
Earth

Google
Earth

Geolocations USA
around the

world
more than

100 countries

from aerial orthoimagery in United States urban areas, with
a high resolution of 0.3048 m and a patch size of 256 × 256
pixels.

AID is an aerial image dataset collected from Google
Earth, but with multi-resolutions from 0.5 m to 8 m as Google
Earth images are from different remote sensing sensors. Com-
pared with UCM, AID has a larger scale, with 30 land cover
classes and a total number of 10,000, a larger patch size of
600 × 600 pixels, covering more regions around the world
which makes the dataset more diversity.

NWPU is a newly released large-scale annotated remote
sensing dataset in 2016. It contains 45 scene classes, in-
cluding land-use and land-cover classes, man-made object
classes, as well as landscape nature object classes, and 700
patches in each class with a size of 256 × 256 pixels. Simi-
larly, those images are collected from Google Earth but with
a wider range of resolutions, varying from 0.2 m to 30 m in
most cases. For classes like lake, mountain and island, the
resolution can be lower to cover the efficient semantic areas.
Those 31,500 images are collected from more than 100 coun-
tries and regions over the world, having rich image variations,

high within-class diversity and between-class similarity.
Some typical examples of port (harbor) and dense resi-

dential in different datasets are shown in Fig. 1 and the com-
parison among three remote sensing datasets is summerized
in Table 1.

3. THE PROPOSED FRAMEWORK

The deep residual network (ResNet) [8] is successful for the
good performance in training a very deep network of more
than 100 layers. As shown in Fig. 2, the ResNet-18 archi-
tecture which contains 4 residual blocks with 18 convolution
layers is adopted as the deep feature extraction part, followed
by the adaptation part and the classifier. Given an image x, a
high-level feature vector Φ(x) ∈ Rn is obtained from feature
extraction stage by a stack of convolution and down-sampling
layers and a global average pooling layer in the end.

The network combining the deep feature extractor to-
gether with the classifier of N classes is trained on a labeled
land cover dataset Ds = {xsi , ysi }. Given a set of new remote
sensing images Dt = {xtj} obtained from other sensors with
different resolution, imaging conditions and geolocations,
classifying directly with the existed model may cause prob-
lems. In deep CNNs, the generality of features drops when
going deeper [9] so that the high-level features are more spe-
cific to the dataset. When understanding new remote sensing
images with a different distribution from existing data, the
high-level features to be classified may lead to bias.

The adaptation layer is added in this framework to de-
crease the discrepancy between Ds and Dt in high-level fea-
tures. Maximum mean discrepancy (MMD) [10] can be re-
garded as a discrepancy metric to compare the distributions
based on two sets of data. Similar to the deep adaptation net-
work (DAN) [11], by mapping the features into a Reproduc-
ing Kernel Hilbert Space (RKHS), the MMD is going to be
minimized to narrow the gap between source and target do-
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main. Given the input of xs and xt, denote the high-level
feature discrepancy in RKHSH as

mmd(xs, xt) = Lda(Φ(xs),Φ(xt))H. (1)

In the training stage, the classifier should be reinitialized
to fit the adapted features. As a result, by inputting {xsi , ysi }
and {xtj} into the network, mmd(xs, xt) is added to the clas-
sification loss with a tradeoff λ to optimize the network, mak-
ing the high-level features adapted to unknown images and
the retrained classifier function well on training data simulta-
neously. The cost function can be given by

Lc(Φ(xs), ys) + λLda(Φ(xs),Φ(xt))H. (2)

In the testing stage, with the extracted adaptation features
of {Φda(xtj)}, unknown images {xtj} can be assigned with
new labels of {ŷtj} by the classifier.
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Fig. 3. The land cover classification test accuracy on
NWPU trained model before adaptation (nwpu model) and
after adaptation (nwpu DA model) for two different datasets,
UCM (a) and AID (b).

4. EXPERIMENTS

Considering the larger scale on the scene classes and the total
image number, we set the NWPU as the training dataset to
understand the new land cover images in AID and UCM. In
our experiments, we empirically set λ as 0.5 to make a bet-
ter trade-off. The Adam optimization is applied in training
and the initial learning rate during domain adaptation is set to
0.0001.

Firstly, the ResNet-18 is trained on NWPU with a training-
testing split ratio of 9:1 and achieves an overall accuracy of
93.1% on the test set. Then, we use the trained model to
classify the patches in AID and UCM dataset and record
the predicted labels compared with the annotation. 19 land
cover classes out of 21 in UCM and 23 out of 30 in AID are
evaluated, according to their semantical similarity compared
with NWPU. The result shows that due to the discrepancy
among those land cover datasets, the NWPU trained model
just achieves the accuracy of 46% and 48.82% in UCM and
AID, respectively.

However, by fine-tuning the deep feature extractors to
minimize the MMD in high-level features and retraining the
classifier with the adapted features simultaneously, the overall
accuracy has been increased to 70% and 78.37% in UCM and
AID, improving 24% and 29.55%, respectively. The classifi-
cation accuracy in each class of two datasets is shown in Fig.
3 and we can observe a remarkable improvement in some
classes, such as dense residential areas (improving 59.27%
and 42% in UCM and AID, respectively), medium residen-
tial areas (improving 72.41% and 27% in UCM and AID,
respectively) and church (improving 62.09% in AID). We
find it interesting that the residential areas are much various
in geolocations due to the different distribution of buildings
in various cities, so do the churches. Even though the model
only trained on NWPU cannot predict the residential areas
or churches from an unfamiliar region or resolution, domain
adaptation has narrowed the gap in understanding and learnt
some similar patterns across sensors.

In order to understand the domain adaptation of high-level
features intuitively, we randomly select 100 images in each
evaluated class of three datasets and visualize the high-level
features Φ(x) and Φda(x) before and after domain adaptation,
shown in Fig. 4. It can be inferred from this figure that the
distribution of high-level features varies among datasets due
to the decreasing generalization of features in higher layers
which leads to a failure in extracting representative features
of a new dataset. After adapting high-level features with un-
known new dataset and retraining the classifier only with the
labeled images, the discrepancy lying between two datasets is
significantly decreased so that the land cover features of new
images can be successfully extracted to fit the classifier.
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(a)

(b)

Fig. 4. The visualization of high-level feature of different
datasets before and after domain adaptation, shown in (a) and
(b), respectively. Different colors represent different classes
while the marker of ”o” denotes NWPU dataset and ”x” de-
notes AID.

5. CONCLUSION

The proposed framework makes a deep convolutional neural
network possible to understand the land cover of new remote
sensing images obtained from different sensors with various
resolution, geolocations and imaging conditions. Only fine-
tuning the feature extraction part to adapt the high-level fea-
tures and retraining the classifier with existed labeled dataset,
the unknown remote sensing land cover can be efficiently in-
terpreted with a lower cost in time and effort.
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