A NOTE ON k-ROMAN GRAPHS

Ahmed Bouchou, Mostafa Blidia, and Mustapha Chellali
Communicated by Mariusz Meszka

Abstract

Let $G=(V, E)$ be a graph and let k be a positive integer. A subset D of $V(G)$ is a k-dominating set of G if every vertex in $V(G) \backslash D$ has at least k neighbours in D. The k-domination number $\gamma_{k}(G)$ is the minimum cardinality of a k-dominating set of G. A Roman k-dominating function on G is a function $f: V(G) \longrightarrow\{0,1,2\}$ such that every vertex u for which $f(u)=0$ is adjacent to at least k vertices $v_{1}, v_{2}, \ldots, v_{k}$ with $f\left(v_{i}\right)=2$ for $i=1,2, \ldots, k$. The weight of a Roman k-dominating function is the value $f(V(G))=\sum_{u \in V(G)} f(u)$ and the minimum weight of a Roman k-dominating function on G is called the Roman k-domination number $\gamma_{k R}(G)$ of G. A graph G is said to be a k-Roman graph if $\gamma_{k R}(G)=2 \gamma_{k}(G)$. In this note we study k-Roman graphs.

Keywords: Roman k-domination, k-Roman graph.

Mathematics Subject Classification: 05C69.

1. INTRODUCTION

We consider finite, undirected, and simple graphs G with vertex set $V(G)$ and edge set $E(G)$. The open neighborhood $N_{G}(v)$ of a vertex v consists of the vertices adjacent to v, and $N_{G}[v]=N_{G}(v) \cup\{v\}$ is the closed neighborhood. The degree of v is $\left|N_{G}(v)\right|$. A leaf is a vertex of degree one. By $\Delta(G)=\Delta$ we denote the maximum degree of a graph G. A graph is bipartite if its vertex set can be partitioned into two independent sets. A d-regular graph is a graph with degree d for each vertex of G. A graph is called a d-semiregular bipartite graph if its vertex set can be partitioned in such a way that every vertex in one of the partite sets has degree d. The subdivision graph of a graph G is the graph obtained from G by replacing each edge $u v$ of G by a vertex w and edges $u w$ and $v w$. A graph G is called a cactus graph if each edge of G is contained in at most one cycle. A unicyclic graph is a connected graph containing exactly one cycle. A tree is a connected graph with no cycle. We denote by $K_{1, t}$ a star of order $t+1$.

Let k be a positive integer. A subset $D \subseteq V(G)$ is a k-dominating set of a graph G if $\left|N_{G}(v) \cap D\right| \geq k$ for every $v \in V(G) \backslash D$. The k-domination number $\gamma_{k}(G)$ is the minimum cardinality among the k-dominating sets of G. The concept of k-domination was introduced by Fink and Jacobson in [2].

A Roman k-dominating function on G is a function $f: V(G) \longrightarrow\{0,1,2\}$ such that every vertex u for which $f(u)=0$ is adjacent to at least k vertices $v_{1}, v_{2}, \ldots, v_{k}$ with $f\left(v_{i}\right)=2$ for $i=1,2, \ldots, k$. The weight of a Roman k-dominating function is the value $f(V(G))=\sum_{v \in V(G)} f(v)$. The minimum weight of a Roman k-dominating function on a graph G is called the Roman k-domination number $\gamma_{k R}(G)$. Note that if $k \geq \Delta+1$, then clearly $\gamma_{k R}(G)=|V|$. Hence we may assume in the whole paper that $k \leq \Delta$. Also, if $f: V(G) \longrightarrow\{0,1,2\}$ is a Roman k-dominating function on G, then let $\left(V_{0}, V_{1}, V_{2}\right)$ be the ordered partition of $V(G)$ induced by f, where $V_{i}=$ $\{v \in V(G) \mid f(v)=i\}$ for $i=0,1,2$. Note that there is a one to one correspondence between the functions $f: V(G) \rightarrow\{0,1,2\}$ and the ordered partitions $\left(V_{0}, V_{1}, V_{2}\right)$ of $V(G)$. The Roman 1-domination number $\gamma_{1 R}$ corresponds to the well-known Roman domination number γ_{R}, which was given implicitly by Steward in [5] and by ReVelle and Rosing in [4].

2. KNOWN RESULTS

We begin by listing some known results that will be useful here. The first one gives a relation between the Roman k-domination and k-domination numbers for any graph.

Proposition 2.1 (Kämmerling and Volkmann [3]). For any graph G,

$$
\gamma_{k}(G) \leq \gamma_{k R}(G) \leq 2 \gamma_{k}(G)
$$

According to [3], a graph G is said to be a k-Roman graph if $\gamma_{k R}(G)=2 \gamma_{k}(G)$. Kämmerling and Volkmann gave a necessary and sufficient condition for a graph to be k-Roman.

Proposition 2.2 (Kämmerling and Volkmann [3]). A graph G is a k-Roman graph if and only if it has a $\gamma_{k R}$-function $f=\left(V_{0}, V_{1}, V_{2}\right)$ with $V_{1}=\emptyset$.

The following two results give sufficient conditions for G to have $\gamma_{k R}(G)=n$.
Proposition 2.3 (Kämmerling and Volkmann [3]). If G is a graph with at most one cycle and $k \geq 2$, or G is a cactus graph and $k \geq 3$, then $\gamma_{k R}(G)=n$.

Proposition 2.4 (Kämmerling and Volkmann [3]). If G is a graph of order n and maximum degree $\Delta \geq 1$, then $\gamma_{\Delta R}(G)=n$.

In [2], Fink and Jacobson have established a lower bound on the k-domination number of a graph.

Theorem 2.5 (Fink and Jacobson [2]). If G has n vertices and $m(G)$ edges, then

$$
\gamma_{k}(G) \geq n-\frac{m(G)}{k} \quad \text { for } \quad k \geq 1
$$

Furthermore, if $m(G) \neq 0$, then $\gamma_{k}(G)=n-\frac{m(G)}{k}$ if and only if G is a k-semiregular bipartite graph.

Corollary 2.6 (Fink and Jacobson [2]). If G is a graph with n vertices and $m(G) \neq 0$ edges, then

$$
\gamma_{2}(G)=n-\frac{m(G)}{2}
$$

if and only if G is the subdivision graph of another multigraph (graph with possibly parallel edges).

3. MAIN RESULTS

We begin by giving a necessary condition for a graph to be k-Roman.
Theorem 3.1. If G is a k-Roman graph with $k \geq 2$, then every vertex of G is adjacent to at most $k-1$ leaves.

Proof. Let G be a k-Roman graph with $k \geq 2$. Suppose that v is a vertex of G adjacent to at least k leaves. Let L_{v} be the set of leaves adjacent to v. Clearly, for every $\gamma_{k R}$-function every leaf is assigned a positive value. Also, by Proposition 2.2, G has a $\gamma_{k R}$-function $f=\left(V_{0}, V_{1}, V_{2}\right)$ with $V_{1}=\emptyset$. Hence $f(w)=2$ for every leaf $w \in L_{v}$. Now if $f(v) \neq 0$, then we can decrease the weight of f by assigning the value 1 instead of 2 to every leaf, contradicting the fact that f is a $\gamma_{k R}$-function. Thus $f(v)=0$. Since $k \geq 2$, we can change $f(w)=2$ to $f(w)=1$ for every vertex $w \in L_{v}$ and $f(v)=0$ to $f(v)=1$. Clearly we obtain a Roman k-dominating function with weight less than $f(V(G))$, a contradiction. Therefore, $\left|L_{v}\right| \leq k-1$.

We now give a characterization of k-Roman graphs when $k=\Delta$.
Theorem 3.2. A graph G is Δ-Roman if and only if G is a bipartite regular graph.
Proof. Let G be a graph with $\gamma_{\Delta R}(G)=2 \gamma_{\Delta}(G)$. Then by Proposition 2.4, $\gamma_{\Delta R}(G)=$ $n=2 \gamma_{\Delta}(G)$, and so $\gamma_{\Delta}(G)=n / 2$. Let S be a minimum Δ-dominating set of G. Clearly, since every vertex of $V \backslash S$ has Δ neighbours in S, the set $V \backslash S$ is independent. Now let m^{\prime} be the number of edges between S and $V \backslash S$. Then $m^{\prime}=\Delta|V \backslash S|=\Delta n / 2$. Using the fact that $\Delta n \geq 2|E|$, it follows that $\Delta n=2|E|=2 m^{\prime}=\Delta n$, and so $|E|=m^{\prime}$. Thus, every vertex of G has degree Δ and hence S is also independent. Therefore, G is a bipartite Δ-regular graph.

Conversely, assume that G is a bipartite Δ-regular graph. We know by Proposition 2.4 that $\gamma_{\Delta R}(G)=n$. Thus, it suffices to show that $\gamma_{\Delta}(G)=n / 2$. By Proposition 2.1, we have $\gamma_{\Delta}(G) \geq n / 2$. The equality is obtained from the fact that every partite set of G is a Δ-dominating set.

Next we improve the upper bound in Proposition 2.1 for the class of trees. Moreover, we characterize all trees attaining this upper bound.
Theorem 3.3. Let T be a tree of order $n \geq 3$ with $\Delta(T) \geq k \geq 2$. Then

$$
\gamma_{k R}(T) \leq 2 \gamma_{k}(T)-k+1
$$

with equality if and only if:
(i) $k=2$ and T is the subdivision graph of another tree, or
(ii) $k=n-1$ and T is a star.

Proof. We first prove the upper bound. Since $m=n-1$ for trees, it follows from Theorem 2.5 that for every tree T and every positive integer k we have

$$
\gamma_{k}(G) \geq \frac{(k-1) n+1}{k}
$$

Also, one can easily check that

$$
\frac{(k-1) n+1}{k} \geq \frac{n+k-1}{2} \quad \text { for } \quad 2 \leq k \leq \Delta(T) \leq n-1 .
$$

Now using the fact that $\gamma_{k R}(T)=n$ (by Proposition 2.3) we obtain

$$
\gamma_{k}(G) \geq \frac{(k-1) n+1}{k} \geq \frac{n+k-1}{2}=\frac{\gamma_{k R}(T)+k-1}{2}
$$

and the bound is proved.
Now assume that $\gamma_{k R}(T)=2 \gamma_{k}(T)-k+1$. Then we have equality throughout the previous inequality chain. In particular, $((k-1) n+1) / k=(n+k-1) / 2$ and $\gamma_{k}(G)=((k-1) n+1) / k$. The first equality implies that $k=2$ or $k=n-1$. Now, if $k=2$, then $\gamma_{2}(G)=(n+1) / 2$ and by Corollary 2.6 we obtain (i). If $k=n-1$, then T is the star $K_{1, n-1}$.

The converse is easy to show and we omit the details.
The following corollary is an immediate consequence of Theorem 3.3.
Corollary 3.4. There are no k-Roman trees for $k \geq 2$.
Next we show that there are no k-Roman cactus graphs for $k \geq 3$. We need the following lemma, which can be found in [7] on p. 30.

Lemma 3.5. If G is a cactus graph on n vertices and m edges, then

$$
2 m \leq 3 n-3
$$

Proposition 3.6. There are no k-Roman cactus graph for $k \geq 3$.
Proof. Suppose that G is a k-Roman cactus graph for some $k \geq 3$. By Proposition 2.3 and Theorem 2.5 we have $n=\gamma_{k R}(T)=2 \gamma_{k}(G) \geq 2(n-m / k)$. Hence $k n \leq 2 m$. Now, by Lemma 3.5 we get $k n \leq 3 n-3$, which is impossible since $k \geq 3$.

Next we improve the upper bound in Proposition 2.1 for unicyclic graphs. We denote by $K_{1, p}+e$ the graph obtained from the star $K_{1, p}$ by adding an edge between two leaves of $K_{1, p}$. Let P_{5} be the path on five vertices labeled in order $1,2,3,4,5$. Let F be the graph obtained from P_{5} by adding a new vertex x and edges $x 2$ and $x 4$. Let G_{1}, G_{2} and G_{3} be three graphs obtained from P_{5} by adding the edges 24,35 and 25 , respectively.

Theorem 3.7. Let G be a unicyclic graph and $\Delta(G) \geq k \geq 3$. Then

$$
\gamma_{k R}(G) \leq 2 \gamma_{k}(G)-k+1,
$$

with equality if and only if either $k \in\{3,4, n-1\}$ and $G=K_{1, k}+e$, or $k=3$ and $G=F$.

Proof. We first note that $n \geq 4$ since $\Delta \geq 3$. If $n=4$, then $k=\Delta=3, G=K_{1,3}+e$ and $\gamma_{k R}(G)=2 \gamma_{k}(G)-k+1$. If $n=5$, then $k \in\{3,4\}$. If $k=3$, then clearly $G \in\left\{G_{1}, G_{2}, G_{3}, K_{1,4}+e\right\}$ and $\gamma_{k R}(G)<2 \gamma_{k}(G)-k+1$. If $k=4$, then $G=K_{1,4}+e$ and $\gamma_{k R}(G)=2 \gamma_{k}(G)-k+1$. Also if $n=k+1$, then $k=\Delta, G=K_{1, n-1}+e$ and $\gamma_{k R}(G)=2 \gamma_{k}(G)-k+1$.

Now let us suppose that $n \geq \max \{6, k+2\}$. It can be seen that

$$
\begin{equation*}
\frac{(k-1) n}{k} \geq \frac{n+k-1}{2} \tag{3.1}
\end{equation*}
$$

and the upper bound follows from Proposition 2.3 and Theorem 2.5.
Now assume that $\gamma_{k R}(G)=2 \gamma_{k}(G)-k+1$. Clearly, if $n \in\{4,5, k+1\}$, then $G=K_{1, n-1}+e$. Hence we can assume that $n \geq \max \{6, k+2\}$. Then we have equality in (3.1), in particular $\gamma_{k}(G)=(n+k-1) / 2=(k-1) n / k$. It follows that $n=6, k=3, \gamma_{3}(G)=4$, and so $G=F$.

Theorem 3.8. A unicyclic graph G is a 2-Roman graph if and only if G is the subdivided graph of another unicyclic graph (possibly with a cycle on two vertices).

Proof. If $\gamma_{2 R}(G)=2 \gamma_{2}(G)$, then by Proposition 2.3 we have $n=2 \gamma_{2}(G)$, and so $\gamma_{2}(G)=n / 2$. By Corollary 2.6, G is the subdivided graph of another unicyclic graph. Now assume that G is the subdivided graph of another unicyclic graph. By Corollary 2.6, $\gamma_{2}(G)=n / 2$ and by Proposition 2.3, $\gamma_{2 R}(G)=n$. Therefore, $\gamma_{2 R}(G)=2 \gamma_{2}(G)$.

Acknowledgments

This research was supported by "Programmes Nationaux de Recherche: Code 8/u09/510".

REFERENCES

[1] E.J. Cockayne, P.A. Dreyer, S.M. Hedetniemi, S.T. Hedetniemi, Roman domination in graphs, Discrete Mathematics 278 (2004), 11-22.
[2] J.F. Fink, M.S. Jacobson, n-domination in graphs, Graph Theory with Applications to Algorithms and Computer Science, John Wiley and Sons, New York 1985, 282-300.
[3] K. Kämmerling, L. Volkmann, Roman k-domination in graphs, J. Korean Math. Soc. 46 (2009), 1309-1318.
[4] C.S. ReVelle, K.E. Rosing, Defendens imperium romanum: a classical problem in military strategy, Amer Math. Monthly 107 (2000), 585-594.
[5] I. Steward, Defend the Roman Empire!, Sci. Amer. 281 (1999), 136-139
[6] L. Volkmann, Some remarks on lower bounds on the p-domination number in trees, J. Combin. Math. Combin. Comput. 61 (2007), 159-167.
[7] L. Volkmann, Graphen an allen Ecken und Kanten, RWTH Aachen 2006, XVI, 377 pp.

Ahmed Bouchou
bouchou.ahmed@yahoo.fr

University Dr Yahia Farès
Médéa, Algeria
Mostafa Blidia
m_blidia@yahoo.fr

University of Blida
LAMDA-RO, Department of Mathematics
B.P. 270, Blida, Algeria

Mustapha Chellali
m_chellali@yahoo.com

University of Blida
LAMDA-RO, Department of Mathematics
B.P. 270, Blida, Algeria

Received: October 11, 2012.
Revised: February 25, 2013.
Accepted: April 4, 2013.

