A NOTE ON *k*-ROMAN GRAPHS

Ahmed Bouchou, Mostafa Blidia, and Mustapha Chellali

Communicated by Mariusz Meszka

Abstract. Let G = (V, E) be a graph and let k be a positive integer. A subset D of V(G) is a k-dominating set of G if every vertex in $V(G) \setminus D$ has at least k neighbours in D. The k-domination number $\gamma_k(G)$ is the minimum cardinality of a k-dominating set of G. A Roman k-dominating function on G is a function $f: V(G) \longrightarrow \{0, 1, 2\}$ such that every vertex u for which f(u) = 0 is adjacent to at least k vertices v_1, v_2, \ldots, v_k with $f(v_i) = 2$ for $i = 1, 2, \ldots, k$. The weight of a Roman k-dominating function on G is called the Roman k-domination number $\gamma_{kR}(G)$ of G. A graph G is said to be a k-Roman graph if $\gamma_{kR}(G) = 2\gamma_k(G)$. In this note we study k-Roman graphs.

Keywords: Roman k-domination, k-Roman graph.

Mathematics Subject Classification: 05C69.

1. INTRODUCTION

We consider finite, undirected, and simple graphs G with vertex set V(G) and edge set E(G). The open neighborhood $N_G(v)$ of a vertex v consists of the vertices adjacent to v, and $N_G[v] = N_G(v) \cup \{v\}$ is the closed neighborhood. The degree of v is $|N_G(v)|$. A leaf is a vertex of degree one. By $\Delta(G) = \Delta$ we denote the maximum degree of a graph G. A graph is bipartite if its vertex set can be partitioned into two independent sets. A d-regular graph is a graph with degree d for each vertex of G. A graph is called a d-semiregular bipartite graph if its vertex set can be partitioned in such a way that every vertex in one of the partite sets has degree d. The subdivision graph of a graph Gis the graph obtained from G by replacing each edge uv of G by a vertex w and edges uw and vw. A graph G is called a cactus graph if each edge of G is contained in at most one cycle. A unicyclic graph is a connected graph containing exactly one cycle. A tree is a connected graph with no cycle. We denote by $K_{1,t}$ a star of order t + 1.

© AGH University of Science and Technology Press, Krakow 2013

Let k be a positive integer. A subset $D \subseteq V(G)$ is a k-dominating set of a graph G if $|N_G(v) \cap D| \ge k$ for every $v \in V(G) \setminus D$. The k-domination number $\gamma_k(G)$ is the minimum cardinality among the k-dominating sets of G. The concept of k-domination was introduced by Fink and Jacobson in [2].

A Roman k-dominating function on G is a function $f: V(G) \longrightarrow \{0, 1, 2\}$ such that every vertex u for which f(u) = 0 is adjacent to at least k vertices v_1, v_2, \ldots, v_k with $f(v_i) = 2$ for $i = 1, 2, \ldots, k$. The weight of a Roman k-dominating function is the value $f(V(G)) = \sum_{v \in V(G)} f(v)$. The minimum weight of a Roman k-dominating function on a graph G is called the Roman k-domination number $\gamma_{kR}(G)$. Note that if $k \ge \Delta + 1$, then clearly $\gamma_{kR}(G) = |V|$. Hence we may assume in the whole paper that $k \le \Delta$. Also, if $f: V(G) \longrightarrow \{0, 1, 2\}$ is a Roman k-dominating function on G, then let (V_0, V_1, V_2) be the ordered partition of V(G) induced by f, where $V_i =$ $\{v \in V(G) \mid f(v) = i\}$ for i = 0, 1, 2. Note that there is a one to one correspondence between the functions $f: V(G) \rightarrow \{0, 1, 2\}$ and the ordered partitions (V_0, V_1, V_2) of V(G). The Roman 1-domination number γ_{1R} corresponds to the well-known Roman domination number γ_R , which was given implicitly by Steward in [5] and by ReVelle and Rosing in [4].

2. KNOWN RESULTS

We begin by listing some known results that will be useful here. The first one gives a relation between the Roman k-domination and k-domination numbers for any graph.

Proposition 2.1 (Kämmerling and Volkmann [3]). For any graph G,

$$\gamma_k(G) \le \gamma_{kR}(G) \le 2\gamma_k(G).$$

According to [3], a graph G is said to be a k-Roman graph if $\gamma_{kR}(G) = 2\gamma_k(G)$. Kämmerling and Volkmann gave a necessary and sufficient condition for a graph to be k-Roman.

Proposition 2.2 (Kämmerling and Volkmann [3]). A graph G is a k-Roman graph if and only if it has a γ_{kR} -function $f = (V_0, V_1, V_2)$ with $V_1 = \emptyset$.

The following two results give sufficient conditions for G to have $\gamma_{kR}(G) = n$.

Proposition 2.3 (Kämmerling and Volkmann [3]). If G is a graph with at most one cycle and $k \ge 2$, or G is a cactus graph and $k \ge 3$, then $\gamma_{kR}(G) = n$.

Proposition 2.4 (Kämmerling and Volkmann [3]). If G is a graph of order n and maximum degree $\Delta \geq 1$, then $\gamma_{\Delta R}(G) = n$.

In [2], Fink and Jacobson have established a lower bound on the k-domination number of a graph.

Theorem 2.5 (Fink and Jacobson [2]). If G has n vertices and m(G) edges, then

$$\gamma_k(G) \ge n - \frac{m(G)}{k} \quad for \quad k \ge 1.$$

Furthermore, if $m(G) \neq 0$, then $\gamma_k(G) = n - \frac{m(G)}{k}$ if and only if G is a k-semiregular bipartite graph.

Corollary 2.6 (Fink and Jacobson [2]). If G is a graph with n vertices and $m(G) \neq 0$ edges, then

$$\gamma_2(G) = n - \frac{m(G)}{2}.$$

if and only if G is the subdivision graph of another multigraph (graph with possibly parallel edges).

3. MAIN RESULTS

We begin by giving a necessary condition for a graph to be k-Roman.

Theorem 3.1. If G is a k-Roman graph with $k \ge 2$, then every vertex of G is adjacent to at most k - 1 leaves.

Proof. Let G be a k-Roman graph with $k \geq 2$. Suppose that v is a vertex of G adjacent to at least k leaves. Let L_v be the set of leaves adjacent to v. Clearly, for every γ_{kR} -function every leaf is assigned a positive value. Also, by Proposition 2.2, G has a γ_{kR} -function $f = (V_0, V_1, V_2)$ with $V_1 = \emptyset$. Hence f(w) = 2 for every leaf $w \in L_v$. Now if $f(v) \neq 0$, then we can decrease the weight of f by assigning the value 1 instead of 2 to every leaf, contradicting the fact that f is a γ_{kR} -function. Thus f(v) = 0. Since $k \geq 2$, we can change f(w) = 2 to f(w) = 1 for every vertex $w \in L_v$ and f(v) = 0 to f(v) = 1. Clearly we obtain a Roman k-dominating function with weight less than f(V(G)), a contradiction. Therefore, $|L_v| \leq k - 1$.

We now give a characterization of k-Roman graphs when $k = \Delta$.

Theorem 3.2. A graph G is Δ -Roman if and only if G is a bipartite regular graph.

Proof. Let G be a graph with $\gamma_{\Delta R}(G) = 2\gamma_{\Delta}(G)$. Then by Proposition 2.4, $\gamma_{\Delta R}(G) = n = 2\gamma_{\Delta}(G)$, and so $\gamma_{\Delta}(G) = n/2$. Let S be a minimum Δ -dominating set of G. Clearly, since every vertex of $V \setminus S$ has Δ neighbours in S, the set $V \setminus S$ is independent. Now let m' be the number of edges between S and $V \setminus S$. Then $m' = \Delta |V \setminus S| = \Delta n/2$. Using the fact that $\Delta n \geq 2 |E|$, it follows that $\Delta n = 2 |E| = 2m' = \Delta n$, and so |E| = m'. Thus, every vertex of G has degree Δ and hence S is also independent. Therefore, G is a bipartite Δ -regular graph.

Conversely, assume that G is a bipartite Δ -regular graph. We know by Proposition 2.4 that $\gamma_{\Delta R}(G) = n$. Thus, it suffices to show that $\gamma_{\Delta}(G) = n/2$. By Proposition 2.1, we have $\gamma_{\Delta}(G) \ge n/2$. The equality is obtained from the fact that every partite set of G is a Δ -dominating set.

Next we improve the upper bound in Proposition 2.1 for the class of trees. Moreover, we characterize all trees attaining this upper bound.

Theorem 3.3. Let T be a tree of order $n \ge 3$ with $\Delta(T) \ge k \ge 2$. Then

$$\gamma_{kR}(T) \le 2\gamma_k(T) - k + 1,$$

with equality if and only if:

(i) k = 2 and T is the subdivision graph of another tree, or
(ii) k = n - 1 and T is a star.

Proof. We first prove the upper bound. Since m = n - 1 for trees, it follows from Theorem 2.5 that for every tree T and every positive integer k we have

$$\gamma_k(G) \ge \frac{(k-1)n+1}{k}.$$

Also, one can easily check that

$$\frac{(k-1)n+1}{k} \ge \frac{n+k-1}{2} \quad \text{for} \quad 2 \le k \le \Delta(T) \le n-1.$$

Now using the fact that $\gamma_{kR}(T) = n$ (by Proposition 2.3) we obtain

$$\gamma_k(G) \ge \frac{(k-1)n+1}{k} \ge \frac{n+k-1}{2} = \frac{\gamma_{kR}(T)+k-1}{2},$$

and the bound is proved.

Now assume that $\gamma_{kR}(T) = 2\gamma_k(T) - k + 1$. Then we have equality throughout the previous inequality chain. In particular, ((k-1)n+1)/k = (n+k-1)/2 and $\gamma_k(G) = ((k-1)n+1)/k$. The first equality implies that k = 2 or k = n - 1. Now, if k = 2, then $\gamma_2(G) = (n+1)/2$ and by Corollary 2.6 we obtain (i). If k = n - 1, then T is the star $K_{1,n-1}$.

The converse is easy to show and we omit the details.

The following corollary is an immediate consequence of Theorem 3.3.

Corollary 3.4. There are no k-Roman trees for $k \ge 2$.

Next we show that there are no k-Roman cactus graphs for $k \ge 3$. We need the following lemma, which can be found in [7] on p. 30.

Lemma 3.5. If G is a cactus graph on n vertices and m edges, then

$$2m \le 3n - 3.$$

Proposition 3.6. There are no k-Roman cactus graph for $k \geq 3$.

Proof. Suppose that G is a k-Roman cactus graph for some $k \ge 3$. By Proposition 2.3 and Theorem 2.5 we have $n = \gamma_{kR}(T) = 2\gamma_k(G) \ge 2(n - m/k)$. Hence $kn \le 2m$. Now, by Lemma 3.5 we get $kn \le 3n - 3$, which is impossible since $k \ge 3$.

Next we improve the upper bound in Proposition 2.1 for unicyclic graphs. We denote by $K_{1,p} + e$ the graph obtained from the star $K_{1,p}$ by adding an edge between two leaves of $K_{1,p}$. Let P_5 be the path on five vertices labeled in order 1, 2, 3, 4, 5. Let F be the graph obtained from P_5 by adding a new vertex x and edges x^2 and x^4 . Let G_1 , G_2 and G_3 be three graphs obtained from P_5 by adding the edges 24, 35 and 25, respectively.

Theorem 3.7. Let G be a unicyclic graph and $\Delta(G) \ge k \ge 3$. Then

$$\gamma_{kR}(G) \le 2\gamma_k(G) - k + 1,$$

with equality if and only if either $k \in \{3, 4, n-1\}$ and $G = K_{1,k} + e$, or k = 3 and G = F.

Proof. We first note that $n \ge 4$ since $\Delta \ge 3$. If n = 4, then $k = \Delta = 3$, $G = K_{1,3} + e$ and $\gamma_{kR}(G) = 2\gamma_k(G) - k + 1$. If n = 5, then $k \in \{3, 4\}$. If k = 3, then clearly $G \in \{G_1, G_2, G_3, K_{1,4} + e\}$ and $\gamma_{kR}(G) < 2\gamma_k(G) - k + 1$. If k = 4, then $G = K_{1,4} + e$ and $\gamma_{kR}(G) = 2\gamma_k(G) - k + 1$. Also if n = k + 1, then $k = \Delta$, $G = K_{1,n-1} + e$ and $\gamma_{kR}(G) = 2\gamma_k(G) - k + 1$.

Now let us suppose that $n \ge \max\{6, k+2\}$. It can be seen that

$$\frac{(k-1)n}{k} \ge \frac{n+k-1}{2}$$
(3.1)

and the upper bound follows from Proposition 2.3 and Theorem 2.5.

Now assume that $\gamma_{kR}(G) = 2\gamma_k(G) - k + 1$. Clearly, if $n \in \{4, 5, k + 1\}$, then $G = K_{1,n-1} + e$. Hence we can assume that $n \ge \max\{6, k+2\}$. Then we have equality in (3.1), in particular $\gamma_k(G) = (n + k - 1)/2 = (k - 1)n/k$. It follows that $n = 6, k = 3, \gamma_3(G) = 4$, and so G = F.

Theorem 3.8. A unicyclic graph G is a 2-Roman graph if and only if G is the subdivided graph of another unicyclic graph (possibly with a cycle on two vertices).

Proof. If $\gamma_{2R}(G) = 2\gamma_2(G)$, then by Proposition 2.3 we have $n = 2\gamma_2(G)$, and so $\gamma_2(G) = n/2$. By Corollary 2.6, G is the subdivided graph of another unicyclic graph. Now assume that G is the subdivided graph of another unicyclic graph. By Corollary 2.6, $\gamma_2(G) = n/2$ and by Proposition 2.3, $\gamma_{2R}(G) = n$. Therefore, $\gamma_{2R}(G) = 2\gamma_2(G)$.

Acknowledgments

This research was supported by "Programmes Nationaux de Recherche: Code 8/u09/510".

REFERENCES

- E.J. Cockayne, P.A. Dreyer, S.M. Hedetniemi, S.T. Hedetniemi, Roman domination in graphs, Discrete Mathematics 278 (2004), 11–22.
- [2] J.F. Fink, M.S. Jacobson, n-domination in graphs, Graph Theory with Applications to Algorithms and Computer Science, John Wiley and Sons, New York 1985, 282–300.
- [3] K. Kämmerling, L. Volkmann, Roman k-domination in graphs, J. Korean Math. Soc. 46 (2009), 1309–1318.
- [4] C.S. ReVelle, K.E. Rosing, Defendens imperium romanum: a classical problem in military strategy, Amer Math. Monthly 107 (2000), 585–594.
- [5] I. Steward, Defend the Roman Empire!, Sci. Amer. 281 (1999), 136-139.
- [6] L. Volkmann, Some remarks on lower bounds on the p-domination number in trees, J. Combin. Math. Combin. Comput. 61 (2007), 159–167.
- [7] L. Volkmann, Graphen an allen Ecken und Kanten, RWTH Aachen 2006, XVI, 377 pp.

Ahmed Bouchou bouchou.ahmed@yahoo.fr

University Dr Yahia Farès Médéa, Algeria

Mostafa Blidia m blidia@yahoo.fr

University of Blida LAMDA-RO, Department of Mathematics B.P. 270, Blida, Algeria

Mustapha Chellali m chellali@yahoo.com

University of Blida LAMDA-RO, Department of Mathematics B.P. 270, Blida, Algeria

Received: October 11, 2012. Revised: February 25, 2013. Accepted: April 4, 2013.