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Abstract. Let G = (V,E) be a graph and let k be a positive integer. A subset D of
V (GQ) is a k-dominating set of G if every vertex in V (G)\D has at least k neighbours
in D. The k-domination number v;(G) is the minimum cardinality of a k-dominating set
of G. A Roman k-dominating function on G is a function f: V(G) — {0, 1,2} such that
every vertex u for which f(u) = 0 is adjacent to at least k vertices wv1,vs2,...,vr with
f(vi) =2 for i = 1,2,...,k. The weight of a Roman k-dominating function is the value
fV(G)) = X ev(e) f(u) and the minimum weight of a Roman k-dominating function on &
is called the Roman k-domination number ;g (G) of G. A graph G is said to be a k-Roman
graph if v4r(G) = 29%(G). In this note we study k-Roman graphs.
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1. INTRODUCTION

We consider finite, undirected, and simple graphs G with vertex set V(G) and edge
set E(G). The open neighborhood Ng(v) of a vertex v consists of the vertices adjacent
to v, and Ng[v] = Ng(v)U{v} is the closed neighborhood. The degree of v is | Ng(v)].
A leaf is a vertex of degree one. By A(G) = A we denote the mazimum degree of a
graph G. A graph is bipartite if its vertex set can be partitioned into two independent
sets. A d-regular graph is a graph with degree d for each vertex of G. A graph is called
a d-semiregular bipartite graph if its vertex set can be partitioned in such a way that
every vertex in one of the partite sets has degree d. The subdivision graph of a graph G
is the graph obtained from G by replacing each edge uv of G by a vertex w and edges
uw and vw. A graph G is called a cactus graph if each edge of G is contained in at
most one cycle. A unicyclic graph is a connected graph containing exactly one cycle.
A tree is a connected graph with no cycle. We denote by K ; a star of order ¢ + 1.
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Let k be a positive integer. A subset D C V(@) is a k-dominating set of a graph
G if [Ng(v) N D| > k for every v € V(G)\D. The k-domination number v;(G) is the
minimum cardinality among the k-dominating sets of GG. The concept of k-domination
was introduced by Fink and Jacobson in [2].

A Roman k-dominating function on G is a function f : V(G) — {0,1,2} such
that every vertex u for which f(u) = 0 is adjacent to at least k vertices vy, vs, ..., v
with f(v;) = 2 for i = 1,2,... k. The weight of a Roman k-dominating function is
the value f(V(G)) = X ,cv(g) f(v). The minimum weight of a Roman k-dominating
function on a graph G is called the Roman k-domination number v;r(G). Note that
if kK > A+ 1, then clearly vxr(G) = |V|. Hence we may assume in the whole paper
that & < A. Also, if f : V(G) — {0,1,2} is a Roman k-dominating function on
G, then let (Vp, Vi, V2) be the ordered partition of V(G) induced by f, where V; =
{veV(Q) | f(v) =i} for i = 0,1,2. Note that there is a one to one correspondence
between the functions f : V(G) — {0,1,2} and the ordered partitions (Vp, Vi, V2) of
V(G). The Roman 1-domination number «;r corresponds to the well-known Roman
domination number g, which was given implicitly by Steward in [5] and by ReVelle
and Rosing in [4].

2. KNOWN RESULTS

We begin by listing some known results that will be useful here. The first one gives a
relation between the Roman k-domination and k-domination numbers for any graph.

Proposition 2.1 (Kammerling and Volkmann [3]). For any graph G,
6 (G) < er(G) < 27(G).
According to [3], a graph G is said to be a k-Roman graph if y,r(G) = 27, (G).
Kammerling and Volkmann gave a necessary and sufficient condition for a graph to

be k-Roman.

Proposition 2.2 (Kdmmerling and Volkmann [3]). A graph G is a k-Roman graph
if and only if it has a ygr-function f = (Vo, Vi, Va) with Vi = 0.

The following two results give sufficient conditions for G to have v;r(G) = n.

Proposition 2.3 (Kdmmerling and Volkmann [3]). If G is a graph with at most one
cycle and k > 2, or G is a cactus graph and k > 3, then vxr(G) = n.

Proposition 2.4 (Kiammerling and Volkmann [3]). If G is a graph of order n and
mazimum degree A > 1, then yar(G) = n.

In [2], Fink and Jacobson have established a lower bound on the k-domination
number of a graph.
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Theorem 2.5 (Fink and Jacobson [2]). If G has n vertices and m(G) edges, then
vi(G) an@ for k>1.

Furthermore, if m(G) # 0, then v,(G) = n— m;G)

bipartite graph.

Corollary 2.6 (Fink and Jacobson [2]). If G is a graph with n vertices and m(G) # 0
edges, then

if and only if G is a k-semireqular

7% (G)=n— ——=.

if and only if G is the subdivision graph of another multigraph (graph with possibly
parallel edges).

3. MAIN RESULTS

We begin by giving a necessary condition for a graph to be k-Roman.

Theorem 3.1. IfG is a k-Roman graph with k > 2, then every vertex of G is adjacent
to at most k — 1 leaves.

Proof. Let G be a k-Roman graph with k£ > 2. Suppose that v is a vertex of G
adjacent to at least k leaves. Let L, be the set of leaves adjacent to v. Clearly, for
every vpr-function every leaf is assigned a positive value. Also, by Proposition 2.2,
G has a ygg-function f = (Vp, V4, V2) with V; = (). Hence f(w) = 2 for every leaf
w € L,,. Now if f(v) # 0, then we can decrease the weight of f by assigning the value
1 instead of 2 to every leaf, contradicting the fact that f is a yggr-function. Thus
f(v) = 0. Since k > 2, we can change f(w) =2 to f(w) =1 for every vertex w € L,
and f(v) = 0 to f(v) = 1. Clearly we obtain a Roman k-dominating function with
weight less than f(V(G)), a contradiction. Therefore, |L,| < k — 1. O

We now give a characterization of k-Roman graphs when k = A.
Theorem 3.2. A graph G is A-Roman if and only if G is a bipartite regular graph.

Proof. Let G be a graph with yar(G) = 2ya(G). Then by Proposition 2.4, yar(G) =
n = 2ya(G), and so ya(G) = n/2. Let S be a minimum A-dominating set of G.
Clearly, since every vertex of V\\S has A neighbours in S, the set V'\S is independent.
Now let m’ be the number of edges between S and V\S. Then m’ = A [V\S| = An/2.
Using the fact that An > 2|E|, it follows that An =2|E| = 2m’ = An, and so
|E| = m’. Thus, every vertex of G has degree A and hence S is also independent.
Therefore, G is a bipartite A-regular graph.

Conversely, assume that G is a bipartite A-regular graph. We know by Proposi-
tion 2.4 that yar(G) = n. Thus, it suffices to show that ya(G) = n/2. By Propo-
sition 2.1, we have yao(G) > n/2. The equality is obtained from the fact that every
partite set of G is a A-dominating set. O
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Next we improve the upper bound in Proposition 2.1 for the class of trees. More-
over, we characterize all trees attaining this upper bound.

Theorem 3.3. Let T be a tree of order n > 3 with A(T) >k > 2. Then
Yer(T) <2y (T) — k +1,

with equality if and only if:

(i) k=2 and T is the subdivision graph of another tree, or
(ii)) k=n—1 and T is a star.
Proof. We first prove the upper bound. Since m = n — 1 for trees, it follows from
Theorem 2.5 that for every tree T" and every positive integer k we have
k—1)n+1
eys B

Also, one can easily check that

(k—1)n+1 >n+k—1
k - 2

for 2<k<AT)<n-1.

Now using the fact that vy,r(T) = n (by Proposition 2.3) we obtain

(k—Dn+1_n+k—1 yp@)+k—1
> > —
(G) > 3 > 3 5 ,

and the bound is proved.

Now assume that y4r(T) = 27 (T) — k + 1. Then we have equality throughout
the previous inequality chain. In particular, ((k — 1)n 4+ 1)/k = (n+ k — 1)/2 and
Y(G) = ((k — 1)n + 1) /k. The first equality implies that k = 2 or k = n — 1. Now, if
k =2, then v2(G) = (n + 1)/2 and by Corollary 2.6 we obtain (i). If k =n — 1, then
T is the star Ky ,—1.

The converse is easy to show and we omit the details. O

The following corollary is an immediate consequence of Theorem 3.3.
Corollary 3.4. There are no k-Roman trees for k > 2.

Next we show that there are no k-Roman cactus graphs for £ > 3. We need the
following lemma, which can be found in [7] on p. 30.

Lemma 3.5. If G is a cactus graph on n vertices and m edges, then
2m < 3n — 3.

Proposition 3.6. There are no k-Roman cactus graph for k > 3.

Proof. Suppose that G is a k-Roman cactus graph for some k > 3. By Proposition
2.3 and Theorem 2.5 we have n = y,g(T) = 27,x(G) > 2 (n — m/k). Hence kn < 2m.
Now, by Lemma 3.5 we get kn < 3n — 3, which is impossible since k > 3. O
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Next we improve the upper bound in Proposition 2.1 for unicyclic graphs. We
denote by K, + e the graph obtained from the star K, , by adding an edge between
two leaves of K ,. Let P5 be the path on five vertices labeled in order 1,2, 3,4, 5. Let
F be the graph obtained from P; by adding a new vertex x and edges x2 and x4. Let
G1, G2 and G3 be three graphs obtained from Ps; by adding the edges 24, 35 and 25,
respectively.

Theorem 3.7. Let G be a unicyclic graph and A (G) > k > 3. Then
1r(G) < 2%(G) =k +1,

with equality if and only if either k € {3,4,n — 1} and G = K1, +e, or k =3 and
G=F

Proof. We first note that n > 4 since A >3. If n=4,then k=A=3,G=K;3+¢
and 7xr(G) = 29x(G) — k+ 1. If n = 5, then k € {3,4}. If k = 3, then clearly
G e {G1,G2,G3,K1,4+6} and 'Yk:R(G) < 2’yk(G) —k+1.If k =4, then G = Kis+e
and Y4r(G) = 27 (G) —k+ 1. Alsoif n =k + 1, then k = A, G = Ky ,_1 + ¢ and
%r(G) = 2% (G) — k + 1.

Now let us suppose that n > max {6,k + 2} . It can be seen that

(k—1n _n+k-1

5 (3.1)
and the upper bound follows from Proposition 2.3 and Theorem 2.5.

Now assume that v,r(G) = 27(G) — k + 1. Clearly, if n € {4,5,k + 1}, then
G = Kj -1 + e. Hence we can assume that n > max {6,k + 2}. Then we have
equality in (3.1), in particular v, (G) = (n+ &k —1)/2 = (k — 1)n/k. Tt follows that
n=06,k=3,v(G)=4,and so G=F. O

Theorem 3.8. A unicyclic graph G is a 2-Roman graph if and only if G is the
subdivided graph of another unicyclic graph (possibly with a cycle on two vertices).

Proof. If 13r(G) = 272(G), then by Proposition 2.3 we have n = 2v2(G), and so
v2(G) = n/2. By Corollary 2.6, G is the subdivided graph of another unicyclic
graph. Now assume that G is the subdivided graph of another unicyclic graph.
By Corollary 2.6, v2(G) = n/2 and by Proposition 2.3, v2r(G) = n. Therefore,
12r(G) = 272(G). [
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