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A NOTE ON k-ROMAN GRAPHS
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Abstract. Let G = (V,E) be a graph and let k be a positive integer. A subset D of
V (G) is a k-dominating set of G if every vertex in V (G) \D has at least k neighbours
in D. The k-domination number γk(G) is the minimum cardinality of a k-dominating set
of G. A Roman k-dominating function on G is a function f : V (G) −→ {0, 1, 2} such that
every vertex u for which f(u) = 0 is adjacent to at least k vertices v1, v2, . . . , vk with
f(vi) = 2 for i = 1, 2, . . . , k. The weight of a Roman k-dominating function is the value
f(V (G)) =

∑
u∈V (G) f(u) and the minimum weight of a Roman k-dominating function on G

is called the Roman k-domination number γkR (G) of G. A graph G is said to be a k-Roman
graph if γkR(G) = 2γk(G). In this note we study k-Roman graphs.
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1. INTRODUCTION

We consider finite, undirected, and simple graphs G with vertex set V (G) and edge
set E(G). The open neighborhood NG(v) of a vertex v consists of the vertices adjacent
to v, and NG[v] = NG(v)∪{v} is the closed neighborhood. The degree of v is |NG(v)|.
A leaf is a vertex of degree one. By ∆(G) = ∆ we denote the maximum degree of a
graph G. A graph is bipartite if its vertex set can be partitioned into two independent
sets. A d-regular graph is a graph with degree d for each vertex of G. A graph is called
a d-semiregular bipartite graph if its vertex set can be partitioned in such a way that
every vertex in one of the partite sets has degree d. The subdivision graph of a graph G
is the graph obtained from G by replacing each edge uv of G by a vertex w and edges
uw and vw. A graph G is called a cactus graph if each edge of G is contained in at
most one cycle. A unicyclic graph is a connected graph containing exactly one cycle.
A tree is a connected graph with no cycle. We denote by K1,t a star of order t+ 1.
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Let k be a positive integer. A subset D ⊆ V (G) is a k-dominating set of a graph
G if |NG(v) ∩D| ≥ k for every v ∈ V (G)\D. The k-domination number γk(G) is the
minimum cardinality among the k-dominating sets of G. The concept of k-domination
was introduced by Fink and Jacobson in [2].

A Roman k-dominating function on G is a function f : V (G) −→ {0, 1, 2} such
that every vertex u for which f(u) = 0 is adjacent to at least k vertices v1, v2, . . . , vk
with f(vi) = 2 for i = 1, 2, . . . , k. The weight of a Roman k-dominating function is
the value f(V (G)) =

∑
v∈V (G) f(v). The minimum weight of a Roman k-dominating

function on a graph G is called the Roman k-domination number γkR(G). Note that
if k ≥ ∆ + 1, then clearly γkR(G) = |V |. Hence we may assume in the whole paper
that k ≤ ∆. Also, if f : V (G) −→ {0, 1, 2} is a Roman k-dominating function on
G, then let (V0, V1, V2) be the ordered partition of V (G) induced by f , where Vi =
{v ∈ V (G) | f(v) = i} for i = 0, 1, 2. Note that there is a one to one correspondence
between the functions f : V (G) → {0, 1, 2} and the ordered partitions (V0, V1, V2) of
V (G). The Roman 1-domination number γ1R corresponds to the well-known Roman
domination number γR, which was given implicitly by Steward in [5] and by ReVelle
and Rosing in [4].

2. KNOWN RESULTS

We begin by listing some known results that will be useful here. The first one gives a
relation between the Roman k-domination and k-domination numbers for any graph.

Proposition 2.1 (Kämmerling and Volkmann [3]). For any graph G,

γk(G) ≤ γkR(G) ≤ 2γk(G).

According to [3], a graph G is said to be a k-Roman graph if γkR(G) = 2γk(G).
Kämmerling and Volkmann gave a necessary and sufficient condition for a graph to
be k-Roman.

Proposition 2.2 (Kämmerling and Volkmann [3]). A graph G is a k-Roman graph
if and only if it has a γkR-function f = (V0, V1, V2) with V1 = ∅.

The following two results give sufficient conditions for G to have γkR(G) = n.

Proposition 2.3 (Kämmerling and Volkmann [3]). If G is a graph with at most one
cycle and k ≥ 2, or G is a cactus graph and k ≥ 3, then γkR(G) = n.

Proposition 2.4 (Kämmerling and Volkmann [3]). If G is a graph of order n and
maximum degree ∆ ≥ 1, then γ∆R(G) = n.

In [2], Fink and Jacobson have established a lower bound on the k-domination
number of a graph.
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Theorem 2.5 (Fink and Jacobson [2]). If G has n vertices and m(G) edges, then

γk(G) ≥ n− m(G)

k
for k ≥ 1.

Furthermore, if m(G) 6= 0, then γk(G) = n−m(G)

k
if and only if G is a k-semiregular

bipartite graph.

Corollary 2.6 (Fink and Jacobson [2]). If G is a graph with n vertices and m(G) 6= 0
edges, then

γ2(G) = n− m(G)

2
.

if and only if G is the subdivision graph of another multigraph (graph with possibly
parallel edges).

3. MAIN RESULTS

We begin by giving a necessary condition for a graph to be k-Roman.

Theorem 3.1. If G is a k-Roman graph with k ≥ 2, then every vertex of G is adjacent
to at most k − 1 leaves.

Proof. Let G be a k-Roman graph with k ≥ 2. Suppose that v is a vertex of G
adjacent to at least k leaves. Let Lv be the set of leaves adjacent to v. Clearly, for
every γkR-function every leaf is assigned a positive value. Also, by Proposition 2.2,
G has a γkR-function f = (V0, V1, V2) with V1 = ∅. Hence f(w) = 2 for every leaf
w ∈ Lv. Now if f(v) 6= 0, then we can decrease the weight of f by assigning the value
1 instead of 2 to every leaf, contradicting the fact that f is a γkR-function. Thus
f(v) = 0. Since k ≥ 2, we can change f(w) = 2 to f(w) = 1 for every vertex w ∈ Lv

and f(v) = 0 to f(v) = 1. Clearly we obtain a Roman k-dominating function with
weight less than f(V (G)), a contradiction. Therefore, |Lv| ≤ k − 1.

We now give a characterization of k-Roman graphs when k = ∆.

Theorem 3.2. A graph G is ∆-Roman if and only if G is a bipartite regular graph.

Proof. Let G be a graph with γ∆R(G) = 2γ∆(G). Then by Proposition 2.4, γ∆R(G) =
n = 2γ∆(G), and so γ∆(G) = n/2. Let S be a minimum ∆-dominating set of G.
Clearly, since every vertex of V \S has ∆ neighbours in S, the set V \S is independent.
Now let m′ be the number of edges between S and V \S. Then m′ = ∆ |V \S| = ∆n/2.
Using the fact that ∆n ≥ 2 |E|, it follows that ∆n = 2 |E| = 2m′ = ∆n, and so
|E| = m′. Thus, every vertex of G has degree ∆ and hence S is also independent.
Therefore, G is a bipartite ∆-regular graph.

Conversely, assume that G is a bipartite ∆-regular graph. We know by Proposi-
tion 2.4 that γ∆R(G) = n. Thus, it suffices to show that γ∆(G) = n/2. By Propo-
sition 2.1, we have γ∆(G) ≥ n/2. The equality is obtained from the fact that every
partite set of G is a ∆-dominating set.
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Next we improve the upper bound in Proposition 2.1 for the class of trees. More-
over, we characterize all trees attaining this upper bound.

Theorem 3.3. Let T be a tree of order n ≥ 3 with ∆ (T ) ≥ k ≥ 2. Then

γkR(T ) ≤ 2γk(T )− k + 1,

with equality if and only if:

(i) k = 2 and T is the subdivision graph of another tree, or
(ii) k = n− 1 and T is a star.

Proof. We first prove the upper bound. Since m = n − 1 for trees, it follows from
Theorem 2.5 that for every tree T and every positive integer k we have

γk(G) ≥ (k − 1)n+ 1

k
.

Also, one can easily check that

(k − 1)n+ 1

k
≥ n+ k − 1

2
for 2 ≤ k ≤ ∆(T ) ≤ n− 1.

Now using the fact that γkR(T ) = n (by Proposition 2.3) we obtain

γk(G) ≥ (k − 1)n+ 1

k
≥ n+ k − 1

2
=
γkR(T ) + k − 1

2
,

and the bound is proved.
Now assume that γkR(T ) = 2γk(T ) − k + 1. Then we have equality throughout

the previous inequality chain. In particular, ((k − 1)n + 1)/k = (n + k − 1)/2 and
γk(G) = ((k − 1)n+ 1)/k. The first equality implies that k = 2 or k = n− 1. Now, if
k = 2, then γ2(G) = (n+ 1)/2 and by Corollary 2.6 we obtain (i). If k = n− 1, then
T is the star K1,n−1.

The converse is easy to show and we omit the details.

The following corollary is an immediate consequence of Theorem 3.3.

Corollary 3.4. There are no k-Roman trees for k ≥ 2.

Next we show that there are no k-Roman cactus graphs for k ≥ 3. We need the
following lemma, which can be found in [7] on p. 30.

Lemma 3.5. If G is a cactus graph on n vertices and m edges, then

2m ≤ 3n− 3.

Proposition 3.6. There are no k-Roman cactus graph for k ≥ 3.

Proof. Suppose that G is a k-Roman cactus graph for some k ≥ 3. By Proposition
2.3 and Theorem 2.5 we have n = γkR(T ) = 2γk(G) ≥ 2 (n−m/k). Hence kn ≤ 2m.
Now, by Lemma 3.5 we get kn ≤ 3n− 3, which is impossible since k ≥ 3.
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Next we improve the upper bound in Proposition 2.1 for unicyclic graphs. We
denote by K1,p + e the graph obtained from the star K1,p by adding an edge between
two leaves of K1,p. Let P5 be the path on five vertices labeled in order 1, 2, 3, 4, 5. Let
F be the graph obtained from P5 by adding a new vertex x and edges x2 and x4. Let
G1, G2 and G3 be three graphs obtained from P5 by adding the edges 24, 35 and 25,
respectively.

Theorem 3.7. Let G be a unicyclic graph and ∆ (G) ≥ k ≥ 3. Then

γkR(G) ≤ 2γk(G)− k + 1,

with equality if and only if either k ∈ {3, 4, n − 1} and G = K1,k + e, or k = 3 and
G = F.

Proof. We first note that n ≥ 4 since ∆ ≥ 3. If n = 4, then k = ∆ = 3, G = K1,3 + e
and γkR(G) = 2γk(G) − k + 1. If n = 5, then k ∈ {3, 4}. If k = 3, then clearly
G ∈ {G1, G2, G3,K1,4 + e} and γkR(G) < 2γk(G)− k+ 1. If k = 4, then G = K1,4 + e
and γkR(G) = 2γk(G) − k + 1. Also if n = k + 1, then k = ∆, G = K1,n−1 + e and
γkR(G) = 2γk(G)− k + 1.

Now let us suppose that n ≥ max {6, k + 2} . It can be seen that

(k − 1)n

k
≥ n+ k − 1

2
(3.1)

and the upper bound follows from Proposition 2.3 and Theorem 2.5.
Now assume that γkR(G) = 2γk(G) − k + 1. Clearly, if n ∈ {4, 5, k + 1}, then

G = K1,n−1 + e. Hence we can assume that n ≥ max {6, k + 2} . Then we have
equality in (3.1), in particular γk(G) = (n + k − 1)/2 = (k − 1)n/k. It follows that
n = 6, k = 3, γ3(G) = 4, and so G = F .

Theorem 3.8. A unicyclic graph G is a 2-Roman graph if and only if G is the
subdivided graph of another unicyclic graph (possibly with a cycle on two vertices).

Proof. If γ2R(G) = 2γ2(G), then by Proposition 2.3 we have n = 2γ2(G), and so
γ2(G) = n/2. By Corollary 2.6, G is the subdivided graph of another unicyclic
graph. Now assume that G is the subdivided graph of another unicyclic graph.
By Corollary 2.6, γ2(G) = n/2 and by Proposition 2.3, γ2R(G) = n. Therefore,
γ2R(G) = 2γ2(G).
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