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Finite-N Conformality and Gauge Coupling
Unification
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Abstract. In this talk I review some aspects of the idea that there is an infra-red conformal fixed-
point at the TeV scale. In particular, it is shown how gauge coupling unification can be achieved by
TeV unification in a semi-simple gauge group.

INTRODUCTION

Japan is the ideal place to talk about string theory since much of it originated here;
for example, as a postdoc in Chicago my mentor Yoichiro Nambuexplained to me in
1969(!) the relevance of two-dimensional conformal invariance.

In particle phenomenology, the impressive success of the standard theory based on
SU(3)× SU(2)×U(1) has naturally led to the question of how to extend the theory
to higher energies? One is necessarily led by weaknesses andincompleteness in the
standard theory. If one extrapolates the standard theory asit stands one finds (approxi-
mate) unification of the gauge couplings at∼ 1016 GeV. But then there is thehierarchy
problem of how to explain the occurrence of the tiny dimensionless ratio∼ 10−14 of
the weak scale to the unification scale. Inclusion of gravityleads to asuper-hierarchy
problem of the ratio of the weak scale to the Planck scale,∼ 1018 GeV, an even tinier
∼ 10−16Although this is obviously a very important problem about which conformality
by itself is not informative, we shall discuss first the hierarchy rather than the super-
hierarchy.

There are four well-defined approaches to the hierarchy problem:

• 1. Supersymmetry
• 2. Technicolor.
• 3. Extra dimensions.
• 4. Conformality.

Supersymmetry has the advantage of rendering the hierarchy technically natural, that
once the hierarchy is put in to the lagrangian it need not be retuned in perturbation
theory. Supersymmetry predicts superpartners of all the known particles and these are
predicted to be at or below a TeV scale if supersymmetry is related to the electroweak
breaking. Inclusion of such hypothetical states improves the gauge coupling unification.
On the negative side, supersymmetry does not explain the origin of the hierarchy.
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Technicolor postulates that the Higgs boson is a composite of fermion-antifermion
bound by a new (technicolor) strong dynamics at or below the TeV scale. This obviates
the hierarchy problem. On the minus side, no convincing simple model of technicolor
has been found.

Extra dimensions can have a range as large as 1(TeV)−1 and the gauge coupling unifica-
tion can happen quite differently than in only four spacetime dimensions. This replaces
the hierarchy problem with a different fine-tuning questionof why the extra dimension
is restricted to a distance corresponding to the weak interaction scale.

Conformality is inspired by superstring duality and assumes that the particle spectrum
of the standard model is enriched such that there is a conformal fixed point of the
renormalization group at the TeV scale. Above this scale thecoupling do not run so
the hierarchy is nullified.

Conformality is the approach followed in this paper. We shall systematicaly analyse
the compactification of the IIB superstring onAdS5× S5/Γ whereΓ is a discrete non-
abelian group.

The duality between weak and strong coupling field theories and then between all
the different superstring theories has led to a revolution in our understanding of strings.
Equally profound, is the AdS/CFT duality which is the subject of the present article.
This AdS/CFT duality is between string theory compactified on Anti-de-Sitter space
and Conformal Field Theory.

Until very recently, the possibility of testing string theory seemed at best remote.
The advent ofAdS/CFTs and large-scale string compactification suggest this point of
view may be too pessimistic, since both could lead to∼ 100TeV evidence for strings.
With this thought in mind, we are encouraged to buildAdS/CFT models with realistic
fermionic structure, and reduce to the standard model below∼ 1TeV .

Using AdS/CFT duality, one arrives at a class of gauge field theories of special recent
interest. The simplest compactification of a ten-dimensional superstring on a product
of an AdS space with a five-dimensional spherical manifold leads to anN = 4 SU(N)
supersymmetric gauge theory, well known to be conformally invariant[1]. By replacing
the manifoldS5 by an orbifoldS5/Γ one arrives at less supersymmetries corresponding
toN =2, 1 or 0 depending [2] on whetherΓ⊂ SU(2), SU(3), or 6 ⊂SU(3) respectively,
whereΓ is in all cases a subgroup ofSU(4)∼ SO(6) the isometry of theS5 manifold.

It was conjectured in [3] that suchSU(N) gauge theories are conformal in theN → ∞
limit. In [4] it was conjectured that at least a subset of the resultant nonsupersymmetric
N = 0 theories are conformal even for finiteN. Some first steps to check this idea were
made in [5]. Model-building based on abelianΓ was studied further in [6, 7, 8], arriving
in [8] at anSU(3)7 model based onΓ = Z7 which has three families of chiral fermions,
a correct value for sin2θ and a conformal scale∼ 10 TeV.

The case of non-abelian orbifolds bases on non-abelianΓ has not previously been
studied, partially due to the fact that it is apparently somewhat more mathematically so-
phisticated. However, we shall show here that it can be handled equally as systematically
as the abelian case and leads to richer structures and interesting results.

In such constructions, the cancellation of chiral anomalies in the four-dimensional
theory, as is necessary in extension of the standard model (e.g. [9, 10]), follows from



the fact that the progenitor ten-dimensional superstring theory has cancelling hexagon
anomaly[11]. It offers a novel approach to family unification[12, 13].

We consider all non-abelian discrete groups of orderg < 32. These are described in
detail in [14, 15]. There are exactly 45 such non-abelian groups. Because the gauge
group arrived at by this construction[6] is⊗iSU(Ndi) wheredi are the dimensions of
the irreducible representations ofΓ, one can expect to arrive at models such as the Pati-
SalamSU(4)×SU(2)×SU(2) type[16] by choosingN = 2 and combining two singlets
and a doublet in the4 of SU(4). Indeed we shall show that such an accommodation of
the standard model is possible by using a non-abelianΓ.

The procedures for building a model within such a conformality approach are: (1)
ChooseΓ; (2) Choose a proper embeddingΓ ⊂ SU(4) by assigning the components of
the4 of SU(4) to irreps ofΓ, while at the same time ensuring that the6 of SU(4) is real;
(3) ChooseN, in the gauge group⊗iSU(Ndi). (4) Analyse the patterns of spontaneous
symmetry breaking.

In the present study we shall chooseN = 2 and aim at the gauge groupSU(4)×
SU(2)× SU(2). To obtain chiral fermions, it is necessary[6] that the4 of SU(4) be
complex4 6= 4∗. Actually this condition is not quite sufficient to ensure chirality in the
present case because of the pseudoreality ofSU(2). We must ensure that the4 is not just
pseudoreal.

This last condition means that many of our 45 candidates forΓ do not lead to chiral
fermions. For example,Γ = Q2n ⊂ SU(2) has irreps of appropriate dimensionalities for
our purpose but it will not sustain chiral fermions underSU(4)×SU(2)×SU(2)because
these irreps are all, likeSU(2), pseudoreal.1 Applying the rule that4 must be neither real
nor pseudoreal leaves a total of only 19 possible non-abelian discrete groups of order
g ≤ 31. The smallest group which avoids pseudoreality has orderg = 16 but gives only
two families. The technical details of our systematic search will be postponed to a future
publication. Here we shall present only the simplest interesting non-abelian case which
hasg = 24 and gives three chiral families in a Pati-Salam-type model[16].

Before proceeding to the details of the specificg = 24 case, it is worth noting that
the CFT it exemplifies should be free of all divergences if theconformality conjecture is
correct and be UV finite. Further the theory is originating from a superstring theory
in a higher-dimension (ten) and contains gravity[17, 18, 19] by compactification of
the higher-dimensional graviton already contained in thatsuperstring theory. In the
CFT as we derive it in d=4 flat spacetime, gravity is absent because we have not kept
these graviton modes - of course, their influence on high-energy physics experiments is
generally completely negligible unless the compactification scale is “large”[20].

To motivate our model it is instructive to comment on the choice of Γ and on the
choice of embedding.

If we embed only four singlets ofΓ in the 4 of SU(4) then this has the effect of
abelianizingΓ and the gauge group obtained in the chiral sector of the theory is SU(N)q.
These cases can be interesting but have already been studied[6, 7]. Thus, we require at
least one irrep ofΓ to havedi ≥ 2 in the embedding.

1 Note that were we usingN ≥ 3 then a pseudoreal4 would give chiral fermions.



The onlyΓ of orderg ≤ 31 with a4 is Z5×̃Z4 and this embedding leads to a non-
chiral theory. This leaves only embeddings with two singlets and a doublet, a triplet and
a singlet or two doublets.

The third of these choices leads to richer structures for loworderΓ. Concentrating on
them shows that of the chiral models possible, those from groups of low order result in
an insufficient number (below three) of chiral families.

The first group that can lead to exactly three families occursat orderg = 24 and
is Γ = Z3×Q whereQ(≡ Q4) is the group of unit quarternions which is the smallest
dicyclic groupQ2n.

There are several potential models due to the different choices for the4 of SU(4) but
only the case4 = (1α,1′

,2α) leads to three families so let us describe this in some detail:
SinceQ×Z3 is a direct product group, we can write the irreps asRi ⊗αa whereRi is

a Q irrep andαa is aZ3 irrep. We writeQ irreps as 1, 1
′
, 1

′′
, 1

′′′
, 2 while the irreps of

Z3 are all singlets which we callα,α2,α3 = 1. ThusQ×Z3 has fiveteen irreps in all and
the gauge group will be of Pati-Salam type forN = 2.

If we wish to break all supersymmetry, the4 may not contain the trivial singlet ofΓ.
Due to permutational symmetry among the singlets it is sufficiently general to choose4
= (1αa1, 1

′αa2, 2αa3) with a1 6= 0.
To fix the ai we note that the scalar sector of the theory which is generated by the

6 of SU(4) can be used as a constraint since the6 is required to be real. This leads to
a1+a2 =−2a3(mod 3). Up to permutations in the chiral fermion sector the most general
choice isa1 = a3 =+1 anda2 = 0. Hence our choice of embedding is

4= (1α, 1
′
, 2α) (1)

with
6= (1

′
α, 2α, 2α2, 1

′
α2) (2)

which is real as required.
We are now in a position to summarize the particle content of the theory. The fermions

are given by
∑
I

4×RI (3)

where theRI are all the irreps ofΓ = Q×Z3. This is:

3

∑
i=1

[(21αi,22αi)+(23αi,24αi)+(22αi,21αi)+(24αi,23αi)+(4αi,4αi)]

+
3

∑
i=1

4

∑
a=1

[(2aαi,2aαi+1)+(2aαi,4αi+1)+(4̄αi,2aαi+1)] (4)

It is convenient to represent the chiral portions of these ina given diagram (see Figure
1).

The scalars are given by
∑
I

6×RI (5)



and are:

3

∑
i=1

3

∑
j=1( j 6=i)

[(21αi,22α j)+(22αi,21α j)+(23αi,24α j)+(24αi,23α j)+(22αi,21αi)+(24αi,23αi)]

+
3

∑
i=1

3

∑
j=1( j 6=i)

{
4

∑
a=1

[(2aαi,4α j)+ (̄4αi,2aα j)]+(4αi, 4̄αi)} (6)

which is easily checked to be real.
The gauge groupSU(4)3× SU(2)12 with chiral fermions of Eq.(4) and scalars of

Eq.(6) is expected to acquire confromal invariance at an infra-red fixed point of the
renormalization group, as discussed in [4].

To begin our examination of the symmetry breaking we first observe that if we break
the threeSU(4)s to the totally diagonalSU(4), then chirality in the fermionic sector is
lost. To avoid this we breakSU1(4) completely and then breakSUα(4)×SUα2(4) to its
diagonal subgroupSUD(4). The first of these steps can be achieved with VEVs of the
form [(41,2bαk)+h.c.] where we are free to chooseb, but k must be 1 or 2 since there
are no(41,2bαk=0) scalars. The second step requires an

SUD(4) singlet VEV from (4α,4α2) and/or (4α, 4α2). Once we make a choice forb
(we takeb = 4), the remaining chiral fermions are, in an intuitive notation:

∑3
a=1

[

(2aα ,1,4D)+(1,2aα−1,4D)
]

which has the same content as as a three family Pati-Salam model, though with a separate
SUL(2)×SUR(2) per family.

To further reduce the symmetry we must arrange to break to a single SUL(2) and
a singleSUR(2). This is achieved by modifying step one whereSU1(4) was broken.
Consider the block diagonal decomposition ofSU1(4) into SU1L(2)× SU1R(2). The
representations(2aα,41) and(2aα−1,41) then decompose as(2aα,41)→ (2aα,2,1)+
(2aα,1,2) and (2aα−1,41) → (2aα−1, ,2,1)+ (2aα−1,1,2). Now if we giveV EVs of
equal magnitude to the(2aα, ,2,1), a = 1,2,3, and equal magnitudeV EVs to the

(2aα−1,1,2) a = 1,2,3, we breakSU1L(2)×
3
∏

a=1
SU(2aα) to a singleSUL(2) and we

break SU1R(2)×
3
∏

a=1
SU(2aα) to a singleSUR(2). Finally, VEV s for (24α,2,1) and

(24α,1,2) as well as(24α−1,2,1) and (24α−1,1,2) insures that bothSU(24α) and
SU(24α−1) are broken and that only three families remain chiral. The final set of chiral
fermions is then 3[(2,1,4)+(1,2, 4̄)] with gauge symmetrySUL(2)×SUR(2)×SUD(4).

To achieve the final reduction to the standard model, an adjoint VEV from (4α,4α2)
and/or (4α,4α2) is used to breakSUD(4) to theSU(3)×U(1), and a right handed doublet
is used to breakSUR(2).

While this completes our analysis of symmetry breaking, it is worthwhile noting the
degree of constraint imposed on the symmetry and particle content of a model as the
number of irrepsNR of the discrete groupΓ associated with the choice of orbifold
changes. The number of guage groups grows linearly inNR, the number of scalar



irreps grows roughly quadratically withNR, and the chiral fermion content is highly
Γ dependent. If we require the minimalΓ that is large enough for the model generated
to contain the fermions of the standard model and have sufficient scalars to break the
symmetry to that of the standard model, thenΓ = Q× Z3 appears to be that minimal
choice[21].

Although a decade ago the chances of testing string theory seemed at best remote,
recent progress has given us hope that such tests may indeed be possible in AdS/CFTs.
The model provided here demonstrates the standard model canbe accomodated in these
theories and suggests the possibility of a rich spectrum of new physics just around the
TeV corner.

GAUGE COUPLING UNIFICATION

There is not space here to describe many technical details which are, however, available
in the published papers cited at the end of this talk. But I would like to emphasize one
success of the approach which involves the unification of gauge couplings [7, 22]. Recall
that the successful such unification is one primary reason for belief in supersymmetric
grand unificatione.g. [23]. That argument is simple to state: The RG equations are:

1
αi(MG)

=
1

αi(MZ)
−

bi

2π
ln

(

MG

MZ

)

(7)

Using the LEP values at the Z-pole asα3 = 0.118± 0.003, α2 = 0.0338 andα1 =
5
3αY = 0.0169 (where the eroors onα1,2 are less than 1%) and the MSSM values
bi = (63

5,1,−3) leades toMG = 2.4×1016 GeV and thepredictiion that sin2θ = 0.231
in excellent agreement with experiment.

In the present approach the three gauge couplingsα1,2,3 run up to∼ 1TeV where
they freeze and embed in a larger (semi-simple) gauge group which containsSU(3)×
SU(2)×U(1).

I will give two examples, the first based on the abelian orbifold S5/Z7 and the second
based on the non-abelian orbifoldS5/(D4×Z3).

In the first, abelian, case we choose N=3,Γ = Z7 and the unifying group is therefore
SU(3)7[7, 8]. It is natural to accommodate oneSU(3) factor (color) into one of the
sevenSU(3) factors,SU(2)L as a diagonal subgroup of two and to identify the correctly
normalizedU(1) as the diagonal subgroup of the remaining fourSU(3) factors. This
implies thatα2/α1 = 2 and consequently:

sin2 θ =
αY

α2+αY
=

3/5
2+3/5

=
3
13

= 0.231 (8)

There is a small correction for the running betweenMZ and the TeV scale but this is
largely compensated by the two-loop correction and the agreement remains as good as
for SUSY-GUTS. This is strong encouragement for the conformality approach.



In the second, non-abelian, example we useΓ = Z3×D4 and choose N=2 to arrive at
a unification based on the Pati-Salam groupSU(4)C ×SU(2)L ×SU(2)R instead of the
trinification SU(3)3. This is possible because this non-abelianΓ has two-dimensional
representations as well as one-dimensional ones.

By the way, the dihedral groupD4 consists of eight rotations which leave a square
invariant: two of the rotations are flips about two lines which bisect the square and the
other four are rotations throughπ/2,π,3π/2 and 2π about the perpendicular to the plane
of the square.

In this case the low energy gauge group is thusSU(4)3 × SU(2)12. We embed
SU(3)color in r of the SU(4) groups where r = 1 or 2 because r = 3 leads to loss of
chirality. At the same time theSU(2)L andSU(2)R are respectively embedded in diago-
nal subgroups of p and q of the twelveSU(2) factors where p + q = 12.

Since p and q are necessarily integers it is not at all obviousa priori that the value of
sin2θ can be consistent with experiment.

The values of the respective couplings at the conformality/unification scale are now:

α−1
2L (MU) = pα−1

U (9)

α−1
2R (MU) = qα−1

U (10)

α−1
4C (MU) = 2rα−1

U (11)

The hypercharge coupling is related by

α−1
1 =

2
5

α−1
4C +

3
5

α−1
2R (12)

Definingy = ln(MU/MZ) we then find the general expression for sin2 θW (MZ) to be:

sin2 θW (MZ) =
p− (19/12π)yαU

p+q+ 4
3r+(11/6π)yαU

(13)

Here

α−1
S (MZ) = 2rα−1

U −
7
2π

y (14)

Using these formulas andαS(MZ) ∼ 0.12 we find for the natural choices (for model
building) p = 4 and r = 2 that

sin2θW (MZ)≃ 0.23 (15)

again in excellent agreement with experiment.

It is highly non-trivial that again the gauge coupling unification works in this case
which, according to the lengthy analysis in the second paperof [21], is the unique
accommodation of the standard model with three chiral families for all non-abelianΓ
with orderg ≤ 31.



DISCUSSION

The successful derivation of sin2 θW (MZ) ≃ 0.23 from both the abelian orbifold (based
on 333-trinification) and the non-abelian orbifold (based on 422-Pati-Salam unification)
is strong support for further investigation of the detailedphenomenology arising from
the approach.

More generally, the conformality provides a rigid organizing principle which strongly
constrains all couplings and parameters in the low-energy lagrangian. Breaking of con-
formal symmetry clearly needs much more study: so far, soft breaking has been con-
sidered mainly because is is technically easier but spontaneous breaking would be more
satisfactory. One can even speculate that nonsupersymmetric N = 0 theories could have
a “flat" direction. After all, if any such theory is finite in the UV, it likely possesses
non-renormalization theorems derivable from a symmetry different from global super-
symmetry.

In any case, a conformal IR fixed point at the TeV scale necessitates new particles (of
spins 1, 1/2 and 0) which await discovery in that energy regime.
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