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Neural Machine Translation for Multimodal
Interaction

Koel Dutta Chowdhury

Abstract
Typically it is seen that multimodal neural machine translation (MNMT) systems
trained on a combination of visual and textual inputs produce better translations
than systems trained using only textual inputs. The task of such systems can be
decomposed into two sub-tasks: learning visually grounded representations from
images and translation of the textual counterparts using those representations. In a
multi-task learning framework, translations are generated from an attention-based
encoder-decoder framework and grounded representations that are learned from pre-
trained convolutional neural networks (CNNs) for classifying images.

In this thesis, I study different computational techniques to translate the mean-
ing of sentences from one language into another considering the visual modality
as a naturally occurring meaning representation bridging between languages. We
examine the behaviour of state-of-the-art MNMT systems from the data perspec-
tive in order to understand the role of the both textual and visual inputs in such
systems. We evaluate our models on the Multi30k, a large-scale multilingual mul-
timodal dataset publicly available for machine learning research. Our results in the
optimal and sparse data settings show that the differences in translation system
performance are proportional to the amount of both visual and linguistic informa-
tion whereas, in the adversarial condition the effect of the visual modality is rather
small or negligible. The chapters of the thesis follow a progression starting with us-
ing different state-of-the-art MMT models for incorporating images in optimal data
settings to creating synthetic image data under the low-resource scenario and ex-
tending to addition of adversarial perturbations to the textual input for evaluating
the real contribution of images.
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Chapter 1

Introduction

While the holy grail of full natural language understanding still remains a distant

dream in artificial intelligence, progress is being made in developing machine learning

algorithms to comprehend what humans are talking or writing in natural language.

Although humans can easily master a language naturally, it remains one of the

most intricate task for a computer to be able to understand the ambiguity of human

language. Natural language signals – spoken or written – are in constant evolution in

line with the continuous nature of the visual world, making it difficult for a machine

to perform reasonable inferences from these natural language utterances.

Previous studies in human cognition has well-established the relation between

human language and underlying concepts and acquisition (Pulvermüller, 2005). The

precise role of perceptual phenomena and sensory-motor signals in language acqui-

sition and representation has been empirically shown to aid the learning process

of human language learners (Bornstein et al., 2004; Landau et al., 1998). Taking

inspiration from such cognitive and behavioral neuroscientific studies, various NLP

downstream tasks study the problem of learning word meanings from small scale

or synthetic multi-modal data. For example, acoustic signals are used to identify

accents, allowing MT systems to effectively translate regionalisms and to adapt to

demographic and geographical language specificity. Like speech, images are also

harnessed to pair linguistic contexts with perceptual reality. This Masters project
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aims to explore computational techniques to integrate image signals in order to im-

prove NLP tasks – primarily those involving language generation, such as Machine

Translation (MT). The chapters of the thesis follow a progression starting with us-

ing image in aligned and sparse data setting and arriving finally to disjoint settings

in order to understand the actual role of visual modalities in multimodal machine

translation (MMT) systems.

Chapter 1 introduces the topic and contributions of the thesis.

Chapter 2 discuss the related work and technical background detail.

Chapter 3 focuses on incorporating visual representations in an aligned set-

tings with a combination of a Convolutional Neural Network to extract visual

features and a Recurrent Neural Network to learn sentence embeddings.

Chapter 4 applies the techniques described in Chapter 3 to improve machine

translation performance in sparse data settings, where no parallel data is

available.

Chapter 5 extends the investigations of Chapter 3 and Chapter 4 to the ad-

versarial setup, breaking the template that a multimodal system normally

relies on to learn.

Chapter 6 outlines the findings and future research directions.

For MMT which is our focus, the use of images was first addressed in the form

of a shared benchmark task (Specia et al., 2016a). Since that first introduction,

there has been a great deal of work on MMT where the objective is to investi-

gate if images can potentially help the task of translating an image description into

a target language, given the description in a source language and the associated

image as input. For example, an additional image can help to arrive at the cor-

rect translation for the word sense of “bank” as a financial institution compared to

“bank” as the side of a river or the turning of an aeroplane. However, utilising im-

ages for linguistics units involves learning visually grounded representations (Kiros
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et al., 2014b; Socher et al., 2014). Chapter 2 describes the general framework and

background literature of learning visually-grounded sentence representations using

different feature-extraction pipelines that allows machines to learn feature repre-

sentations from raw input, which are more or less generally applicable for various

downstream multimodal tasks. Chapter 3 describes the gains of using such visual

representations. Our main interest and contribution here is the re-use of general

techniques to learn linguistic representations using Recurrent Neural Networks and

further develop ensemble models to contrast the results obtained using off-the-shelf

text-only machine translation models.

The second contribution of the thesis is the use of visual signals for machine

translation in a low-resource learning scenarios. Approaches in this direction are

described in Chapter 4. We show that visual modality can be used as a pivot to

find possible translations for words when there is no data available. More specifi-

cally, we generate synthetic aligned set in a low-resource language and provide an

empirical evidence that the performance of machine translation on lower-resource

languages can be improved by jointly training together with visual modality. Such

an approach can be adopted to overcome the problems of data sparsity and more

importantly, have practical implications for efficiently collecting image-captions in

different languages to further address the problem of lexical ambiguity.

In addition to the recent development in using linguistic-visual multimodal repre-

sentations for translation tasks, we further examine the benefit of using an additional

modality for MMT in a broader sense. All existing previous work in MMT has mostly

shown gains in terms of system performance by employing visual context over text-

only NMT however, the inner-working of these systems still needs to be determined.

In general, neural network (NN) models for language processing are often criticised

for being uninterpretable black boxes (Benítez et al., 1997), namely that it is difficult

to feed a trained NN model with an input and examine the network to determine

why such input generates a particular output (Kádár et al., 2017). Addressing this

issue is a non-trivial endeavour, even though studies on post-hoc interpretability has

3



enabled some insight into the inner-workings of NN models by examining specific

examples or by learning grounded representations (Lipton, 2016). Thus, our last

contribution in Chapter 5 explores the benefit of using visually grounded represen-

tations, but in an adversarial setting. Here we consider a scenario where the image

and sentence datasets are not aligned. We generated adversarial captions using a

set of heuristics to ensure structural similarity with respect to the original captions

but contradictory semantics for testing the robustness of MMT systems. Further-

more, we also introduce a method of using the explicit alignments across modalities

to strengthen MMT models against textual adversaries. We find that even though

this technique requires an additional external data source, it consistently improves

machine translation performance.

Lastly, in our final chapter, we not only briefly summarise our main findings,

but also point to some of the limitations of our work and towards future directions.

To improve performance and understanding of multimodal learning, we see several

avenues for future research which are outlined.

Each of the following Chapters has been previously published. They are included

in this thesis with modifications of re-aligning and re-sizing a few figures and adding

some more illustrative examples.

Chapter 3 has been published as Calixto, I., Dutta Chowdhury, K, Liu, Q (2017).

DCU System Report on theWMT 2017 multimodal Machine Translation Task.

WMT 2017, (EMNLP 2017), Copenhagen, Denmark.

Chapter 4 has been published as Dutta Chowdhury, K., Hasanuzzaman, M., and

Liu, Q (2018). Multimodal Neural Machine Translation for Low-resource Lan-

guage Pairs using Synthetic Data. In Proceedings of the ACL 2018 workshop

on deep learning approaches for low resource natural language processing, Mel-

bourne, Australia.

At the time of completing the thesis, part of the work in Chapter 5 has been

submitted to a conference and is under-review.
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Chapter 2

Background

In this chapter, we provide some background knowledge on two key research areas,

namely Machine Translation and Computer Vision, which are pertinent to our re-

search. After having mentioned several concepts which fall under these two areas,

such as the encoder-decoder framework and VGG/ResNet, a special focus will be

placed on Multimodal Machine Learning that falls within the scope of this project.

The first concrete idea of using machines to perform the translation process

started with the inaugural work on mechanical dictionaries (Hutchins, 2004). Subse-

quently, Georges Artsrouni designed a machine to store source language lexicons and

their corresponding translations in several languages on a memory band that could

be retrieved afterwards (Daumas, 1965). Petr Trojanskij proposed a multilingual

translation system that take advantage of the abstract Esperanto-based symbols

to encode grammatical functions between languages (Daumas, 1965). This work

laid the basic foundations for interlingual representations or as popularly termed

–interlingua– in translation. This sets out to use an abstract intermediary layer be-

tween two natural languages to be translated in order to make the translation process

more generalized across different language combinations. Later in the 1950’s and

1960’s rule-based Machine Translation emerged as an active field of research. Some

of the notable works include direct translation.– the task of translation between a

specific source and target language using rules with only small amount of structural
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analysis. King and Wieselman (1956)’s seminal work to handle lexical ambiguities

by applying word-selection-rules based on the surrounding context words is an ex-

ample of this approach. Another popular approach is the interlingua-based approach

that solves the problem of having to write new rules for every possible language pair.

This is achieved by generalising the source language input to a generic interlingua

representation that is language independent. This can then be translated via rules

into the target language. This can also be seen as the bridge between the brute-

force nature of the direct translation models and the more instructive interlingua

models that handles the lexical ambiguity in the source sentence by pre-analysing

its syntax and semantics structure before finally translating it into the target lan-

guage (Hutchins, 2007). However, owing to the complexity of such process needed

to transfer a phrase into an interlingua and back, they are highly susceptible to

increasing the number of errors.

However the concept of encoding into and decoding from an interlingua did

not receive its due until the advent of modern multilingual NMT systems in the

form of multilingual representations. A major change in MT research came into

effect in 1990’s when a group of researchers at IBM developed a statistical machine

translation model, popularly known as the IBM model (Brown et al., 1990). Unlike

rule-based MT, these models did not come attached with immense amount of hand-

coded rules creation and essentially consisted of only two modules – language model

and translation model. Following this, Koehn et al. (2007a) developed a phrase-based

SMT (PBSMT) systems that performed phrase-based modeling.

2.1 Neural Machine Translation

As neural network based components were introduced to SMT, the early 2010’s saw

the emergence of the first Neural Machine Translation (NMT) systems consisting

of jointly-trained neural networks capable of taking a source sentence as input and

translating it into a target sentence. The first modern approach to neural language
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models (NLMs), was first proposed by Bengio et al. (2003) and that was followed by

other notable studies such as Morin and Bengio (2005); Mnih and Hinton (2009);

Mnih and Teh (2012) that laid down the foundation stones for current neural archi-

tectures. Their work presents a feed-forward multilayer perceptron with continuous

word-embeddings, a single hidden layer and a softmax output layer. Given the previ-

ous fixed number of words as context over a training corpus – n-gram language model

– the model is trained with stochastic gradient descent (Cauchy, 1847) through the

backpropagation algorithm (Rumelhart et al., 1985) to maximize the probability of

the target word. The function of the aforementioned was to combat the “curse” of

dimensionality in language modeling. As a natural development, subsequent MT

systems (Schwenk, 2007; Vaswani et al., 2013; Luong et al., 2015) started adopting

n-gram language models alongside traditional n-gram LMs and generally obtained

improvements in terms of system performance. This inspired the birth of the Neu-

ral Machine Translation (NMT) framework with the goal of redesigning the entire

MT pipeline in a way such that different modules i.e, translation models, language

models, and reordering models, require no separate tuning modules.

Neural machine translation is essentially a recurrent language model that condi-

tions on the source language sentence. To put this formally, NMT aims to directly

model the conditional probability p(y|x) in order to translate a sentence in a source

language, x1,. . .,xn into a sentence in a target language, y1,. . .,ym. It does so using

the sequence-to-sequence framework also known as encoder-decoder (Kalchbrenner

and Blunsom, 2013; Sutskever et al., 2014; Cho et al., 2014c).

At a high level, NMT models consist of two recurrent language models, i.e. the

encoder and the decoder. In the encoding step, the RNN simply computes a variable

length representation s for each source sentence without making any prediction.

Subsequently, based on that source representation, the target sentence predicts the

next words in the decoding step. The training objective for NMT is formulated as:

J =
∑

(x,y)∈D
− log p(y|x) (2.1)

7



where D refers to the parallel training corpus of source and target sentence pairs

(x, y).

2.1.1 Encoder-Decoder Framework

The encoder neural network encodes a sequence of N tokens x1...n in the source

language with recurrent neural networks (RNN) into a fixed-length vector represen-

tation. The RNN hidden state is updated at each time step (i.e, for each element

of the sequence) and, consequently, the output of the final hidden state contains

information about the whole sequence. Formally, the encoder RNN implemented as

a bi-directional RNN transforms the sentence to a sequence of annotations. Each

token in the source language input sequence can be represented by a concatenation

of the forward and backward hidden state vectors:

hi = [
−→hi ;
←−hi ] (2.2)

where hi is the annotation of token xi.

Based on the source annotations, the decoder recurrent neural network (Bah-

danau et al., 2015) outputs a sequence of words in the target language. Tokens

in the decoder are represented by a one-hot vector yk, which is mapped into an

embedding ek through a learned matrix Ek:

ek = yk · Ey (2.3)

The use of fixed-length context vector is a bottleneck in the encoder-decoder frame-

work. To improve upon this model Bahdanau et al. (2015) introduced an attention

mechanism, which lets the decoder learn to focus over a specific range of the input

sequence. It allows the decoder to have access to the previously predicted token

yk−1, the previous decoder state dk−1, and a context vector ck calculated over the

8



encoder hidden states at each time-step t:

dk = RNN(dk−1,yk−1, ek) (2.4)

To initialize the decoder RNN d-1, a nonlinear transform of the mean of the

encoder states with learned parameter Winit is used:

d-1 = tanh(Winit ·
1

N

N∑
i

hi) (2.5)

The context vector ck is a weighted sum over the encoder hidden states, where

N denotes the length of the source sentence and each vector is weighted by the

attention weight αki:

ck =
N∑
i=1

αkihi (2.6)

The αki is the normalised alignment matrix between each encoder hidden state

vectors h1...n and the decoder hidden state while producing the kth token in the

translation. They are computed by a feed-forward neural network, where va, Wa

and Ua are learned parameters:

αki =
exp(eki)∑N
j=1 exp(eji)

(2.7)

eki = vatanh(Wadk−1 + Uahi) (2.8)

From the hidden state dk the network predicts the conditional distribution of the

next token yk, given a target language embedding ek−1 of the previous token, the

current hidden state dk, and the calculated context vector ck.

The final decoding is passed through a softmax layer to predict the probability

of the next word in the sequence over the output vocabulary. Figure. 2.1 shows an
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Encoder-Decoder Architectures 1.

p(yk|y<k, c) = softmax(tanh(ek−1 + dk + ck)) (2.9)

The translation model is trained to minimise the negative log likelihood of predicting

the target language output:

JNLL(θ, ϕ
t) = −

∑
k

log p(yk|y<k, x) (2.10)

Figure 2.1: Neural machine translation – example of an Encoder Decoder ar-
chitecture for translating a source sentence “He loved to eat” into a target sentence
“Er liebte zu essen”.

As is common to most machine learning methods, considerable effort has been

made to train more complex networks such as long short-term memory (LSTM)

(Hochreiter and Schmidhuber, 1997; Gers et al., 1999) and gated recurrent unit net-

works (GRU) (Cho et al., 2014b) recurrent network variants which has shown to

outperform traditional Elman networks in practice. We opted for GRUs in Chap-

ters 3, 4 and 5.

Gated Recurrent Neural Networks: Gated Recurrent Unit networks introduce

a particular memory structure, which adds an inductive bias to the network that

facilitates the retention of information over multiple time steps. Intuitively GRUs
1Image source-https://towardsdatascience.com/nlp-sequence-to-sequence-networks-part-2-

seq2seq-model-encoderdecoder-model-6c22e29fd7e1
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can be seen as a sequential computer with soft-continuous read-write memory oper-

ations: the reset-gate rt decides how much of each component of the previous state

is relevant to be mixed in with the current input, resulting in the current candi-

date memory state ~ht. The output-gate then overwrites the previous state with the

current candidate.

zt = σ(Wzwt + Uzht−1 + bz) (update-gate)

rt = σ(Wrwt + Urht−1 + br) (reset-gate)

~ht = tanh(Whwt + rt ⊙Uhht−1) (memory content)

ht = (1− zt)⊙ ht−1zt ⊙ ~ht (hidden state)

As the attention mechanism did exceedingly well in terms of performance of

RNN-based NMT systems, an alternative model came about that does away with

RNNs completely by replacing them with several stacks of self-attention over the

source and target sequence. This is known as transformer, whose architecture is

best described in the original paper by Vaswani et al. (2017).

2.2 Convolutional Neural Networks

Convolutional Neural Network (CNNs) are multi-layered perceptrons inspired by the

biological processes in the connectivity pattern neurons of an animal’s visual cortex

to analyse visual imagery. These networks learn a hierarchy of blocks of image

filters with learnable weights, receptive fields and pre-defined pooling operations

for dimensionality reduction (LeCun et al., 1995). Contrary to the simple feed-

forward network, CNNs consist of a set of distinctive layers such as pooling and

convolutional. Although CNNs initially were only used to various computer vision

tasks (Donahue et al., 2014; Girshick et al., 2014; Oquab et al., 2014), they are

now successfully applied to many different tasks (Kalchbrenner and Blunsom, 2013)
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where a convolutional neural network (CNN) is used as an encoder with an additional

recurrent neural network (RNN) layer as the decoder.

We follow Gu et al. (2018) to describe the components that constitutes a CNN

architecture. A convolutional layer is made up of a set of kernels or filters (these

terms are used interchangeably) that are used to produce different feature maps.

Each of these filters has its own set of weights that are shared, that is to say, each

filter is required to apply the same operations in different parts of an image, when

computing a feature map. One complete convolutional layer is made up different

feature maps computed using a bank of n1 filters. Each filter detects a particular

feature value at every location on the input. The output Y i
l of layer l consists of

n1
l feature maps of size n2

l × n3
l. The i-th feature map, denoted Y i

l, is computed

as in Eq.2.11:

Yl
i = B(l)

i,j +

m1∑
j=1

K(l)
i,j ×Y(l−1)

j (2.11)

where B(l)
i,j is the bias and K(l)

i,j denotes the filter that connects the j-th feature map

in layer l − 1 with i-th feature map in layer l.

In order to be able to compute non-linear features over the inputs, the feature

map generated by the convolutional layer is further passed through an activation

function g(.), as in Eq.2.12:

Yl
i = gif(Y

(l−1)
j ) (2.12)

The output is then passed to the next layer in the CNN. Previous studies suggest

that rectified linear units (ReLUs) are more useful than the traditional activation

functions in building CNN blocks (Nair and Hinton, 2010).

After multiple stages of convolutional and non-linearity layers, the network pro-
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Figure 2.2: Architecture of a traditional convolutional neural network.

gresses through the downsampling layer, often termed as the pooling layer to reduce

the spatial size of the activation maps. Typically, this layer consists of two param-

eters: a) the spatial extent of the filter F (l) and b) the stride S(l). The primary

function of the pooling layer is to provide translational invariance shifting to the

network (LeCun et al., 1998). Since in most image recognition tasks, feature detec-

tion is more important than the feature’s exact location, the pooling operation aims

to preserve the detected features in a low dimension by reducing the feature map size

at the cost of spatial resolution. Finally, the activation maps from the combination

of previous different layers are then mapped into a class probability distribution

through the fully connected FC layer. FC layers are multilayer perceptrons that

have full connections to all of the activations in the previous layer.

Figure 2.2 shows the original CNN architecture of LeCun et al. (1995) alter-

nates between convolutional layers including hyperbolic tangent non-linearities and

subsampling layers. In this illustration, the convolutional layers already include

non-linearities and, thus, a convolutional layer actually represents two layers. The

feature maps of the final subsampling layer are then fed into the actual classifier con-

sisting of an arbitrary number of fully connected layers. The output layer usually

uses softmax activation functions.

We now briefly discuss the two CNN architectures that we have used in our

work namely the VGG networks (Simonyan and Zisserman, 2014) and the Residual
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Figure 2.3: Illustration of the VGG16 network architecture

Network (He et al., 2015).

2.2.1 The VGG Network

The VGG Network Architecture was originally proposed by Simonyan and Zisserman

(2014) at Oxford University Vision group that followed a simple recipe to preserve

the size of the image’s width and height through the convolution operations, i.e. only

2×2 paddings of stride 2 and 3×3 convolutions of stride 1 with a padding of size 1.

This network is known for its linear architecture and the multiple stacked smaller

size kernel layout makes it easier for the network to learn finer level properties of an

image.

2.2.2 Residual Network

Unlike traditional sequential network architectures, such as VGG, the Residual Net-

work relies on the “Network-In-Network Architecture” module. At first introduced

by He et al. (2015) this network has accomplished state of the art results on a

number of popular training image datasets such as CIFAR and MNIST. These net-

works address the degradation problem causing from naıvely adding more layers to

a model. Contrary to the traditional convolution architectures, these networks try

to fit a tiny modification of the input (y = x+F (x)), instead of a total modification
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(y = H(x)) of its input x– hence the term residual. This is illustrated in the fol-

lowing Figure 2.4. These networks can typically be seen as a “shortcut” established

with the identity function to shorten the path that gradients traverse between a

network’s output and input layers during back-propagation step.

In published work, He et al. (2015) released pre-trained versions of three net-

works, referred to the ResNet-50, ResNet-101 and ResNet-152 networks with dif-

ferent quantity of layers and residual connections in each of them. To put simply,

the ResNet-101 and ResNet-152 operate over the same layer architecture as the

ResNet-50, but have more building blocks in the final network architecture. In our

work, we only use the ResNet-50 network (He et al., 2015) to extract image features.

We specifically use the res4flayer of the ResNet-50 network to extract the local

features, consisting of a <14×14×1,024> 3-tensor.

Figure 2.4: Illustration of a residual connection, from (He et al., 2015).

2.3 Multimodal Machine Learning

Multimodal machine learning has been receiving much attention lately, especially

since the heterogeneous modality processing portion of such tasks have been consider-

ably improved with the advent of new deep-learning models. Learning from different

sources enhances the possibility of capturing correspondences across modalities and
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gaining an in-depth understanding of natural phenomena. Following the taxon-

omy proposed by Baltrušaitis et al. (2019), there are five core technical factors that

constitute multimodal machine learning:

1. Representation: combining feature vectors from cross-modalities into a joint

representation in order to take advantage of their divergence, similarity and

redundancy.

2. Translation: transforming one modality into another. For example, if there

are two translation outputs of the same source then one way to know which is

correct is by looking at the image.

3. Alignment: establishing cognitive coalition across different modalities. Iden-

tifying concepts from an image to their specific mention on the caption is an

example.

4. Fusion: integrating information from two or more modalities to predict an

outcome measure. For example, in multimodal sentiment analysis, visual con-

text from facial expressions is often combined with speech signal information

to predict the polarity of a given utterance.

5. Co-learning: transferring knowledge between tasks, modalities and their rep-

resentations. This is particularly beneficial in spare resource settings.

Each of these is a challenging problem in Natural Language Processing and de-

mands a thorough survey of multimodal machine leaning. For my thesis, I have

specifically focused on the literature survey of representation, translation and align-

ment. As we aim to apply visual information to solving machine translation tasks,

we need to interpret both modalities (text and image), hence representation, and

convert them into the target language, hence translation. Additionally, in the last

chapter of the thesis, we want to explore the textual-image alignment i.e, alignment.
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2.3.1 Representation

The conceptual understanding of how best to represent modalities in a way that

best captures underlying semantics as well as other contextual information is rapidly

evolving. Typically, the distributional semantic models (DSMs) that compute the

word representations from documents based on word co-occurrence patterns fail

to capture contextualised representations both at the word-level, e.g. word-2-vec

(Mikolov et al., 2013) and sentence-level, e.g. skip-thought vectors (Kiros et al.,

2015). These models are not equipped to handle additional extra-linguistic modali-

ties (Harnad, 1990; Glenberg and Robertson, 2000), thus not allowing the network to

use morphological clues to form robust representations. Multi-modal distributional

semantic models (DSMs) are an extension of the traditional DSMs that are able to

handle this grounding problem (Glenberg and Robertson, 2000) by taking additional

modalities into account. These are vector spaces to which one maps not only text

but also different kinds of multimodal information (e.g., images, audio, speech).

Typically, popular approaches of learning a joint space for multimodal interactions

are based on Canonical Correlation Analysis (CCA) (Gong et al., 2014) which uses

deep Convolutional Neural Networks (Donahue et al., 2014) to obtain the image

features and bag-of-words features for the textual counterpart. More recently, a few

works on multimodal embedding training procedures follows a max-margin objective

function that is based upon a margin ranking criterion (Cohen et al., 1998) to per-

form a pairwise ranking between modalities. The idea is to learn a visual-semantic

or multimodal embedding space of image descriptions and representations by op-

timising a pairwise ranking loss function (Socher et al., 2014; Kiros et al., 2014b;

Karpathy and Fei-Fei, 2015; Vendrov et al., 2015; Gella et al., 2017). To that end, a

pre-trained CNN is fine-tuned as an image feature extractor, followed by a learned

transformation, while sentence representations are normally learned by a randomly

initialized recurrent neural network.

Such joint representations aim at minimising the distance of individual unimodal

representation in the coordinate space. For example: these models encourage the
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representation of the word cat and an image of a cat to maintain a smaller distance

between them than the distance between the word cat and an image of a dog (Frome

et al., 2013).

2.3.2 Translation

Translation of one modality to another is a long-studied problem in multimodal

machine learning literature. Given a candidate in one modality typically the task is

to translate (transform) the same candidate in a different modality. An example of

one such task is Image Captioning, where the goal is to generate a textual description

for a given image. Recently, multimodal translation has gained huge attention as

an active area of research for several downstream applications such as Bernardi

et al. (2016); Torabi et al. (2015); Vinyals et al. (2014); Yagcioglu et al. (2015);

Venugopalan et al. (2014) and also in the context of multimodal machine translation

Elliott et al. (2017); Caglayan et al. (2017); Libovickỳ and Helcl (2017) i.e, our area

of interest.

Multimodal Machine Translation is a research topic that was addressed by the

MT community in the form of a shared task (Specia et al., 2016b), where the goal is

to translate the text with the help of an accompanying modality such as an image

or video. The main idea is to use secondary information to improve the translation

of ambiguous terms. There upon, various methodologies have been proposed to

compare text-only and multimodal varieties of the same underling MT framework.

Calixto et al. (2012) studied how visual information can be helpful in disam-

biguating machine translation outputs. Soon afterwards Hitschler et al. (2016) pro-

posed a model that uses image features for re-ranking translations of image descrip-

tions produced by SMT models. In the context of multimodal NMT, Huang et al.

(2016) introduced a model to incorporate both local and global visual features ex-

tracted through the VGG19 network (Simonyan and Zisserman, 2014). Libovickỳ

and Helcl (2017) proposed a decoder network that learns to selectively attend to

a combination of the source language and the visual data. Calixto et al. (2017a)
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used a separate visual attention mechanism to incorporate spatial visual context

into NMT. Other important works by Specia et al. (2016b); Caglayan et al. (2017);

Elliott et al. (2017) claimed that systems trained on a combination of visual and

textual inputs produce better translations than systems trained using only textual

inputs. Luong et al. (2016) proposed multi-task learning settings to add neural im-

age description as an auxiliary task to sequence-to-sequence NMT (Bahdanau et al.,

2015) and reported significant improved translations in the parent translation task.

However, despite all this recently reported work, the role of image in translation

remains an open question at the time of writing this thesis. The work of Grönroos

et al. (2018) showed that the effect of the visual modality in multimodal translation

is small. In their analysis they attributed their largest gains to using additional (un-

constrained) text data. More recently, Elliott (2018)’s work on evaluating systems

with randomly selected visual adversaries also indicates that visual modality in the

multimodal machine translation (MMT) is either unnecessary or only marginally

beneficial. Similar problems in the visual question-answering domain resulted in the

construction of a balanced dataset for the visual question answering domain (Zhang

et al., 2016; Goyal et al., 2017).

2.3.3 Alignment

Multimodal alignment can be seen as the cognitive coalition on the level of pre-

cise concepts between two or more modalities. Alignments of cross-modalities and

their relationship to model robustness and generalisation has received considerable

attention in the last few years in the NLP and Computer Vision (CV) community

(Karpathy and Fei-Fei, 2015; Simonyan and Zisserman, 2015; Socher et al., 2014).

Proposed approaches include both supervised and unsupervised measures for align-

ing modalities. It is seen that latent alignment of the data during model training

helps in boosting neural model performance. In the multi-modal domain, Karpa-

thy and Fei-Fei (2015) proposed a method for aligning images with captions for

cross-modal retrieval tasks. Other works include Zhu et al. (2015) who proposed a
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method to aligned books with their corresponding movies-scripts by training a CNN

to measure similarities between scenes and text. In a similar vein, Mao et al. (2016)

used a Long Short Term Memory (LSTM) network (Hochreiter and Schmidhuber,

1997) and a CNN visual one to assess the quality between a referring expression and

an image object. The intuition is that the joint semantics of both visual and textual

modalities during the training procedure can provide rich supervision to learning

systems (Plummer et al., 2015).

For example, in the case of multimodal machine translation systems, when there

are two translation outputs of the same texts the only way to know the correct

translation is by looking at the second modality e.g, an image. However, the sparse

availability of annotated aligned datasets in the language and vision communities

makes it difficult to extract latent alignment between modalities. Grounded repre-

sentations of sentences that are learned from image-caption datasets also improves

performance of sentence-level tasks when used as additional features (Kiela et al.,

2017; Yoo et al., 2017; Kádár et al., 2017) to skip-thought vectors (Kiros et al., 2015).

The basic idea is to keep intact the alignment of the two modalities by pulling the

image-caption pairs close together and pushing the false image-caption pairs further

from each other in the learned embedding space.

In addition to learning grounded representations for multimodal machine-translation,

joint vision and language systems have been also applied to a wide range of tasks

such as image captioning (Mao et al., 2014; Vinyals et al., 2015; Xu et al., 2015),

visual question answering (Antol et al., 2015; Fukui et al., 2016; Jabri et al., 2016)

and text-to-image synthesis (Reed et al., 2016).

2.4 Evaluation

This apart, one prime area for multimodal machine learning is that of evaluation.

Evaluation for multimodal machine learning is particularly a subjective task which is

mostly performed through the use of human assessment. Like, for speech synthesis,

20



naturalness and mean opinion score are considered (Zen et al., 2012; Van Den Oord

et al., 2016) while realism is a measure of fit for visual data synthesis (Taylor et al.,

2012).

Agreement between human assessors of translation quality is a well-established

problem in the literature of MT evaluation. In addition to the standard relative

ranking (RR) manual evaluation, the evaluation of the target translation are also

carried out using human assessment of adequacy (i.e, how well the source is ex-

pressed in the target translation) and fluency (which determines to what extent the

translation is a well-formed utterance in the target language and fluent in context).

Popular methodology for crowd-sourcing human assessments of translation quality

involves restructuring the task into a monolingual assessment (Graham et al., 2013,

2014).

Although human assessment are are a gold standard for evaluation, a number a

automated metrics such as BLEU (Papineni et al., 2002), CIDEr (Vedantam et al.,

2015), ROUGE (Lin and Hovy, 2003), and Meteor (Denkowski and Lavie, 2014) are

used as well to compute similarity scores between the generated and ground truth

text.
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Chapter 3

Images in Aligned Data Condition

3.1 Overview

It is assumed that Neural Machine Translation (NMT) models with additional image

features are better at translating visual terms – words or phrases that have a direct

correspondence in the image – than they are at text-only translation systems. As

an illustrative example, we can consider the following two sentences:

(1) a. I had to take out a bank loan to start my own business.

b. By the time we reached the opposite bank, the boat was sinking fast.

Both sentences contain the word “bank”, but the meaning of the word differs en-

tirely between them. This linguistic phenomenon, where two identical words change

meaning depending on the context, is known as “polysemy” (Apresjan, 1974). Most

machine translation (MT) frameworks struggle at handling polysemy because they

use a single vector to represent polysemous words such as “bank”, regardless of the

context in which the word is used. The problem of lexical ambiguity - remains an

active area of research at the time of writing this thesis: with recent works in pre-

training contextual representations (Dai and Le, 2015; Peters et al., 2018; Radford

et al., 2018; Howard and Ruder, 2018; Devlin et al., 2018)— achieving state-of-the-

art results in a wide variety of NLP tasks, including Natural Language Inference

22



(MNLI), Question Answering and others. More recently, the work of Rahman et al.

(2019) demonstrates incorporating non-textual information within the input space

of such networks for modeling multimodal language.

In the area of information retrieval, this problem has been recognised for several

decades as it causes a mis-match when users search for “bank” meaning the financial

institution but are presented with retrieved documents about river banks. Within

IR, several statistical approaches to resolving or working with word senses in the

indexing and retrieval tasks, have been identified (Sanderson, 1994; Kilgarriff, 1997)

though word sense disambiguation has not made it into mainstream text retrieval

such as in web search, for example.

Many theories of human cognition supported by empirical evidence state that

multimodal representation learning is largely driven by evidence of perceptual ground-

ing in human concept acquisition and representation (Barsalou et al., 2003). It has

been shown that visual sensory input plays a pivotal role in language acquisition by

grounding meanings of words and phrases in perception. Needless to say, percep-

tual grounding and multimodal representations have their separate benefits, how-

ever, they can be beneficial to each other as well Kádár et al. (2017). The study of

multimodal representation learning has a much briefer history than sentence-level

representations and Chapter 2 situates the reader in the area.

For Multimodal Machine Translation, recent studies have shown that ambigu-

ous and polysemous terms in principle could be disambiguated using an image as

additional context (Calixto et al., 2017b; Caglayan et al., 2017; Libovickỳ and Helcl,

2017; Elliott and Kádár, 2017) instead of using the surrounding text. In that sense,

an image can act as a natural fence to deal with the relatedness in languages. One

of the intriguing aspects of using images as a naturally occurring meaning repre-

sentation is that images are also naturally universal across languages. This means

that learning cross-modal representations allows a single model to transfer knowl-

edge between modalities, thereby mitigating the low-resource problem common in

cross-lingual applications and processing data (Gella et al., 2017; Kiros et al., 2014a;
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Calixto et al., 2012).

In this chapter, we study how to incorporate image features to improve transla-

tion quality of an MT system when no form of data augmentation is required. To

be specific, we focus on translation based on a specific data configuration, where

the same images are annotated with multiple languages. To assess the impact of

the existence of this image-text alignment has on the performance of translation, we

formulate the following research question:

Given that there is a large aligned data triple <image-source-target>, can

multi-modal model offer more benefit compared to text-only MT models ?

That is, for a given data triple (image,source text,target text), we examine if the

model takes cues from the aligned image in order to translate the source language

into the target language and to perform this translation with better quality. The

approaches presented in the chapter extract global image and sentence features

through separate encoders and learn to associate them. The textual portion is first

encoded with a bidirectional recurrent network (Cho et al., 2014a) while the global

image region features are extracted from a pre-trained convolutional neural network

(Simonyan and Zisserman, 2015), presented in Section 3.3. These representations

are further fused following different strategies described in Section 3.3.1 and further

evaluated against one or more automatic evaluation metrics. Furthermore, we pro-

vide evidence that the performance of textual models can be improved by training

jointly with additional images.

3.2 Dataset

To begin to outline this work, we first define the data configuration we used to ad-

dress the above-mentioned research question. We need corpora that are both mul-

tilingual and multi-modal; multilingual since in training and evaluation, we need

textual input in at least more than one language; multi-modal because we need
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images associated with this text so as to evaluate how can we improve translation

quality by exploiting them. We use the translation portion of the Multi30K dataset

(Elliott et al., 2016, 2017), which is currently the largest collection of images paired

with sentences in multiple languages used for solving multimodal machine transla-

tion tasks.

3.2.1 Translated Multi30k

We evaluate our model using the translation portion of the benchmark Multi30K

dataset (Elliott et al., 2016). This dataset contains 31,014 images paired with an

English language sentence and corresponding German, French, and Czech language

translations. 29,000 instances are reserved for training, 1,014 for development, and

1,000 for evaluation.1 For the experiments we only use the English-German-French

portion of the dataset. The English and German sentences are pre-processed by

normalising the punctuation, lowercasing and tokenising the text using the Moses

toolkit. Additionally, the German text was de-compounded using the unsupervised

German compound splitter (Daiber et al., 2015).

3.2.2 MS-COCO

We also use two out-of-domain datasets to evaluate our model namely the MS-COCO

dataset of English described images (Chen et al., 2015), and the English-German

WMT-2015 parallel corpus (Bojar et al., 2015). When we perform experiments with

the WMT2015 corpus, we first calculate a 17,597 sub-word vocabulary using Sen-

tencePiece (Schuster and Nakajima, 2012) over the concatenation of the Multi30K

and WMT15 datasets. This gives us a shared vocabulary for the external data that

reduces the number of out-of-vocabulary tokens.
1The Multi30K dataset also contains 155K independently collected descriptions in German and

English. In order to make our experiments more comparable with previous work, we do not make
use of this data.
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3.3 Experimental Settings

For our experiments, we use models which can essentially be thought of as extensions

of the vanilla NMT attentive model by Bahdanau et al. (2015) with additional

visual context extracted from images. We follow Calixto et al. (2017b) to use a

bi-directional recurrent neural network (RNN) with a gated mechanism (Cho et al.,

2014a) as the encoder, while the concatenation of forward and backward hidden

states, hi = [
−→
hi ,
←−
hi ] were used as the final annotation vector for a given source

position i.

For global image feature extraction, we use a publicly available pre-trained model

VGG19-CNN network (Simonyan and Zisserman, 2014). This model is trained on

a subset of the ImageNet database,2 which is trained to classify images into one

out of 1,000 Imagenet classes (Russakovsky et al., 2015). Typically, these features

are the 4096D activations of the penultimate fully connected layer FC7, (henceforth

referred to as q). We use three different methods to include this visual information

into the NMT pipeline:

1. using an image as source words,

2. using an image to initialise the encoder hidden state and,

3. as an as additional input to initialise the decoder hidden state.

We now introduce some models used in our work to train and evaluate on the

different datasets we just briefly outlined.

3.3.1 Models

3.3.1.1 IMGE: Image for encoder initialisation

We use two new single-layer feed-forward neural networks to compute the initial

states of the forward and backward RNN, respectively instead of initialising the
2http://www.image-net.org
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hidden state of the encoder with the zero vector −→0 , as in the original attention-

based NMT model of (Bahdanau et al., 2015)

We use Equation (4.1) to compute a vector d from the global image feature

vector q ∈ R4096:

d = W2
I .(W1

I .q + b1
I) + b2

I . (3.1)

Here W and b denote the projection matrix and bias vector, respectively, such that

W1
I ∈ R4096×4096 and b1

I ∈ R4096 while W2
I and b2

I project the image features into

the same dimension as the hidden states of the source language encoder.

The encoder hidden state is initialised by the feed-forward networks computed

as follows:

←−
h init = tanh(Wfd + bf ),

−→
h init = tanh(Wbd + bb), (3.2)

where b and W are respectively the bias vector and the learned multi-modal pro-

jection of the image features d into the encoder’s hidden state dimensionality. The

suffix ‘f ’ (‘b’) corresponds to forward (backward) states.

3.3.1.2 IMGD: Image for decoder initialisation

Here we use a single-layer feed-forward neural network for incorporating an image

into the decoder. Generally, the decoder’s initial hidden state is computed from

the encoder’s hidden states i.e. the concatenation of the last hidden states of the

encoder forward RNN −→h N and backward RNN ←−h 1, respectively. We compute the

initial hidden state s0 of the decoder from using the image features as additional

inputs as follows:
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s0 = tanh(Wdi[
←−h 1;
−→h N ]) + Wmd + bdi, (3.3)

where Wdi and bdi are learned model parameters while the learned image feature

d is projected into the decoder hidden state dimensionality by the multi-modal

projection matrix Wm.

As before, given the global image vector q ∈ R4096, the vector d is calculated

from Equation (4.1). However, in the present case, the image features are projected

into the same dimensionality as the decoder’s hidden states by the parameters W2
I

and b2
I .

3.3.1.3 IMG2W — Image as source words

In this model, we use the image features as the first and last words of the source

sentence and an attention model learns when to attend to the image representations.

Specifically, given the global image feature vector q ∈ R4096:

d = W 2
I · (W 1

I · q + b1I) + b2I , (3.4)

where W 1
I ∈ R4096×4096 and W 2

I ∈ R4096×dx are image transformation matrices,

b1I ∈ R4096 and b2I ∈ Rdx are bias vectors, and dx is the source words vector space

dimensionality, all trained with the model. We directly use d as the first and last

words of the source sentence. That is, given the word embeddings for a source

sentence X = (x1,x2, · · · ,xN), we concatenate the transformed image vector d to

it, i.e. X = (d,x1,x2, · · · ,xN ,d), and apply the forward and backward encoder

RNN passes. By including images into the encoder in model IMG2W, our intuition

is that (i) by including the image as the first word, we propagate image features

into the source sentence vector representations when applying the forward RNN to

produce vectors −→hi, and (ii) by including the image as the last word, we propagate

image features into the source sentence vector representations when applying the
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backward RNN to produce vectors ←−hi.

3.3.1.4 Ensemble decoding

We use an ensemble decoding by adding in succession our best performing multi-

modal models from the above-mentioned. We ensembled different models by starting

with one of the best performing multi-modal models from Calixto et al. (2017b) on

this data set, IMGD, and by adding new models to the ensemble one by one, until we

reach a maximum of four independent models, each of which are trained separately

and on the original M30kT training data only. In addition we also report results

when pre-trained on the English-German WMT 2015 (Bojar et al., 2015) training

data coupled with the local visual features extracted with the ResNet-50 network

(He et al., 2015).

3.3.2 Data Pre-processing

The English, German and French descriptions are pre-processed by normalising the

punctuation, lowercasing and token pre-processeding the text using the Moses SMT

Toolkit (Koehn et al., 2007b). We additionally convert space-separated tokens into

subwords (Sennrich et al., 2016) by jointly training for English–German descriptions

and separately for English–French descriptions. This results in final vocabulary of

74K English and 81K German subword tokens for English–German models, and 82K

English and 82K French subword tokens for English–French models. We discard

sentences in English, German or French if they are longer than 80 tokens.

3.3.3 Hyper-parameter Setups

We report our results for translating from English into German and into French. We

use the 29k entries in the M30kT training set for training our models, and the 1, 014

entries in the M30kT development set for model selection, early stopping the training

procedure in case the model stops improving BLEU scores on this development set.
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To build our multimodal models described in Section 3.3.1, we follow the same

configuration as Calixto et al. (2017b) which implements the encoder as a bi-

directional RNN with GRU, one 1024D single-layer forward RNN and one 1024D

single-layer backward RNN. Throughout the experiments, the models are parame-

terised using 620D source and target word embeddings, and both are trained jointly

with the model. All non-recurrent matrices are initialised by sampling from a Gaus-

sian distribution (µ = 0, σ = 0.01), recurrent matrices are random orthogonal and

bias vectors are all initialised to 0. Dropout is given a probability of 0.3 in source

and target word embeddings, in the image features (in all MMT models), in the

encoder and decoder RNNs inputs and recurrent connections, and before the read-

out operation in the decoder RNN was applied. Following (Gal and Ghahramani,

2016), dropout to the encoder bidirectional RNN and decoder RNN using the same

mask are also applied in all time steps. The models are trained for 25 epochs using

Adam (Kingma and Ba, 2014) with learning rate of 0.002 and mini-batches of size

40, where each training instance consists of one English sentence, its corresponding

image and its gold-standard translation into German and into French.

Finally, we evaluate our English–German models on three held-out test sets, the

Multi30k 2016/2017 and the MS-COCO 2017 test sets (Chen et al., 2015), and our

English–French models on the Multi30k 2017 and the MS-COCO 2017 test sets in

terms of the following three automatic metrics:

1. BLEU4 – a widely adopted measure of n-gram match precision (Papineni

et al., 2002);

2. METEOR – which accounts for both precision and recall and additionally,

incorporates more complex linguistic phenomena, such as synonymy and para-

phrasing(Denkowski and Lavie, 2014);

3. Translation Edit Rate (TER) – which is an inexpensive measure that

correlates fairly well with human judgements and is based on counting trans-

formations rather than n-gram matches (Snover et al., 2006).
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Multi30k
Lang. Model BLEU4 ↑ METEOR↑ TER↓
en–de NMT baseline 19.3 41.9 72.2
en–de Ensemble 29.8 (↑ 10.3) 50.5 (↑ 8.6) 52.3 (↓ 19.9)

en–fr NMT baseline 44.3 63.1 39.6
en–fr Ensemble 54.1 (↑ 9.8) 70.1 (↑ 7.0) 30.0 (↓ 9.6)

Table 3.1: Results for the M30kT 2017 English–German and English–French test
sets. All models are trained on the original M30kT training data. Our ensemble
uses four multi-modal models, all independently trained: two models IMGD, one
model IMGE, and one model IMG2W.

MS-COCO
Lang. Model BLEU4 ↑ METEOR↑ TER↓
en–de NMT baseline 18.7 37.6 66.1
en–de Ensemble 26.4 (↑ 7.7) 46.8 (↑ 9.2) 54.5 (↓ 11.6)

en–fr NMT baseline 35.1 55.8 45.8
en–fr Ensemble 44.5 (↑ 9.4) 64.1 (↑ 8.3) 35.2 (↓ 10.6)

Table 3.2: Results for the MS-COCO 2017 English–German and English–French
test sets. All models are trained on the original M30kT training data. Ensemble
uses four multi-modal models, all trained independently: two models IMGD, one
model IMGE, and one model IMG2W.

3.4 Results and Discussion

In Table 3.1, we show results for translating the 2017 edition of the Multi30k test

sets. Table 3.2 shows the results of evaluating the models using the MS-COCO

English–French test sets. Again, all models are trained on the original M30kT train-

ing data only. Additionally, we also report the results for the best model of (Calixto

et al., 2017a), which is pre-trained on the English–German WMT 2015 (Bojar et al.,

2015) and uses local visual features extracted with the ResNet-50 network (He et al.,

2015) in Table 3.3.

It is worth noting that adding more models to the ensemble network improves

the translation performance by a large margin. The gain increases to 8–10 and

7–10 points (BLEU, METEOR) for English–German and English–French Multi30k
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Multi30k (English→German)
Ensemble? BLEU4 ↑ METEOR↑ TER↓

NMTSRC+IMG
1 — 39.0 56.8 40.6

IMGD — 37.3 55.1 42.8
IMGD + IMGE 40.1 58.5 40.7
IMGD + IMGE + IMG2W 41.0 58.9 39.7
IMGD + IMGE + IMG2W + IMGD 41.3 59.2 39.5
1 This model is pre-trained on the English–German WMT 2015 Bojar et al. (2015), consisting

of ∼4.3M sentence pairs.

Table 3.3: Results for the best model of (Calixto et al., 2017a), which is pre-trained on
the English–German WMT 2015 (Bojar et al., 2015), and different combinations of multi-
modal models, all trained on the original M30kT training data only, evaluated on the
M30kT 2016 test set.

respectively using the ensemble decoding over the text-only baselines shown in Ta-

ble 3.1. We further note that incorporating model IMG2W to the ensemble already

consisting of models IMGE and IMGD still improves translations, according to all

metrics evaluated. Similar trends were observed when tested with the MS-COCO

dataset shown in Table 3.2 with an improvement of 7–9 and 8–9 points (BLEU, ME-

TEOR) respectively for the English–German and English–French pair respectively.

In Table 3.3 we see the gains from using multimodal models when also trained on

the additional data from (Bojar et al., 2015). We see that regardless of the type of

the multimodal models, the additional image context always yields an improvement

over the text-only NMT.

Our study shows that despite being trained on the same training data, there are

inconsistencies in translation quality between the text-only NMT and multimodal

systems, at least in terms of evaluation metrics.

In Table 5.6, we show two interesting illustrative examples for our highest scoring

multimodal models, i.e, IMGD and IMGE evaluated on the M30kt 2016 datasets. In

the first entry, both models IMGE and IMGD generate a perfect translation with

respect to the reference whereas the NMT baseline generates an incorrect translation

which is not true from observing the image. However, in the second entry, both the

multimodal models extrapolate the reference+image and describe “ceremony” as
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Original: a man is working a hotdog stand.
NMT: ein Mann arbeitet ein Hotdog stehen.
IMGE: ein Mann arbeitet an einem Hotdog-Stand.
IMGD: ein Mann arbeitet an einem Hotdog-Stand.

Reference: ein Mann arbeitet an einem Hotdog-Stand.

Original: a woman with long hair is at a graduation ceremony.
NMT: eine Frau mit langen Haarenist an einer StaZeremonie.
IMGE: eine lang haarige Frau bei einer olympischen Zeremonie.
IMGD: eine lang haarige Frau bei einer olympischen Zeremonie.

Reference: eine Frau mit langen Haaren bei einer Abschluss Feier.

Table 3.4: Examples of translations produced by the multimodal systems (MMT)
and a text-only model (NMT). Original: the original caption. IMGD: the type
of multimodal model output, given the textual input and the global image feature.
NMT:the system output, given only the textual input.

“olympischen Zeremonie” (IMGE and IMGD) with an unknown word “Olympics”

(Vilar et al., 2006). We conjecture that this could be because of the fact that

the training data is small and often depicts a small variation of different scenes

with different forms of biases (van Miltenburg, 2016). Although the text-only NMT

produces an absolute incorrect translation of the term with “StaZeremonie” that

does not exist in the German language.

3.5 Summary

In this chapter, we evaluated multi-modal NMT models which integrate global image

features into both the encoder and the decoder in aligned data settings. One of our

main interests in this work was to pin-point some of the mechanisms that lead to

improvements when learning multimodal as opposed to monomodal representations

for solving the task of machine translation. We observe consistent improvements over

a text-only NMT baseline trained on the same data, and these are typically very large

i.e., 7.0–9.2 METEOR points across language pairs and test sets. Furthermore, our

experiments with ensembling different multi-modal NMT models show that these

33



models can generate translations that compare favourably to multimodal models

that use local image features. We also performed follow up experiments where we

set a stronger baseline by improving our text-only model performance with training

on an additional English-German parallel corpus (Bojar et al., 2015). We observed

that with extra textual translation data, visual context provides improvement in

performance. To sum up, our results clearly show that additional modality boosts

the performance of a translation system, however the illustrative examples results

from Table.5.6 makes it is unclear whether the systems successfully use images as

context to aid translation.

To conclude, this chapter is dedicated not only to presenting our main findings,

but also to pointing to some of the limitations of our work and towards future direc-

tions. A further natural extension to the work in this chapter is to take advantage

of image data sets for low-resource language translation which is the main focus of

Chapter 4. We also investigate the issue of disjoint settings in details in Chapter 5

and examine to what extent these visual modalities are accountable for translation.

In future, we also plan to study how to generalise these models to other multi-modal

natural language processing tasks, e.g. visual question answering and multimodal

language generation.
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Chapter 4

Images in Sparse Data Conditions

4.1 Overview

While there has been a surge of interest in tackling language translation problems

using additional information such as an image or video in order to provide some

context in high-resource scenarios, it still continues to be a challenging problem in

the context of low-resources and out-of-domain settings (Koehn and Knowles, 2017).

In general, being able to exploit a variety of data and types of data at the training

regime, e.g. data requiring comparatively lesser supervision, is a desirable feature for

neural MT models. However, in a non-traditional setup where the training data is

scarce, there is a concern that such models will perform poorly with languages having

limited resources, especially in comparison with well-resourced major languages. To

tackle such situations, early approaches in MT involved the use of pivot languages,

the language for which sufficient data is available in both sides of a low-resource

language pair (Wu and Wang, 2007) as an intermediate step in the translation

of the low-resource source and target pair. Along the same line for multimodal

representation learning, Gella et al. (2017); Kádár et al. (2017) employ images as

a pivot between multiple languages by optimizing a contrastive loss function while

Rajendran et al. (2015) use the English representations as the pivot to learn shared

multimodal multilingual vector spaces.
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Although not directly comparable, recent work in neural multimodal machine

translation has also constructed models to translate image captions by using an

image as a bridge between source and target language pair (Calixto et al., 2017b;

Caglayan et al., 2019, 2017; Frank et al., 2018; Libovickỳ and Helcl, 2017) – however,

such techniques have not been explored yet in the context of low-resource multimodal

machine translation.

Typically, in the context of multimodal MT, a three-way parallel corpus, which

contains bilingual texts and corresponding images is needed. By definition, descrip-

tions of the additional modality, e.g. images in multiple languages, can be seen as

the multiple views of the same or closely related data (Kádár et al., 2017). Con-

ceptually, this can be also referred to as multitask representation learning (Johnson

et al., 2017) — as the models tend to learn generalised internal representations for

sentences via a shared joint grounded representation spanning modalities. Chapter 3

explores the issue of such alignments in a more pragmatic scenario, where parallel

image–sentence corpora are available for different languages. A further natural ex-

tension to the work presented in that chapter is to take advantage of the models

describe in Section.3.3 in low-resource data settings – which is the main focus of this

chapter.

To that end, we formulate the following research question:

Can a multi-modal context generate a better translation than the text-only MT

model in a sparse data-scenario ?

The additional views of the same data (modality, in our case) can help to over-

come the problems of data sparsity and more importantly, have practical implica-

tions for efficiently handling the problem of lexical ambiguity. One example is the

word “gram” in English (source) which can be translated into different forms in Hindi

(target) based on the context (e.g. either a village or chickpea). In such contexts, an

additional image or the surrounding contextual words can help with the disambigua-

tion. Although large amounts of parallel texts are available for Hindi-English NMT
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translation, there is no such dataset available for training and evaluating Hindi-

English multi-modal MT systems. In exploring this, we extend research on creating

data for image captioning in the dimension of language and study how to translate

image descriptions in a low-resource language, i.e. Hindi for an unlabelled image

into English. Through a review of the same models we observe in Chapter 3, we

provide evidence that the performance on lower-resource language can be improved

by additionally training with images. To the best of our knowledge, it is the first

time a purely multimodal neural machine translation is applied to a dataset that

includes an Indian language (Hindi).

4.2 Experimental Settings

Arguably, the main downside of applying MMT models in a low-resource language

scenario is that there is no amount of publicly available training data, which re-

stricts its applicability to such languages. The current off-the-shelf MMT models

are trained on the translation portion of the Multi30k (Elliott et al., 2016) data,

which is only available for high-resourced languages. We adopt a simple approach,

by means of producing candidate translations to expand the current M30k dataset to

include a new language, namely, Hindi. Based on an existing English-image parallel

corpus, we develop both a synthetic training dataset as well as a manually trans-

lated the validation and test dataset for Hindi. Note that although the English (En)

and Hindi(Hi) languages belong to the same family of languages (Indo-European),

they differ significantly in terms of word order, syntax and morphological structure

(Bharati et al., 1995). While English maintains a Subject-Verb-Object (SVO) pat-

tern, Hindi follows a Subject-Object-Verb (SOV) convention. Moreover, compared

to English, Hindi has a more complex inflection system, where nouns, verbs and

adjectives can be inflected according to number, gender and case. These issues,

combined with the data scarcity problem, make the Hi→En multimodal machine

translation a challenging task.
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4.2.1 Synthetic Data Generation

We now concisely describe the pipeline, illustrated later in Figure 4.1, which we de-

veloped to perform multimodal machine translation under the low-resource scenarios

in the following steps:

• To create a synthetic in-domain Hindi-English parallel corpus for the image

description translation task, we translated the English descriptions of images

in the Flickr30k dataset, into Hindi, using a phrase-based statistical machine

translation (PBSMT) system (Koehn et al., 2007a) In doing this we are in-

spired by (Kunchukuttan et al., 2017) to use a PBSMT system over NMT

to create low-resource baselines. For the Hindi →English translation, their

system achieves better results with a PBSMT trained on the same corpus. In

addition, we manually translated the data split from English source-side into

Hindi target-side for validation and evaluation. In this we were assisted by

two bi-lingual speakers of Hindi and English. One of the speakers translated

the datasets into Hindi while the other verified the translation.

• We used this synthetic training data to build both the text-only baseline and

multimodal system. For tuning, we used the manually translated validation

split.

• Finally, we manually translated the English portion of the test split into Hindi

to test our models. Some examples of manually translated descriptions are

shown in Table 4.1 where the first column represents the original English

captions and the second column represents the manual translation of those

captions into Hindi.

4.2.2 Resources

Due to the unavailability of an in-domain Hindi-English parallel corpus for our

caption translation task, we use an out-of-domain Hindi-English parallel corpus
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English Source Sentence Hindi Translation (Manual)
A man in an orange hat starring

at something .
एक नारंगी टोपी मӒ एक आदमी घरू

रहा है |
People are fixing the roof of a

house.
लोग एक घर कҴ छत ठұक कर रहे

हӔ |
Group of Asian boys wait for
meat to cook over barbecue.

एѠशयाई लड़कӖ का समहू बारबԹेू
पर खाना बनाने के Ѡलए मांस का

इंतजार करता है |
The person in the striped shirt is

mountain climbing.
धारҰदार शट˨ मӒ ͲयџЭ पहाड़ चढ़ाई

कर रहा |
Table 4.1: Examples of manually translated captions of the Flickr30k English de-
scriptions in Hindi using PBSMT system.

which is compiled from a variety of existing sources such as OPUS (Tiedemann,

2012), HindEn (Bojar et al., 2014) and TED (Abdelali et al., 2014) as well as corpora

developed at the Center for Indian Language Technology, IIT-B 1 over several years.

The details of the IITB English-Hindi corpus can be found at (Kunchukuttan et al.,

2017). We now describe the existing resources that we used to create the synthetic

data. The raw corpus statistics are provided in Table 4.2.

4.2.3 Extraction of Image Features

For the visual component, we use the publicly available pre-trained convolutional

neural network (CNN) models to extract the global image vectors as described in

Simonyan and Zisserman (2014). Their network is trained and evaluated as an

extensive set of deep CNN models for classifying images into one out of the 1,000

classes in ImageNet (Russakovsky et al., 2015). For all the images, the global image

feature vectors, which are the 4096-D activations of the penultimate fully connected

layer FC7, henceforth referred to as g, are extracted using the 19-layer VGG network

(VGG19). We integrate these global image features into our model in 2 ways,

namely:

(1) a. to initialise the encoder hidden state and
1www.cfilt.iitb.ac.in
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Hindi-English
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       Multimodal NMT System

Image features

CNN

Figure 4.1: Flowchart of our Hi-En MMT System

b. as additional input to initialise the decoder hidden state.

4.2.4 MT Models

For multimodal NMT, we explore the standard multimodal attention with global

visual features for our experiment. We use same models as described in 3.3 with

encoder-decoder initialisation (INIT) (Calixto et al., 2017b) where we initialise all

encoders as well the first decoder layer with a non-linear transformation of the global

visual features. For the encoder, we use a bi-directional recurrent neural network

(RNN) with gated recurrent unit (GRU) (Cho et al., 2014a), while the concatenation

of forward and backward hidden states, hi = [
−→
hi ,
←−
hi ] serves as the final annotation

vector for a given source position i. Our model diagram is shown in Figure 4.1.
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IMGE: Instead of initialising the hidden state of the encoder with the zero vector
−→
0 , as in the original attention-based NMT model of Bahdanau et al. (2015) to

linearly project the concatenation of textual and visual context vectors for obtaining

the final multimodal context vector, we use Equation (4.1) to compute a vector d

from the global image feature vector g ∈ R4096:

d = V2
I .(V1

I .g + b1
I) + b2

I . (4.1)

Here V and b denote the projection matrix and bias vector, respectively, such that

V1
I ∈ R4096×4096 and b1

I ∈ R4096 while V2
I and b2

I project the image features into the

same dimensionality as the hidden states of the source language encoder.

The encoder’s hidden state is initialised by the feed-forward networks computed

as follows:

←−
h init = tanh(Vfd + bf ),

−→
h init = tanh(Vbd + bb), (4.2)

where b and V are respectively the bias vector and the multi-modal projection

matrix for projecting the image features d into the encoder’s hidden state dimen-

sionality. The suffix ‘f ’ (‘b’) corresponds to forward (or backward) states.

IMGD: A new single-layer feed-forward neural network is used for incorporating

an image into the decoder. Originally, the initial hidden state of the decoder is

computed from the last hidden states of the encoder’s forward RNN and backward

RNN, respectively −→h N and←−h 1, or from the mean of the source-language annotation

vectors hi. However, here we compute the initial hidden state s0 of the decoder by

41



including the global image features as additional inputs as follows:

s0 = tanh(Vdi[
←−h 1;
−→h N ]) + Vmd + bdi, (4.3)

where Vdi and bdi are learned model parameters while the image feature d is pro-

jected into the decoder hidden state dimensionality by the multi-modal projection

matrix Vm.

As before, given the global image vector g ∈ R4096, the vector d is calculated

from Equation (4.1). However, in the present case, the image features are projected

into the same dimensionality as the decoder’s hidden states by the parameters V2
I

and b2
I .

4.2.5 Data Pre-processing

The Hindi side of the out-of-domain dataset is normalised using the Indic_NLP_Library2

to ensure a canonical Unicode representation. We used the scripts from the above

library to tokenise and transcribe the Hindi sentences. For English, we used the

scripts from the Moses tokeniser tokenizer.perl3 to tokenise and to turn into lower-

case the English representations for our experiments.

4.2.6 Model Hyperparameters

Out-of-domain PBSMT training: We use similar settings to those reported in

Kunchukuttan et al. (2017) to create the synthetic Hindi dataset. They used the

news stories from the WMT 2014 English-Hindi shared task (Bojar et al., 2014)

as their validation (dev) and test corpora which we concatenate together to create

our dev set. The training and dev corpus consist of 1,492,827 and 3207 sentence

segments respectively. We used the HindMono (Bojar et al., 2014) corpus which

contains roughly 45 million sentences to build our language model in Hindi. The
2https://bitbucket.org/anoopk/indic_nlp_library
3https://github.com/moses-smt/mosesdecoder/blob/RELEASE-3.0/scripts/tokenizer/

tokenizer.perl
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Splits Data-type English Hindi
Train1 tokens 20,667,259 22,171,543
Dev1 tokens 68459 74027
Monolingual sentences 20,638,520 45,075,279
1 The total number of 1,492,827 training and 3207 vali-

dation sentences were used to train the PBSMT system

Table 4.2: The overall statistics of the datasets used
to train the PBSMT system. The 3rd row shows the
amount of additional monolingual Hindi and English
text used respectively for training the language model
to create synthetic Hindi and the general-domain PB-
SMT system.

corpus statistics are shown in Table 4.2.

For training the out-of-domin system, we use the Moses (Koehn et al., 2007a)

SMT system. We used the SRILM toolkit (Stolcke, 2002) for building a 4-gram

language model and GIZA++ Och and Ney (2000) with the grow-diag-final-and

heuristic for extracting the phrases. The trained system is tuned using Minimum

Error Rate Training (Och, 2003). For other parameters of Moses, default values

are used. If the sentences in English or Hindi are longer than 80 tokens, they are

discarded. Additionally, we use the News Crawl: articles from 2016 from WMT17 4

for English to train the language model. This contains roughly 20 million sentences

for English, with details shown in Table 4.2.

Multimodal training: We follow the similar settings of Calixto et al. (2017b)

as described in Section.3.3.3 for training our multimodal models. All models are

trained for 25 epochs using Adam (Kingma and Ba, 2014) with a learning rate of

0.002 and a batch size of 40 sentences, where each training instance consists of one

English sentence, one Hindi sentence and one image. In addition, we used early-

stopping with patience 10 based on validation loss and output parameters were saved

after every 10,000 iterations.
4http://www.statmt.org/wmt17/translation-task.html
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Multi30k (Hindi→ English)
In-domain? Images? BLEU↑ METEOR↑

PBSMT – 22.7 30.2
PBSMTout-domain

1 – – 21.6 29.6
NMTtext – 23.3 29.7
IMGD 24.2 30.7
IMGE 23.9 29.9
1 This model is pre-trained on the the dataset as described in Table 4.2

Table 4.3: Evaluation metrics scores Hi-En translation systems before
and after applying image features on manually translated dev data. Bold
numbers indicate improvements that are statistically significant com-
pared to NMT text with p = 0.05. Evaluation is performed against
the English translations of the test set using standard MT evaluation
metrics, with BLEU and METEOR

4.3 Results and Discussion

The comparative evaluation results of our systems are presented in Table 4.3.

We see from the results that the text-only NMT model outperforms the phrase

based SMT model in terms of BLEU score. Our results indicate that incorporating

image features in multimodal models helps, as compared to our text-only SMT and

NMT baselines. This is reflected in the fact that both the image models are shown

to produce better results in terms of BLEU scores with respect to both the SMT and

NMT text-only counterpart. Taken together, this confirms the quantitative benefit

of the visual modality in NMT models in the low-resource language scenarios.

It is worth noting that IMGE yields only a small improvement over the text-only

NMT counterpart while IMGD performs consistently better in terms of both metrics

(BLEU by ↑ 0.9 and METEOR by ↑ 1) in comparison to the strong text-only NMT

and SMT baseline. We conjecture that using image features directly to initialise the

encoder hidden state causes the model to overfit and prevents learning.

We now provide an illustrative example shown in Table 4.4 of our highest-scoring

MMT and NMT system with respect to the original English reference and the manual

source in Hindi.

In the first entry, although the NMT system without images incorrectly trans-
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Manual: तदो लोग अजीब џवदेशी जसैी वशेभषूा
पहनन,े एक नीले और एक बӔगनी, एक सड़ क म|े◌ं

NMT: two people dressed in exotic costumes wear a blue
and one flag in a blue, are standing in a road .

MMT: two people wearing funny foreign attire, one blue
and one purple, are standing in a street.

Reference: two people wearing odd alien-like costumes,
one blue and one purple, are standing in a road.

Table 4.4: Illustrative example of translations produced by the multimodal systems
(MMT) and a text-only model (NMT). Manual: the original translated caption in
Hindi. NMT:the system output, given only the textual input. MMT: the multimodal
system output, given the textual input and the global image feature. Reference:the
gold standard reference in English.

lated the color ‘purple’ (as can be seen from Table 4.4, where the costumes are clearly

in two different colours) the multi-modal model translated it correctly, yielding an

improvement in the sentence-level BLEU (↑ 21.47) score.

In terms of translations, we see that both the models extrapolate the reference

and translate “alien-like costumes” into “exotic costumes” (text-only model) and as

a “funny foreign attire” (multimodal model). We attribute this to the fact that the

training set is small with fixed set vocabulary – it only renders a small variations in

representing different scenes.

4.4 Summary

Within the scope of this chapter, we investigate the potential impact of using candi-

date Hindi descriptions of the Flickr30k dataset generated via back-translation for

multimodal machine translation and provided a benchmark baseline result on this

corpus. The main idea is to incorporate image features into different parts of the

encoder and decoder, and to evaluate whether or not they provide any substantial

gains over a vanilla NMT model under the low-resource language settings.

Our work show that a multimodal NMT system trained on synthetic training
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dataset can still improve translation quality by exploiting additional visual cues. We

also show that when collecting data in a different language, it is better to collect cap-

tions for the existing images because we can exploit the visually grounded word and

sentence-representations. Nevertheless, our result shows that despite being trained

on the same in-domain En–Hi training data, there are differences in translation

quality between the SMT and NMT system, at least in terms of evaluation metrics.

These results are not necessarily surprising given that the grammatical syntax

between the two languages is poorly represented in the synthetic Hindi training

data. In addition to this, Hindi as a language presents many of the well-known

issues that NMT currently struggles with (resource sparsity, rich morphology and

complex inflection structure).

To conclude, we have proposed a strategy to use synthetic data for training

an MMT system for a scenario where parallel data is not available. However, our

method is still dependent on large amounts of out-of-domain comparable data, which

is still far from what one can gather in a truly low-resource language scenario. In ex-

ploring both phrase-based method as well as additional back translation techniques,

we hope to make our method available to low-resourced language pairs in the future.

Finally, we saw how our MMT systems trained on candidate captions achieved

improvement over the baseline trained only on the textual data. It is therefore vital

that MMT resources are developed for low-resource languages.
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Chapter 5

Images in Adversarial Data

Conditions

5.1 Overview

While recent work on Multimodal Machine Translation (MMT) systems has shown

gains in terms of system performance by employing visual context over text-only

NMT, there are several scientific challenges contained therein, such as adversarial

data conditions. MMT systems operate over the two very different modalities –

text and images which are pooled together, where the information provided by each

modality may have different levels of resistance to adversarial attacks. Pooling them

together as in MMT in such a way as to get maximum overall benefit, is one such

challenge.

In general, the robustness of machine translation models to adversarial samples

has been studied considerably in the last two years with notable works by Belinkov

and Bisk (2017); Tramèr et al. (2017); Ebrahimi et al. (2018); Khayrallah and Koehn

(2018). In a similar vein, Michel and Neubig (2018) proposed a benchmark dataset

of noisy texts to evaluate the robustness of translation systems. However, the study

of robustness for Multimodal Machine Translation systems have never been the

subject of debate in the literature until recently. Elliott (2018) argued that the ad-
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ditional visual modality is not necessarily used by showing that system performance

did not change when the system was evaluated with randomly selected images. We

conjecture that the most plausible reason for such textual predominance is that the

Multi30K dataset is inevitably biased towards the source text portion, which makes

it sufficient as context to perform the translation without using the visual data. Our

observation about this linguistic dominance is in line with the findings of Grönroos

et al. (2018) who demonstrated that the effects of visual modality are rather small

in multimodal translation models and attributed their largest gains to using addi-

tional (unconstrained) text data. More recently, Caglayan et al. (2019) presented

an experiment in which colours and entities were masked during the training of a

multimodal translation model. They found that training the model under these con-

ditions resulted in the system relying on the visual modality to recover the masked

words during evaluation. Although, their results show that the visual modality can

be used to recover the masked tokens in the source sentences, it is not clear if these

systems will perform similarly when there is a mismatch between the textual and

visual concepts. To that end, we construct hard negative textual adversaries with

contradictory meanings to explore the robustness of systems to textual adversaries.

In this chapter, we explore the role of both modalities used in combination in

multimodal translation systems to address the following research question:

Can multi-modal models exploit the visual modality to generate better quality

automatic machine translation than single-modality models, even in adversarial

conditions ?

For this, the data from the two modalities refer to the same content, so it could

be an image and a textual caption describing that image. We construct textual

adversarial samples to probe the contribution of the textual input in these systems

and we follow the work reported in Elliott (2018) to construct the visual adversaries.

Our textual adversaries are based on minimally manipulating the textual examples,

e.g:

48



(1) a. The woman runs through a park.

b. *The woman runs through a car park.

In this sense, the perturbation in adversarial caption (1b) still retains most aspects

of the original caption but it depicts a completely unrelated scene to the original

one. We are interested in how significantly these types of perturbations affect the

performance of multimodal translation systems. We expect that small perturba-

tions should only result in small changes to the resulting translation. If the system

is sufficiently modelling the visual modality, we expect it to ignore this type of

perturbation, and to produce the correct translation by leveraging the image.

Put simply, our analysis is to evaluate p(y|x̄, c), where x̄ is some corruption to

textual input x and c is the visual signal. If the model is usefully representing both

x and c, it should be able to discard small errors in x. Additionally, we also strive

towards aligning these two modalities in an explicit way. The majority of previous

work in MMT has focused on using visual representations (both global and spatial

local preserving features) only as an additional context and great progress has been

achieved in these endeavours. While a fixed set of visual concepts constitute a

convenient modelling assumption for such models, they are in fact restrictive when

compared to the “multiplex mentions of rich descriptions” (Karpathy and Fei-Fei,

2015) that a human can compose. Thus, we focus on building a model that is able

to reason about the contents of the images and their mentions in the corresponding

descriptions.

Concretely, our contributions are twofold:

1. We evaluate the robustness of three state-of-the-art multimodal translation

systems in the presence of adversarial textual data. This evaluation is based

on four types of textual adversaries described in Section 5.2.2. We also probe

the visual awareness of these models by exposing them to randomly sampled

images.

2. In the light of the above results, we infer explicit alignments between differ-
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ent modalities and use them as additional information alongside the learned

embeddings of the source tokens to generate translations.

5.2 Experimental Settings

5.2.1 Dataset

Each system in this analysis that we present here is trained on the 29,000 English-

German-image triplets in the translation data which is part of the Multi30K dataset

(Elliott et al., 2016). The analysis is performed on the Multi30K Test 2017 split

Elliott et al. (2017). The predicted translations are evaluated against human refer-

ences using Meteor 1.5 Denkowski and Lavie (2014). Note that the translations of

the textual adversaries are evaluated against the gold standard, not what the model

should predict, given the adversarial input.

5.2.2 Generating textual adversaries

We define visual term as a word or phrase that describes something clearly illustrated

in the image. In our experiments, we replace a visual term in a sentence to create the

textual adversary. In total, we experiment with four types of adversaries: numeral

replacement, noun head replacement, preposition replacement, and switching the

order of the noun phrases in a sentence. We follow the methodology introduced in

(Young et al., 2014; Hodosh and Hockenmaier, 2016; Shi et al., 2018) to create these

samples. The numeral detection, noun phrase detection, and preposition detection

are performed using syntactic analyses from the SpaCy toolkit Honnibal and Johnson

(2015). Table 5.1 presents an overview and examples of each type of textual attack.

Replace Numeral (Num): Our simplest attack is to replace the numeral in

a sentence with a different quantity. To achieve this, we detect the tokens in a

sentence that represent numbers (based on their part-of-speech tags) and replace

them with an alternative. In addition, we treat the indefinite articles “a” and “an”
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Type Original and Adversarial
Noun Two people walking on the beach.

Two people walking on the chestnut.

Num Two people walking on the beach.
Four people walking on the beach.

NP Two people walking on the beach.
The beach walking on two people.

Prep Two people walking on the beach.
Two people walking through the beach.

Table 5.1: Examples of adversarial textual samples that we use to attack the mul-
timodal translation models. The underlined text denotes the words or phrases that
are perturbed to create the adversarial example.

as the numeral “one” because they are typically used as numerals in image captions.

Furthermore, subsequent noun phrase chunks are either singularised or pluralised

accordingly.

Replace Noun head (Noun): We extract the list of all concrete1 noun-heads

(Zwicky, 1985) from the COCO dataset Lin et al. (2014) and swap them with the

noun heads in our data. We use WordNet Miller (1998) heuristic hypernymy rules

that allows us to replace noun heads with terms that are semantically different. As

an example

(2) a. The woman runs through a field.

With consideration to the caption in (1a), in (2a), “field” is a hypernym of “park”,

and so a caption does not create a good adversary for (1a). However, (1b) does

create a semantically different adversarial example.
1We compute the concreteness of words following (Turney et al., 2011) and consider only those

heads with concreteness measure. The degree of concreteness in a word’s context is correlated with
the likelihood that the word is used in a literal sense and not metaphorically (Turney et al., 2011)
θ > 0.6.
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Switch Noun Phrases (NP): For each caption, the extracted the noun phrases

are shuffled and put back to their original position to form the samples. In the

example in Table 5.1, we refer to two people and to the beach respectively as the

partitive first noun phrase (NP1) and second noun phrase (NP2). The position of

NP1 and NP2 are swapped in our method. As a result, the adversarial caption

depicts a completely different scene. Such examples allow us to evaluate whether

our models can identify semantically important changes in word-order even when

the bag-of-words representation of two captions are same.

Replace Preposition (Prep): Finally, we detect the prepositions used in a sen-

tence and randomly replace them with different prepositions. The translation system

should be least sensitive to this type of preposition because it typically results in

the smallest change in the meaning of the sentence, as compared to switching the

noun phrases.

5.2.3 Generating visual adversaries

Visual concepts and their relationships with textual data is expected to provide

rich supervision to multimodal translation systems. In addition to evaluating the

robustness of these systems to textual adversaries, we also determine the interplay

with visual adversaries. We pair each caption with a randomly sampled image from

the test data to break the alignment between learned word semantics and visual

concepts. We hypothesise that the performance of these systems would demonstrate

inferior performances when incorporated with incongruent visual inputs.

5.2.4 Models

We evaluate the performance of the following three pre-trained multimodal transla-

tion systems2 under the four different types of textual adversaries:
2We use these three systems to make our evaluation comparable to Elliott (2018)
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Two people walking on
the beach.

Model

Zwei personen gehen am
strand entlang.

Figure 5.1: An evaluation example of visual adversaries. The model sees a congruent
image (left) or an incongruent image (right).

decinit: A learned transformation of the global 2048D visual data is used to ini-

tialise the decoder hidden state. (Caglayan et al., 2017). Similar to this model is

IMGD (Calixto et al., 2017b) described in Chapter. 3 where the decoder is initialized

with the sum of global visual features.

trgmul: The target language word embeddings and global 2048-dimensional visual

representations are interacted through element-wise multiplication (Caglayan et al.,

2017).

hierattn: The decoder learns to selectively attend to a combination of the source

language and a 7×7×512 volume of spatial-location preserving visual features (Li-

bovickỳ and Helcl, 2017).

5.3 Results and Discussion

Under Adversarial Conditions Table 5.4 shows the results of evaluating the

three state-of-the-arts models using the textual and visual adversaries.We further

perform a non-parametric Wilcoxon signed-rank test and rejected the null hypoth-

esis that randomly sampled images have no impact on the quality of multimodal

translation compared to the correct images. We observe that the visual adversaries

lead to a small drop in translation performance, which supports the claim of Elliott
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Original: A man paddles an inflatable canoe.
Noun: A city paddles an inflatable canoet
MMT: Eine Stadt paddelt in einem aufblasbaren Kanu.

MMT+explicit: Ein Mann paddelt ein aufblasbares Kanu.
Reference: Ein Mann paddelt in einem aufblasbaren kanu .

Original: Two white dogs cuddle their heads together.
Noun: Two white maps cuddle their heads together.
MMT: Zwei weiße Karten kuscheln ihre Köpfe aneinander.

MMT+explicit: Vier weiße Hunde jagen ihre Köpfe zusammen.
Reference: Zwei weiße Hunde stecken die Köpfe zusammen.

Table 5.2: Examples of translations produced by the hierattn system (MMT) and
the MMT+explicit model for Noun adversary. Both are the outputs, given the
adversarial caption and the correct image. Original: the original caption. Noun:
the adversarial caption with the underlined replacement.

(2018) that these systems can translate without significant performance losses in the

presence of the wrong images. For the textual adversaries, all three systems suffer

the most from the numeral replacements, which suggests that the counting ability

of the models depend on the available linguistic information. However, that the

changes in concept representatives (NP/Nouns) are somewhat similar indicates that

none of the models actually understands the underlying semantics of the texts i.e.

the difference between “cat drinks milk” and “milk drinks cat”. To further under-

stand the role of visual component for the purposes of translation, we also carried

out as a lower-bound experiment, i.e.– how a text-only NMT systems performs with

the adversarial sentences. The results of these experiments are shown in Table.5.3.

Type NMT MMT

Noun 38.26 38.8
NP 37.20 37.0
Num 34.95 35.0
Prep 40.73 42.8

Table 5.3: Behaviour of text-text translation model v/s text-image translation model
in adversarial conditions.
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Original Textual Visual
Noun Num NP Prep

trgmul 52.1 40.9 37.3 40.9 46.3 52.3
decinit 51.5 40.4 37.5 40.5 45.8 51.9
hierattn 48.2 38.8 35.0 37.0 42.8 46.2

Table 5.4: Corpus-level Meteor scores for the English–German Multi30K Test 2017
data. Original: performance of systems evaluated on the original text and images.
Textual: evaluation on the four different textual adversaries and the correct images.
Visual: evaluation on the correct text but adversarial images.

Analysis: The intuition behind our effort is to assess how multi-modal models

that make use of images to visually ground translations perform when translating

visual term, and in principle increase translation quality by doing so. Table 5.6

shows qualitative examples of translations under textual adversarial conditions for

the hierattn system. We also show the output of the same system given the original

image–caption pair. In these examples, we see that the system produces incorrect

translations with respect to either the sentence or the image. In Num, pluralizing

“A” with “Two” causes the model to generate an unknown word3 “Japan” instead

of “Halloween”. It is likely that the model has learned good representations of

both “A” and “two” because these words occur frequently in the training data,

it is evident that model fails to distinguish singulars against plurals, resulting in

an incorrect translation. In Prep, swapping “in” for “up” causes the model to

include an incorrect lexical choice “fische” (“fish”) instead of “waterfall”, which is

not true, given the image. This example shows that a small lexical error can have a

catastrophic effect on the output. This may be because - at least in Multi30K - the

semantics of spatial relations are not diverse enough. For Noun , switching “man”

for “city” causes the model to generates an output containing the mistranslated unit

“Stadt”(“city”), although a man is clearly visible in the image. This implies that

additional visual signals is not always helpful in the obvious situations where we wish
3We use the error taxonomy from Vilar et al. (2006).
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to translate direct visual terms. In NP, we see that the systems fail to fully capture

the information contained in the image, resulting in under-translation. However,

unlike the output under the adversarial condition which simply left an important

visual concept “people” untranslated, the model with the original sentence translates

“People” into “Menschen”. An inspection of the training data shows that there are

sentences that describe ‘people fishing”, and so the model may be exploiting the

distribution in the training data.

This analysis shows that the visual modality does not help the system to recover

the correct translation, given textual adversaries. Overall, our evaluation also offers

new insights on the limitations of these systems. From the experimental results we

find that the information contained in the images are ignored by these models when

there is an error in the corresponding caption, thereby hinting at the misalignment

between them. We conjecture that the most plausible reason for the linguistic

dominance is due to the representation or modelling limitations of these models.

Textual Original
Model

MMT+explicit. 52.5 52.9
hierattn 48.2 38.8

Table 5.5: Corpus-level Meteor scores for the English–German Multi30K Test 2017
data. Original: performance of the hierattn and the proposed MMT+explicit
system evaluated on the original text and images. Textual: evaluation on the noun
textual adversary and the correct images.

In addition to evaluating the performance of the models mentioned in Sec-

tion 5.2.4, we also conduct follow-up experiments to address the limitations of im-

plicit alignment between different modalities in these models. We follow a simple

word-image matching approach through the use of corresponding image region to

maintain the cognitive alignment between these modalities. To do this, we treat

the corresponding mentions of an image in the source sentence as weak labels and

subsequently supplement them with additional visual information. Our approach is
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inspired by (Frome et al., 2013) who associate words and images through a seman-

tic embedding. More closely related is the work of Karpathy and Fei-Fei (2015),

who decompose images and sentences into fragments and infers their inter-modal

alignment based on grounding dependency tree relations. In contrast to their model

which uses a ranking objective, we only align the learned word embeddings of the

object category associated with the image to the corresponding source token in the

sentence. Finally we use these alignment information to align and guide our Multi-

modal machine translation system.

5.3.1 Explicit Alignments

Visual category: We define “object category” in an image to be the instances of

semantic objects that provide direct information about the source word. Following

prior work (Karpathy and Fei-Fei, 2015), we observe that continuous segments of

sentence descriptions make meaningful references to objects in an image. One im-

portant consideration is how to identify suitable object categories for comparison so

that we can best utilise the associated source token in the sentence representations.

In doing so, we extracted the associated object categories using the Oracle annota-

tions of the Flickr30k dataset (Plummer et al., 2015) and the OpenImage Detection

Challenge (Kuznetsova et al., 2018). Our categories can classified into two types:

the smaller set of more general Oracle categories such as “people, animals” and the

broader set of more specific predicted categories such as “man, woman”.

Alignment: Subsequently, to align the detected categories and their correspond-

ing mentions, we calculate their similarity matrix.4 Our simple approach involves

flattening the sentence representation into a group of tokens (labels) and matching

them with the associated category information of the image. This connection is made

using standard metrics such as cosine similarity. In accordance with the revolution-

ary work of Frome et al. (2013) our goal is to make the model so informed enough
4To reduce the training costs of the visual models, we avoid the use of pool5 features of the

direct image regions instead of the pre-trained word-level embeddings of the category.
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that it is able to draw reasonable conclusions about candidate labels it has never

seen visually before. For example, if tested on images it has never observed before,

for example a photo of a puppy, and asked whether the correct token is more likely

dog or some other unfamiliar token (say, apple), our model has a fighting chance of

guessing correctly because the language model of the source representation ensures

that the representation of puppy is close to the representation of dogs the model has

seen, while the representation of apple is closer to those of other fruits. Figure 5.2 is

an example of the tokens in the source sentence are aligned to its matching category

of the visual region.

  

Figure 5.2: Explicit alignment between of the source word puppy and its correspond-
ing visual category

MMT+explicit: Finally, for the first run of the experiment we assign object cat-

egory only to the corresponding noun-head of the annotated sentence and set the

categories of other tokens to empty. And then for each of the source words the

learned word embedding is fused with the pre-trained word embeddings of the cat-
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egory through concatenation which is then passed into our encoder. The encoder is

a bi-directional RNN with GRU (Cho et al., 2014a), where a forward RNN gener-

ates a forward annotation vector at each encoding step. Similarly, a backward RNN

generates a backward annotation vectors and subsequently, these two are concate-

nated to produce the final context vector which in turn is used by the decoder. Our

decoder is an RNN with a conditional GRU with attention over the learned word

embeddings. To reduce the training costs of the visual models, we avoid the use

of pool5 features of the direct image regions instead of the pre-trained word-level

embeddings of the category. Our model MMT+explicit integrates the source lan-

guage word embeddings and pre-trained visual categories in the encoding stage as

illustrated in Figure 5.3.

Figure 5.3: MMT+explicit model with explicit alignment between the source
token and visual category

With Explicit Alignments A quick glance at the aforementioned models, we

find that the way visual modality is integrated into these models impose limits on

their variety. To address this issue, we conduct experiments under the same adver-

sarial setup but instead, using our MMT+explicit model described in Section.

5.3. The result of our first experiment with noun-heads is presented in Table.5.5.
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Our result clearly show that the systems perform well with respect to the evalua-

tion metrics and is able to penalise the noun adversary. To get a sense of how the

MMT+explicit model performs is presented in Figure 5.2. In both sentences,

adding category embeddings improve the translation. In the first example, though

the MMT says “Stadt ”(“city”), with category embeddings, the model says “Mann”,

which is true, given the image. In the second example, we perturb “dogs” with

“maps.” Though with category embeddings, the model gets the correct translation,

“Hunde”, the model without category embeddings produces an output containing

the mistranslated unit “Karten” (“cards”), although dogs are clearly visible in the

image. We notice that as the amount of linguistic information in the form of learned

category embedding increases, the MMT+explicit system gradually becomes less

perplexed by the mismatch between the visual and textual modality or, put in an-

other way, less sensitive to the adversarial condition.

5.4 Summary

Limitations of the dataset: Our evaluation offers new insights on the limita-

tions of the current state-of-the-art systems. The results indicate that these systems

are primarily performing text-based translations, which is supported by the obser-

vation that the visual adversaries do not harm the systems as much as their textual

counterparts. We conjecture that the most plausible reason for such textual pre-

dominance is that the Multi30K dataset is inevitably biased towards the source

text portion, which makes it sufficient as context to perform the translation. Our

observation about this linguistic dominance is in line with the work of Grönroos

et al. (2018) who demonstrated that the effects of visual modality are rather small

in multimodal translation models and attributed their largest gains to using addi-

tional (unconstrained) text data.
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Limitations of alignments: The current MMT models do not capture the in-

tended sense of image concepts, resulting in translations that are completely unre-

lated to the image (refer to 5.6). The problem seems to be deep-rooted with the

process of learning cross-modal representations of concrete concepts such as “ob-

jects” from the image data. To solve this, we devise our model to integrate image

information as a naturally occurring meaning representation of the source sentence

– such that – it acts as complementary information rather than redundant. Our

initial investigation using grounded visual information suggests input noise such as

errors in the source text can easily be mitigated. We conducted experiments where

our model is not fed with visual category features at decoding time but also trained

with them right from the scratch. The results suggest that such a model can learn to

ignore the textual adversary. In fact, their gain is prominent in the adversarial con-

dition. For future work, we would like to test our proposed model in all adversarial

as well for the sparse data conditions.

To sum up, we presented a systematic analysis of the potential contribution of

images for the task of multimodal machine translation. Specifically, we explored

the behaviour of state-of-the-art systems on adversarial sentences that share some

aspect of the correct caption to understand the impact of the textual data. Our

results indicate that the systems are primarily performing text-based translations,

and this is confirmed by the observation that the visual adversaries do not harm the

systems as much as their textual counterparts.

To solve this problem, we introduce a novel multi-modal NMT model to incor-

porate visual category information visual information into NMT. We have reported

improved results on the M30kT testset under adversarial conditions, improving on

previous multi-modal attention based models. Our approach is able to exploit the

visual category of the image regardless of the domain and aligns them to the corre-

sponding source mention in the encoding step. As future work, we intend to devise

models with an adversarial ranking loss that forces the model to pick up important

differences between the true image-text pair and distractors. Furthermore, we would
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also like to extend this approach to check whether the models are more sensitive to

semantically incorrect input or grammatically incorrect input.

62



Original: A group of young people dressed up for Halloween.
Baseline: eine Gruppe junger Menschen verkleidet verkleidet .

Num: Two groups of young people dressed up for halloween.
MMT: Zwei Gruppen von jungen Menschen in Japan .

Reference : Eine Gruppe junger Leute verkleidet sich für Halloween.

Original: A beautiful waterfall in the middle of a forest
Baseline: ein schöner Wasserfall in der Mitte eines Waldes .

Prep: A beautiful waterfall up the middle of a forest
MMT: Eine schöne Fische in einem Wald .

Reference: Ein schöner Wasserfall mitten im Wald .

Original: A man paddles an inflatable canoe.
Baseline: ein Mann paddelt in einem aufblasbaren Kanu .

Noun: A city paddles an inflatable canoe .
MMT: Eine Stadt paddelt in einem aufblasbaren Kanu .

Reference: ein mann paddelt in einem aufblasbaren kanu .

Original: People fishing off a pier.
Baseline: Menschen beim Angeln.

NP: A pier fishing off people .
MMT: Ein Pier beim Angeln .

Reference: Leute fischen an einem Pier .

Table 5.6: Examples of translations produced by the hierattn multimodal
transaltion system. Baseline: the output given the Original image-caption pair.
Num / Prep / Noun / NP: The adversarial caption with the underlined replace-
ment. MMT: the output of the hierattn system, given the adversarial sentence.
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Chapter 6

Conclusion

Traditional machine translation algorithms typically only take into consideration

linguistic contexts and they achieve this by learning representations only at the word

and sentence levels. The aim of this thesis was to investigate and to make advances

towards learning and understanding both visual as well as linguistic information for

machine translation. We considered three scenarios to perform this

1. An aligned setting where the data is made up of triplets of L1 sentences, and

their manual translation into L2, and an associated image;

2. Sparse settings where for an image and its associated description in L1, there

is no data available in the L2 language and finally,

3. Disjoint settings where either the L1-L2 parallel corpus or the image-textual

data is not aligned.

In this chapter, we not only summarise our main findings briefly, but we also to

point out some of the limitations of our work and we give some pointers towards

future directions.

We started the thesis by illustrating the benefits of using the visual modality

for MT systems and progressed towards re-assessing the real contribution of addi-

tional modalities in these systems. Our multimodal NMT models mainly use image

features extracted from pre-trained CNNs, specifically the VGG and the Residual
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Networks. We use global image features for the three models IMG2W, IMGE and

IMGD described in Chapters 3 and 4, and local image features for our proposed

model, NMT+explicit in Chapter 5. Revisiting the state-of-the-art and the ex-

perimental results we presented, we observed in Chapter 3 that the multimodal

variants perform significantly better than their text-only counterparts when the

alignment between visual and textual concepts is maintained. All multimodal mod-

els in the aligned scenarios using either global image features, consistently improved

the translation quality of image descriptions in comparison to the NMT-baselines.

Furthermore, our experiments with ensembled multimodal NMT models introduced

in Calixto et al. (2016) show that these models can generate translations that com-

pare favourably to multimodal models that use local image features. Thus from this

chapter we obtain results that gives a strong indication that training with visual

signals leads to improved results in an aligned setting such as ours. However, it

remains inconclusive as to how general our findings are due to the limited number

of languages we considered.

In Chapter 4, following a review of the aforementioned MMT systems, we

proposed a methodology to generate synthetic aligned data in a low-resource data

setting. The main objective of this chapter was to improve the models’ capacity to

learn from visual signals even when the dataset is sparse. We specifically developed

a joint data generation and training system for low-resource NMT, which yields

benchmark results for unsupervised scenarios where abundant comparable data is

available. Our results provide evidence that visual grounding can provide a useful

inductive bias to improve translation performance. However, our methodologies in

sparse data scenarios is still dependent on large amounts of out-of-domain compara-

ble data, which is still far from what one can gather in a truly low-resource scenario.

We hope to make our method more generalizable to more low-resourced language

pairs in the future by exploring popular methods that involves both phrase-based

extraction mechanisms and iterative back-translation between monolingual corpora.

The role of image in translation remains an open question at the time of writing
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this thesis. Recently, Caglayan et al. (2019) show that multimodal systems are in-

sensitive to images in general, however, masking entities from the source language

sentence during training can help to overcome this problem. Along this direction,

Gong et al. (2014) found that adding images as extra context to translation sys-

tems only has only marginal effect on translation performance and attributed their

largest gains to adding more textual training samples. Although,the first to address

this issue was Elliott (2018) who investigated the actual role of visual context in

translation tasks. He introduced a measure of the image awareness of multimodal

translation models and showed that additional visual modality is not necessarily

used by demonstrating that the performance of a system did not change when it

was evaluated with randomly selected images. These findings raise new questions

about how to model the visual input in multimodal translation systems.

A natural extension to these works was to conduct experiments with both visual

and textual adversaries in order to understand the role of both modalities to such

systems. To the best of our knowledge, until this, no extensive studies have been

done to understand the role of each modalities for MMT in a systematic manner.

Thus in Chapter 5 we studied the potential contribution of both modalities for the

machine translation task in a disjoint data-setting. We introduced hard-negative

adversarial samples in the text domain and studied the performance of existing

frameworks. Our hard-negative adversarial sentences retained most aspects of the

original sentence while depicting a completely unrelated scene. We also probed the

visual awareness of these models by exposing them to random sample images.

Our results indicated that the systems are primarily performing text-based trans-

lations, which is supported by the observation that the visual adversaries did not

harm the system performance as much as their textual counterparts. We also ob-

tained new insights on the limitations of the current dataset (Elliott et al., 2016)

as well as the state-of-the-art frameworks (Libovickỳ and Helcl, 2017; Caglayan

et al., 2017, 2016). Concurrent to our work is work published in (Caglayan et al.,

2019) who show that the visual modality can be used to recover the masked tokens
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in the source sentences. However, entity omissions does not harm the alignments

across modalities as much as the hard-negative adversaries and that explains why

the models were not particularly successful in translating adversarial noises.

We proposed a model that integrates explicit linguistic knowledge to help the

model make reasonable inferences if tested on images it has never seen before. The

result obtained from the first run of the experiment with noun-heads highlighted

that explicit alignment can help to immune MMT models against any kind of input

errors in the source. For future work, we want to introduce more knowledge bases

and human priors to maintain the semantic consistency in MMT pipelines. We

will put more emphasis on the specific visual term in the image, aligning them

with corresponding mention in the source data. Furthermore, we would also like to

extend this approach to check whether the models are more sensitive to semantically

incorrect input or to grammatically incorrect input. Another interesting direction

for future work would be to devise models with a max-margin ranking loss that

forces the model to distinguish important differences between the true image-text

pair and the hard negatives (Huang et al., 2018).

The visual grounding approaches presented in the thesis involved extracting

global visual features through separate image encoders and further to associate them

with sentences. Global visual features have also been proven to perform strongly in

various transfer learning scenarios for different downstream NLP applications such

as visual question answering (Zhang et al., 2016) or visual semantic word embed-

dings (Gella et al., 2017; Kádár et al., 2017). Another approach for using image is

described in Chapter 5 that involves learning latent alignments between sentence

fragments – usually words – and image regions using similar framework presented

in (Karpathy and Fei-Fei, 2015). Here the sentence and the local region features

of images are separately encoded with a bidirectional RNN and from a pre-trained

CNN respectively. Furthermore, a dot product between these two computes the

region-word interactions. Local visual features or attention over specific image re-

gions has also been used in a transfer learning image description generation task

67



(Xu et al., 2015), which is closely related to the task of multimodal machine transla-

tion. We believe that an interesting avenue for future work involves the application

of local image descriptors, using more advanced attention mechanisms to compute

region-word interactions, in a multi-step way (Nam et al., 2017; Huang et al., 2017).

Progress towards learning better visually-grounded representations can be also be

extended in multi-task learning strategies (Ruder, 2017).

A major limitation, however, of most of our experiments is that they are based

on specific data configurations, where the same images are annotated with multi-

ple languages (Elliott et al., 2016). The current version of the Multi30K data set

probably does not contain many training samples where the models need to take

the visual modality into account for translation (Elliott, 2018). Thus, generation

of more balanced datasets (Goyal et al., 2017) that captures the joint semantics of

both modalities– we think is an exciting future avenue for visually grounded and

multilingual translation tasks.
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