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Abstract 

 

Richard Lalor 

Immunomodulatory properties of bovine caseins on innate immune cells 

 

The field of nutraceutical research has rapidly expanded as more evidence suggests that 

functional foods like milk have positive health impacts beyond their nutritional value. The 

consumption of proteins and peptides derived from milk have been shown to display an 

array of bioactive properties that could be helpful in the management of many western 

diseases such as inflammatory, cardiovascular and metabolic. Immunomodulatory 

nutraceuticals have gained special attention due to their therapeutic potential for the 

amelioration of chronic inflammatory disorders as patients seek alternatives to drugs which 

often have side effects which can outweigh their benefits. Macrophages and dendritic cells 

are both key players in the induction, propagation and resolution of inflammatory 

responses, and are known to actively contribute to the pathogenesis of many inflammatory 

diseases. As such, these cells were chosen in this study to investigate the effects of bovine 

milk derived compounds on inflammatory processes. Sodium caseinate exhibited 

immunomodulatory properties, which were attributed to the kappa-casein subunit. Kappa-

casein primed novel suppressive murine macrophages (CD54
high

, CD206
high

, CD40
high

, 

SOCS1
high

 & SOCS3
high

) and semi-immature dendritic cell (CD209
low

, CD40
low

, SOCS1
high

 

& SOCS3
high

) phenotypes that have not been previously described. It inhibited the 

induction of pro-inflammatory cytokines in both cell types by targeting the NFκB signal 

transduction pathways in a mechanism that may involve the upregulation of SOCS1 and 

SOCS3. These results were transferable in human derived macrophages. All kappa-casein 

induced phenotypes significantly suppressed the production of IL-2 from CD4
+
 T-cell in-

vitro & in in-vivo, a key cytokine required for effector T-cell responses. These 

immunomodulatory effects are attributed to a novel fragment of kappa-casein. Given the 

powerful immuno-modulatory effects exhibited by kappa-casein and our understanding of 

the immune pathology associated with inflammatory diseases, this fragment has potential as 

an oral nutraceutical to manage diseases such as inflammatory bowel disease and therefore 

warrants further investigation.  
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Chapter 1 – Introduction 

Nutraceutical is a term derived from “nutrition” and “pharmaceutical” that is applied to 

products that are isolated from herbal, dietary supplements and functional foods such as 

dairy, cereals and beverages which beyond nutritional value possess physiological benefits 

to improve health or prevent chronic diseases (Kalra 2003; Zhao 2007). The nutraceutical 

industry has received considerable interest due to the safety and therapeutic effects 

exhibited by these products and are becoming more important in today’s society as 

consumers are increasingly more health conscious.  Consequently, these industries are 

rapidly expanding with a net value of $ 230.9 billion globally in 2018 which is projected to 

reach $ 336.1 billion by 2023 (Nutraceuticals: Global Markets 2018). 

Functional food derived bioactive peptides has been a rapidly expanding sector within the 

nutraceutical industry. Bioactive proteins and peptides are defined as specific proteins or 

protein derivatives that have a positive impact on bodily functions which may ultimately 

influence health (Kitts and Weiler 2003). They have been derived from numerous sources 

including milk, cheese, yoghurt, fish, and soybeans among others and can vary in size from 

a small peptide 3 amino acids in length to full-sized proteins. Milk, in particular, has the 

greatest potential to be used commercially as a source of these bioactive nutraceuticals as 

the production and consumption of milk products has increased (O’Connor 2009) and 

bioactive proteins and peptides derived from milk display an array of bioactive properties 

including anti-tumour, anti-microbial, anti-oxidant, opioid, ACE-inhibitory and 

immunomodulatory activity (Rutherford-Markwick et al., 2005; Savijoki et al., 2006; 

Madureira et al., 2007; Dziuba et al., 2009).  

Immunomodulation is necessary to control the consequences of a deregulated immune 

system. Strategies to effectively modulate the immune response have been extensively 
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sought out to combat inflammatory diseases and disorders. The most frequently used 

strategies involves the use of drugs that slow the progression of specific diseases, however 

they can often have unforeseen and potentially harmful side effects which can outweigh 

their benefits (Nongonierma & FitzGerald 2015). In this context, bioactive proteins 

represent a viable alternative to the use of drugs for the management of inflammation, as 

they have been shown to stimulate or inhibit certain immune functions, generally have low 

toxicity, are easily degraded and tend not to accumulate in bodily tissues (Gokhale & 

Satyanarayanajois 2014; Agyei et al., 2016). 

Inflammatory bowel diseases (IBD) that affect the gastrointestinal (GI) tract like crohn's’ 

disease (CD) and ulcerative colitis (UC) whose incidence and prevalence are increasing 

worldwide (Molodecky et al., 2012), are prime targets for the use of bioactive immuno-

modulatory proteins and peptides as they are administered orally, a non-invasive natural 

route that delivers the bio-actives to the inflammatory site. They are characterized by severe 

inflammation of the GI tract and associated with prolonged activation of nuclear factor 

kappa-light-chain-enhancer of activated B cells (NFκB) and subsequent increased synthesis 

of pro-inflammatory mediators like the cytokine tumour necrosis factor-α (TNF-α) in both 

conditions (Strober & Fuss 2011) proposed to by mainly produced by antigen-presenting 

cells (APC) and T-cells (Cobrin & Abreu 2005).  

Milk derived casein bioactive proteins and peptides have been demonstrated to ameliorate 

experimental models of IBD in mice and human pilot studies of UC (Requena et al., 2008; 

Lopez-Posadas et al., 2010; Hvas et al., 2016). Studies, in particular in-vitro studies, have 

also demonstrated that these bioactive peptides have an immuno-modulatory effect on the 

inflammatory capacity of antigen presenting cells, namely macrophages and dendritic cells 

(DC) (Monnai & Otani 1997; Mikkelsen et al., 2005; Cheng et al., 2015; Li et al., 2017), 
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two cell types heavily implicated in the initiation and propagation of IBD (Steinbach & 

Plevy 2014). While these studies examine how effective casein (CAS) bioactive proteins 

and peptides are at suppressing macrophages and dendritic cells inflammatory responses, 

there is a dearth of research on the mechanism by which these molecules act on these cell 

types. Therefore, more studies are required to understand the activation status, and to define 

the cellular phenotype which not only affects their immediate effector functions but can 

also heavily influence their ability to initiate and propagate adaptive immune responses 

(Takeda et al., 2003; Pasare & Medzhitov 2004). This research will further examine the use 

of immuno-modulatory milk casein based bioactive proteins, advancing our understanding 

of the impact they have on key innate immune cells potentially leading to the discovery of 

new viable alternative to the use of pharmaceuticals in influencing health for the prevention 

and treatment of chronic diseases. 

 

1.1 Functional foods and nutraceuticals   

Functional foods while similar to conventional foods have been demonstrated to exhibit 

physiological benefits which can reduce the risk of chronic disease beyond their basic 

nutritional functions (Food and Agriculture Organization of the United Nations 2008). 

Functional foods such as yoghurt and fermented milk when ingested were shown to 

promote bowel regularity and modulate GI tract immune responses (Tamang 2010) while 

several epidemiologic studies have strongly correlated high dietary intake of certain fruits 

and vegetables with reduced risk of developing chronic diseases, some of the beneficial 

effects being attributed to their anti-oxidant properties (Balsano & Alisi 2009). 

Nutraceuticals defined as ‘a fragment of a food that provides medicinal and health benefits 
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for the prevention or treatments of a chronic disease’ have been derived from both plant 

and animal functional foods. The supplementation of diets with nutraceuticals derived from 

functional foods have been shown to ameliorate various human diseases including 

hypertension, cardiovascular disease, obesity and type II diabetes (Bagchi et al. 2010). The 

popularity of the functional food and nutraceutical industries are increasing as consumers 

are becoming more health conscious and seek viable alternatives to the use of often 

expensive, high-tech disease treatment approaches currently employed in developed 

countries which can have unforeseen or undesirable side effects in the treatment of chronic 

conditions. The nutraceutical industry is an evolving entity that offers novel opportunities 

to merge scientific discovery with growing consumer interest which is rapidly expanding 

with a market value predicted to reach $336.1 billion by 2023 (Nutraceuticals: Global 

Markets 2018). Investment in research and development to find and verify health claims of 

beneficial nutraceutical products represents a large sector of the industry. Bovine milk is a 

prominent source of many bioactive proteins and peptides derivatives with an array of 

observed nutraceutical properties that have been shown to have a positive impact in human 

diseases (Mohanty et al., 2015).  

 

1.2 Bovine milk   

Milk is composed of water, protein, fat, carbohydrates and trace elements (Fox 2009) and 

while the constituents are the same for mammals, the concentration of each constituent 

varies from species to species. In bovine milk, water is the main constituent, comprising of 

87.4-90.7% of the total mass with carbohydrates as the second most prevalent component, 

comprising of mostly lactose which makes up 4-5% of the total milk composition. Milk fat 
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contributes to approximately 3.5-4.5% of milk and is mostly contained in fat globules 

composed of triglycerides, phospholipids, sterols, fatty acids that can contain the fat-soluble 

vitamins A, D, E and K. Protein contributes to 3-4% of milk constituents while trace 

elements including salts and minerals make up the final 0.7-0.8% (Food Standards 

Australia and New Zealand 2006). Research over the past twenty years has begun to 

identify milk components, milk proteins and in particular peptide derivatives that beyond 

their nutritional value have potential bioactivity as nutraceuticals.  

 

1.3 Milk proteins 

Proteins are complex macromolecules made up from specific sequences of 20 possible 

amino acids, covalently linked together by peptide bonds forming polypeptides (Rosenberg 

1996). The amino acid sequences of these polypeptides make up the primary structure of 

proteins. These polypeptides can interact via hydrogen binding to from secondary structures 

called alpha helices and beta pleated sheets which refer to the 3 dimensional shapes the 

amino acid chains display. The overall 3-dimensional structure of a polypeptide is referred 

to as tertiary structure, which is primarily influenced by interactions between the attached 

functional groups of the amino acids within the protein. Many proteins are made up of a 

single polypeptide chain and only have 3 levels of structure. However, some proteins are 

made up of multiple polypeptide chains referred to as subunits, which can be held together 

by hydrophobic interactions, hydrogen bonding and Van der Waals forces, forming a 

proteins quaternary structure (Rosenberg 1996; Banga 2006).  

Milk proteins have been studied for over two centuries (Fox and Mcsweeney 2003) and 

there are two major classes of proteins in milk: whey and CAS proteins which can be 
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separated based on their solubility at pH 4.6 at 20°C. Whey proteins include α-lactalbumin, 

β-lactoglobulin, bovine serum albumin (BSA), immunoglobulins, lactoferrin and transferrin 

which constitute 20% of the total protein in bovine milk (Zayas 1997). CAS is composed of 

four subunits of protein: αs1-, αs2-, β-, and к-CAS which constitute about 80% of the total 

protein in bovine milk (Walstra et al., 1999). αs1- and αs2-CAS are moderately hydrophobic 

phosphoproteins which constitutes for ~50% of the total CAS in bovine milk (Huppertz et 

al., 2018). αS1-CAS is a 199 amino acids polypeptide with 8 phosphate residues, 7 of which 

residues near the middle of the protein, in a cluster. This cluster is also negatively charged 

making it a highly hydrophilic domain. αS2-CAS consists of 207 amino acids with 

phosphorylated serine residues which unlike the other CAS subunits are not uniformly 

phosphorylated, the number varying from 10 to 13 (Farrell et al., 2004). αs2-CAS appears to 

occur primarily as a monomer (Snoeren et al., 1980). It contains both high and low 

hydrophobic regions, with anionic clusters which are though to be related to its calcium 

binding properties (Toma and Nakai, 1973). The structure of αS2-CAS, like αS1-CAS, is 

suggested to be a natively unfolded coil, existing in a pre-molten globule state (Farrell et 

al., 2009).  

β-casein is composed of 209-amino acids, a strongly amphipathic phosphoprotein which 

constitutes up to 35% of the caseins in bovine milk (Huppertz et al., 2018). The distribution 

of charge is responsible for the amphipathic properties with the N-terminus residues 

containing all the net charge of the molecule, have low hydrophobicity, while the C-

terminal section contains many non-polar residues and is characterized by little charge and 

high hydrophobicity. κ-CAS accounts for the rest of the total CAS but displays some 

unique features. It is the smallest of the CAS, consisting of 169-amino acids and is the only 

glycosylated CAS subunit, with multiple isoforms showing different degrees of 



7 
 

glycosylation coexisting in milk (Dziuba & Minkiewicz 1996). κ-CAS is also 

predominantly hydrophilic, particularly the C-terminal portion which is phosphorylated and 

glycosylated, further increasing hydrophilicity (Huppertz et al., 2018). Molecules of κ-CAS 

can have up to 9 glycans, containing galactose, N-acetylgalactosamine, and N-

acetylneuraminic acid or sialic acid (Vreeman et al., 1986). The structure of κ-CAS has 

been proposed to acquire a polyproline II helical confirmation interspersed with bends 

(Syme et al., 2002). 

All CAS subunits show a tendency to self-associate but also a propensity to associate with 

other CAS subunits assembling into unique spherical colloidal micelle-like structures. The 

micelle is held together and stabilized by unique physicochemical properties, the 

framework of which is thought to be formed by two dimers of αs1-CAS, linked together by 

either a αs2- or κ-CAS subunit. Two dimers of β-CAS can then associate with this 

framework, completing what could be considered to be the basic CAS particle (Kumosinski 

et al., 1994; Farrell et al., 2003). CAS micelles are important for the binding of minerals 

with low solubility like calcium and magnesium (de Kruif & Holt 2003). The anionic 

clusters of αs- and β-CAS bind to the relatively insoluble minerals, while the calcium 

insensitive κ-CAS stabilizes the other CAS against calcium induced loss of solubility, 

providing steric and electrostatic repulsion between micelles and preventing aggregation. In 

addition to their role as mineral transporters, these CAS subunits have also been shown to 

exhibit bioactive properties, defined as specific proteins or protein fragments that have a 

positive impact on body functions or conditions and may ultimately influence health (Kitts 

& Weiler 2003).  
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1.4 Bovine milk as a source of bioactive compounds  

Bovine milk proteins and peptide derivatives have been reported to have various bioactive 

properties (Dziuba et al., 2009). Several clinical trials have reported a link between the 

consumption of dairy products and a reduced risk of heart diseases which was linked to the 

angiotensin converting enzyme (ACE) inhibitory activity of whey and CAS protein and its 

protein derivatives released during digestion (Givens et al., 2014; Fernandez-Fernandez et 

al., 2017). Lactoferrin, a minor whey protein was shown to display antimicrobial activities 

by inducing membrane disruption, thus preventing pathogen growth. (Cederlund et al., 

2011; Takeuchi et al., 2014). Studies in humans have demonstrated that the ingestion of 

whey proteins has been reported to reduce oxidative stress which is important to human 

health as the buildup of oxidant species can lead to cellular damage (Sheikholeslami & 

Ahmadi 2012). CAS and whey proteins have also been shown to exhibit anti-inflammatory 

properties, reducing T-cell activition markers in low-grade inflammation associated with 

obese human subjects (Holmer-Jensen et al., 2011).  

 

1.5 Innate immunity and immuno-modulatory properties exhibited by casein 

bioactive proteins and peptides  

The importance of a properly functioning and well-balanced immune system to maintaining 

health has become strikingly evident. Immune modulation via dietary supplementation 

strategies involving the use of bioactive nutraceuticals may contribute to the maintenance 

of immune homeostasis in a healthy population. Immunomodulation via bioactive proteins 

or peptides occurs when they initiate/regulate immunological responses and cellular 

functions which can result in the suppression or stimulation of either the innate (functioning 
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of macrophages, DCs, monocytes and granulocytes) and/or adaptive (T or B lymphocyte 

activation and proliferation, antibody production and cytokine expression) immune 

responses.  

The immune system can be divided into innate and adaptive immunity, representing two 

arms of the immune system that are closely related to one another. The innate immune 

response is the first line of defense against infections and mounts a response when triggered 

by the recognition of a highly conserved molecular pattern or motif called a pathogen-

associated molecular pattern (PAMP) via germ line-encoded pattern recognition receptors 

(PRRs) present on the extracellular milieu or in endosomal compartments of host cells 

(Kawai & Akira 2009). These PAMPs are recognised by cells of the innate immune system 

including macrophages, DCs, and monocytes which are distributed throughout the tissues 

in the body but also epithelial cells, endothelial cells, and fibroblasts which all play a major 

role in pathogen recognition during the innate immune response (Akira et al., 2006). The 

binding of PAMPs by specific PRR triggers the activation of signal transduction pathways 

that result in the production and release of a diverse array of pro-inflammatory signalling 

mediators by the host cell which modify vascular endothelial permeability, and recruit 

immune cells to combat the microbial infection (Kawai & Akira 2009). 

Although neutrophils are primarily the first cells to respond to an infection and injury 

(within a few hours), macrophages, DCs and monocytes are also key players in detecting 

and mounting a robust inflammatory response as they also phagocytose foreign bodies. 

During this recognition and response process, effector molecules with biocidal effects like 

reactive oxygen or nitrogen species are produced by these cells (Kohchi et al., 2009), as 

well as immuno-stimulatory modulators like cytokines which heavily influence the 

inflammatory process and thus have a greater effect on controlling the early phase of 
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infections (Serbina et al., 2003; Dunay et al., 2010; Kim et al., 2011). Moreover, to mount 

a robust immune response to antigens, effective crosstalk between innate and adaptive 

immune cells must occur. Macrophages, DCs and monocytes are prominent APCs of the 

innate immune system which drive subsequent adaptive immune responses. Following 

phagocytosis, APCs process foreign bodies and present antigens to T-cells on markers like 

major histocompatibility complex (MHC) II. The antigen-MHC complex is the main 

stimulatory signal (signal 1) presented by APCs to T-cells which engages with the T-cell 

receptor (TCR)-CD3 complex. Co-stimulatory receptors bind their T-cell counterparts 

(signal 2) such as CD80 and CD86; in the presence of immuno-stimulating factors (signal 

3) like cytokines which influence which type of the effector T-cell response is elicited (Reis 

e Sousa 2006). The presence of these three signals is a requirement for effective T-cell 

stimulation (Reis e Sousa 2006; Green et al., 2009), lowering the threshold needed for T-

cell activation and the subsequent production of interlukin (IL) -2, a cytokine crucial to T-

cell expansion (Lenschow et al., 1996). However, a reduction in signaling strength, via the 

lack of co-stimulatory molecule interaction or the presence of inhibitory ligands can 

sequester T-cell responses by inhibiting IL-2 production and subsequent T-cell 

proliferation, which are important mechanisms used to maintain homeostasis and tolerance 

to self-antigens (Slavik et al., 1999; Okazaki and Honjo 2006). 

Improper resolution or activation of the inflammatory response can result in the persistence 

of effector cells and their pro-inflammatory mediators which can become deleterious for the 

host, leading to the development of chronic inflammatory diseases. Considering that many 

human diseases are immune-related, there in lies great potential and demand for the 

development of immunomodulatory nutraceuticals like bioactive protein and peptides as 

possible therapeutic to treat these diseases. CAS, its subunits and enzymatic derivatives of 
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these proteins have been extensively studied because of their potent immunomodulatory 

properties. Carr et al., demonstrated that intact αs1-CAS enhanced the mitogen-stimulated 

proliferation of murine splenic T-cell responses in-vitro (Carr et al., 1990). Similarly to αs1-

CAS, Wong et al., demonstrated that intact β-CAS significantly enhanced the mitogen-

induced proliferation of T- lymphocytes and B lymphocytes in-vitro (Wong et al., 1996). In 

contrast to αs1- and β-caseins, κ-CAS exerted suppressive effects on murine and rabbit 

lymphocyte proliferation induced by a range of T-cell mitogens (Otani & Hata 1995). 

However, conflicting reports suggested that κ-CAS promoted proliferation of murine spleen 

cells, in the absence of extraneous mitogens (Yun et al., 1996). The major immuno-

suppressive effects exhibited by κ-CAS were attributed to the glycomacropeptide (GMP) 

component (Otani et al., 1995). GMP consists of a portion of the C-terminal component of 

κ-casein that is usually glycosylated and can contain a high amount of N-acetylneuraminic 

acid residues. GMP was shown to inhibit proliferative responses in the spleens of mice and 

rabbit Peyer’s patch cells (Otani et al., 1995). 

 

1.6 Benefits of using bioactive proteins in immunomodulation. 

Research into the use of immuno-modulatory bioactive protein-based nutraceuticals has 

gained interest due to their potential use as a dietary intervention strategy in the treatment 

of many immune related diseases. These molecules do not exhibit the unwanted side effects 

that are commonly associated with traditional chemical pharmacologic drugs 

(Nongonierma & FitzGerald 2015). Currently, there are more than 60 approved protein-

based therapeutics available on the market, with approximately 140 more in clinical trials 

(Gokhale & Satyanarayanajois 2014).  
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Bioactive based-proteins and peptides have several traits which makes them suitable for use 

as therapeutic agents. These traits include structural diversity, high activity and wide 

spectrum of action, including some multifunctional properties. Bioactive peptides are 

naturally occurring biologics and in contrast to synthetic substances are degraded into their 

component amino acids without the production of intermediate toxic metabolites. Peptides 

are readily degraded, with generally short half-lives, combined with their larger size avoids 

their accumulation in bodily tissues compared to smaller chemical molecules. Moreover, 

bioactive based-proteins and peptides are generally small enough to allow efficient 

delivery/adsorption and ensures a low likelihood of triggering undesirable immune 

responses (Hancock & Sahl 2006; Marx 2005; Mason 2010; Agyei et al., 2016).  

 

1.7 Inflammatory bowel disease and inflammatory signalling as a target for milk 

derived bioactive peptides  

Conditions affecting the GI tract represent prime targets for the use of bioactive immuno-

modulatory proteins and peptides as they can be easily administered orally, a non-invasive 

route that delivers the bio-actives to the inflammatory site. IBD, specifically CD and UC 

are GI autoimmune diseases whose incidence and prevalence are increasing worldwide 

(Molodecky et al., 2012). IBD is considered an immune-mediated disease that involves a 

complex interplay between host genetics and environmental influences, including 

intolerance to the natural microbiota of the gut (Abraham & Cho 2009). Immunological 

results from several human studies combined with data from experimental animal models 

of the diseases indicate that microbial antigen exposure is heavily implicated in the 

initiation, perpetuation, and amplification of IBD (Lodes et al., 2004; Abreu et al., 2005; 
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Kiesler et al., 2015).  IBD is characterized by severe inflammation of the GI tract and is 

associated with prolonged activation of inflammatory signalling pathways, often the result 

of the stimulation of the toll-like receptors (TLR), PRR heavily involved in microbial 

antigen recognition (Figure 1.1).  

The NFκB pathway is one of the most prominent signalling pathways, playing a central role 

in immunological processes by inducing expression of a variety of genes involved in 

inflammatory responses and cell survival (Baldwin 1995). In a steady state prior to 

activation, NFκB is retained in the cytoplasm, sequestered by inhibitor of kappa B (IκB) 

proteins (Baeuerle 1998). However, when a cell encounters inflammatory stimuli including; 

inflammatory cytokines, PAMPs, heavy metals or oxidative stress, signalling cascades 

result in the activation of IκB kinase (IKK) complexes which phosphorylate the NFκB 

inhibitor protein IκBα, targeting them for polyubiquitination and subsequent proteosomal 

degradation (Brown et al., 1993). Once degraded, IκBα no longer sequesters the NFκB 

proteins which translocate to the nucleus and initiate transcription of target genes (Karin & 

Ben-Neriah 2000). 
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Figure 1.1 TLR induced Inflammatory signalling cascades. Upon recognition, TLR signalling is 

initiated by ligand-induced dimerization of the TLR receptors. Subsequently, the Toll IL-1-

resistance (TIR) domains of TLRs engage with either the signalling adaptor molecules; myeloid 

differentiation primary-response protein 88 (MYD88) and MYD88-adaptor-like protein (MAL), or 

TIR domain containing adaptor protein inducing IFNβ (TRIF) and TRIF-related adaptor molecule 

(TRAM). This engagement stimulates downstream signalling pathways that involve interactions 

between IL-1R-associated kinases (IRAKs) and the adaptor molecules TNF receptor-associated 

factors (TRAFs), that lead to the activation of the mitogen-activated protein kinases (MAPKs) JUN 

N-terminal kinase (JNK) and p38. These signalling cascades culminate in the activation of the 

transcription factors; NFκB, interferon-regulatory factors (IRFs), cyclic AMP-responsive element-

binding protein (CREB) and activator protein 1 (AP1). Both extracellular and intracellular TLR 

signalling processes converge to produce pro-inflammatory cytokines, while endosomal TLRs also 

induce type I interferon (IFN). In late phase activation, TLR4 can translocate from the plasma 

membrane to endosomes where it switches signalling from MYD88 to TRIF, allowing for the 

production of induce type I IFN. Figure adapted from O'Neill et al., 2013. 
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Although NFκB is considered the main regulator of the inflammatory response, there are 

several other pathways involved such as the mitogen-activated protein kinase (MAPK) 

pathway. There are 3 primary groups of MAPK; extracellular regulated kinases 1 and 2 

(ERK1/2), p38 MAPK, and c-Jun N-terminal kinases (JNK). Much like NFκB, they can be 

activated by a variety of stimuli. ERK 1/2 pathway is mainly activated by mitogens and 

growth factors, but also inflammatory cytokines and PAMPs (Chan & Riches 2001; Guha 

et al., 2001). A series of the signal transduction cascades can result in the phosphorylation 

and activation of ERK 1/2 protein which in turn further propagate the signalling cascade 

upon translocation to the nucleus (Roskoski 2012). ERK 1/2 proteins phosphorylate various 

other transcription factors, including members of the activator protein-1 (AP-1) 

transcription factor family (Monje et al., 2005). 

Similarly to ERK 1/2, JNK and p38 MAPK can be activated by growth factors, pro-

inflammatory cytokines, PAMPs and oxidative stress. Upon phosphorylation, they can 

elicit downstream effects on transcription factors such as cAMP response element-binding 

protein (CREB), activating transcription factor-1 (ATF1), signal transducers and activators 

of transcription-1 (STAT-1) and members of the AP-1 transcription factor family 

(Sabapathy et al., 2004; Zarubin & Han 2005). 

These inflammatory signalling pathways are upregulated in IBD and are responsible for the 

subsequent increased synthesis of an array of pro-inflammatory stimulatory factors (Strober 

& Fuss 2011). The inflammatory process is heavily influenced by these factors, the most 

prominent and well-studied of which are cytokines. Cytokines encompass a diverse group 

of secreted poly-peptides, which the majority are involved in orchestrating inflammatory 

cell-cell signalling processes. Early acute inflammatory responses are associated with the 

induction of the cytokines; TNF-α, IL-1β and IL-6 while IL-2, IL-4, IL-10, IL-12, IL-13, 
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TNF-α and IFN-γ are observed in longer chronic inflammatory responses (Feghali & 

Wright 1997). These cytokines signal in an autocrine and paracrine fashion, activating or 

regulating cellular functions and directing cells towards a specific inflammatory response. 

TNF-α is a cytokine that significantly contributes to both acute and chronic inflammation 

(Feghali & Wright 1997). Not normally detectable in healthy individuals, TNF-α levels 

only become elevated in the serum and tissue during inflammatory and infectious 

conditions (Robak et al., 1998) and its serum levels can correlate with the severity of 

certain infections (Kwiatkowski et al., 1990). Activated cells of the monocyte/macrophage 

lineage and T-lymphocytes are the primary producers of TNF-α (Parameswaran & Patial 

2010). A primary function of TNF-α is to alter the blood flow, vascular permeability, 

endothelial cell shape and expression of adhesion molecules, enhancing the capacity of 

inflammatory cells to infiltrate to the site of inflammation (Jersmann et al., 2001). TNF-α 

also propagates the inflammatory response through the induction of other pro-inflammatory 

cytokines such as IL-6 (Tseng et al., 2010) and can prolong the survival of activated 

inflammatory cells, thus sustaining and perpetuating further TNF-α production in an 

autocrine manner, increasing the induction of TNF-α associated pro-inflammatory factors 

(Lombardo et al., 2007).  

IL-12 is a cytokine secreted by a variety of hematopoietic cell types; however the majority 

is produced by APCs, typically DCs and macrophages (Heufler et al., 1996). Although a 

cytokine normally only associated with longer chronic infection, IL-12 is an important 

immuno-stimulatory modulator at bridging the innate and adaptive immune systems as it 

induces naïve T-cells to differentiate into TH1 cells, a T-helper subset that characterized by 

the production of IFN-γ and critical to the control of intracellular pathogens (Heufler et al., 

1996). However, T-cells activated in the presence of IL-4 acquire a TH2 phenotype, 
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generating IL-4, IL-5, and IL-13 producing cells effective in the clearance of parasitic 

infections while activation in the presence of IL-6, TGF-β, and IL-23 results in cells 

expressing the TH17 phenotype characterized by the production of IL-17 and are proposed 

to be involved in host protection against extracellular bacteria and some fungi (Tesmer et 

al., 2008). 

It has been proposed that the elevated production of IL-12 & TNF superfamily ligands by 

APCs are primarily responsible for the induction of excessive TH1 T-cell responses 

observed in CD (Cobrin & Abreu 2005), while the TH2 dominant T-cell response in UC is 

dependent on IL-13 primarily derived from NK T-cells (Targan & Karp 2005). IL-23 also 

has been demonstrated to play a more prominent role in IBD, as it is heavily involved in the 

induction of TH17 T-cells, which are observed in both CD and UC (Cobrin & Abreu 2005; 

Ueno et al., 2018). The long-term effects of dysregulated chronic inflammation caused by 

disorders like IBD have been linked to the development of cancers in the GI tract (Scarpa et 

al., 2014). Given the influence innate APC immuno-stimulatory factors have on the 

initiation and propagation of inflammatory responses in IBD and chronic inflammatory 

disorders; we focused on the key innate APCs, namely macrophages and dendritic cells 

(Bates & Diehl 2014; Gren & Grip 2016).      

The immune system is a complex and tightly regulated system, with feedback loops and 

regulatory agents involved in the dampening of the inflammatory responses to maintain this 

delicate balance. Inflammatory responses are robust, swift and self-limiting through anti-

inflammatory mediators like the cytokines IL-10 or via intracellular regulatory proteins like 

suppressor of cytokine signaling (SOCS). IL-10 is a potent anti-inflammatory cytokine 

induced by the activation of the STAT3 transcription factor. IL-10 can also be produced by 

an array of immune cells following stimulation by TLR ligands such as LPS via the 
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activation of the transcription factors AP-1 and NFκB normally associated with pro-

inflammatory signaling. However its production is delayed in comparison to pro-

inflammatory genes such as TNF-α that are also induced by LPS (Donnelly et al., 1995). 

This is thought to be essential for inhibiting the overexpression of TNF-α during 

inflammatory processes. The exact mechanism by which IL-10 exerts its anti-inflammatory 

effects is yet to fully elucidated, but there is mounting evidence that suggests IL-10 

upregulates SOCS proteins, which inhibits the phosphorylation of IκBα, sequesting the 

nuclear translocation of NFκB and subsequent production of inflammatory cytokines 

(Driessler et al., 2004; Hovsepian et al., 2013).  

SOCS are a family of intracellular regulatory proteins which are mainly induced by the 

activation of pathways involved in the expression of cytokines, acting as a negative-

feedback loop to curtail excessive cytokine production (Yoshimura et al., 2007). SOCS 

proteins also play a dynamic role in development and differentiation of cells, for example 

the ratio of SOCS1 to SOCS3 can influence the phenotype and inflammatory response of 

macrophages when challenged with a stimulant (Yoshimura et al., 2012). The main 

inhibitory function of SOCS proteins is to target JAK/STAT pathways via binding of a 

kinase inhibitory region (KIR) domain on SOCS to JAK, thereby blocking the activation of 

cytokine signaling (Tamiya et al., 2011). Two of the most well studied SOCS proteins are 

SOCS1 and SOCS3, both of which inhibit JAK activity through their KIR domain. SOCS1 

is often associated with the inhibition of TH1 signalling, the inflammatory cytokines TNF, 

IL-12, NFκB and TLR signaling (Yoshimura et al., 2007). SOCS3 acts similarly having 

been also shown to negatively regulate the cytokines IL-6, IL-10, and IL-2 (Carow and 

Rottenberg 2014). Studies examining the inhibitory activities of SOCS3 have demonstrated 

its over-expression mitigated the production of the APC associated inflammatory cytokines 
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namely; IL-6, TNF, IL-1β in murine models of inflammatory disorders and IBD (Shouda et 

al., 2001; Li et al., 2012), and intracellular protein therapy with SOCS3 was shown to 

abrogate acute inflammatory responses induced by staphylococcal enterotoxin B and LPS 

(Jo et al., 2005). 

 

1.8 The role of macrophages in inflammatory disorders 

Macrophages are derived from monocytic progenitor’s that originate from the bone 

marrow. When monocytes infiltrate into peripheral tissues from the blood, they can 

differentiate into macrophages depending on the local environmental signals (Martinez et 

al., 2006; Yang et al., 2015). Macrophages act as sentinel antigen presenting cells (APCs) 

which respond to local stimuli, essential for the early induction of pro-inflammatory 

mediators and leukocyte recruitment, but are also involved in the resolution of 

inflammation, wound healing/ repair, homeostasis and tissue remodeling (Koh & DiPietro 

2011; Ortega-Gómez et al., 2013). Macrophages are generally organized into two distinct 

phenotypes: ‘’classically activated’’ M1 or ‘’alternatively activated’’ M2 (Figure 1.2). 

These macrophage phenotypes often mirror the TH1/TH2 T-cells paradigm, as TH1 

phenotypes are often associated with cellular immunity & pro-inflammatory responses 

while TH2 phenotypes are generally associated with humoral immunity and anti-

inflammatory responses (Mills et al., 2000). 
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Figure 1.2 M1/M2 macrophage paradigm.  M1 macrophages are induced by PAMP signals like 

LPS and their activation is enhanced by the pro-inflammatory cytokines interferon-gamma (IFN-γ) 

or tumor necrosis factor alpha (TNF-α). M1 macrophages play an important role in innate defense 

against intracellular pathogens and are usually associated with TH1 responses. M2 macrophages are 

subdivided to accommodate similarities and differences between IL-4 and IL-13 induced M2a, 

immune complex (IC)  & TLR ligand or IL-1R ligand induced M2b, and IL-10 or glucocorticoid 

(GC) induced M2c. M2a macrophages have been implicated in wound healing/repair, parasite 

clearance, and allergy while M2b & M2c macrophages are often associated with immune-regulation 

and the suppression of immune responses. Figure adapted from Martinez & Gordon 2014.  

 

M1 macrophages are pro-inflammatory and cause damage to the host and invading 

microbes. They are typically induced by the recognition of antigens by specific motifs 

called PAMPs, damage associated molecular patterns (DAMPs) or in response to other 

inflammatory stimuli. TLRs are a class of PRRs and a major contributor to M1 

polarization, inducing a pro-inflammatory response through the activation of the NFκB, and 

MAP kinase signaling pathways (Takeda & Akira 2004; Laird et al., 2009). Pro-

inflammatory TH1 associated cytokines such as interferon (IFN) -γ and TNF-α can enhance 

M1 macrophage microbicide proficiency and increase their capacity to secrete pro-
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inflammatory mediators such as TNF-α (Duffield 2003). Along with increased production 

and secretion of pro-inflammatory cytokines, M1 macrophages also have increased 

expression of inducible nitric oxide synthase (iNOS), reactive oxygen species (ROS), and 

the co-stimulatory receptors; cluster of differentiation (CD)80, CD86 and CD40 (Martinez, 

& Gordon 2014). 

Extensive studies have also found that macrophages can play a significant role in the 

suppression of inflammation, tissue repair and growth (Martinez & Gordon 2014). These 

macrophages are often referred to as alternatively activated M2 macrophages. M2 

macrophages can be divided into distinct phenotypes with different functions and this is 

dependent upon the initial stimulus. M2a macrophages represent a population of M2 

macrophages with regulatory, wound/repair and effector functions. IL-4 is their primary 

stimulant, which induces arginase activity; a hallmark of M2 activation, via Arg-1 gene 

expression driven by the transcription factor signal transducer and activator of transcription 

(STAT) 6, (Muraille et al., 2014). The upregulation of the mannose receptor; cluster of 

differentiation (CD) 206, is also a hallmark of M2a activation (Martinez & Gordon 2014). 

IL-4 and IL-13 are signature cytokines of the TH2-type immune response which is 

associated with the induction of M2a macrophages. Tissue injury, helminth infection and 

allergy all induce TH2 responses and are associated with the induction of M2a macrophages 

(Kreider, et al., 2007; Wynn & Vannella 2016; Jiang & Zhu 2016). M2a macrophages are 

inefficient at antigen presentation, produce low levels of pro-inflammatory cytokines and 

have a low bactericidal capacity (Edwards et al., 2006). Their role in host defense and 

adaptive immunity remains somewhat enigmatic as M2a macrophages can indirectly exert 

regulatory effects on immune responses by secreting polyamines that can influence 

cytokine production and clonal expansion of lymphocytes (Cordeiro-da-Silva et al., 2004). 
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M2b and M2c macrophage phenotypes are associated with immuno-regulation, and the 

suppression of immune responses. M2b macrophages are induced by stimulation with 

immune complexes (IC) in the presence of TLR ligands, while M2c macrophages are 

induced by IL-10 or glucocorticoids. Upon activation they secrete high levels of IL-10, the 

production of which is the most important and reliable characteristic of regulatory 

macrophages (Mantovani et al., 2004). The phosphorylation and activation of STAT3 is 

involved in the induction and polarisation of M2 phenotypes, and is heavily implicated in 

increased IL-10 production from M2 macrophages (Li et al., 2013). As IL-10 is a potent 

anti-inflammatory cytokine, these macrophages inhibit the production and activity of 

various pro-inflammatory cytokines such as IL-12... Regulatory macrophages have also 

been reported to be a key cell type involved in the development of regulatory T-cells (Treg) 

that can inhibit immune responses (Cao et al., 2010). Regulatory macrophages are often 

observed during the later stages of adaptive immune responses, to dampen and limit 

inflammatory processes (Mosser 2003).  

However, while in-vitro studies have contributed to our understanding of the M1/M2 

paradigm (Figure 1.1), macrophages can share M1/M2 phenotype characteristics and there 

often can be a lack of defined subsets in disease states (Vogel et al., 2013; Italiani et al., 

2014). In the synovial tissue of patients with rheumatoid arthritis (RA), macrophages share 

M1 and M2 characteristics, producing an array of pro-inflammatory mediators including 

TNF-α, IL-1β & reactive oxygen species among others but also generate IL-1Ra, IL-10, 

TGF-β, which are anti-inflammatory.  However gene analysis of macrophages in the mouse 

collage induced arthritis (CIA) models would suggest that these macrophages are more M1 

polarized (Li, Hsu & Mountz 2012). Strategies to selectively deplete these M1 dominant 

inflammatory macrophages was demonstrated to prevented the development of arthritis, as 
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well as ameliorating established arthritis in mice (Li et al., 2012). Furthermore, anti-TNF-α 

therapies reduced the number of infiltrating synovial macrophages and inhibited the activity 

of inflammatory macrophages (Taylor et al., 2000; Ehrenstein et al., 2004) 

Macrophages also exhibit altered phenotypes that promote and propagate inflammation in 

IBD (Maloy & Powrie 2011; Yang et al., 2014; Gren & Grip 2016). Studies of 

dysregulated intestinal inflammation in mice demonstrated the recruitment of inflammatory 

monocytes that differentiate into macrophages that produce high levels of TNF-α (Zigmond 

et al., 2012; Tamoutounour et al., 2012). Similarly, in humans with crohn’s disease, CD14
+
 

macrophages displayed elevated respiratory burst activity and pro-inflammatory cytokines 

release in response to TLR stimulation. These hyper-responsive macrophages were shown 

to dominate the inflamed mucosa and mesenteric lymph nodes of patients with crohn’s 

disease, unlike the resident macrophages of healthy controls which are unresponsive to 

TLR stimulation (Rugtveit et al., 1997; Kamada et al., 2008). In IBD patients, the 

accumulation of CD14
+
 cells was also observed in the mesenteric lymph nodes; 

immunological sites where APCs migrate to when activated to elicit T-cell responses (Baba 

et al., 2013). Moreover, macrophages derived TNF-α in IBD, has been implicated in the 

recruitment and activation of pathogenic effector T-cells, and significantly disrupts 

epithelial barrier function, exacerbating inflammation which has been shown to be 

ameliorated by anti-TNF-α therapy (Targan et al., 1997; Rutgeerts  et al., 2005; Atreya  et 

al., 2011; Lissner et al., 2015). 
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1.9 The role of dendritic cells in inflammatory disorders   

DCs are another heterogeneous population of immune cells derived from monocytes that 

infiltrate throughout the peripheral tissues from the blood (León et al., 2005). Similar to 

macrophages, DCs are sentinel APCs which continuously sample the local environment 

using a variety of PRR (Steinman & Idoyaga 2010). DCs are however considered to be 

more efficient at antigen-presentation and controlling/initiating adaptive immune responses 

compared to macrophages (Lutz & Schuler 2002).  

DCs are generally phenotypically categorized based on their level of maturity. Phenotypic 

maturation is attained when DCs are activated by an antigen resulting in the upregulation of 

surface costimulatory molecules such as CD80, CD83, and CD86 along with the MHCII 

molecule (Reis e Sousa 2006). Prior to stimulation DCs exist in an ‘immature’ (iDC) state, 

characterised by the low expression of the MHCII and co-stimulatory molecules 

(Banchereau and Steinman, 1998, Banchereau et al., 2000). DCs in this state are thought to 

be involved in the maintenance of immune hemostasis/tolerance by impeding the activation 

of adaptive immune cells. iDCs utilize a plethora of inhibitory mechanisms including the 

expression of ligands that result in T-cell anergy or the differentiation of immune-

suppressive Tregs (Pardoll 2012). Upon stimulation however, iDCs take up a “classical” 

activation status and mature, upregulating MHCII, cell surface co-stimulatory markers, and 

produce immune-stimulatory cytokines like IL-12/ or suppressive cytokines like IL-10 

depending on the stimulus (Reis e Sousa 2006; Dowling et al., 2008). Signalling through 

NFκB and MAPK pathways are highly involved in the initiation of this DC activation 

(Nakahara et al., 2006, Dowling et al., 2008). DCs can also be rendered in a ‘’semi 

mature’’ state (smDCs) that may lack all the required phenotypic maturation markers or 

immune-stimulatory signaling molecules like cytokines, needed to elicit a T-cell response. 
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smDCs have been shown to release immune-suppressive cytokines like IL-10 & TGF-β 

(Rutella et al., 2006), have increased expression of programmed cell death ligands (PD-L) 

and have been demonstrated to stimulate the expansion of Treg populations (Harden & 

Egilmez 2012). 

Given their capacity to initiate a cascade of immune responses, DCs have been recognized 

as key players in several inflammatory disorders. DCs in a steady state from healthy 

individuals display iDC characteristics and are hypo-responsive to a selection of TLRs 

(Dillon et al., 2010), while those isolated from inflamed sites of IBD patients display 

exaggerated inflammatory activity in response to TLR ligands like LPS (Baumgart et al., 

2009). Studies have demonstrated that DCs in the mucosa of patients with crohn’s disease 

acquired classically activated pro-inflammatory phenotypes, displaying elevated levels of 

PRR and co-stimulatory molecules compared to healthy controls (Hart et al., 2005). The 

accumulations of these activated DCs were also observed in the mesenteric lymph nodes of 

patient with active crohn’s disease and were demonstrated to spontaneously induce TH1 and 

TH17 T-cells in-vitro (Sakuraba et al., 2009), compared to steady state DC which promote 

the induction of Tregs (Iliev et al., 2009). Similarly, inflammatory DC prevalent in the 

inflamed tissues of RA patients were potent stimulators of TH1 T-cell responses associated 

with the disorder (Santiago-Schwarz et al., 2001). In experimental mouse models of IBD, 

DCs that secrete high levels of TNF-α which have been shown to increase epithelial barrier 

permeability, resulting in inflammation and injury similar to that observed in 

ulcerative colitis (Garrett et al., 2007). In other inflammatory disorders, TNF-α, IL-23 and 

IL-12 secreted by inflammatory DCs is thought to be heavily implicated in the recruitment, 

induction and activation of TH1 and TH17 responses in T-cells, which in turn sustain and 

amplify the disease by producing cytokines associated with the chronic inflammatory 
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condition (Zaba et al., 2009; Yawalkar et al., 2009). TNF-α neutralization was shown to 

attenuate inflammatory DC activity and reduce their prevalence, ameliorating the condition 

(Marble et al., 2007). 

 

1.10 The role of monocytes in inflammatory disorders  

Peripheral blood mononuclear cells (PBMCs) are a heterogeneous population of several 

different types of immune cell types in the blood including; among others, lymphocytes (B-

cells, T-cells and NK-cells) and monocytes (Autissier et al., 2010). CD14 is abundantly 

expressed on the surface of human monocytes and is used as a marker. During homeostatic 

conditions, monocytes represent a population of short lived innate immune cells, 

accounting for 5–12% of total PBMCs, which circulate in the blood and replenish tissue 

resident macrophages and dendritic cells (Autissier et al., 2010). Upon infection or in 

response to inflammatory stimuli, monocytes numbers increase and infiltrate to the site of 

inflammation (Meuret et al., 1974). Similar to macrophages and DCs, monocytes are 

equipped with PPRs and scavenger receptors, capable of recognizing PAMPs and remove 

microorganisms via phagocytosis. They produce a broad array of immune-stimulatory 

effector molecules such as IL-1β, IL-6 and TNF-α which are heavily involved in the early 

inflammatory response (Dunay et al., 2010). However, monocytes also migrate to sites of 

injury, clearing apoptotic bodies, debris and producing anti-inflammatory cytokines like IL-

10 and TGF-β, facilitating the regeneration of the injured tissues (Ogle et al., 2016). In 

humans, 3 subsets of monocytes in the blood have been described, based on their 

expression of CD14/CD16 and seemingly different functions (Ziegler-Heitbrock et al., 

2010).  
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Classical monocytes (CD14
++

 CD16
-
), are phagocytic, exhibit high peroxidase activity, and 

preferentially produce high levels of anti-inflammatory IL-10 and low levels of pro-

inflammatory TNF-α in response to LPS. Gene expression profiling analyses have 

determined that these monocytes express genes mainly involved in angiogenesis and wound 

healing (Wong et al., 2011), and after more associated with the resolution/dampening of 

inflammatory responses/wound repair. Intermediate monocytes (CD14
+
 CD16

+
) have 

reduced phagocytic and peroxidase activity, but a higher capacity to produce pro-

inflammatory cytokines such as TNF-α and IL-1β in response to LPS (Cros et al., 2010). 

Intermediate monocytes are more akin to APCs, having higher expression levels of MHCII 

and co-stimulatory molecules required for mediating antigen presentation and T-cell 

activation (Wong et al., 2011). The final subset, non-classical monocytes (CD14
+
 CD16

++
), 

can be distinguished by their smaller size and granularity. They have been demonstrated to 

contribute to inflammation and inflammatory processes, via the release of immune-

stimulatory cytokines like IL-1β and TNF-α in response to DNA and RNA particles but 

have a limited ability to produce reactive oxygen species and inflammatory cytokines in 

response to microbial PAMPs (Cros et al., 2010). Non-classical monocytes are mainly 

involved in patrolling of the vasculature, expressing genes involved in cytoskeletal 

rearrangement.  

While monocytes play a pivotal role in the innate immune defense, hemostasis and wound 

repair, several clinical studies have correlated an increase in the numbers of inflammatory 

intermediate monocyte (CD14
+
 CD16

+
) populations with the severity of some human 

inflammatory diseases such as; RA and IBD (Kawanaka et al., 2002; Grip et al., 2007). 

Significant increases in non-classical monocytes (CD14
+
 CD16

+
) levels have also been 

described in chronic inflammatory conditions of obesity (Rogacev et al., 2010). Monocytes 
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isolated from patients with crohn’s disease were found to respond similarly to monocytes 

from healthy controls, when treated with microbial stimulants regarding their phagocytic 

capacity and production of reactive oxygen species. However, increases in the release of 

IL-1β and a reduced production of IL-10 were observed in the monocytes isolated from 

patients with crohn’s disease (Schwarzmaier et al., 2013). Intermediate monocytes were 

also demonstrated to produce higher level of pro-inflammatory cytokines (Fukui et al., 

2018) and have an increased capacity to propagate and expand inflammatory T-cell 

responses in-vitro (Rossol et al., 2012) in other inflammatory disorders.  

 

1.11 Immunomodulatory effects exhibited by casein bioactive proteins on 

macrophages and DCs 

Milk derived CAS bioactive proteins and peptides have been demonstrated to ameliorate 

experimental models of IBD in mice and human pilot studies of UC (Requena et al., 2008; 

Lopez-Posadas et al., 2010; Hvas et al., 2016). Studies in particular have focused upon 

these bioactive peptides and their immuno-modulatory effect on APCs such as 

macrophages and DCs. In murine macrophages, αs1-CAS reduced phagocytic function and 

suppressed the production of reactive oxygen and nitrogen species in response to 

inflammatory stimuli in a dose-dependent manner (Otani & Futakami 1994; Otani & 

Futakami 1996). Moreover, αs1-CAS derived peptides were shown to inhibit matrix 

metalloproteinase 9 activity, an enzyme involved in the induction of inflammatory 

cytokines (Juillerat-Jeanneret et al., 2011; Chatterton et al., 2013). In contrast to αs1-CAS 

however, β-CAS was shown to enhance the production of oxidant species (Otani & 

Futakami 1994) and significantly increased the production of pro-inflammatory cytokines 
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from macrophages (Wong et al., 1996). κ-CAS also reduced phagocytic function and 

suppressed the production of reactive oxygen and nitrogen species in response to 

inflammatory stimuli in murine macrophages (Otani & Futakami 1994; Otani & Futakami 

1996). 

Monnai & Otani reported that GMP induced the production of an IL-1 receptor antagonist 

(IL-1RA); blocking the immune-potentiating ability of IL-1 produced by macrophages 

following activation with LPS (Monnai & Otani 1997). More recently, GMP and GMP 

derived hydrolytates were shown to inhibit LPS mediated inflammatory responses in 

macrophage cell lines, by attenuating NFκB activation via upregulation of heme 

oxygenase-1 (Li et al., 2017). Endotoxin binding activity by GMP was also implicated in 

the reduced inflammatory response to LPS by GMP treated murine macrophages (Cheng et 

al., 2015). In contrast to the suppressive effects exerted by GMP in mouse models, GMP 

enhanced the proliferation and phagocytic activity of human macrophage-like cells (Li and 

Mine 2004) and induced the expression of TNF-α, IL-1β and IL-8 in monocytes in a 

concentration dependent manner (Requena et al., 2009).  

Despite the pronounced immunomodulatory effects exhibited by the CAS subunits, the 

intact whole CAS protein has only been shown to affect murine B lymphocyte proliferation 

in-vitro (Otani et al., 1992) and exhibited anti-inflammatory properties on macrophage-like 

cell lines, by suppressing LPS mediated TNF-α release (Bamdad et al., 2017). Extensive 

research on CAS, its subunits and their derivatives has clearly demonstrated their potential 

use as immunomodulatory compounds that suppress inflammatory processes in 

macrophages and DCs. However, while these studies have highlighted their immuno-

modulatory capacity, there is a dearth of research on the mechanism and by which these 

compounds dampen the inflammatory responses.  
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1.12 Summary 

Functional food derived bioactive nutraceuticals has been a rapidly expanding sector as 

supplementation of diets with nutraceuticals have been shown to ameliorate various human 

diseases including hypertension, cardiovascular disease, and obesity induced type II 

diabetes (Bagchi et al., 2010). Considering that many diseases are immune-related, there 

lies great potential and demand for the development of immunomodulatory nutraceuticals 

as possible therapeutics to treat these diseases. A great body of evidence indicates that 

bovine milk-derived proteins have the potential to modulate immune function in a number 

of species (Gill et al., 2000). CAS in particular have been shown to exert many 

immunosuppressive qualities on cells of the innate immune system, especially APCs like 

macrophages and DCs, which are heavily implicated in the development of chronic 

inflammation and inflammatory diseases like IBD (Cobrin & Abreu 2005). Mechanisms 

such as the induction of IL-10 or SOCS that suppress cytokine signaling may prevent the 

development of excessive and potentially destructive inflammation. CAS proteins and 

peptide derivatives have displayed immunomodulatory bioactivity which could upregulate 

and enhance these regulatory mechanisms which contribute to their capacity to attenuate 

inflammatory processes. Understanding the mechanisms by which these compounds exert 

their suppressive effects may be of enormous benefit, potentially enabling the development 

of therapeutics which can regulate intestinal inflammation, and inflammatory condition like 

IBD. 
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1.13 Objectives 

The overall aim of this project is to examine the potential of CAS and its derivatives as 

potential nutraceuticals for the treatment of disease such IBD. This will be achieved by 

understanding it bioactive properties on cells of the innate immune system that are critical 

to the immunopathology associated with IBD. More specifically the project will: 

 Characterise murine macrophage phenotype and function following stimulation with 

bovine derived CAS (Chapter 3). 

 

 Determine if single or multiple CAS subunits can mimic the effect of whole CAS 

on murine macrophage phenotype and function and determine the capability of 

these macrophages to modulate T-cell development (Chapter 4) 

 

 Characterise the effects of κ-CAS on DC maturation and the capacity of these cells 

to prime T-cell responses (Chapter 5). 

 

 Determine if the results obtained in murine macrophages and dendritic cells are 

transferrable to human monocytes and macrophages (Chapter 6). 
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Chapter 2 – Materials and methods 

2.1  Materials 

2.1.1 Animals & Cell Lines 

Product 

 

Catalogue # Company 

C57BL/6JCrl (C57BL/6) 027 Charles River (Kent, UK) 

B6.Cg-Tg(TcraTcrb)425Cbn/J 

(OTII) 

004194 Charles River (Kent, UK) 

NCTC clone 929 (L929) ATCC CCL-1 LGC Standards (Teddington, UK) 

P3X63Ag8.653 (X63) ATCC CRL-1580 LGC Standards (Teddington, UK) 

 

2.1.2 Cell Culture 

Product 

 

Catalogue # Company 

DMEM  12491-015 Invitrogen (Paisley, UK) 

Fetal calf serum (FCS) 10270-106 Gibco, Invitrogen (Paisley, UK) 

Human AB serum A25761 Gibco, Invitrogen (Paisley, UK) 

L-Glutamine  G7513 Sigma-Aldrich (Wicklow, Ireland) 

Phosphate buffer saline (PBS) 14190 Gibco, Invitrogen (Paisley, UK) 

Penicillin/Streptomycin  1570-063 Gibco, Invitrogen (Paisley, UK) 

RPMI 1640 31870-074 Invitrogen (Paisley, UK) 

2-Mercaptoethanol 63689 Sigma-Aldrich (Wicklow, IRE) 

 

2.1.3 Antigens, inhibitors & stimulants 

Product 

 

Catalogue # Company 

Alpha casein (α-CAS) C6780 Sigma-Aldrich (Wicklow, IRE) 

AS1517499 1992 Axon Medchem (Groningen, NL) 

BAY117821  3132 Axon Medchem (Groningen, NL) 

Beta casein (β-CAS) C6905 Sigma-Aldrich (Wicklow, IRE) 

CpG oligonucleotides (CPG) TLRL-1585 Invivogen (Toulouse, FR) 

GW9662 M6191 Sigma-Aldrich (Wicklow, IRE) 

Hydrolysated sodium caseinate 

(hNaCAS) 

- Teagasc, Moorepark (Cork, IRE) 

Hydrolysated whey protein 

(hWP) 

- Teagasc, Moorepark (Cork, IRE) 

Ionomycin I0634 Sigma-Aldrich (Wicklow, IRE) 

Kappa casein (κ-CAS)  C0406 Sigma-Aldrich (Wicklow, IRE) 

JAK2 peptide phosphorylated at 

Tyr(1007) (pJAK2) 

- GenScript (Piscataway, USA) 

Lipopolysaccharide (LPS) (E. 

coli) 

ALX-581-007 Alexis Biochemicals (Lausanne, CHE) 

Loxiribine (LOX)  TLRL-LOX Invivogen (Toulouse, FR) 
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LY-294 002 hydrochloride L9908 Sigma-Aldrich (Wicklow, IRE) 

Mouse anti-CD3 MAB4851 R&D Systems (Minneapolis, CAN) 

Peptidoglycan (PGN) (E. coli) 

 

TLRL-PGNEB Invivogen (Toulouse, FR) 

Phorbol 12-myristate 13-acetate 

(PMA)  

P1585 Sigma-Aldrich (Wicklow, IRE) 

Sodium caseinate (NaCAS) - Teagasc, Moorepark (Cork, IRE) 

Tin Protoporphyrin IX 

dichloride (SnPPIX) 

SC-203452 Santa Cruz Biotechnology (Heidelberg, 

DEU) 

Whey protein fraction (WPF) - Teagasc, Moorepark (Cork, IRE) 

WP1066 2316 Axon Medchem (Groningen, NL) 

Zinc Protoporphyrin-9 (ZnPPIX) SC-200329 Santa Cruz Biotechnology (Heidelberg, 

DEU) 

 

2.1.4 Commercial Kits 

Product 

 

Catalogue # Company 

Annexin V-FITC Apoptosis 

Detection Kit 

APOAF Sigma-Aldrich (Wicklow, IRE) 

Bicinchoninicacid (BCA) protein 

assay kit 

23255 Thermo Scientific (Leicestershire, UK) 

Human CD4
+
 isolation kit  130-096-533 Miltenyi Biotec (Surrey, UK) 

Human CD14
+
 isolation kit 130-050-201 Miltenyi Biotec (Surrey, UK) 

Human IL-2 ELISA kit 88-7025-88 eBiosciences (Hatfield, UK) 

Human IL-4 ELISA kit 88-7046-88 eBiosciences (Hatfield, UK) 

Human IL-5 ELISA kit 88-7056-88 eBiosciences (Hatfield, UK) 

Human IL-10 ELISA kit 88-7106-88 eBiosciences (Hatfield, UK) 

Human IL-13 ELISA kit 88-7439-88 eBiosciences (Hatfield, UK) 

Human TNF-α ELISA kit 88-7346-88 eBiosciences (Hatfield, UK) 

Human IFN-γ ELISA kit 88-7316-88 eBiosciences (Hatfield, UK) 

Mouse CD4
+  

T-cell isolation kit 130-104-454 Miltenyi Biotec (Surrey, UK) 

Mouse IL-1β ELISA kit DY401 R&D Systems (Minneapolis, CAN) 

Mouse IL-2 ELISA kit 88-7024-88 eBiosciences (Hatfield, UK) 

Mouse IL-4 ELISA kit 88-7044-88 eBiosciences (Hatfield, UK) 

Mouse IL-5 ELISA kit 88-7054-88 eBiosciences (Hatfield, UK) 

Mouse IL-10 ELISA kit 431412 Biolegend (London, UK) 

Mouse IL-13 ELISA kit 88-7137-88 eBiosciences (Hatfield, UK) 

Mouse TNF-α ELISA kit 88-7324-88 eBiosciences (Hatfield, UK) 

Mouse IFN-γ ELISA kit 88-7314-88 eBiosciences (Hatfield, UK) 

Mouse M-CSF ELISA Kit MMC00 R&D Systems (Minneapolis, CAN) 

Mouse GM-CSF ELISA Kit 432204 Biolegend (London, UK) 

Promofluor protein  

labelling kit 

PKPFLK488P10 Promokine (Heidelberg, DEU) 

RNA isolation kit 11828665001 Roche Diagnostics (West Sussex, UK) 

Transcriptor first strand cDNA 

synthesis kit 

04379012001 Roche Diagnostics (West Sussex, UK) 
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2.1.5 Reagents 

Product 

 

Catalogue # Company 

2-Mercaptoethanol 63689 Sigma-Aldrich (Wicklow, IRE) 

3,3′,5,5′-Tetramethylbenzidine 

dihydrochloride hydrate 

T8768 Sigma-Aldrich (Wicklow, IRE) 

Accutase detachment solution A1110501 Thermo Scientific (Leicestershire, UK) 

Acetone 27023 Sigma-Aldrich (Wicklow, IRE) 

Acrylamide/Bis-acrylamide, 30% 

solution 

A3699 Sigma-Aldrich (Wicklow, IRE) 

Agarose BIO-4125 Bioline (London, UK) 

Ammonium persulfate A7460 Sigma-Aldrich (Wicklow, IRE) 

Bovine serum albumin (BSA) A7906 Sigma-Aldrich (Wicklow, IRE) 

Calcium chloride 383147 Sigma-Aldrich (Wicklow, IRE) 

Cell culture grade water W3500 Sigma-Aldrich (Wicklow, IRE) 

Citric acid C1857 Sigma-Aldrich (Wicklow, IRE) 

Dimethyl sulfoxide (DMSO) 276855 Sigma-Aldrich (Wicklow, IRE) 

Ethanol E7023 Sigma-Aldrich (Wicklow, IRE) 

Ethylenediamine-tetraacetic acid  E9884 Sigma-Aldrich (Wicklow, IRE) 

Ethylene glycol-bis(2-

aminoethylether)-N,N,N′,N′-

tetraacetic acid  (EGTA) 

E3889 Sigma-Aldrich (Wicklow, IRE) 

FACS Flow Sheath  342003 BD Biosciences (Oxford, UK) 

Formaldehyde solution F8775 Sigma-Aldrich (Wicklow, IRE) 

Glucose G8270 Sigma-Aldrich (Wicklow, IRE) 

Glycerol G8773 Sigma-Aldrich (Wicklow, IRE) 

Glycine G8898 Sigma-Aldrich (Wicklow, IRE) 

HEPES H3375 Sigma-Aldrich (Wicklow, IRE) 

Histopaque-1083 10831 Sigma-Aldrich (Wicklow, IRE) 

Hydrochloric acid  H1758 Sigma-Aldrich (Wicklow, IRE) 

HyperLadder IV BIO33029 Bioline (London, UK) 

Immobilon Western 

Chemiluminescent HRP 

WBKLS0100 Millipore (Massachusetts, USA) 

Magnesium chloride M8266 Sigma-Aldrich (Wicklow, IRE) 

N,N,N′,N′- 

Tetramethylethylenediamine  

T9281 Sigma-Aldrich (Wicklow, IRE) 

PCR mastermix M7505 Promega (Madison, USA) 

Potassium chloride P4504 Sigma-Aldrich (Wicklow, IRE) 

Potassium dihydrogen phosphate 30407 Sigma-Aldrich (Wicklow, IRE) 

Protease Inhibitor Cocktail P8340 Sigma-Aldrich (Wicklow, IRE) 

Resazurin salt R7017 Sigma-Aldrich (Wicklow, IRE) 

RIPA Buffer R0278 Sigma-Aldrich (Wicklow, IRE) 

Sodium acetate S2889 Sigma-Aldrich (Wicklow, IRE) 

Sodium azide 13412 Sigma-Aldrich (Wicklow, IRE) 

Sodium bicarbonate S5761 Sigma-Aldrich (Wicklow, IRE) 

Sodium carbonate S7795 Sigma-Aldrich (Wicklow, IRE) 

Sodium chloride S/3160 Sigma-Aldrich (Wicklow, IRE) 

Sodium dodecyl sulphate (SDS) L4390 Sigma-Aldrich (Wicklow, IRE) 
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Sodium phosphate  Sigma-Aldrich (Wicklow, IRE) 

Sulfuric acid 435589 Sigma-Aldrich (Wicklow, IRE) 

SYBRSafe DNA gel stain S33102 Thermo Scientific (Leicestershire, UK) 

Tetramethylbenzidine (TMB) T3405 Sigma-Aldrich (Wicklow, IRE) 

Trizma base 93352 Sigma-Aldrich (Wicklow, IRE) 

Triton X-100 T8787 Sigma-Aldrich (Wicklow, IRE) 

Trypan blue  T8154 Sigma-Aldrich (Wicklow, IRE) 

Trypsin-EDTA solution T4049 Sigma-Aldrich (Wicklow, IRE) 

Tween 20 P1379 Sigma-Aldrich (Wicklow, IRE) 

 

2.1.6 Equipment  

Product 

 

Catalogue # Company 

Analogue stirred water bath NE4-22T VWR (East Grinstead, UK) 

Benchtop microcentrifuge 4214 MSC Co. Ltd. (Dublin, IRE) 

BIOQUEL microflow class II 

ABS cabinet 

ABS1200F VWR (East Grinstead, UK) 

Block heater BBA series MSC Co. Ltd. (Dublin, IRE) 

Dual mini slab kit-gel 

electrophoresis apparatus 

AE-6450 ATTO Bio-Instrument (Bunkyo, JPN) 

FacsAria flow cytometer - BD Biosciences (Oxford, UK) 

G-Box gel imaging system - Syngene (Cambridge, UK) 

Haemocytometer - MSC Co. Ltd. (Dublin, IRE) 

Hotplate stirrer AGB1000 Jenway (Stone, UK) 

Leica inverted microscope DMIL Leica Microsystems (Wetzlar, DEU) 

Midi horizontal electrophoresis 

unit 658 

Z338796 Sigma-Aldrich (Wicklow, IRE) 

Nanodrop 1000 - Thermo Fischer (Dublin, IRE) 

Sigma 4K15 benchtop 

refrigerated centrifuge 

10740 Sigma Centrifuges (Merrington, UK) 

TECAN genios microplate 

reader 

- Tecan Group (Mannedorf, CHE) 

Thermo Scientific CO2 water 

jacketed incubator 

3111 MSC Co. Ltd. (Dublin, IRE) 

Vortex mixer SA8 Stuart (Stone, UK) 

West balance BL120S Sartons (Goettingen, DEU) 

 

2.1.7 Disposables  

Product 

 

Catalogue # Company 

1.5 mL tubes  72.706.200 Sarstedt (Wexford, IRE) 

15  mL tubes 62.554.502 Sarstedt (Wexford, IRE) 

50  mL tubes 62.559.001 Sarstedt (Wexford, IRE) 

12 well plates 83.3921 Sarstedt (Wexford, IRE) 

24 well plates  83.3922.005 Sarstedt (Wexford, IRE) 

96 well plates 83.3924.005 Sarstedt (Wexford, IRE) 
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5   mL pipette  86.1253.025 Sarstedt (Wexford, IRE) 

10 mL pipette  86.1254.025 Sarstedt (Wexford, IRE) 

25 mL pipette  86.1685.001 Sarstedt (Wexford, IRE) 

Cell culture flask T75 83.3911.002 Sarstedt (Wexford, IRE) 

Cover slips  MLS17-20 Lennox Ltd (Dublin, IRE) 

FACS tubes  352054 Benson dickson (Dublin, IRE) 

Petri dishes  82.1473.001 Sarstedt (Wexford, IRE) 

 

2.1.8 Software 

Product 

 

Catalogue # Company 

FlowJo - Tree Star (Ashland, USA) 

GraphPad prism - GraphPad (CA, USA) 

ImageJ - SciJava consortium 

 

2.2  Methods 

2.2.1 Animals 

4-6 week old C57BL/6JCrl or B6.Cg-Tg(TcraTcrb)425Cbn/J mice were purchased from 

Charles River, housed in DCU’s Bioresource Unit, and kept under specific pathogen free 

conditions. All mice were maintained according to the guidelines of the Health Products 

Regulatory Authority (HPRA) and the DCU animal welfare body. 

 

2.2.2 Casein and whey sample preparation 

Lyophilised sodium caseinate (NaCAS) and whey (WP) were obtained from Teagasc, 

Moorepark. Lyophilised alpha (α-CAS), beta (β-CAS) and kappa (κ-CAS) caseins were 

purchased from Sigma-Aldrich.  Samples were reconstituted in sterile cell culture grade 

PBS (Sigma-Aldrich) by gentle agitation and stirred gently for 15 min at room temperature 

to ensure complete dispersion. Reconstituted samples were centrifuged for 5 min at 5000 x 
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g and filtered through 0.2 μm cellulose acetate filters (GE Healthcare Life Sciences) to 

remove any undissolved remnants. Protein concentrations were determined using a BCA 

protein assay kit (See section 2.2.3) (Thermo Scientific) and used at the indicated 

concentrations.    

 

2.2.3 BCA protein assay 

The bicinchoninic acid (BCA) protein assay is used for quantitation of total protein in a 

sample. The principle of this method is that amino acid residues of proteins can reduce Cu
2+

 

to Cu
1+

 in an alkaline solution, resulting in a purple color formation when bicinchoninic 

acid reacts with the reduced cation. The concentrations of samples were determined using 

the BCA protein assay kit (Thermo Scientific) according to manufacturer’s guidelines. 

Briefly, BCA assays were carried out in 96 well plates (Sarstedt), with 10 μL of each 

sample loaded in triplicate. A serial dilution of bovine serum albumin ranging from 2000 

μg to125 μg were used as standard controls. 200 μL of a 1:50 diluted 4% copper (II) sulfate 

pentahydrate solution in bicinchoninic acid solution were added to samples and standards 

and incubated at 37
o
C for 30 min. The absorbance values at 562 nm were recorded using a 

TECAN genios microplate reader (Tecan Genios). The protein concentrations were 

determined by using the equation of the line derived from a standard curve of known serial 

diluted protein controls.  
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2.2.4 Murine granulocyte-macrophage colony-stimulating factor preparation 

Murine granulocyte-macrophage colony-stimulating factor (GM-CSF) required for the 

generation of bone marrow derived dendritic cells (BMDC) were obtained from 

P3X63Ag8.653 (X63) conditioned medium. X63 cells (LGC Standards), a mouse B 

lymphoblast cell line were seeded in a 75 cm
2
 vented adherent flask at a cell density of 2 x 

10
5 

cells/mL in complete RPMI (Table 2.1) and cultured at 37
o
C and 5% CO2 for 7 days. 

Supernatants were collected, centrifuged at 300 x g for 10 min and filtered with 0.45μm 

filters (Sarstedt) to remove any un-pelleted cells or cellular debris. The concentrations of 

GM-CSF were determined by ELISA (See section 2.2.14) and stored at -80
o
C until use.  

Table 2.1 Compete RPMI formulation 

Reagents Concentration  

RPMI 1640 90% (v/v) 

FCS 10% (v/v) 

Penicillin/Streptomycin 100 U/ml; 100 µg/ml 

L-glutamine  2 mM 

2-mercaptoethanol  50 µM 

 

2.2.5 Murine macrophage colony-stimulating factor preparation 

Murine macrophage colony-stimulating factor (M-CSF) required for the generation of bone 

marrow derived macrophages were obtained from NCTC clone 929 (L929) conditioned 

medium. L929 cells (LGC Standards) a murine adipose tissue fibroblast cell line were 

seeded at 5 x 10
5 

cells per 75 cm
2
 vented adherent flask (Sarstedt) in 55 mL of complete 

DMEM (Table 2.2) and cultured at 37
o
C and 5% CO2 for 14 days. Supernatants were 

collected, centrifuged at 300 x g for 10 min, filtered with 0.45 μm filters to remove any un-
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pelleted cells or cellular debris. The concentrations of M-CSF were determined by ELISA 

(See section 2.2.14) and stored at -80
o
C until use. 

Table 2.2 Compete DMEM formulation 

Reagents Concentration  

DMEM 90% (v/v) 

FCS 10% (v/v) 

Penicillin/Streptomycin 100 U/ml; 100 µg/ml 

L-glutamine  2 mM 

2-mercaptoethanol  50 µM 

 

2.2.6 Generation of bone marrow derived dendritic cells  

Bone marrow derived dendritic cells (BMDC) were differentiated using a previously 

described method (Lutz et al. 1999). C57BL/6JCrl or B6.Cg-Tg(TcraTcrb)425Cbn/J 

(Charles River) mice were sacrificed by cervical dislocation. Femurs and tibias were 

separated, the muscle tissues were removed and the bones were steralised in 70 % ethanol 

(v/v) for 10 s and subsequently washed in sterile PBS immediately afterwards.  The bones 

were cut at both ends and the bone marrow cells were extracted by flushing with ice cold 

PBS using a 25-gauge needle (Sarstedt). The bone marrow cells were counted, centrifuged 

at 300 x g for 10 min and re-suspended at a cell density of  2 × 10
5
 cells/mL in complete 

RPMI (Table 2.1) supplemented with 10% (v/v) X63 conditioned medium (See section 

2.2.4). On day 3, an additional 10 mL of fresh complete medium with 10% X63 

conditioned medium were added. On day 6, 9 mL of media were aspirated and replaced 

with 10 mL of fresh complete medium with 10% X63 conditioned medium. On day 8, 9 

mL of media were transferred to a 50 mL tube, centrifuged at 300 x g and the pellets were 

re-suspended in 10 mL of fresh complete medium with 10% X63 conditioned medium 
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before being added back to the plate. On day 10, non-adherent cells were harvested. The 

purity of dendritic cells were analysed by flow cytometry (See section 2.2.15), with >95% 

of the population identified as dendritic cells on the basis of a positive expression for 

CD11c using a PE-Cy7 conjugated CD11c antibody (Figure 2.1).  

 

 

Figure 2.1. BMDC purity. BMDC purity were assessed after 10 days by measuring the expression 

of the extracellular dendritic cell marker; CD11c.  Cells were deemed positive for CD11c using a 

PE-Cy7 conjugated anti mouse CD11c antibody (A), based on a gating strategy using an isotype 

control (B).        

 

2.2.7 Generation of bone marrow derived macrophages 

Bone marrow derived macrophages (BMMФ) were differentiated using a previously 

described method (Weischenfeldt & Porse 2008). C57BL/6JCrl (Charles River) mice were 

sacrificed by cervical dislocation. Femurs and tibias were separated and the bone marrow 

cells were extracted by flushing with ice cold PBS using a 25-gauge needle (Sarstedt). The 

bone marrow cells were counted, centrifuged at 300 x g for 10 min and re-suspended at a 

cell density of  2 × 10
6
 cells/mL in complete RPMI (Table 2.1) supplemented with 30% 
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(v/v) L929 conditioned medium (See section 2.2.5). 10 mL of the cell suspensions were 

transferred to a 10 cm
2
 sterile petri dish (Sarstedt) and cultured at 37°C and 5% CO2. On 

day 3, media were aspirated, adherent cells were washed twice with PBS and fresh 

complete RPMI with 30% (v/v) L929 conditioned medium were added. On day 6, non-

adherent cells were removed by washing 3 times with pre warmed PBS. To harvest 

macrophages, adherent cells were detached from petri dishes with 5 mL of accutase 

detachment solution (Invitrogen) for 5 min at room temperature. Macrophage purity was 

analysed by flow cytometry (See section 2.2.15), with >95% of the population identified as 

macrophages on the basis of double positive expression of both CD11b using a PE-Cy7 

conjugated anti mouse CD11b antibody and F4/80 using an APC conjugated anti mouse 

F4/80 antibody. (Figure 2.2). 

 

 

Figure 2.2. BMMφ purity. Macrophage purity was assessed after 6 days by measuring the 

expression of extracellular macrophage markers; CD11b using a PE-Cy7 conjugated anti mouse 

CD11b antibody and F4/80 using a APC conjugated anti mouse F4/80 antibody.  Cells were deemed 

double positive for F4/80 and CD11b (A) based on a gating strategy using isotype controls (B).   
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2.2.8 BMDC and BMMФ activation 

Day 10 BMDC were harvested and re-suspended in complete RPMI medium (Table 2.1) 

supplemented with 1 % (v/v) X63 conditioned medium (See section 2.2.4). Cell number 

and viability were determined using trypan blue staining (See section 2.2.22) BMDC were 

seeded in flat bottomed 24 well plates (Sarstedt) at a cell density of 1 x 10
6
 cells/mL. The 

cells were allowed to acclimate for 2 hr prior to any stimulation. 

Day 6 BMMφ were harvested and re-suspended in complete RPMI medium (Table 2.1). 

Cell number and viability were determined using trypan blue staining (See section 2.2.22) 

BMMφ were seeded in flat bottomed 12 well plates (Sarstedt) at a cell density of 1 x 10
6
 

cells/mL. The cells were allowed to acclimate for 2 hr prior to any stimulation. 

The cells were pre-cultured with PBS or the indicated concentrations of casein or whey 

stimulants 1 hr prior to the addition, of PBS or toll like receptor (TLR) agonists (Alexis 

Biochemicals); TLR4 against; lipopolysaccharide (LPS)  (100 ng/mL), TLR2 against; 

peptidoglycan (PGN) (5 ug/mL), TLR7 against; loxoribine (LOX) (0.5 mM) or TLR9 

against: synthetic oligonucleotides containing CpG motifs (CpG) (2 μM).  The additions of 

TLR ligands alone or PBS were used as positive and negative controls respectively. At 

indicated time points, supernatants were collected and analysed for cytokine secretion by 

ELISA (See section 2.2.14). Cells were also analysed by flow cytometry for the detection 

of extracellular markers (See section 2.2.15). In some experiments, RNA was extracted to 

examine gene expression by polymerase chain reaction (PCR) (See section 2.2.17) or 

quantitative PCR (QPCR). Total proteins were also examined by western blot (see section 

2.2.19).   



43 
 

To elucidate the signalling pathways and mechanism by which casein exerts its effects, 

cells were cultured with chemical antagonists of STAT6; AS1517499 (Axon medchem), 

STAT3; WP1066 (Axon medchem), NFκB; BAY117821 (Axon medchem), PPARγ; 

GW9662 (Sigma-Aldrich), PI3K; LY294002 (Sigma-Aldrich), and HO-1; Zinc-

protoporphyin-9 (ZnPPIX) (Santa cruz biotechnology) or Tin-protoporphyin-9 (SnPPIX) 

(Santa cruz biotechnology) at the indicated concentrations, 30 min prior to addition of 

caseins. Cells were also cultured where indicated with a peptide inhibitor of suppressor of 

cytokine signalling (SOCS); pJAK2 (GenScript) at stated concentrations, 24 hr prior to the 

addition of caseins. 1 hr after the addition of caseins, cells were stimulated with or without 

LPS (100 ng/mL) for 3, 6 or 18 hr and supernatants were collected for cytokine analysis 

(See section 2.2.14) or RNA was extracted from cells to examine gene expression by PCR 

(See section 2.2.17).  

 

2.2.9 BMDC or BMMφ: CD4
+
 T-cells co-culture 

C57BL/6JCrl (Charles River) mice were sacrificed by cervical dislocation. Spleens were 

extracted and spleenocytes obtained by passage of the spleen through a 40 μm filter 

(Sarstedt) using the plunger from a sterile 1 mL syringe (Sarstedt).  CD4
+
 T-cells were 

isolated from spleenocytes using a negative selection CD4
+
 isolation kit (Stemcell) and 

were only used if the purity were determined to be > 95% CD4
+
 by flow cytometry (Figure 

2.3).  

Pre-stimulated cells were washed three times with PBS and co-cultured with CD4
+ 

T-cells 

at a ratio of 1:10 for BMDCs or 1:4 for BMMφ  in complete RPMI media (Table 2.1) in 24 

well plates pre-coated overnight with anti-CD3 (1 µg/mL) (R & D systems). After 72 hr 



44 
 

and supernatants were collected and analysed for cytokine secretion by ELISA (See section 

2.2.14). To elucidate if receptors were involved in cell-cell signalling during co-cultures, 

where indicated cells were pre-incubated with blocking antibodies (all from R & D 

systems)  for anti-CD40 (20 μg/mL) or anti-OX40L (20 μg/mL) for 30 min in PBS prior to 

co-culture.  

 

 

Figure 2.3 CD4
+
T cell purity from spleenocytes. CD4

+
T cell purity were assessed by measuring 

the expression of extracellular CD4
+
 T cell markers; CD4. Cells were deemed positive for CD4 

using a PE conjugated anti mouse CD4 antibody (A) based on a gating strategy using an isotype 

control (B).       

 

2.2.10 In-vivo & in-vitro OVA T-cell priming assay 

For in-vivo and in-vitro ovalbumin (OVA) T-cell priming assays, BMDCs were isolated 

from B6.Cg-Tg(TcraTcrb)425Cbn/J (OTII) mice (See section 2.2.6). On day 10 BMDCs 1 

x 10
6
 cells were stimulated in-vitro with PBS or indicated concentration of caseins in the 

presence of OVA peptide (100 nM) (Sigma-Aldrich) for 24 hr. After stimulations, cells 

were washed with sterile PBS.  
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For in-vivo T-cell priming, 3 x 10
5
 cells were delivered over the sternum of OTII mice by 

subcutaneous injection. Mice were culled after 7 days by cervical dislocation. Skin draining 

lymph nodes were extracted and single cell suspensions of cells were obtained by passage 

of the lymph nodes through a 40 μm filter using the plunger from a sterile 1 mL syringe.   

Draining lymph nodes cells were counted and seeded at 1 x 10
6
 cell/mL in 24 well plate 

and stimulated with PBS, OVA (500 nM) or with PMA (25 ng/ml) in wells pre-coated with 

anti-CD3 (1 μg/ml) (R & D systems). After 72 hr, supernatants were collected and analysed 

for cytokine secretion by ELISA. 

For in-vitro T-cell priming, BMDCs were co-cultured at a 1:10 ratio with CD4
+
 T-cells 

isolated from the spleen (See section 2.2.9) of OTII mice in complete RPMI media (Table 

2.1) in 24 well plates pre-coated overnight with anti-CD3 (1 µg/mL). After 72 hr, 

supernatants were collected and analysed for cytokine secretion by ELISA (See section 

2.2.14).     

 

2.2.11 Human PBMC and CD14
+
 isolation form human buffy coat 

Peripheral blood mononuclear cells (PBMCs) were isolated from the buffy coats of healthy 

donors obtained from the Irish blood transfusion service (St James’s hospital, Dublin) by 

density gradient centrifugation using Histopaque-1083 (Sigma-Aldrich).  Buffy coat bloods 

were mixed 1:1 with sterile PBS. An equal volume of diluted blood were gently layered on 

top of 15 mL of Histopaque-1083 and centrifuged at 800 x g for 30 min with the accelerator 

and break switched off to prevent any mixing of separated layers. The blood components 

separated according to their relative density. PBMCs form a separated layer from blood 

cells which were isolated from the solution using a pasteur pipette (Sarstedt). PBMCs were 
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washed twice with PBS before total number of cells and viability were determined using 

trypan blue staining (See section 2.2.22). CD14
+
 monocytes were isolated from PBMCs 

using a magnetic activated cell sorting positive selection CD14
+
 isolation kit (Miltenti) and 

were only used if the purity were determined to be > 90% CD14
+
 by flow cytometry 

(Figure 2.4).  

 

Figure 2.4 CD14
+
  monocyte purity from PBMCs. CD14

+
 monocyte purity was assessed by 

measuring  the expression of extracellular CD14. Cells were deemed positive for CD14 using a 

FITC conjugated anti human CD14 antibody (A) based on a gating strategy using an isotype control 

(B).       

 

2.2.12  Generation of monocyte derived human macrophages 

Monocyte derived human macrophages (hMφ) were differentiated using a previously 

described method (Saghaeian-Jazi et al. 2016). CD14
+
 monocytes were isolated from 

PBMC as previously described (See section 2.2.11). The monocytes were counted, 

centrifuged at 300 x g for 10 min and re-suspended at a cell density of 1 × 10
6
 cells/mL in 

complete RPMI (Table 2.1) supplemented with 10% (v/v) human AB serum (Invitrogen) 

instead of FCS. 20 mL of the cell suspensions were transferred to a 75 cm
2
 vented adherent 

flask (Sarstedt) and cultured at 37°C and 5% CO
2
 for 14 days. The culture media were 
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renewed every 3 days. Non-adherent cells were removed on day 7 by aspirating all media, 

followed by 3 washes with PBS. To harvest hMφ, adherent cells were detached from 

culture flasks with 10 mL 0.25% trypsin-EDTA solution (Sigma-Aldrich) at room 

temperature. When the cells were detached, trypsin-EDTA solutions were neutralized by 

adding twice the volume of media.    

 

2.2.13 Human PBMC, monocyte and macrophage activation  

Isolated PBMC, CD14
+
 monocytes or hMφ were re-suspended in complete RPMI medium 

(Table 2.1) supplemented with 10% (v/v) human AB serum (Invitrogen) instead of FCS. 

Cell number and viability were determined using trypan blue staining (See section 2.2.22). 

Cells were seeded in flat bottomed 12 well plates (Sarstedt, Ire) at a cell density of 1 x 10
6
 

cells/mL. The cells were allowed to adhere and acclimate for 2 hr before any stimulation. 

Cells were stimulated with indicated concentrations of caseins 1 hr prior to the addition of 

or without LPS (100 ng/mL) (Enzo life sciences) or PMA (20 ng/ml) (Sigma-Aldrich) and 

Ionomycin (1 μM) (Sigma-Aldrich).  After 18 hr, supernatants were collected and analysed 

for cytokine secretion by ELISA (See section 2.2.14) and the expression of extracellular 

markers were detected by flow cytometry (See section 2.2.15). 

 

2.2.14 Enzyme-linked immunosorbent assay (ELISA) 

Supernatant were collected at indicated time points and the secretion of cytokines were 

measured using commercially available sandwich ELISA kits, according to the 

manufacturer’s instructions (Biolegend, eBioscience). Briefly, 96 well plates (Sarstedt) 
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were coated with capture antibody overnight at 4
o
C. The plates were washed three times 

with wash buffer (PBS with 0.05% (v/v) Tween-20) to remove unbound capture antibody 

and incubated with assay diluent (PBS with 10% (v/v) FCS) for 1 hr at room temperature to 

inhibit non-specific binding. After blocking, the pates were washed three times with wash 

buffer.  Samples and serial diluted standards of known concentration were plated in 

triplicate on the 96 well plates and left for 2 hr at room temperature or overnight at 4
o
C. 

The plates were washed three times to remove unbound sample and biotinylated detection 

antibody were added for 1 hr at room temperature. The plates were washed again three 

times to remove unbound detection antibody and a horse radish peroxidase conjugated 

streptavidin labeled antibody were added to bind bound biotinylated detection antibody. 

The plates were finally washed five times to remove unbound horse radish peroxidase 

conjugated streptavidin labeled antibody and incubated in the dark for thirty min with TMB 

substrate resulting in a colorimetric change. The reactions were terminated by the addition 

of 0.16 M Sulfuric acid and the absorbance values at 450 nm were recorded using a 

TECAN genios microplate reader (Tecan Genios). The concentrations were determined by 

comparison to the standard curve derived from the serial diluted standard controls.  

 

2.2.15 Flow cytometry 

Cells were harvested, washed twice and re-suspended in ice cold flow cytometry buffer 

(Table 2.3) at a cell density of <1x10
6
 cells/100 μL. Cells were incubated with 5 µl of 

fluorochrome labelled antibodies (Table 2.4) for 30 min at 4
o
C in the dark. After 

incubation, the cells were washed three times with 1 mL of flow cytometry buffer to 

remove any unbound fluorochrome labelled antibodies. After final wash, cells were re-
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suspended in 500 μL of flow cytometry buffer and processed within 30 min on the flow 

cytometer FACs Aria (Becton Dickinson). Data was analysed using FlowJo software 

(Treestar). For gating, cell duplicates were excluded using forward scatter area (FFC-A) 

and height (FFC-H) (Figure 2.5A). Cell debris was then excluded using forward and side 

scatter (SSC) (Figure 2.5B). Unlabeled and fluorocrhome labelled isotype control 

antibodies were used to check background flourencence and non-specific staining of cells 

(Figure 2.5C). Fluorochrome labelled antibodies spcific to a target marker on cells are 

detected as a fluresent signal (Figure 2.6D), with increases in signal strength indicative of 

increased binding of the specific antibody to its target. The average strength of the signal 

detected on each cell is calculated by FlowJo software and was recorded as the geometrical 

mean fluresence intensity (gMFI). The gMFI is a mean or average, which indicates the 

central tendency and was used as it is less affected by outliers compared to the MFI (Wu et 

al., 2016). The gMFI results were tabulated and can also be displayed in a histogram format 

showing the fluresence intensity of the cell populations (Figure 2.6E).  
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Figure 2.5. Flow cytometry gating strategy. Singlet cells gated based on area and height (A). 

Debris and dead cells removed based on size and granularity (B). Scatter plots display unstained 

(gray) and  isotype (black) labelled cells (C) or unstained (gray) and positively labelled cells (black) 

(D). A representative histogram plot of the 3 popultaions combined (E); unstained (gray), isotype 

(dotted gray) and positive cells (black). 

 

Table 2.3 Flow cytometry buffer formulation  

Reagents Concentration  

PBS 98% (v/v) 

FCS 2% (v/v) 

EDTA 1mM 
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Table 2.4 Flow cytometry antibodies  

Antibody Fluorochrome Clone Catalogue # Company 

CD4 PE RM4-4 116005 Biolegend 

CD11b Pe-Cy7 M1/70 101215 Biolegend 

CD11c Pe-Cy7 N418 117317 Biolegend 

CD14 FITC M5E2 301803 Biolegend 

CD40 PE 3/23 124609 Biolegend 

CD54 (ICAM1) PE YN1/1.7.4 12-0541 Ebioscience 

CD80 PE 16-10A1 104707 Biolegend 

CD86 FITC GL1 105005  Biolegend 

CD252 (OX40L) PE MRI 12-5905 Ebioscience 

CD206 (MMR) APC 141707 C068C2 Biolegend 

Dectin-1 Alexa fluor 488 GE2 MCA4661A AbD serotec 

F4/80 APC BM8 123115 Biolegend 

MGL Alexa fluor 488 ER-MP23 MCA2392A AbD serotec 

 

2.2.16 Cell Binding Assay  

Caseins and bovine serum albumin (BSA) were fluorescently labelled using the Promofluor 

labelling kit in accordance with manufacturer’s instructions (Promokine). The labelling 

process resulted in the formation of a stable covalent amide linkage of a FITC-488 

florescent dye to the protein. To preform cell binding assays, 1 x 10
5
 cells/0.1 mL were 

seeded in a 96 well plate. Cells were incubated with indicated concentrations of labelled 

caseins or BSA for 45 min at 4
o
C. Cells were then washed in ice cold PBS and re-

suspended in 500 μL of flow cytometry buffer (Table 2.3). The cells were then processed 

within 30 min on the flow cytometer FACs Aria (Becton Dickinson) and data were 

analysed using FlowJo software (Treestar). Labelled BSA were used as a non-specific 

binding control. To determine if the binding were calcium dependent, cells were pre-

incubated with EDTA (10mM) (Sigma-Aldrich) for 45 min at 37
o
C and 5% CO

2
.   
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2.2.17  RNA extraction, cDNA synthesis & PCR 

Total RNA were extracted from cultured cells using a RNA isolation kit (Roche 

Diagnostics) according to manufacturer’s guidelines. Briefly, cells were harvested, washed 

with PBS and lysed by the addition of lysis buffer with RNase inhibitors. The lysate-PBS 

mixtures were transferred to high pure filter tubes, containing glass fiber fleeces in a 

column. The RNA becomes immobilized in the glass fiber fleeces and DNase was added to 

digest genomic DNA. The columns were washed twice with ethanol based buffers to 

remove impurities while retaining the RNA. Finally, RNA was eluted from the column in 

RNase and DNase free water. All solutions and buffers were supplied in the kit.  

RNA levels were measured using a Nanodrop machine and cDNA were synthesized from 

the isolated RNA using a transcriptor first strand cDNA synthesis kit (Roche Diagnostics) 

according to manufacturer’s guidelines. Briefly, 1 μg of RNA were used with random 

primers and were maintained at 20
o
C for 10 min as an initial step followed by 55

o
C for 30 

min, and finally 85
o
C for 5 min to yield 1 μg of cDNA. 

Synthesized cDNA were used as a template for PCR using primers specific for Arg 1, Ym-

1, iNOS, RELM α, and β-actin (Table 2.5). Samples were maintained at 95
o
C for 1 min as 

an initial step followed by 60
o
C for 30 seconds, and finally 72

o
C for 1 min. These 

amplification cycles were carried out 40 times.  The process were preceded by a 

denaturation phase at 95
o
C for 5 min and a final extension phase of 72

o
C for 5 min. PCR 

products were electrophoresed on 1% agarose gels with SYBRSafe (Invitrogen) as gel 

stain. 
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Table 2.5 PCR Primer sequences  

Gene name Forward primer Reverse primer 

Arg-1 ATGGAAGAGACCTTCAGCTAC GCTGTCTTCCCAAGAGTTGGG 

Ym-1 TCACAGGTCTGGCAATTCTTCTG TTTGTCCTTAGGAGGGCTTCCTC 

iNOS CCCTTCCGAAGTTTCTGGCAGCAGC GGCTGTCAGAGAGCCTCGTGGCTTTGG 

RELMα TCCCAGTGAATACTGATGAGA CCACTCTGGATCTCCCAAGA 

Β-actin TGGAATCCTGTGGCATCCATGAAAC TAAAACGCAGCTCAGTAACAGTCCG 

 

2.2.18 QPCR 

Primer probes (all from Roche Diagnostics) with a primer efficiency of 2 were used to 

analyse gene expression, for the mouse genes; Arg-1, SOCS1 and SOCS 3 (Table 2.6). The 

housekeeping genes GAPDH (NM_008084.2) were used as an internal standard. 

Experiments were carried out in triplicate with each reaction containing 50 ng of cDNA, 2 

μL of primer probe and 10 μL of primer probe master mix containing a 6-

carboxyfluorescein labelled enzyme (Roche Diagnostics). Reaction volumes were brought 

up to a final volume of 20 μL with PCR grade H2O (Roche Diagnostics). Gene expression 

were analysed using a Light Cycler 96 (Roche Diagnostics). Samples were maintained at 

95°C for 10 s as an initial step, followed by 40 amplification cycles of 95°C for 15 s and 

60°C for 60 s. Pfaffl’s methods were used to determine relative gene expression (Pfaffl 

2001). 

Table 2.6 QPCR Primer sequences 

Gene name Forward primer Reverse primer 

Arg-1 AACACGGCAGTGGCTTTAACC GGTTTTCATGTGGCGCATTC 

SOCS1 GAGTGGTTGTGGAGGGTGAG TGAGAGGTGGGATGAGGTC 

SOCS3 ATTTCGCTTCGGGACTAGC AACTTGCTGTGGGTGACCAT 

GAPDH AGCTTGTCATCAACGGGAAG TTTGATGTTAGTGGGGTCTCG 
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2.2.19 Protein extraction  

Cells from control or stimulated cells at indicated time points were washed twice with TBS 

(Table 2.7) and total proteins were extracted by lysing cells in 70 μL of radio-

immunoprecipitation assay buffer (RIPA) (Sigma-Aldrich), supplemented with  protease 

and inhibitor cocktail (Sigma-Aldrich). Lysates were vigorously vortexed before 

centrifugation at 10,000 x g for 10 min at 4
o
C. The supernatants were transferred to new 

tubes and protein concentrations were determined by BCA (see section 2.2.3). 

 

Table 2.7 TBS (pH 7.6) formulation 

Reagents Concentration  

Tris 20 mM 

NaCl 150 mM 

 

2.2.20 Sodium dodecyl sulphate polyacrylamide gel electrophoresis 

Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) were performed 

based on a previously established method (Laemmli 1970) using a mini-gel system (ATTO 

Bio-Instrument, Bunkyo, Japan). SDS-PAGE were used to separate out proteins on a gel 

based on their molecular weight.  Firstly, resolving gels were prepared (Table 2.8), with 

TEMED only being added just prior to pouring. When poured, isopropanol (Sigma-

Aldrich) was layered on top of the resolving. Stacking gels were then prepared (Table 2.8), 

again ensuring TEMED only being added prior to pouring. Once the resolving gel had 

polymerised, isopropanol was decanted from the gels. Stacking gels were then poured on 

top of the polymerized resolving gel and a spacer combs were inserted. Once polymerized, 

the combs were removed and the gels were transferred to the electrophoresis chamber 
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which was filled with running buffer (Table 2.9). 20 μg of protein samples (See section 

2.2.19) were prepared in loading buffer (Table 2.9), and boiled for 2 min on a heating plate 

to denature prior to loading. Samples and a molecular weight marker (LI-COR) were 

loaded on the gels and electrophoresis was performed at 150 V for 1 hour. Upon 

completion, the gels were removed from the electrophoresis chamber, washed in dH2O and 

the 5% stacking gels were removed. 

Table 2.8 Stacking & resolving gels formulation 

5% Stacking gels 10% resolving gels 

Reagents Volume (mL)  Reagents Volume (mL)  

30% Acylamide 670 μL 30% Acylamide 4.62 mL 

1M Tris-HCL pH 6.8 625 μL 1M Tris-HCL pH 8.8 3.8 mL 

dH2O 2.7 mL dH2O 5.6 mL 

10% SDS 50 μL 10% SDS 150 μL 

10% APS 50 μL 10% APS 75 μL 

TEMED 25 μL TEMED 25 μL 

 

Table 2.9 Running buffer formulation 

Reagents Concentration  

Tris 25 mM 

Glycine 192 mM 

SDS 0.2% (v/v) 

 

Table 2.10 Loading buffer formulation 

Reagents Concentration  

Tris 0.625 M 

Glycerol 50% (v/v) 

SDS 10% (v/v) 

Bromophenol blue 0.1% (v/v) 

2-mercaptoethanol  5% (v/v) 
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2.2.21 Western blot 

Protein samples which had been run on an SDS-PAGE gel were transferred to a PVDF 

membrane using the iBLOT (Lifesciences) as per manufactures instructions. Membranes 

were blocked for 1 hr with 1% skimmed milk (v/v) (Marvel) in TBS (Table 2.7) to block 

non-specific binding of antibodies with the membrane. After blocking, the membranes were 

washed with 0.01% Tween 20 (v/v) (Sigma-Aldrich) in TBS and incubated overnight at 

4
o
C with primary antibody (Table 2.11) in 1% skimmed milk (v/v) (Marvel) in TBS. The 

membranes were washed again 3 times before the addition of an HRP conjugated 

secondary antibody in 1% skimmed milk (v/v) in TBS for 1 hour at room temperature. The 

membranes were washed again 3 times before being visualized with a chemiluminescent 

HRP substrate (Millipore), on a G-Box imaging system (Syngene). Protein bands were 

quantified using ImageJ analysis software (SciJava consortium). The levels of protein were 

normalised to a control protein, β-actin and the levels of protein are shown as fold increases 

over the untreated levels. 

Table 2.11 Western blot antibodies 

Antibody 

 

Dilution Catalogue # Company 

IκBα 1:10000 ab32518 Abcam 

SOCS3  1:1000 2932 Cell Signaling 

β-actin 1:1000 643802 Biolegend  

 

2.2.22 Cell counting 

Cell counts were performed using trypan blue (Sigma-Aldrich). Cells were diluted in trypan 

blue by a factor of 1:50 for PBMCs or 1:3 for all others cells, and allowed to sit for 5 min. 

With a cover-slip in place on a haemocytometer (Jenway), the diluted cells were pipetted 
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beneath the cover slip ensuring that the entire surfaces of the counting grids were covered. 

By counting the numbers of cells on the etched grids, the total numbers of cells were 

determined using the following equation: (Average number of cells on grid of 

haemocytometer) x (Dilution factor) x 10
4
 = cell number/mL 

 

2.2.23 Cytotoxicity 

Resazurin assays were used to determine cytotoxicity of compounds using a previously 

described method (Riss et al. 2013). Cells were treated with respective stimulations, at a 

cell density of 1 x 10
5
 cell/100 μL in 96-well plates. At the end time point, 20 µl of 0.15 

mg/mL resazurin salt (Sigma-Aldrich) in PBS were added to each well and incubated for an 

additional 6 hr at 37°C and 5% CO2. The absorbance values were recorded at a 560 nm 

excitation / 590 nm emission filters using a TECAN genios microplate reader (Tecan 

Genios). Cytotoxic effects were measured and compared to vehicle stimulated controls.  

Similarly, the cytotoxic effects of stimulants on cells were also measured using the Annexin 

V-FITC apoptosis detection kit I (BD Biosciences). Briefly, cells were treated with 

respective stimulations, harvested at the end time point, washed twice in cold PBS and 

incubated in ice cold flow cytometry buffer (Table 2.3) with annexin V and propidium 

iodide (PI) for 15 min. Cells were then immediately analysed by flow cytometry (See 

section 2.2.15). 
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2.2.24 Statistics 

All data sets were analysed for normality prior to statistical testing using the Shapiro-Wilk 

test in Prism® 7.1 software (GraphPad software Inc), and all data  were deemed to be 

normally distributed (p > 0.05). For statistical analysis comparing two groups, the Student’s 

t test was used. Where multiple comparisons were made, one-way ANOVA was used when 

there was only one independent variable or two-way ANOVA if there were two or more 

independent variables. In all statistical tests, p < 0.05 were deemed significant. 
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Chapter 3 – NaCAS exhibits immunosuppressive properties, inducing an M2-like 

phenotype in macrophages.   

3.1 Introduction 

Milk is a potent source of immuno-regulatory agents. Previous studies have shown that 

bovine milk contains numerous components that can affect immune function (Gill et al., 

2000). The majority of these immunomodulatory protein fractions are hydrolysates of milk 

proteins that occur naturally after enzymatic digestion (Gill et al., 2000). Milk  proteins  are  

divided  into two main  groups; the  casein (CAS)  fraction  and  the  serum  fraction.  The 

CAS fraction consists of a heterogeneous group of phosphorylated proteins, classified as α-, 

β-, and κ-CAS (Palumbo 1972). κ-CAS is also the main glycoprotein of cow's milk 

containing o-glycosidically linked polysaccharides (Jollès & Fiat 1979). The serum fraction 

includes a-, β-lactoglobulin, immunoglobulins, albumin, and enzymes in a lower proportion 

(McWhitney 1988). Many of these milk proteins and hydrolysates are derived from their 

enzymatic cleave and have been shown to display immuno-modulatory properties; binding 

and influencing cellular function by enhancing (Migliore-Samour & Jolles, 1988) and 

suppressing (Otani & Hata, 1995) lymphocyte proliferative responses, enhancing natural 

killer cell activity (Migliore-Samour & Jolles 1988), inducing neutrophil locomotion 

(Elitsur & Luk, 1991), enhancing macrophage phagocytic capacity (Meisel et al., 1997) and 

abrogating TLR mediated responses (Mukhopadhya et al., 2014; Kiewiet et al., 2017).  

There is mounting evidence which suggests that the number of individuals who suffer from 

chronic inflammatory conditions has increased, with an estimated prevalence among 

developed countries of 5 to 7 % (El-Gabalawy et al., 2010). Strategies to effectively 

modulate the immune response have been extensively sought out to combat inflammatory 

diseases and disorders. The balance between appropriate inflammatory and anti-

inflammatory responses is crucial to maintenance of homeostasis and the prevention of 



60 
 

harmful chronic conditions. The improper activation of inflammation is a major 

contributory factor in chronic conditions such as inflammatory bowel diseases (IBD), 

which are characterized by prolonged activation of NF-κB and subsequent increased 

synthesis of pro-inflammatory cytokines such as TNF-α, IL-1β and IL-6 (Strober & Fuss 

2011) mostly derived from APC like macrophages (Cobrin & Abreu 2005). Research into 

the use of naturally occurring bioactive proteins as immuno-regulatory agents for the 

management of inflammation, has been proposed as a viable alternative to drugs which can 

produce intermediate toxic metabolites when degraded, resulting in unwanted side effects.  

Macrophages were chosen to investigate the potential anti-inflammatory properties of 

bovine milk derived compounds as they represent a population of innate immune cells, with 

multiple phenotypes known to be involved in the induction, propagation and resolution of 

inflammatory responses, homeostasis and can actively contribute to the pathogenesis of 

many inflammatory diseases (Kumar et al., 2013; Winn et al., 2013). Previous studies had 

observed intact CAS and CAS derived hydrolysates exhibited anti-inflammatory properties, 

by suppressing LPS mediated TNF-α in macrophages (Bamdad et al., 2017). However, 

there is a derth of knowledge as to the phenotype of macrophage induced by CAS as 

depending on the stimulus, macrophages can acquire pro/anti-inflammatory phenotypes 

termed as classically activated M1 or alternatively activated M2 macrophages. M1 

macrophages are characterized by their capacity to produce reactive oxygen species and 

pro-inflammatory cytokines (Duffield 2003). They promote TH1 responses and are 

implicated in the immune response against intracellular pathogens, and tumors (Mosser & 

Edwards 2008).  M2a macrophages are involved in metazoan parasites containment, tissue 

remodeling and the promotion of TH2 response. They are characteristically low in the 

secretion of pro-inflammatory cytokines (Mosser 2003) and produce ornithine and 
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polyamines (Gordon & Taylor 2005). M2a macrophages express a wide array of C-type 

lectin receptors (CLRs) including; CD206, MGL and dectin-1 (Martinez et al., 2009). 

Additionally, genes such as Arg-1, RELMα and YM-1, and the transcription factor STAT6 

also being signatures of M2 macrophage phenotypes (Raes et al., 2005).  Regulatory M2b/c 

macrophages are characterized by the production of high levels of IL-10 and have been 

shown to have a significant role in the suppression of inflammation (Jones 2000) and 

immune tolerance (Gordon & Taylor 2005). As macrophage plasticity enables their 

phenotypic characteristics and functions to change based on different stimuli, they present a 

promising target for intervention strategies using immuno-therapeutics to abrogate 

inflammatory processes to combat inflammatory disorders.  
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3.2 Experimental design 

In this chapter we sought to further investigate the immunosuppressive effects CAS exerts 

on macrophages by characterising the type macrophage it induces. Firstly, the ability of 

intact sodium caseinate (NaCAS) to suppress LPS mediated cytokine production in a 

concentration dependent manner was determined. BMMФ were pre-treated with intact 

NaCAS (1mg/mL-0.25 mg/mL) for 2.5 hr, followed by stimulation with or without LPS 

(100 ng/mL). M1 stimulant; IFNγ (20 ng/mL), M2a stimulants; IL-4 & IL-13 (20 ng/mL) 

or M2c stimulant; PGE2 (5μM) were used as macrophage differentiating controls. PBS was 

used as an unstimulated control. Following 24 hr stimulation, supernatants were analysed 

for the secretion of TNF-α and IL-10 by ELISA.  

To investigate if NaCAS primed macrophages towards an M1 or M2 phenotype, we 

examined the upregulation of phenotype related genes. BMMφ were treated as above, and 

RNA was extracted to measure Arg-1, Ym-1, RELM α, iNOS and β-actin gene expression. 

We examined the possible involvement of STAT signalling in the suppression of cytokines 

and induction of M2 genes.  BMMφ were treated as above with chemical antagonists of 

STAT6 (1 μM) or STAT3 (1 μM) for 30 minutes prior to stimulation with NaCAS. After 24 

hours RNA was extracted from cells to examine Arg-1 gene expression by PCR. The levels 

of TNF-α and IL-10 were also measured.  

To further characterise the phenotype of macrophage primed by NaCAS, we investigated 

what receptors were upregulated. BMMФ were pre-treated as above, and flow cytometric 

analysis was used to measure differences in the expression of the cell surface markers; 

CD54, OX40L, CD206, MGL and Dectin-1. Given that M2 macrophages upregulate CLRs 

that bind glycosylated proteins in a Ca
2+

 dependant manner, we examined the binding 
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efficiency of NaCAS on BMMФ and the involvement of CLRs in mediating this binding as 

the κ-CAS subunit of NaCAS is glycosylated (Jollès & Fiat 1979). NaCAS and BSA ( a 

non-specific control) were fluorescently labelled with FITC-488 label. BMMФ were 

stimulated with the labelled NaCAS and BSA (0.25 mg/mL) and analysed by flow 

cytometry. To investigate whether the binding was Ca
2+

 dependant, cells were pre-

incubated with EGTA (10 mM) for 30 min prior to the addition of labelled NaCAS.    
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3.3 Results 

3.3.1 NaCAS does not reduce macrophages viability 

In order to ensure that the immuno-modulatory effects of NaCAS on macrophages were not 

due to cytotoxic effects on cells, BMMφs were pre-treated for 2.5 hr with NaCAS (1 

mg/mL) prior to stimulation with and without LPS (100 ng/ml) for 24 hr. PBS and LPS 

alone were used as positive controls. 4 % PFA were used as negative controls. The results 

demonstrated that the doses used for NaCAS (Figure 3.1) did not exhibit any significant 

cytotoxic effect on BMMφs in-vitro compared to controls and as such were used at the 

same concentrations or lower for all subsequent experiments. 

 

Figure 3.1 NaCAS does not affect cell viability. Resazurin (A) and PI apoptosis (B) assays were 

performed on BMMφ pre-treated for 2.5 hr with NaCAS (1 mg/mL) prior to stimulation with and 

without LPS (100 ng/ml) for 24 hr. PBS and LPS alone were used as positive controls while 4 % 

PFA was used as negative controls. Results are expressed as mean ±SD of 3 independent 

experiments in triplicate. P-values were calculated using ANOVA multiple comparisons tests. Ns; 

no significant difference compared to positive control groups. 
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3.3.2 NaCAS suppresses LPS induced TNF-α and IL-10 in BMMФ.  

To determine if NaCAS suppressed or enhanced TNF-α (M1-like) and IL-10 (M2-like) 

secretions (Figure 3.2), 1 x 10
6
 BMMφ from C57BL/6 mice were stimulated with NaCAS 

for 2.5 hr in a dose dependant manner (0.05 mg/mL – 1 mg/mL), followed by stimulation 

with or without LPS (100 ng/mL) for 18 hr. PBS was used as a control. The supernatants 

were analysed for the secretion of TNF-α and IL-10. The basal levels of TNF-α were below 

the detectable range compared to the addition of stimulants alone (Data not shown). 

Moreover, no differences in basal levels of IL-10 were observed from the addition of 

stimulants alone (Data not shown). NaCAS significantly supressed the secretion of TNF-α 

(Figure 3.1A** , p ≤ 0.01  *, p ≤ 0.05) and IL-10 (Figure 3.1B *, p ≤ 0.05) in response to 

LPS, the effect of which increased with increases in the concentration of NaCAS used. We 

determined that at higher concentrations, NaCAS exerted a greater suppressive effect on 

LPS induced TNF-α and IL-10 cytokine secretions in BMMφ.  
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Figure 3.2 LPS induced TNF-α and IL-10 is suppressed by NaCAS in a dose response. BMMφ 

were pre-treated with NaCAS (0.05 mg/mL – 1 mg/mL) for 2.5 hr, followed by stimulation in the 

presence or absence of  LPS (100 ng/mL) for 18 hr. Supernatants were removed and TNF-α (A) and 

IL-10 (B) were measured by ELISA. Results are expressed as mean ±SD of 3 independent 

experiments in triplicate. P-values were calculated using ANOVA multiple comparisons test. * , p ≤ 

0.05, ** , p ≤ 0.01  compared to PBS control group. 

 

3.3.3 NaCAS induces genes associated with M2 macrophage phenotypes in BMMφ 

Having established that NaCAS supressed LPS induced cytokine secretions of TNF-α and 

IL-10 from BMMφ, we sought to further characterise the phenotype of NaCAS activated 

macrophages, by comparing its phenotype to differentiated M1, M2a and M2c 

macrophages. BMMφ derived from C57BL/6 mice were pre-treated with NaCAS (1 

mg/mL), M1 stimulant; IFN-γ (20 ng/mL) & LPS (100 ng/mL), M2a stimulant; IL-4 (20 

ng/mL) or M2c stimulant; PGE2 (5μM) as macrophage differentiating controls. PBS was 

used as a negative control. After 18 hr stimulation, BMMφ were isolated for RNA 

extraction to measure Arg-1, Ym-1, RELM α, iNOS and β-actin gene expression.  
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Our results demonstrated that NaCAS induced Arg-1, Ym-1 and RELM α, genes associated 

with M2 macrophage phenotypes (Figure 3.3A), however only Arg-1 was determined to 

significantly upregulated when subjected to densetometic analysis (Figure 3.3B) No 

induction of iNOS was observed, a marker of M1 activation, except for the relevant control, 

suggesting that NaCAS selectively induces an M2-like macrophage phenotype.  
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Figure 3.3 NaCAS treated BMMφ express M2 markers. BMMφ were treated with NaCAS (1 

mg/mL), M1 stimulant; IFNγ (20 ng/mL) & LPS (100 ng/mL), M2a stimulant; IL-4 (20 ng/mL) or 

M2c stimulant; PGE2 (5μM) for 18 hr. PBS was used as a negative control. Subsequently, BMMφ 

were harvested for RNA extraction to measure Arg-1, RELM α, Ym-1, iNOS and β-actin gene 

expression. The expression of genes were visulaised on agrose gel (A). The expression of Arg-1 

(B), RELM α (C), Ym-1 (D), and iNOS (E) were evaluated by densitometry. Results are expressed as 

mean ±SD of 3 independent experiments. P-values were calculated using ANOVA multiple 

comparisons test. * , p ≤ 0.05, ** , p ≤ 0.01  compared to PBS control group. 
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3.3.4 STAT6 is partially involved in the suppression of Arg-1 and IL-10 in BMMφ 

by NaCAS 

Given that NaCAS stimulated BMMφ had been shown to have a phenotype closely 

resembling that of an alternatively activated M2 phenotype, we sought to examine if 

NaCAS induced this phenotype via similar mechanisms. The two most prominent 

transcription factors involved in M2 macrophage activation are STAT6 & STAT3 (Nelms 

et al., 1999; O' Farrell et al., 1998). Arg-1 production, the hallmark of M2 polarization has 

been shown to be driven by the transcription factor STAT6, induced by IL-4 & IL-13 

receptor signalling (Muraille et al., 2014) but the increased phosphorylation and activation 

of STAT3 has also been implicated (Li et al. 2013).  

Transcription factor inhibition experiments were performed to antagonise phenotype 

polarisation and to deduce if these transcription factors were involved in the induction of 

M2 like phenotypes in BMMФ by NaCAS. BMMφ derived from C57BL/6 mice were pre-

treated with chemical antagonists of STAT6; AS1517499 (1 μM) (Axon medchem, AN) or 

STAT3; WP1066 (1 μM) (Axon medchem, AN) or PBS as a control for 30 min. Cells were 

subsequently stimulated with NaCAS (1 mg/mL) for 2.5 hr and treated with or without LPS 

(100 ng/mL) for 18 hr. Non LPS treated BMMφ were harvested for RNA extraction to 

measure Arg-1 and β-actin gene expression (Figure 3.4A).  The supernatants were analysed 

for the secretion of TNF-α (Figure 3.4C) and IL-10 (Figure 3.4D).  

 Here we once again demonstrated that NaCAS induced Arg-1, a prominent gene associated 

with M2 macrophage phenotypes (Figure 3.4A). STAT6 antagonism was observed to 

exacerbate Arg-1 expression (Figure 3.4B) and reduced the suppressive effects exerted by 

NaCAS on LPS induced IL-10 secretion. STAT3 antagonism resulted in a small but not 

significant reduction in the relative expression of Arg-1 (Figure 3.4B). The suppression of 
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TNF-α was unaffected by STAT3 antagonism while an increase in the suppression of IL-10 

was observed (Figure 3.4D).  

 

Figure 3.4 STAT6 is partially involved in Arg-1 and IL-10 suppression by NaCAS. BMMφ 

were pre-treated with or without chemical antagonists of AS1517499 (1 μM) (Axon medchem, 

AN), WP1066 (1 μM) (Axon medchem, AN) or PBS for 30 minutes. Cells were subsequently 

stimulated with NaCAS (0.5 mg/mL) for 2.5 hr and treated with or without LPS (100 ng/mL) for 18 

hr. Non-LPS treated BMMφ were isolated for RNA extraction to measure Arg-1 and β-actin gene 

expression (A) and denstometirc analysis was used to measure relative expression (B). Supernatants 

of LPS treated BMMφ were analysed for TNF-α (C) and IL-10 (D) by ELISA. Results are 

expressed as mean ±SD of at least 3 independent experiments. P-values were calculated using 

ANOVA multiple comparisons test. * , p ≤ 0.05, ** , p ≤ 0.01  compared to control group. 
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3.3.5 NaCAS induces a novel BMMФ subtype with a mixed M1 and M2-like 

receptor repertoire 

In order to confirm and further characterise the M2a-like phenotype induced by NaCAS, we 

compared the cell surface marker expression of NaCAS treated BMMФ to differentiated 

M1, M2a and M2c macrophages. BMMφ derived from C57BL/6 mice were pre-treated 

with NaCAS (1 mg/mL) for 2.5 hr, followed by stimulation with or without LPS (100 

ng/mL) for 18 hr. M1 stimulant; IFNγ (20 ng/mL), M2a stimulants IL-4 (20 ng/mL) and 

M2c stimulants; PGE2 (5μM) were used as macrophage differentiating controls. PBS was 

used as an undifferentiated control. Cells were subsequently washed and stained with 

fluorochrome-labelled monoclonal antibodies to the M2a cell surface markers; CD206, 

MGL, Dectin-1, or M1 associated; CD54 in preparation for cytometric analysis by flow 

cytometry. BMMφ stimulation with NaCAS resulted in a significant increases in M2a 

associated CD206 (Figure 3.5A ** , p ≤ 0.01) and MGL (Figure 3.5B * , p ≤ 0.05). 

However, NaCAS did not induce any increased expression of Dectin-1 (Figure 3.5C) 

compared to PBS control. Interestingly, NaCAS also significantly increased CD54 (Figure 

3.5D ** , p ≤ 0.01), a marker normally associated with classical M1 activation.   



72 
 

 

Figure 3.5 NaCAS induced receptors associated with both M1 & M2 macrophages. BMMφ 

were pre-treated with NaCAS (1 mg/mL) for for 24 hr. M2 stimulants IL-4 (20 ng/mL) or PGE2 

(5μM) and M1 stimulants IFNγ (20 ng/mL) & LPS (100ng.mL) were used as macrophage 

differentiating controls. PBS was used as a negative control. Subsequently, cells were washed and 

stained for 30 min with specific antibodies or with an isotype matched control and analysed by flow 

cytometry (FACSAria, BD, UK). Results were analysed using FlowJo software and are expressed 
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as the gMFI ±SD of three independent experiments (A-D). Histograms show representative data of 

the surface expression of CD206 (E), MGL (F), Dectin-1 (G) and CD54 (H); unstained (gray line), 

isotype (dotted grey line), PBS (black dotted line), IL-4 (broken thick gray line), PGE 2 (broken 

thick black line), IFN-γ & LPS (tinted gray histogram), and NaCAS (black line). P-values were 

calculated using ANOVA multiple comparisons test. * , p ≤ 0.05, ** , p ≤ 0.01 compared to PBS 

control group. 

 

3.3.6 BMMφ specifically binds NaCAS in a Ca
2+ 

dependent manner 

Given that NaCAS is a glycosylated protein and having demonstrated the upregulation of 

the CLR; CD206, a scavenger receptor which can engage in calcium dependant binding of 

carbohydrates on proteins (Sorvillo et al., 2012; Hoving et al., 2014), we examined the 

binding efficiency of NaCAS by BMMФ and whether any bind was calcium dependant, 

possibly implicating CD206. BMMφ derived from C57BL/6 mice were pre-treated with or 

without EGTA (10 mM) for 10 min, followed by stimulation with FITC labelled NaCAS 

(0.25 mg/mL) for 30 min, subsequently washed twice and analysed by flow cytometry. 

FITC labelled BSA (0.25 mg/mL) was used as a non-specific protein control. Un-labelled 

NaCAS was used as a negative control. NaCAS showed significant binding to BMMφ 

(Figure 3.6A * , p ≤ 0.01) compared to BSA. This binding was significantly reduced 

(Figure 3.6B * , p ≤ 0.05)  by pre-treatment with EGTA; an inhibitor of Ca
2+

 dependent 

binding, however the binding was not completely blocked to levels comparable with 

unstained control.    
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Figure 3.6 NaCAS is specifically bound by BMMφ in a Ca
2+

 dependant manner. BMMφ were 

stimulated with FITC labelled NaCAS (0.25 mg/mL) or FITC labelled BSA (0.25 mg/mL) for 30 

min before being analysed by flow cytometry (A). Cells were also pre-treated with or without 

EGTA (10 mM) for 10 min prior to stimulation with labeled NaCAS (0.25 mg/mL) (B). Un-labelled 

NaCAS was used as a negative control. Results were analysed using FlowJo software (Treestar, 

USA) and are expressed as gMFI ±SD of 3 independent experiments. P-values were calculated 

using student’s t test. * , p ≤ 0.05 
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3.4 Discussion 

Our data suggests that intact NaCAS suppressed LPS induced cytokine release from 

macrophages similar to previous studies (Bamdad et al., 2017). However, we also present 

novel evidence which suggest that NaCAS induced an M2a-like phenotype in macrophages 

as we observed the induction of M2 related genes; Arg-1, RELMα and YM-1 (Figure 3.3). 

Arg-1 production is a hallmark of M2 polarization and has been shown to be driven by 

the transcription factor STAT6, induced by IL-4 & IL-13 receptor signaling (Muraille 

et al., 2014). Other signaling molecules besides IL-4 & IL-13 are known to play a role 

in M2 polarization including STAT3 phosphorylation (Li et al., 2013). However, while 

STAT6 and STAT3 were not shown to be prominently involved in the induction of 

Arg-1, and inhibition of LPS induced TNF-α by NaCAS, other transcription factors 

have been implicated in other studies. Liao et al., demonstrated that Kruppel-like 

factor 4 coordinates with STAT6 to induce M2 genes such as Arg-1, YM-1, RELMα and 

attenuates M1 genes such as TNF-α and iNOS by sequestration of co-activators 

necessary for NF-κB activation (Liao et al., 2011). Hypoxia-inducible factor 2α was 

also shown to be involved in the induction of Arg-1 expression and the M2 state 

(Takeda et al., 2010), while interferon regulatory factor 4 (IRF) negatively regulates 

TLR signaling in a MyD88 independent manner, driving M2 activation (Satoh et al., 

2010). Bone morphogenetic protein 7 was demonstrated to induce M2 polarization in-

vitro via activation of the Phosphoinositide 3-kinase (PI3K) pathway (Rocher et al., 

2013).  

We also observed an upregulation of CLRs CD206 (Figure 3.5A) and MGL (Figure 3.5B), 

other hallmarks of M2a macrophage phenotypes (Stein et al., 1992). Interestingly, dectin-1, 

another receptor generally associated with M2a primed macrophages was not upregulated 
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(Figure 3.5C). Interestingly, NaCAS was observed to increase the surface expression of the 

CD54 (Figure 3.5D). CD54 is part of a group of receptors that mediate cell-cell or cell-

extrcellular matrix attachment (Wautier et al., 1990). However the induction of CD54 in 

macrophages has been generally associated with pro-inflammatory M1-like activation 

(Hubbard & Giardina 2000), while iNOS; a gene associated with M1 phenotypes was not 

found to be upregulated by NaCAS stimulation (Figure 3.3). Despite their functional role as 

scavenger (CD206) and adherence receptors (CD54), which upon ligation initiate 

intracellular signalling, these receptors have been also demonstrated to be heavily involved 

in  cell-cell communication and signal transduction (Brill et al., 2004; Aldridge et al., 

2016). This data would suggests that NaCAS induces a novel mixed M2-like macrophage 

phenotype which does not adhere to the described M1/M2 paradigm commonly cited in the 

literature (Martinez & Gordon 2014).   

We also revealed that NaCAS was more significantly bound by macrophages then the 

protein control; BSA, in a Ca
2+

 dependent manner. This would suggest that NaCAS was 

specifically bound by a complex, in a mechanism which requires Ca
2+

. Thus the recognition 

and binding of NaCAS is not non-specific and possibly implicating a role for receptors in 

mediating this process.    

This study shows, like others showed that NaCAS supresses TLR induced cytokine 

expression (Mukhopadhya et al., 2014; Kiewiet et al., 2017; Bamdad et al., 2017). 

However this is the first study to show that NaCAS induced an M2a like phenotype in 

macrophages, expressing the M2a related genes; Arg-1, YM-1 & RELM-α and CLRs; 

CD206 & MGL, the induction of which was shown to be STAT6 and STAT3 independent. 

We have also shown that NaCAS is specifically bound by macrophages, and this binding 

was found to be Ca
2+

 dependent. As NaCAS is a protein composed of; αs1-, αs2-, β- & κ-
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CAS subunits, further studies would need to be carried out to identify if a single subunit is 

responsible for the suppression of TLR responses and the induction of this M2-like 

macrophage phenotype.     
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Chapter 4 – κ-CAS induces a suppressive M2-like macrophage phenotype  

4.1 Introduction 

Macrophages are key mediators of innate and adaptive immunity which actively 

contribution to the initiation and propagation of host defence, inflammation, immuno-

regulation and tissue repair (Mosser & Edwards 2008; Hume 2008; Wynn et al., 2013; 

Mantovani et al., 2013). Macrophages are distributed throughout the bodily tissues 

exhibiting effecter functions that enable them to activate or dampen immune responses by 

the release of immuno-stimulatory factors such as cytokines and as antigen presenting cells 

(APC) which can present antigen in-situ, driving adaptive immunity (Martinez & Gordon 

2014). Thus a bioactive nutraceutical with immuno-modulatory properties which affects 

macrophages would be of great interest due to their prominent role in both innate and 

adaptive immunity.   

Local micro-environmental stimuli drive macrophages to acquire distinct functional and 

morphological characteristics which polarize them into classically activated M1 or 

alternatively activated M2 macrophages (pro- and anti-inflammatory, respectively) (Biswas 

et al., 2012). The M2 macrophage phenotype is composed of a functionally diverse group 

of subtypes rather than being a unique activation state. Accordingly, M2 macrophages can 

be further divided into M2a, M2b, M2c subtypes with distinct gene expression profiles. The 

M2a subtype is elicited by the TH2 associated cytokines IL-4 & IL-13 and is often observed 

in fungal and helminth infections. M2b is elicited by IL-1R ligands, immune complexes 

and LPS whereas M2c is elicited by IL-10, TGF-β and glucocorticoids (Martinez et al., 

2008; Rőszer 2015). However, these M2 subtypes can be difficult to define as macrophages 

may retain a plasticity of function and phenotype depending on the stimulus at a given time 

(Cassetta et al., 2011).  
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Many studies have shown that M2-like macrophages phenotypes can be induced by non-

classical stimuli. For example; Endothelin-1, a pro-fibrotic peptide molecule released by 

endothelial cells was shown to induce M2-like phenotypic characteristics (Soldano et al., 

2016) while helminth derived tegmental proteins and excretory/secretory products were 

also shown to induce M2-like phenotypes in macrophages (Donnelly et al., 2008; Adams et 

al., 2013). Given that macrophages exhibit a plasticity of function which can be polarised 

based on expose to external stimuli, a bioactive nutraceutical with immuno-modulatory 

properties which affects a macrophages phenotype and subsequent functionality would be 

of interest due their prominent role in both inflammatory processes and immune-

suppression. 

In the previous chapter we observed the induction of an M2-like phenotype by NaCAS, 

expressing the M2 related gene; Arg-1, the extracellular CLR receptor; CD206 and also 

exhibited a reduced pro-inflammatory cytokine response to the classical activation 

stimulant; LPS. NaCAS is comprised of 4 different protein subunits: αs1-, αs2-, β- & κ-CAS 

(Dalgleish & Law 1988). Previous studies have identified these subunits and hydrolysate 

derivatives of these subunits to exhibit immuno-modulatory properties. The αs1-CAS 

subunit was shown to stimulate the maturation of monocytes into dendritic cells 

(Vordenbaumen et al., 2011; Dominguez-Melendez et al., 2012). αs1-, β- and κ- CAS 

derived peptides were demonstrated to exhibit ACE-inhibitory activity (Yamaguchi et al., 

2009; Weimann et al., 2009). The κ-CAS derived glycomacropeptide (GMP) also exhibited 

protective effects, increasing the IL-1Rα antagonist (Wu et al., 2011; Ashare et al., 2005), 

and reducing the upregulation of iNOS and IL-1 (Daddaoua et al., 2005). Additionally, 

GMP was found to counteract dextran-sulphate-sodium (DSS)-induced colitis in rats, 
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suppressing inflammatory cytokines, with an emphasis on the role mononuclear phagocytes 

like macrophages contributed in this process (Lopez-Posadas et al., 2010).  

It is unknown if a single subunit or all the subunits of CAS are involved in the induction of 

this M2-like phenotype. This study addresses this lack of knowledge and helps in 

identifying the immunomodulatory subunit that induces M2-like phenotypes in 

macrophages, the mechanism by which this occurs and investigates what impact this 

induced phenotype has on the wider immune response.    
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4.2 Experimental design  

This chapter focuses on identifying the subunit of CAS responsible for the induction of the 

M2 phenotype, it’s interaction with macrophages and the impact these cells have on wider 

inflammatory process. Having determined that casein supressed LPS mediated cytokine 

responses in macrophages, we investigated whether this was the result of a single or 

multiple subunits. BMMφ were pre-incubated with α, β and κ-CAS (1 mg/mL) subunits for 

2.5 hr prior to the addition of LPS (100 ng/mL) for 18 hr. The effects of increasing 

concentration (0.1 – 2 mg/mL), multiple time points (3, 6 & 18 hr) and time of exposure 

(casein treatment 2.5 hr prior, at the same time or 2.5 hr post LPS stimulation) were also 

assessed. As we observed the suppression of TLR4 mediated cytokine responses, we chose 

to investigate if these suppressive effects would also be observed in multiple other TLR 

pathways. Cells were treated as outlined previously, but stimulated with a TLR2 ligand; 

PGN (5 μg/mL), a TLR7 ligand; LOX (0.5 mM) and a TLR9 ligand; CpG (2 μM).  

Exposure of macrophages to PAMPs such as LPS results in the activation of the NFκB 

transcription factor, which orchestrates the expression of genes that induce the production 

of pro-inflammatory cytokines (Sharif et al., 2007). Given that we observe a reduction in 

cytokine production, we investigated the involvement of the NFκB signalling pathway.  

BMMφs were pre-treated with κ-CAS (1 mg/mL) for 2.5 hr prior to stimulation with LPS 

(100ng/ml). Control BMMφ were treated with PBS or κ-CAS or LPS alone. Cells were 

harvested after 15 min LPS stimulation, and IκB-α protein levels was determined in whole-

cell lysates by Western blot analysis. 

To further characterise the type macrophage phenotype induced by the casein subunits, we 

investigated what genes and extracellular rectors were upregulated. Cells were treated with 

caseins (1 mg/mL) for 18 hr. Following stimulation cells were washed and either lysed for 
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RNA or stained with fluorochrome-labelled monoclonal antibodies to the surface markers 

and analysed by flow cytometry. RNA was reverse transcribed to cDNA and subsequently 

anlaysed for the M2 related genes; Arg-1, RELMα and YM-1. β-actin was used as a 

housekeeping gene expression control. For the measurement of SOCS1 and SOCS3 gene 

expression, cells were treated with κ-CAS (1 mg/mL) over a time course, total RNA was 

extracted and after reverse transcription, the cDNA was analysed by qPCR. RNA 

expression was normalized to GAPDH control gene expression and showed relative to PBS 

control.   

The impact these cells had on wider inflammatory process was also assessed, by examining 

their interaction and priming of adaptive responses. BMMφs treated with κ-CAS (1 

mg/mL) of 18 hr, washed and subsequently co-cultured for 72 hr with CD4
+
 T-cells 

isolated from naïve mice in the presence of anti-CD3 (1 μg/ml). Supernatants were 

analysed for the production of IL-2, IL-13, IL-10 and IFN-γ. CD4
+
 T-cells were also 

analysed for the anergic extracellular surface markers; CTLA and PD-1 by flow cytometry.  
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4.3 Results  

4.3.1 κ-CAS is the subunit responsible for the suppression of LPS induced cytokine 

responses in macrophages.   

From the previous chapter NaCAS was observed to have an inhibitory effect on the 

induction of TNF-α & IL-10 upon stimulation with the bacterial antigen LPS. Given that 

NaCAS is comprised of multiple subunits; α, β and κ caseins (Dalgleish & Law 1988), we 

examined if a single or multiple casein subunits were responsible. 

BMMφ derived from C57BL/6 mice were pre-incubated with α, β and κ caseins (1 mg/mL) 

for 2.5 hr, followed by stimulation with or without LPS (100 ng/mL) for 18 hr. Mφs treated 

with PBS (negative), caseins (negative) or LPS (positive) alone were used as controls. The 

supernatants were analysed for the secretion of TNF-α and IL-10. κ-CAS was shown to 

significantly inhibited the secretion of TNF-α (Figure 4.1A** , p ≤ 0.01) and IL-10 (Figure 

4.1B **, p ≤ 0.01) in response to LPS. While α- and β-CAS also significantly supressed the 

secretion of IL-10 in response to LPS (Figure 4.1B **, p ≤ 0.01), no suppressive effects 

were observed on LPS induced TNF-α. Furthermore, α- and β-CAS stimulations alone 

significantly enhanced the secretion of TNF-α from BMMφ (Figure 4.1A **, p ≤ 0.01).  

The significant induction of basal levels of TNF-α by α and β-CAS treatment alone would 

suggest that these proteins induced and activated M1-like macrophages phenotypes, while 

no TNF-α was induced by κ-CAS treatment alone. Moreover, κ-CAS significantly inhibited 

the ability the production of cytokines induced by LPS stimulation, similar to previous 

results obtained from the intact NaCAS protein.    
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Figure 4.1 LPS induced TNF-α and IL-10 was suppressed by κ-CAS. BMMφ were pre-treated 

with α-, β- and κ-CAS (1 mg/mL) at for 2.5 hr. Following pre-treatment, cells were stimulated in 

the presence or absence of LPS (100 ng/mL) for 18 hr. Supernatants were analysed for the secretion 

of the cytokines TNF-α (A) and IL-10 (B) by ELISA. Results are expressed as mean ±SD of 3 

independent experiments in triplicate. P-values were calculated using ANOVA multiple 

comparisons test. ** , p ≤ 0.01 compared to PBS control group. 

 

4.3.2 κ-CAS induces M2 related genes in macrophages. 

Having previously established that NaCAS induced M2 related genes in BMMφ, we sought 

to investigate whether the κ-CAS component also induced this M2 like phenotype. BMMφ 

derived from C57BL/6 mice were pre-treated with NaCAS (1 mg/mL) or κ-CAS (1 mg/mL. 

PBS was used as a negative control. After 18 hr stimulation, BMMφ were isolated for RNA 

extraction to measure Arg-1, Ym-1, RELM α, iNOS and β-actin gene expression. Our results 

demonstrated that κ-CAS similarily to NaCAS also induced Arg-1, Ym-1 and RELM α, 

genes associated with M2 macrophage phenotypes (Figure 4.2A), however only Arg-1 was 

determined to significantly upregulated when analysed by densetometry (Figure 4.2C * , p 

≤ 0.05), which was confirmed by qPCR analysis (Figure 4.2B * , p ≤ 0.05). Furthermore, 
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no induction of iNOS was observed, a marker of M1 activation, suggesting that the κ-CAS 

component of casein is responsible for selective induction of a M2 like phenotype in 

BMMφ.  

 

Figure 4.2 κ-CAS treated BMMφ also express M2 markers. BMMφ were pre-treated with 

NaCAS (1 mg/mL) or κ-CAS (1 mg/mL) for 18 hr. PBS was used as a negative control. BMMφ 

were harvested for RNA extraction to measure Arg-1, RELM α, Ym-1, iNOS and β-actin gene 

expression. The expression of genes were visulaised on agrose gel (A). Increases in the expression 

of Arg-1 was measured by qPCR (B) and densitometric analysis examining the relative expression 
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from conventional PCR were elavuvated for Arg-1 (C), RELM α (D), Ym-1 (E), and iNOS (F). 

Results are expressed as mean ±SD of at least 3 independent experiments. P-values were calculated 

using student’s t-test when comparing between two groups or ANOVA multiple comparisons test 

for multiple groups. * , p ≤ 0.05, compared to PBS control group. 

 

4.3.3 The suppression of LPS induced cytokine responses in macrophages by κ-CAS 

increases with increased concentration, but differs over time. 

Having determined that κ-CAS significantly suppressed the production of TNF-α and IL-10 

in LPS stimulated BMMФ, we next sought to assess if the cytokine suppression correlated 

with the concentration of κ-CAS & if the phenomenon occurred at earlier time points.  

BMMφ derived from C57BL/6 mice were incubated with varying concentrations of κ-CAS 

for 2.5 hr, followed by stimulation with or without LPS (100 ng/mL) for the indicated 

amount of time. BMMφs treated with PBS (negative), κ-CAS (negative) or LPS (positive) 

alone were used as controls. The supernatants were analysed for the secretion of TNF-α and 

IL-10. The levels of TNF-α were below the detectable range for negative controls (data not 

shown). No significant differences in the levels of IL-10 were observed for negative 

controls (data not shown). κ-CAS was observed to significantly inhibited the secretion of 

TNF-α at all concentrations (0.1 – 2 mg/mL), in a concentration dependant manner in 

response to LPS at 3 (Figure 4.3A ** , p ≤ 0.01 ) and 6 hr (Figure 4.3C ** , p ≤ 0.01 ). 

However the degree of suppression diminished at lower concentrations after 18 hr (Figure 

4.3E ** , p ≤ 0.01  *, p ≤ 0.05), with the lowest concentration (0.1 mg/mL) no longer 

significantly suppressing TNF-α. This would suggest that κ-CAS exerts greater inhibitory 

effects on TNF-α production at earlier time points. In contrast, κ-CAS exhibited no 

inhibitory effects on IL-10 secretion at the earlier time point of 3 hr (Figure 4.3B). 

However, over time κ-CAS was observed to significantly attenuated IL-10 secretion in a 
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concentration dependent manner (0.25 – 2 mg/mL) after 6 hr (Figure 4.3D * , p ≤ 0.05), 

with the suppressive effects extending to lower concentrations (0.1 - 1 mg/mL) after 18 hr 

(Figure 4.3F ** , p ≤ 0.01  *, p ≤ 0.05). Interestingly, after 18 hr, this suppression was 

reversed at the highest concentration of 2 mg/mL.  

 

Figure 4.3 Suppressive effects of κ-CAS on LPS induced TNF-α & IL-10 over time. BMMφ 

were pre-treated with κ-CAS at indicated concentrations for 2.5 hr. Following pre-treatment, cells 

were stimulated in the presence or absence of LPS (100 ng/mL) for 3 hr (A, B),  6 hr (C, D) or 18 hr 

(E, F). Supernatants were analysed for the secretion of the cytokines TNF-α (A, C, E) and IL-10 (B, 

D, F) by ELISA. Results are expressed as mean ±SD of 3 independent experiments in triplicate. P-
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values were calculated using ANOVA multiple comparisons test. * , p ≤ 0.05, ** , p ≤ 0.01, 

compared to PBS control group. 

 

4.3.4 κ-CAS supresses TNF-α and IL-10 secretion prior and post LPS treatment in 

macrophages. 

Considering κ-CAS suppressive effects were concentration dependent and differed based 

on early or later cytokine responses, we sought to investigate what impact the time of 

exposure to κ-CAS had on this phenomena. BMMφs were treated with κ-CAS (1 mg/mL) 

for 2.5 hr prior (-2.5 hr), simultaneously as (0 hr), or 2.5 hr after (+2.5 hr) stimulation with 

LPS (100 ng/mL). BMMφs treated with PBS (negative), κ-CAS (negative) or LPS 

(positive) alone were used as controls. Cells were incubated for 18 hr from time of LPS 

stimulation and the supernatants were analysed for the secretion of TNF-α and IL-10 by 

ELISA. The levels of TNF-α were below the detectable range for negative controls (data 

not shown). No significant differences in the levels of IL-10 were observed for negative 

controls (data not shown). κ-CAS significantly suppressed the production of TNF-α (Figure 

4.4A ** , p ≤ 0.01) and IL-10 (Figure 4.4B ** , p ≤ 0.01) in LPS stimulated BMMφs when 

added prior to (-2.5 hr) LPS stimulation as shown previously. However, BMMφ were 

equally as suppressed when treated with κ-CAS simultaneously (0hr) or after (+2.5 hrs) 

LPS stimulation. No significant differences in suppression were detected between exposure 

times. Therefore, the suppression LPS induced cytokines by κ-CAS shows no dependence 

on time of exposure.  
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Figure 4.4 κ-CAS suppresses TNF-α & IL-10 production post and prior LPS stimulation. 

BMMφ were treated with κ-CAS (1 mg/mL) 2.5 hours before, same time as, or 2.5 after hours after 

LPS (100 ng/mL) stimulation. Supernatants were analysed for the secretion of the cytokines TNF-α 

(A) and IL-10 (B) by ELISA after 18 hr. Results are expressed as mean ±SD of 3 independent 

experiments in triplicate. P-values were calculated using ANOVA multiple comparisons test. ** , p 

≤ 0.01 compared to PBS control group. 

 

4.3.5 κ-CAS suppresses cytokine secretion from an array of TLR agonists. 

κ-CAS was observed to significantly attenuate TLR4 mediated responses. There are 11 

known mammalian TLRs which are categorised into groups based on the agonists they 

recognise (Vidya et al., 2017). For these experiments we chose agonists of TLR 2, 7 and 9, 

to broadly represent the TLR groups, to examine if the suppressive effect exhibited by κ-

CAS were specific for TLR4 or targeted multiple TLRs. All TLRs, except TLR3, can signal 

through MyD88 (MyD88 dependent signaling), which recruits a cascade of accessory 

proteins to activate the NFkB, AP-1 & IRF pathways, ultimately stimulating the 

transcription of inflammatory cytokines. However, while, TLR3 acts independently of 
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MyD88, instead signaling through TRIF, the pathway leads to the activation of the same 

transcription factors; NFκB, AP-1 & IRFs (Liu et al., 2017, Barton & Kagan 2009).  

BMMφ derived from C57BL/6 mice were pre-incubated with κ-CAS (1 mg/mL) for 2.5 hr, 

followed by stimulation with or without TLR ligands for 18 hr. Cells treated with PBS 

(negative), κ-CAS (negative) or TLR ligands (positive) alone were used as controls. The 

supernatants were analysed for the secretion of TNF-α. PGN (5 μg/mL), a major surface 

component of gram-positive bacteria was used as an agonist of TLR2. LOX (0.5 mM), a 

guanosine analog, was used to activate TLR7. The synthetic oligonucleotide CpG (2 μM) 

that contains unmethylated CpG dinucleotides was used as a TLR9 agonist. For cytokines, 

the PBS and κ-CAS treatments alone were below the detectable range (data not shown). κ-

CAS was observed to significantly suppress the secretion of TNF-α (Figure 4.5A ** , p ≤ 

0.01) and IL-10 (Figure 4.5B *, p ≤ 0.05; **, p ≤ 0.01) in response to all TLR agonists. 

Thus we determined that κ-CAS abrogates multiple TLR pathway signaling. 
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Figure 4.5 κ-CAS targets multiple TLRs in BMMφs. BMMφ were pre-treated κ-CAS (1 mg/mL) 

at for 2.5 hr. Following pre-treatment, cells were stimulated in the presence or absence of PGN (5 

μg/mL), LOX(0.5 mM) or CpG (2 μM) for 18 hr. Supernatants were analysed for the secretion of 

the cytokines TNF-α (A) & IL-10 (B) by ELISA. Results are expressed as mean ±SD of 2 

independent experiments in triplicate. P-values were calculated using ANOVA multiple 

comparisons tests. * , p ≤ 0.05  ** , p ≤ 0.01 compared to PBS control group. 

 

4.3.6 κ-CAS abrogates NFκB activation. 

NF-κB has long been considered the prototypical pro-inflammatory signaling pathway, 

largely based on the role it plays in the induction of pro-inflammatory genes resulting in the 

production of cytokines, chemokines, and adhesion molecules upon activation (Liu et al., 

2017; Lawrence 2009). In a resting state, inhibitory IκB proteins complex with and 

sequester NFκB family members in the cytoplasm, rendering NFκB transcription factors 

inactive. When TLR signaling occurs, these inhibitory proteins become phosphorylated by 

an active IκB kinase complex, which results in the IκB proteins being degraded. Without 

the inhibitory proteins, NFκB is enabled to translocate into the nucleus and begin 

expressing pro-inflammatory signaling (Liu et al., 2017; Ferreiro & Komives 2010).  

Having seen the suppressive effects exhibited by κ-CAS on the induction of TLR induced 

of cytokine responses, we sought to investigate if NFκB signaling was involved in this 
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phenomenon by examining the degredation/if any of IkB proteins. BMMφ derived from 

C57BL/6 mice were pre-incubated with κ-CAS (1 mg/mL) for 2.5 hr, followed by 

stimulation with or without LPS (100 ng/mL) for 15 min. PBS (negative), κ-CAS 

(negative) or LPS (positive) alone were used as a control. PBS and κ-CAS alone showed no 

significant differences in intensity, indicating that no degradation of the IκB-α protein had 

occurred (Fig. 4.6A lanes 1, 2 & 3, 4). The time point of optimal IκB-α degradation was 

deduced to be at 15 min after LPS treatment (data not shown), which led to a significant 

reduction in the levels of IκB-α protein (Fig. 4.6A lanes 5, 6). However, while cells treated 

prior to LPS with κ-CAS still lead to a reduction in IκB-α protein compared to non LPS 

treated controls (Fig. 4.6A, lanes 7, 8), densitometric analysis of blots revealed that there 

was a significant difference between this and the LPS only treated control (Fig. 4.6B *, p ≤ 

0.05). This data infers that κ-CAS may partially abrogate NFκB signaling.  
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Figure 4.6 κ-CAS suppresses LPS mediated IκB-α degradation in Mφ. BMMφs were pre-

treated with κ-CAS (1 mg/mL) for 2.5 hr prior to stimulation with LPS (100ng/ml). Control BMMφ 

were treated with PBS or κ-CAS or LPS alone. (A) Cells were harvested after 15 min LPS 

stimulation, and IκB-α protein levels was determined in whole-cell lysates by Western blot analysis. 

A representative blot is shown. The cells were treated with PBS (1, 2), κ-CAS (3, 4), LPS (5, 6), & 

κ-CAS and LPS (7, 8). (B) Densitometric analysis was performed on all immunoblots, and IκB-α 

protein levels were expressed in arbitrary units relative to β-actin control. Results are expressed as 

mean intensity ±SD of 3 independent experiments. P-values were calculated using ANOVA 

multiple comparisons test *, p ≤ 0.05; ** , p ≤ 0.01.  
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4.3.7 κ-CAS up-regulates the transcription SOCS1 & SOCS3. 

As the NF-kB pathway was shown to be abrogated by κ-CAS, we hypothesized that this 

compound either directly targets signaling molecules further upstream of the TLR signaling 

or by the induction of negative regulators of the TLR pathway. SOCS1 & SOCS3 are two 

known prominent negative regulators of the TLR and cytokine signaling (Duncan et al., 

2017; Naka et al., 2005). Furthermore, both SOCS1 & SOCS3 have recently been shown to 

be heavily involved in macrophage polarization and function (Zhou et al., 2017; Wilson 

2014; Whyte et al., 2011).  

 

Given that κ-CAS was shown to induce the polarization of macrophages towards a M2-like 

phenotype and the exertion of suppressive effects on TLR induced of cytokine responses, 

we sought to investigate if κ-CAS induced SOCS1 or SOCS3. BMMφ derived from 

C57BL/6 mice were incubated with κ-CAS (1 mg/mL) for indicated times. PBS treated 

BMMφs were used a negative as controls. κ-CAS significantly enhanced the expression of 

SOCS1 (Figure 4.7A *, p ≤ 0.05) and SOCS3 (Figure 4.7A *, p ≤ 0.05; ** , p ≤ 0.01). 

However, while both SOCS molecules were significantly upregulated, SOCS3 upregulation 

occurred at earlier time points, beginning to significantly increase after 30 min, while no 

significant increases of SOCS1 were observed until 2 hr. Furthermore, the observed 

significant increases of SOCS3 were greater than that of SOCS1. The levels of expression 

for both SOCS molecules remained significantly upregulated at 6 hr but returned to 

baseline after 12 hr suggesting that κ-CAS induces SOCS1 & 3 at early time points.  
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Figure 4.7 κ-CAS induces SOCS1 & SOCS3. BMMφs were incubated with and without κ-CAS (1 

mg/mL) for the indicated times. Total RNA was extracted and after reverse transcription, the cDNA 

was analysed by qPCR for SOCS1 (A) & SOCS3 (B). RNA expression was normalized to GAPDH 

control gene expression and showed relative to PBS control. Figures are representative of 2 

independent experiments in dublicate. P-values were calculated using ANOVA multiple 

comparisons test *, p ≤ 0.05; ** , p ≤ 0.01 compared to PBS control group.  

 

4.3.8 κ-CAS induced SOCS is possibly implicated in the suppression of LPS induced 

TNF-α. 

SOCS1 & SOCS3 were both shown to be up-regulated by κ-CAS at early time points and 

are known to be key inhibitory molecules of the TLR4 signaling pathway. Furthermore, 

SOCS1 & SOCS3 has been identified as a key determinant of differential M2 macrophage 

activation (Zhou et al., 2017; Wilson 2014; Whyte et al., 2011). Given that we observe the 

induction of M2 markers by κ-CAS we investigated the involvement of SOCS1 in the 

suppression of cytokine responses by κ-CAS. Previous studies have utilised a synthetic 

peptide antagonist of SOCS1/3; pJAK2 (Ahmed et al., 2015; Waiboci et al., 2007), which 

we also used to inhibit SOCS1 and SOCS3 activity. BMMφ derived from C57BL/6 mice 

were pre-incubated with indicated concentrations of the SOCS1 inhibitor; pJAK2 for 24 hr 
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prior to κ-CAS (1 mg/mL) treatment. Cell were subsequently stimulated after 2.5 hr with or 

without LPS (100 ng/mL) for 18 hr. BMMφs treated with PBS (negative), κ-CAS 

(negative) or LPS (positive) alone were used as controls. The supernatants were analysed 

for the secretion of TNF-α. The levels of TNF-α were below the detectable range for 

negative controls (data not shown). No significant differences were observed between 

vehicle levels from the addition of the SOCS1 and SOCS3 inhibitor; pJAK2. As previously 

observed, κ-CAS, significantly inhibited the production of TNF-α (Figure 4.8 ** , p ≤ 

0.01). SOCS1 antagonism was not observed to reverse this significant inhibition at any 

concentration. However, pJAK2 was shown to significantly increase the levels of LPS 

induced TNF-α by κ-CAS treated BMMφ at a concentration of 80 μM (Figure 4.8 ** , p ≤ 

0.01). No further increases in SOCS inhibitor were used as significant increases in basal 

levels were detected after 80 μM (data not shown).  

 

Figure 4.8 The suppression of LPS induced TNF-α is partially SOCS dependent. BMMφ were 

pre-treated with pJAK2 at indicated concentration for 18 hr. Subsequently, cells were incubated 

with κ-CAS (1 mg/mL) 2.5 hours before, LPS stimulation for 18 hr. Supernatants were analysed for 

the secretion of the cytokines TNF-α by ELISA. Results are expressed as mean ±SD of 2 

independent experiments in triplicate. P-values were calculated using ANOVA multiple 

comparisons tests. ** , p ≤ 0.01 compared to PBS control group. 
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4.3.9 Proteolytic hydrolysis of κ-CAS by cells is responsible for activity. 

As several peptides derived from the proteolysis of κ-CAS have been shown to exert 

immuno-suppressive activity, notably GMP or its hydrolysate derivatives (Cheng et al., 

2015; Requena et al., 2009; Mikkelsen et al., 2005; Li & Mine 2004), we next examined if 

intact κ-CAS or a fragment accounted for the observed activity. We used a protease 

inhibitor cocktail to block the possible hydrolysis of κ-CAS by cell proteases. BMMφ 

derived from C57BL/6 mice were pre-treated with κ-CAS (1 mg/mL) for 2.5 hr, followed 

by stimulation with or without LPS (100 ng/mL) for the indicated amount of time. A 

protease inhibitor cocktail (1:200), containing; 4-(2-aminoethyl)-benzenesulphonyl 

fluoride, aprotinin, leupeptin, bestatin, pepstatin A and E-64 was added 30 min prior to any 

treatment. BMMφs treated with PBS (negative), κ-CAS (negative) or LPS (positive) alone 

were used as controls. The supernatants were analysed for the secretion of TNF-α and IL-

10. The levels of TNF-α were below the detectable range for negative controls (data not 

shown). The blocking of protease activity in BMMφ was shown to reverse the suppressive 

effects κ-CAS exhibited on LPS induced TNF-α (Figure 4.9A) & IL-10 (Figure 4.9B) 

production. This would indicate that a fragment released from the proteolytic cleavage of κ-

CAS by cells is responsible for the immune-suppressive effects.  
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Figure 4.9 Effect of protein hydrolysis on κ-CAS activity. BMMφ were pre-treated with a 

protease inhibitor cocktail (1:200 v/v) and subsequently incubated with or without κ-CAS  (1 

mg/mL) for 2.5 hr. Cells were subsquently stimulated in the presence or absence of LPS (100 

ng/mL) for 18 hr. Supernatants were analysed for the secretion of TNF-α (A) & IL-10 (B) by 

ELISA. Results are expressed as mean ±SD of 3 independent experiments in triplicate. P-values 

were calculated using ANOVA multiple comparisons test. * , p ≤ 0.05, ** , p ≤ 0.01 compared to 

PBS control group. 

 

4.3.10 BMMφ treated with κ-CAS exhibit a mixed M1/M2 receptor repertoire & and 

selectively upregulate co-stimulatory molecules.    

Having previously observed the induction of M2 like phenotype markers from NaCAS 

treated BMMφ, we investigated if κ-CAS induced a similar receptor repertoire. BMMφ 

were pre-treated with κ-CAS (1 mg/mL) for 18 hr. PBS was used as an unstimulated 

control. Cells were subsequently washed and stained with fluorochrome-labelled 

monoclonal antibodies to the surface markers and analysed by flow cytometry. BMMφ 

stimulation with κ-CAS resulted in significant increases in M2a associated CD206 (Figure 

4.10 A** , p ≤ 0.01). However, we observed no significant differences with the M2 

associated MGL and Dectin-1 receptors (data not shown). Similar to the results we had 
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previous obtained for NaCAS, κ-CAS also significantly increased CD54 (Figure 4.10D ** , 

p ≤ 0.01), a marker normally associated with classical M1 activation. Interestingly, while 

no significant differences were observed for the co-stimulatory markers; CD80 or CD86 

(Data no shown), CD40 (Figure 4.10B *, p ≤ 0.05) and OX40L (Figure 4.10C *, p ≤ 0.05) 

were shown to be significantly increased.  
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Figure 4.10 κ-CAS induced a mixed M1 & M2 receptor repertoire and selectively upregulated 

co-stimulatory molecules. BMMφ were pre-treated with κ-CAS (1 mg/mL) for for 24 hr. PBS was 

used as a negative control. Subsequently, cells were washed and stained for 30 min with specific 

antibodies or with an isotype matched control and analysed by flow cytometry (FACSAria, BD, 

UK). Results were analysed using FlowJo software (Treestar, USA) and are expressed as the gMFI 

±SD of at least 3 independent experiments (A-D). Representative histograms show the surface 

expression of CD206 (E), CD40 (F), OX40L (G) and CD54 (H); unstained (gray line), isotype 

(dotted grey line), PBS (black dotted line) and κ-CAS (black line). P-values were calculated using 

student’s t tests. ** , p ≤ 0.05,  ** , p ≤ 0.01 compared to PBS control group. 

 

4.3.11 κ-CAS induced BMMφ functionally alter cytokine secretion from CD4
+
 T-cells. 

Macrophages participate in many aspects of the innate immune response. They are heavily 

involved in the phagocytosis and clearance of extracellular pathogens, the generations of 

microbicides, wound healing/repair, and the production of immuno-modulatory cytokines 

(Mosser & Edwards 2008; Mantovani et al., 2013; Wynn et al., 2013). In addition, 

macrophages can also present antigen to responsive T-cells, participating directly in the 

generation of adaptive immune responses (Hume 2008).  

Considering κ-CAS significantly suppressed cytokine production, but upregulated the 

costimulatory markers CD40 & OX40L expression in BMMφ, we investigated the impact 

these cells had on wider inflammatory process, by examining their interaction and priming 

of adaptive responses. While previous studies have examined the effects κ-CAS and its 

hydrolysate derivatives have on T-cell activity directly, the ability of κ-CAS stimulated 

macrophages to modulate T-cells has not been previously shown. BMMφs from C57BL/6 

mice were pre-treated with κ-CAS (1 mg/mL) for 18hr. BMMφ were treated with PBS 

(positive) as a control. Cells were washed and subsequently co-cultured with CD4
+
 T-cells 

at a ratio of 1:4 on plates pre-coated with anti-CD3 (1 μg/well) for 72 hr. CD4
+
 T-cells 
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alone (negative) were used a control. BMMφs primed with κ-CAS induced significantly 

less IFN-γ (Fig. 4.11A *, p ≤ 0.05) and IL-2 (Fig. 4.11D **, p ≤ 0.01) compared to control 

BMMφ primed with PBS. Interestingly, κ-CAS treated BMMφ increased CD4
+
 T-cell 

induced IL-13 compared to PBS control, however the levels were not determined to be 

significant (Figure 4.11B p=0.07). We also observed a non-significant decrease in the 

levels of IL-10 as well (Figure 4.11C). This would indicate that BMMφs exposed to κ-CAS 

suppress TH1 responses in-vitro. 

 

Figure 4.11 κ-CAS treated BMMφ functionally alter cytokine secretion from CD4
+ 

T-cells in-

vitro. BMMφs were pre-treated with κ-CAS (1 mg/mL) for 18hr. Control BMMφ were treated with 

PBS. κ-CAS treated and PBS macrophages were washed and subsequently co-cultured with CD4
+
 

T-cells at a ratio of 1:4 on plates pre-coated with anti-CD3 (1 μg/well). CD4
+
 T-cells not cultured 

with macrophages were used a negative control. After 72 hr, supernatants were analysed for the 
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cytokines IFN-γ (A), IL-13 (B), IL-10 (C) and IL-2 (D) by ELISA. Results are expressed as mean 

±SD of at least 3 independent experiments in dublicate. P-values were calculated using ANOVA 

multiple comparisons test *, p ≤ 0.05; ** , p ≤ 0.01 compared to PBS control group. 

 

4.3.12 κ-CAS treated macrophages do not induce markers of anergy when co-cultured with 

CD4
+
 T-cells.  

T-cell anergy is a tolerance mechanism by which lymphocytes become functionally 

inactivated following an antigen encounter, remaining in a hypo-responsive state for an 

extended period of time (Schwartz 2003). T-cell anergy is associated with the poor 

production of cytokines, most prominently IL-2, as it is the key cytokine associated with T-

cell proliferation (Wells et al., 2001) and required for the effective induction of T-cell 

responses. CTLA4 and PD1 are two cell surface markers enhanced on anergic T-cells 

(Okazaki and Honjo 2006, Wells et al., 2001, Butte et al., 2007). 

 Given that we observed the suppression of T-cell induced IL-2 by κ-CAS treated BMMφ, 

we investigated if this was the result of anergy. BMMφs from C57BL/6 mice were pre-

treated with κ-CAS (1 mg/mL) for 18hr. BMMφ were treated with PBS were used as a 

control. Cells were washed and subsequently co-cultured with CD4
+
 T-cells at a ratio of 1:4 

on plates pre-coated with anti-CD3 (1 μg/well). CD4
+
 T-cells alone on plates pre-coated 

with anti-CD3 (1 μg/well) were used as an anergic control (Zheng et al., 2009). After 72 hr 

incubation, cells were washed and stained with fluorochrome-labelled monoclonal 

antibodies for the surface markers CTLA4 or PD-1 and analysed by flow cytometry. No 

significant increases in either of the anergic cell surface markers; CTLA (Figure 2.12A) or 

PD-1 (Figure 4.12B) were observed compared to PBS controls. This would suggest that the 

T-cells induced by κ-CAS BMMφs are not anergic. 
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Figure 4.12 CD4
+
 T-cells cultured with κ-CAS treated BMMφ do not display anergic markers. 

BMMφs were pre-treated with κ-CAS (1 mg/mL) for 18hr. Control BMMφ were treated with PBS. 

κ-CAS treated and PBS macrophages were washed and subsequently co-cultured with CD4
+
 T-cells 

at a ratio of 1:4 on plates pre-coated with anti-CD3 (1 μg/well). CD4
+
 T-cells not cultured with 

macrophages were used an anergic control. After 72 hr, cells were analysed for the anergic 

extracellular surface markers CTLA4 (A) or PD-1 (B) by flow cytometry (FACSAria, BD, UK). 

Results were analysed using FlowJo software (Treestar, USA) and are expressed as the gMFI ±SD 

of 2 independent experiments. Representative histograms show the surface expression of CTLA4 

(C) and PD-1 (D); unstained (gray line), isotype (dotted grey line), PBS (black dotted line), κ-CAS 

(black line), and anti-CD3 alone (tinted gray histogram). P-values were calculated using ANOVA 

multiple comparisons test. * , p ≤ 0.05, ** , p ≤ 0.01 compared to PBS control group. 
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4.4 Discussion 

In the previous chapter we showed that NaCAS induced a M2-like phenotype in 

macrophages and suppressed LPS mediated cytokine responses. Here we sought to 

determine if we could identify the bioactive subunit responsible for the induction of this 

novel M2-like phenotype. We demonstrated that the κ-CAS subunit alone was shown to 

prime macrophages towards a M2-like phenotype expressing the M2 related gene markers; 

Arg-1, RELMα and YM-1 (Martinez & Gordon 2014). κ-CAS treated macrophages also 

upregulated the expression of CD206, a C-type lectin receptor associated with M2 

macrophage phenotype priming (Mantovani et al., 2013). However CD54, an extracellular 

adhesion receptor associated with antigen presenting cell activation and usually upregulated 

in pro-inflammatory M1 macrophage phenotypes was also shown to be induced by κ-CAS 

(Hubbard & Giardina 2000; Sheikh & Jones 2008; Murray et al., 2014).  Yet recent studies 

have demonstrated that CD54 deficiency induces M1 macrophage polarization, while 

overexpression promoted M2 polarization (Gu et al., 2017).  

κ-CAS like the intact protein NaCAS, was shown to impair the ability of macrophages to 

elicit the release of the key inflammatory cytokine mediators; TNF-a and IL-10 in response 

to LPS. κ-CAS treated macrophages also were rendered  hypo-responsive to a range of 

other TLR ligands. However the suppressive effect differed over time. TNF-α was 

significantly supressed at early points at all concentrations, and during later time points at 

higher concentrations. In contrast, no suppression of IL-10 was observed at any 

concentration during early time points. However, κ-CAS did significantly attenuate IL-10 

production at later time points, except at the highest concentration of 2 mg/mL, where no 

significant reduction was observed. Also, κ-CAS was shown to exhibit its suppressive 

effects independent of when the TLR ligand was added suggesting that κ-CAS does not 
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compete with LPS for binding and that κ-CAS does not exerting its effects through the 

TLR. The observed reduction in cytokine responses were determined not to be the result of 

loss in viability as κ-CAS was shown not to affect the viability of macrophages as 

determined by Annexin V staining and resazurin assays (Appendix A). 

Multiple other studies attribute the inhibitory activity of κ-CAS to the C-terminal fragment; 

GMP and its derivatives (Wu et al., 2011; Ashare et al., 2005; Daddaoua et al., 2005; Otani 

& Monnai 1993). More recently, GMP and its derivatives were found to supress TLR4 

meditated responses in macrophages by attenuating the activation of NFκB signalling 

(Cheng et al., 2015). The mechanism by which this occurred was found to be due to the 

upregulation of heme oxygenase-1, which when inhibited resulted in the restoration of 

inflammatory cytokine release and NFκB activity (Li et al., 2017). While we attained 

similar results with κ-CAS, which was also shown to abrogate LPS mediated inflammatory 

cytokine release and NFκB activation, the inhibition of heme oxygenase-1 did not restore 

inflammatory cytokine release (Appendix B). Other studies examining the effects of 

enzymatic digestion has on GMP determined that proteolytic treatment with trypsin did not 

significantly affect its activity. Requena et al., also demonstrated that inhibiting the 

possible hydrolysis of GMP by cell proteases had no effect on activity (Requena et al., 

2009), unlike κ-CAS, which we demonstrated lost its suppressive effects. Given these 

differences, we can deduce that the results we obtained for κ-CAS are unlikely to be due to 

GMP but another novel fraction of κ-CAS with immune-modulatory activity. 

SOCS proteins play a prominent role in maintaining homeostasis by preventing the 

overexpression of harmful pro-inflammatory cytokine responses (Yoshimura et al., 2007). 

κ-CAS was shown to supress TLR mediated pro-inflammatory cytokine responses and 

NFκB activation. κ-CAS also induced SOCS1 and SOCS3, two prominent negative 
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regulators of the TLR pathway. SOCS3 is one of the main inhibitory proteins involved in 

the auto-regulatory response to pathogen induced inflammation (Yoshimura et al., 2012). 

Previous studies have shown that over expression of SOCS3 in macrophages was shown to 

suppress LPS-mediated TNF-a (Cacalano et al., 2006). Nair et al., demonstrated that a 

phosphorylated SOCS3 can interact with the IκBα-NFκB complex, which inhibits the 

phosphorylation of IkB-α and subsequent activation of macrophages during stimulation 

with LPS (Nair et al., 2011). However, there are is some conflicting evidence which 

suggests that SOCS3 has little or can even enhance the effects of TLR responses in 

macrophages (Liu et al., 2008). SOCS1 also plays a key role in the negative regulation of 

cytokine receptor and TLR mediated signalling and has been shown to be upregulated in 

M2 macrophages (Whyte et al., 2011). Studies have demonstrated that LPS induced NFκB 

activation and consequent production of pro-inflammatory cytokines are inhibited in cells 

overexpressing SOCS1 (Kinjyo et al., 2002; Nakagawa et al., 2002). SOCS1 has been 

demonstrated to target multiple adaptor proteins involved in the TLR and NFκB signalling 

pathway including; IRAK1 (Nakagawa et al., 2002), Mal/TIRAP (Mansell et al., 2006), 

the p65 subunit of NFκB (Ryo et al., 2003) and JAK2 (Kimura et al., 2005). Although the 

sequestration of κ-CAS induced SOCS1 and SOCS3 activity by the peptide inhibitor did 

not reverse the suppression of LPS induced TNF-α, we did observe a significant increase in 

the levels of TNF-a produced. This would suggest that SOCS1 or SOCS3 may be 

implicated in this process.  

The state of activation and maturation of APCs like macrophages determines their ability to 

interact with naïve T-cells, influencing the type of immune response that is initiated 

(Banchereau & Steinman 1998). Given that κ-CAS upregulated the co-stimulatory 

molecules CD40 and OX40L involved in T-cell activation (Grewal & Flavell 1996; Murata 
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et la., 2000), we examined what impact these cells had on the development of the adaptive 

immune response using CD4
+
 T-cell priming studies. During normal activation, APC and 

T-cell engagement leads to T-cell activation, promotion of IL-2 secretion and proliferation. 

Alternatively, activation through anergic pathways results in poor production of IL-2, the 

loss of proliferation and renders T-cells hypo-responsive (Wells et al. 2001). Our results 

demonstrated that κ-CAS primed macrophages significantly suppressed TH1 associated 

cytokines, notably IFN-γ. Moreover, we also observed a significant reduction in the 

production of IL-2. However, these cultured CD4
+
 T-cells did not display either of the 

prominent extracellular surface markers associated with anergy; CTLA4 and PD-1 

(Buchbinder & Desai 2016). Previous studies observed that intact κ-CAS and GMP 

significantly inhibited the mitogen-induced proliferative response of mouse spleen 

lymphocytes and Peyer's patch cells (Otani & Hata 1995; Otani et al., 1995). Our results 

would suggest that exposure to κ-CAS interferes with the ability of macrophages to prime 

naïve T-cells towards a pro-inflammatory immune response given the lack of IL-2 required 

for the induction of a robust adaptive response (Bachmann & Oxenius 2007). 

In summary, this study demonstrated that κ-CAS induces a suppressive M2-like phenotype 

in macrophages, which are hypo-responsive to TLR induced cytokine production, via the 

abrogation of the NFκB pathway. This may in part be due to the upregulation of two 

prominent negative regulators of the TLR pathway; SOCS3 and SOCS3. These suppressive 

M2-like macrophages prime T-cell to induce significantly less TH1 associated pro-

inflammatory cytokines and IL-2, sequestering the ability of these cells to elicit an adaptive 

immune response. Given the powerful immune-modulatory effects exhibited by κ-CAS on 

macrophages, key cells involved in the initiation and control of inflammation (Mantovani et 
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al., 2013), further study may lead to the development of κ-CAS as a novel immune 

therapeutic for the treatment of inflammatory diseases.  
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Chapter 5 – κ-CAS suppress DC maturation and T-cell priming capacity 

5.1 Introduction 

In the previous chapter we presented evidence of how κ-CAS primed macrophages 

acquired an alternatively activated M2-like suppressive phenotype, which were hypo-

responsive to the release of inflammatory cytokines in response to TLR stimulation and 

suppressed TH1 associated CD4
+
 T-cell cytokine responses in-vitro. Dendritic cells (DCs) 

like macrophages are antigen presenting cells (APCs), but are considered more critical to 

the mediation between innate and adaptive immunity, often termed as professional APCs. 

While macrophages present antigen in-situ, upon antigen uptake, DCs become activated, 

mature and migrate to the lymph nodes to present antigens to the T-cells resulting in the 

systematic initiation of an adaptive immune response. Thus a bioactive nutraceutical with 

immuno-modulatory properties which affects DCs would of great interest due to their 

prominent role in both innate and adaptive immunity.   

 DCs are a heterogeneous population of phagocytes distributed throughout the body. DCs 

present in tissues and mucosal sites survey for pathogen or danger associated molecular 

patterns using an array of recognition receptors such as the toll-like receptor (TLRs), C-

type lectin receptors, NOD-like receptors (NLRs), and others (Pulendran & Maddur 2015). 

These receptors not only enable DCs to sense and respond to external pathogens and 

environmental antigens but also internal danger signals and molecules generated during 

tissue injury (Bianchi 2007). Depending on the stimulus, DCs can produce a variety of 

anti/pro-inflammatory signaling molecules including; cytokines, chemokines and cell 

signaling receptors (Patil et al., 2010; Thaiss et al., 2011). DCs are well established as the 

most prominent APCs (Banchereau & Steinman 1998) due their expression of higher levels 

of the co-stimulatory molecules; CD80, CD86, MHC II and CD40, required for efficient 
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antigen presentation upon activation (Steinman et al., 1999; Dudek et al., 2013). Thus, DCs 

are considered as highly effective cells at both initiating and propagating inflammatory 

responses (Iwasaki & Medzhitov 2010).  

In a steady state, DCs have been shown to be less responsive to inflammatory stimuli and 

produce anti-inflammatory mediators, thought to responsible for the promotion and 

maintenance of regulatory T-cell populations required for homeostasis (Scott et al., 2011). 

However, abnormal inflammatory responses can alter their function into cells that promote 

and propagate inflammation. DC migration and acumination is observed in chronic 

intestinal inflammatory diseases (Silva 2009). These DCs have been shown to be hyper-

responsive to TLR stimulation, secrete high levels of pro-inflammatory cytokines like 

TNF-α, IL-23 and IL-12 which are crucial for the induction of TH1/TH17 inflammatory T-

cell responses observed in  intestinal inflammatory diseases (IBD) (Baumgart et al., 2009; 

Sakuraba et al., 2009; Zaba et al., 2009; Yawalkar et al., 2009). In experimental mouse 

models of IBD, DCs have been demonstrated to secrete high levels of TNF-α which have 

been shown to increase epithelial barrier permeability, resulting in inflammation and injury 

similar to that observed in ulcerative colitis (Garrett et al., 2007).  

Given the prominent role DCs play in gastrointestinal inflammatory conditions and as 

innate professional APCs, which are good sources of IL-12p70, a cytokine critical in 

driving TH1 adaptive immune responses (Lichtenegger et al., 2012); a complete analysis of 

the DC phenotype induced by a κ-CAS was performed. A limited number of studies have 

previously examined the impact κ-CAS had on DC function and activation status. 

Mikkelsen et al., demonstrated that κ-CAS reduced the capacity of DCs to produce the pro-

inflammatory cytokines; IL-1β, IL-10, IL-12 and TNF-α upon LPS stimulation. GMP; the 

hydrolysed derivative of κ-CAS was also shown to reduce LPS induced TNF-α and IL-1β 
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production from DCs (Mikkelsen et al., 2005). Herein we investigate the ability of κ-CAS 

to modulate DC maturation and function and what impact κ-CAS treated DCs have in 

driving the adaptive immune responses.  
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5.2 Experimental design  

Given the immunomodulatory effects κ-CAS exerted on TLR mediated responses in 

macrophages (Chapter 4), and studies previously demonstrating the capacity of κ-CAS to 

suppress LPS mediated cytokine responses in DCs (Mikkelsen et al., 2005), we firstly 

compared the ability of κ-CAS to modulate cytokine production in DCs stimulated with a 

panel of TLR ligands. Mouse BMDCs were pre-incubated with κ-CAS (1 mg/mL) for 2.5 

hr prior to the addition of LPS (100 ng/mL) for 18 hr. The effects of increasing 

concentration (0.1 – 2 mg/mL), multiple time points (3, 6 & 18 hr) and time of exposure (κ-

CAS treatment 2.5 hr prior, at the same time or 2.5 hr post LPS stimulation) were also 

assessed. Cells were also treated as outlined previously, but stimulated with a TLR2 ligand; 

PGN (5 μg/mL), a TLR7 ligand; LOX (0.5 mM), TLR9 ligand; CpG (2 μM) or PMA (20 

ng/mL) to investigate the κ-CAS exerted on other TLR and NFκB signalling pathways. 

Exposure of DCs to PAMPs such as LPS activates the NFκB transcription factor, which 

influences the maturation and subsequent inflammatory response of DCs (Rescigno et al., 

1998). To examine what effect κ-CAS exhibited on NFκB signalling, BMDCs were pre-

treated with κ-CAS (1 mg/mL) for 2.5 hr prior to stimulation with LPS (100ng/ml). Control 

BMDCs were treated with PBS or κ-CAS or LPS alone. Cells were harvested after 15 min 

LPS stimulation, and IκB-α protein levels was determined in whole-cell lysates by western 

blot analysis. 

To further characterise the effects κ-CAS exerted on DC maturation and to elucidate the 

signaling mechanisms involved, cells were treated with κ-CAS (1 mg/mL) for 18 hr. 

Following stimulation cells were washed and stained with fluorochrome-labelled 

monoclonal antibodies to the surface markers and analysed by flow cytometry. For the 

measurement of SOCS1 and SOCS3 gene expression, cells were treated with κ-CAS (1 
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mg/mL) over a time course, total RNA was extracted and after reverse transcription, the 

cDNA was analysed by qPCR. RNA expression was normalized to GAPDH control gene 

expression and showed relative to PBS control.   

Lastly, the effect of κ-CAS on DC function was characterised by its ability to alter their T-

cell priming capacity in-vitro and in-vivo. BMDCs were treated with κ-CAS (1 mg/mL) & 

OVA peptide (100 nM) for 18 hr. After treatments, cells were washed with sterile PBS. For 

in-vitro T-cell priming, treated BMDCs were co-cultured at a 1:10 ratio with CD4
+
 T-cells 

isolated from the spleen of  B6.Cg-Tg(TcraTcrb)425Cbn/J (OTII) mice in wells pre-coated 

with anti-CD3 (1 µg/mL). After 72 hr, supernatants were collected and analysed for 

cytokine secretion by ELISA. For in-vivo T-cell priming, 3 x 10
5
 treated BMDCs were 

delivered over the sternum of OTII mice by subcutaneous injection. Mice were culled after 

7 days by cervical dislocation. Skin draining lymph nodes were extracted and single cell 

suspensions of cells were obtained by passage of the lymph nodes through a 40 μm filter 

using the plunger from a sterile 1 mL syringe. Draining lymph nodes cells were counted 

and seeded at 1 x 10
6
 cell/mL and stimulated with PBS, OVA (500 nM) or with PMA (25 

ng/ml) in wells pre-coated with anti-CD3 (1 μg/ml). After 72 hr, supernatants were 

collected and analysed for cytokine secretion by ELISA. 
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5.3 Results  

5.3.1 κ-CAS suppresses LPS induced pro-inflammatory but not anti-inflammatory 

cytokines in DCs.  

Having previously demonstrated that κ-CAS significantly suppressed the production of 

TNF-α and IL-10 in LPS stimulated BMMФ, we sought to assess if κ-CAS affected 

cytokine production in other innate cell types, specifically BMDCs.  BMDCs derived from 

C57BL/6 mice were incubated with κ-CAS (1 mg/mL) for 2.5 hr, followed by stimulation 

in the presence of absence of LPS (100 ng/mL) for 3 (Figure 5.1A) or 18 hr (Figure 5.1B). 

BMDCs treated with PBS (negative), κ-CAS (negative) or LPS (positive) alone were used 

as controls. The supernatants were analysed for the secretion of TNF-α, IL-10 and IL-

12p70. No significant differences in the levels of TNF-α, IL-10 or IL-12p70 were observed 

for negative controls at all time points (data not shown).  

κ-CAS was observed to significantly suppress 59.75 ± 3.36% of the secretion of TNF-α 3 

hr post LPS stimulation (Figure 5.1A ** , p ≤ 0.01). Moreover, a non significant increase of 

27.34 ± 11.72 % in LPS induced IL-10 was detected between κ-CAS and PBS treated 

BMDCs (Figure 5.1B). The levels of IL-12p70 at 3 hr were below the detectable range for 

all conditions (data not shown). Similarly to earlier time points, κ-CAS was shown to 

significantly attenuate 71.72 ± 6.17 % of TNF-α production (Figure 5.1C ** , p ≤ 0.01) and 

non significantly increased the sectretion IL-10 by 34.15 ± 21.85 % (Figure 5.1D) 18 hr 

post LPS stimulation. κ-CAS was also shown to significantly suppress 66.07 ± 2.83 % of 

LPS induced IL-12p70 production (Figure 5.1E ** , p ≤ 0.01) at this later time point. This 

would suggest that κ-CAS selectively exerts inhibitory effects on pro-inflammatory 

cytokine production at early and late time points, while simultaneously increasing the 

production of IL-10. 
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Figure 5.1 Effects of κ-CAS on LPS induced cytokine secretion in DCs. BMDC were pre-treated with κ-CAS (1 mg/mL) for 2.5 hr. Following pre-

treatment, cells were stimulated in the presence or absence of LPS (100 ng/mL) for 3 hr (A, B), or 18 hr (C, D, E). Supernatants were analysed for the 

secretion of the cytokines TNF-α (A, C), IL-10 (B, D) or IL-12p70 (E) by ELISA. Results are expressed as mean ±SD of at least 3 independent 

experiments in triplicate. P-values were calculated using two-tailed student’s t-test. ** , p ≤ 0.01 compared to PBS control group. 
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5.3.2 κ-CAS suppresses TNF-α & IL-12p70 production post and prior to LPS 

stimulation in BMDCs.  

To investigate what impact the time of exposure DCs had to κ-CAS on the suppression of 

cytokines, BMDCs were treated with κ-CAS (1 mg/mL) for 2.5 hr prior (-2.5 hr), 

simultaneously as (0 hr), or 2.5 hr after (+2.5 hr) stimulation with LPS (100 ng/mL). 

BMDCs treated with PBS (negative), κ-CAS (negative) or LPS (positive) alone were used 

as controls. Cells were incubated for 18 hr from time of LPS stimulation and the 

supernatants were analysed for the secretion of TNF-α and IL-10 by ELISA. No significant 

differences in the levels of TNF-α or IL-12p70 were observed for negative controls (data 

not shown).  

κ-CAS significantly suppressed the production of TNF-α (Figure 5.2A ** , p ≤ 0.01) and 

IL-10 (Figure 5.2B ** , p ≤ 0.01) in LPS stimulated BMDCs when added prior to (-2.5 hr) 

LPS stimulation as shown previously. However, BMDCs were equally as attenuated when 

treated with κ-CAS simultaneously (0hr) or after (+2.5 hrs) LPS stimulation. No significant 

differences in suppression were detected between exposure times. Therefore, this data 

would suggest that κ-CAS can exert it effects without pre-stimulation and does not compete 

with LPS for binding to TLR4.   
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Figure 5.2 κ-CAS suppresses TNF-α & IL-12p70 secretion prior to and post LPS activation. 

BMDCs were treated with κ-CAS (1 mg/mL) 2.5 hours before, same time as, or 2.5 after hours after 

LPS stimulation. Supernatants were analysed for the secretion of the cytokines TNF-α (A) and IL-

12p70 (B) by ELISA. Results are expressed as mean ±SD of at least 3 independent experiments in 

triplicate. P-values were calculated using ANOVA multiple comparisons test. ** , p ≤ 0.01 

compared to PBS control group. 

 

5.3.3 κ-CAS suppresses pro-inflammatory cytokine release by DCs in multiple TLR 

pathways. 

TLR activation leads to recruitment of a cascade of accessory proteins which activate the 

NFκB, AP-1 & IRF pathways, ultimately stimulating the transcription of inflammatory 

cytokines (Liu et al., 2017, Barton & Kagan 2009). Given that κ-CAS was observed to 

significantly supress TLR4 mediated responses in DCs, we next the investigated if other 

TLRs were also affected. For these experiments we chose agonists of TLR 2, 7 and 9, to 

broadly represent the TLR groups.   

BMDCs derived from C57BL/6 mice were pre-incubated with κ-CAS (1 mg/mL) for 2.5 hr, 

followed by stimulation with or without TLR ligands for 18 hr. Cells treated with PBS 
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(negative), κ-CAS (negative) or TLR ligands (positive) alone were used as controls. The 

supernatants were analysed for the secretion of TNF-α (Figure 5.3A) and IL-12p70 (Figure 

5.3B). PGN (5 μg/mL), a major surface component of gram-positive bacteria was used as 

an agonist of TLR2. LOX (0.5 mM), a guanosine analog, was used to activate TLR7. 

Synthetic oligonucleotide CpG (2 μM) that contains unmethylated CpG dinucleotides was 

used as the TLR9 agonist. No significant differences in basal TNF-α or IL-12p70 were 

detected between PBS and κ-CAS treatments alone (data not shown).  

κ-CAS was observed to significantly suppress the secretion of TNF-α (Figure 5.3A ** , p ≤ 

0.01) in response to all TLR agonists. Moreover, κ-CAS also significantly suppressed 

TLR7 induced IL-12p70 (Figure 5.3A ** , p ≤ 0.01), but failed to have the same effect 

against TLR 2 and TLR9 agonists. However, the levels of TLR2 and TLR9 induced IL-

12p70 were decreased by κ-CAS. Thus we determined that κ-CAS abrogates multiple TLR 

signaling pathways in DCs.  
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Figure 5.3 κ-CAS targets multiple TLRs in DCs. BMMφ fwere pre-treated κ-CAS  (1 mg/mL) at 

for 2.5 hr. Following pre-treatment, cells were stimulated in the presence or absence of PGN (5 

μg/mL), LOX(0.5 mM) or CpG (2 μM) for 18 hr. Supernatants were analysed for the secretion of 

the cytokines TNF-α (A) & IL-10 (B) by ELISA. Results are expressed as mean ±SD of 2 

independent experiments in triplicate. P-values were calculated using ANOVA multiple 

comparisons tests. ** , p ≤ 0.01 compared to TLR ligand alone stimulated control group. 

 

5.3.4 κ-CAS suppresses PMA induced TNF-α release in DCs. 

Having demonstrated that κ-CAS suppressed TLR induced pro-inflammatory cytokine 

secretions in DCs, we next examined if κ-CAS also abrogated the production of pro-

inflammatory cytokines from a non-TLR agonist. Phorbol 12-myristate 13-acetate (PMA) 

is a chemical compound known to induce the activation of protein kinase C (PKC) 

signaling. PMA-PKC signaling is implicated in the regulation of NFκB activity by 

mediating the IKK via the activation of MAPKs (Holden et al., 2008; Sun & Yang 2010). 

Similar to TLR signaling, the activation of PKC by PMA in DCs has been shown to 

activate NFκB, resulting in the production of the pro-inflammatory cytokine TNF-α (Song 

et al., 2015). 
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BMDCs derived from C57BL/6 mice were pre-cultured with PBS or κ-CAS (1 mg/mL) for 

2.5 hr, followed by stimulation with PMA (20 ng/mL) for 18 hr. The supernatants were 

analysed for the secretion of TNF-α and IL-12p70. κ-CAS was observed to significantly 

suppress the secretion of TNF-α (Figure 5.4 * , p ≤ 0.05) in response PMA. The levels of 

IL-12p70 induced by PMA were below the detectable range. Thus we determined that κ-

CAS also abrogates non-TLR induced TNF-α cytokine signaling in DCs.  

 

 

Figure 5.4 Effects of κ-CAS on PMA induced TNF-α secretion in DCs. BMDC were pre-treated 

with κ-CAS (1 mg/mL) for 2.5 hr. PBS treated cells were used a control. Following pre-treatment, 

cells were stimulated with PMA (20 ng/mL) for 18 hr. Supernatants were analysed for the secretion 

of TNF-α by ELISA. Results are expressed as mean ±SD of 3 independent experiments in triplicate. 

P-values were calculated using two-tailed student’s t-test. * , p ≤ 0.05 compared to PBS control 

group. 

 

5.3.5 κ-CAS attenuates NFκB activation in DCs. 

Having observed the suppressive effects exhibited by κ-CAS on the induction of both TLR 

and PMA induced cytokine responses; we sought to investigate if NFκB signaling was 

involved in this phenomenon by examining the degredation/if any of IκB inhibitory 
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proteins. BMDCs derived from C57BL/6 mice were pre-incubated with κ-CAS (1 mg/mL) 

for 2.5 hr, followed by stimulation with or without LPS (100 ng/mL) for 15 min. PBS 

(negative), κ-CAS (negative) or LPS (positive) alone were used as  controls. The western 

blots revealed that PBS (Fig. 5.5A lanes 1, 2, 3) and κ-CAS (Fig. 5.5A lanes 4, 5, 6) alone 

showed no significant differences in intensity, indicating that no degradation of the IκB-α 

protein had occurred when measured by densitometric analysis (Fig. 5.5B). After 15 min 

LPS treatment (Fig. 5.4A lanes & 7, 8, 9) a significant level of IκB-α degradation was 

observed compared to PBS & κ-CAS treatments alone (Figure 5.5B * , p ≤ 0.05). However, 

DCs pre-treated prior to LPS with κ-CAS (Fig. 5.5A, lanes 10, 11, 12) no longer showed 

significant reductions in the levers of IκB-α protein compared to both non-LPS treated 

controls (Fig. 5.4B). This data infers that κ-CAS may partially abrogate NFκB signaling.  

 

Figure 5.5 κ-CAS suppresses LPS mediated IκB-α degradation in DCs. BMDCs were pre-

treated with κ-CAS (1 mg/mL) for 2.5 hr prior to stimulation with LPS (100ng/ml). (A) DCs were 
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harvested 15 min post LPS challenge, and the protein levels of IκB-α were determined in whole-cell 

lysates by western blot analysis. The cells were treated with PBS (1, 2, 3), κ-CAS (4, 5, 6), LPS (7, 

8, 9) or κ-CAS and LPS (10, 11, 12). The protein levels of β-actin were used as a housekeeping 

control. (B) Densitometric analysis was performed and IκB-α protein levels were expressed in 

arbitrary units. Results are expressed as mean intensity ±SD of the 3 experiments. P-values were 

calculated using ANOVA multiple comparisons test. * , p ≤ 0.05 compared to PBS or κ-CAS 

vehicle control group. 

 

5.3.6 κ-CAS up-regulates the transcription SOCS1 & SOCS3. 

Having shown the suppressive effects κ-CAS exerts on NFκB activation and pro-

inflammatory cytokine responses, we sought to investigate if κ-CAS induced SOCS1 or 

SOCS3, prominent negative regulators of NFκB and cytokine signaling in DCs (Kubo et 

al., 2003). BMDCs derived from C57BL/6 mice were incubated with κ-CAS (1 mg/mL) for 

indicated times. PBS treated BMDCs were used a negative as controls. κ-CAS significantly 

enhanced the expression of SOCS1 (Figure 4.7A **, p ≤ 0.01) and SOCS3 (Figure 4.7A *, p 

≤ 0.05; ** , p ≤ 0.01) after 6 hr exposure. However, while the fold increase in SOCS 

expression remained significantly upregulated after 2 hr, there was a decrease to baseline 

levels of expression for both genes after 6 hr.  
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Figure 5.6 κ-CAS upregulates the expression of SOCS1 & SOCS3 in DCs. BMDCs were 

incubated with and without κ-CAS (1 mg/mL) for the indicated times. Total RNA was extracted and 

after reverse transcription, the cDNA was analysed by qPCR for SOCS1 (A) & SOCS3 (B). RNA 

expression was normalized to GAPDH control gene expression and shown as mean fold increase 

±SD relative to PBS control. Figures are representative of at least 2 independent experiments in 

dublicate. P-values were calculated using ANOVA multiple comparisons test. *, p ≤ 0.05; ** , p ≤ 

0.01 compared to PBS stimulated control. 

 

5.3.7 κ-CAS downregulates activation markers, adhesion and co-stimulatory 

receptors on DCs.    

Having previously demonstrated that κ-CAS induced the expression of activation and co-

stimulatory markers in Mφ (Chapter 4), we investigated if this phenomena was also 

observed in DCs. BMDCs derived from C57BL/6 mice were pre-treated with κ-CAS (1 

mg/mL) for 18 hr. PBS was used as an un-activated control. Cells were subsequently 

washed and stained with fluorochrome-labelled monoclonal antibodies to the surface 

markers and analysed by flow cytometry.  

BMDCs stimulation with κ-CAS resulted in a significant decrease in the expression of the 

adhesion receptors CD54 (Figure 5.7 A* , p ≤ 0.05) and CD209 (Figure 5.7 B* , p ≤ 0.05). 
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κ-CAS was also shown to significantly reduced the expression of the co-stimulatory 

receptors CD80 (Figure 5.7 C* , p ≤ 0.05)  and OX40L (Figure 5.7 D ** , p ≤ 0.01) 

However, no significant differences were observed for the expression of the co-stimulatory 

markers; CD86, CD40 and MHCII (data not shown).  
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Figure 5.7 κ-CAS downregulates co-stimulatory & adhesion receptors. BMDCs were pre-

treated with κ-CAS (1 mg/mL) for 18 hr. PBS was used as a negative control. Subsequently, cells 

were washed and stained for 30 min with specific antibodies or with an isotype matched control and 

analysed by flow cytometry (FACSAria, BD, UK). Results were analysed using FlowJo software 

(Treestar, USA) and are expressed as the gMFI ±SD of at least 3 independent experiments (A-D). 

Representative histograms show the surface expression of CD54 (E), CD209 (F), CD80 (G) and 

OX40L (H); unstained (gray line), isotype (dotted grey line), PBS (black dotted line) and κ-CAS 

(black line). P-values were calculated using two-tailed student’s t-test. ** , p ≤ 0.01 * , p ≤ 0.05  

compared to PBS control.   

 

5.3.8 κ-CAS alters the ability of DCs to prime T-cell responses in-vitro & in-vivo. 

Considering κ-CAS significantly suppressed cytokine production, activation, adhesion and 

costimulatory receptor expression, its effects on the ability of DCs to prime OVA specific 

T-cell responses in transgenic OVA sensitised mice was assessed. BMDCs derived from 

C57BL/6-Tg(TcraTcrb)425Cbn/Crl (OTII) mice were treated with OVA peptide (100 nM) 

in the presence or absence of κ-CAS ( 1 mg/mL) for 18 hr.  

For in-vitro studies, DCs were subsequently washed and co-cultured with CD4
+
 T-cells 

from naïve OTII mice at a 1:10 ratio in 96 well plates pre coated with anti-CD3 (1 μg/mL) 

for 72 hr. PBS primed DCs induced IFN-γ, IL-13, and IL-2 production from CD4
+
 T-cells 

in-vitro (Figure 5.8). BMDCs primed with κ-CAS significantly suppressed OVA-specific 

IL-2 production in-vitro in a concentration dependent manner (0.1 mg/mL – 1 mg/mL) 

(Figure 5.8C ** , p ≤ 0.01 * , p ≤ 0.05 ) compared to control DCs primed with PBS. 

Moreover, κ-CAS treated DCs significantly increased the secretion of IL-13 from CD4
+
 T-

cells (Figure 5.8B ** , p ≤ 0.01) at only higher concentrations (1 mg/mL). However 

significant no differences in the levels of IFN-γ (Figure 5.8A) were detected from in-vitro 

co-cultures.  
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For in-vivo experiments, DCs were subcutaneously injected over the sternum of naïve OTII 

mice. After 7 days, draining skin lymph nodes were removed for re-stimulation ex-vivo 

with PBS, OVA (500 nM) or with PMA (20 ng/mL) and anti-CD3 (1 μg/mL). After 72 hr, 

T-cell priming was assessed via measuring supernatants for the cytokines IFN-γ, IL-13, IL-

10 and IL-2. PBS primed DCs induced IFN-γ, IL-13, IL-10 and IL-2 production from CD4
+
 

T-cells in-vivo from skin draining lymph node cells in response to OVA stimulation, 

although the levels were low in comparison to PMA and anti-CD3 stimulated cells (Figure 

5.9). BMDCs primed with κ-CAS significantly suppressed OVA-specific IL-2 production 

(Figure 5.9D *, p ≤ 0.05) compared to control DCs primed with PBS. In contrast to in-vitro 

results, skin draining lymph node cells from κ-CAS treated DC recipient mice exhibited 

reduced levels of IFN-γ (Figure 5.9A), IL-13 (Figure 5.9B), and IL-2 (Figure 5.9C), 

however these reductions were not deemed significant. Interestingly, these cells stimulated 

with PMA and anti-CD3 produced significantly less IFN-γ (Figure 5.9A **, p ≤ 0.01) and 

IL-13 (Figure 5.9B **, p ≤ 0.01) compared to cells from PBS treated control DC recipient 

mice.  

This data would indicate that while there were differences between in-vitro and in-vivo T-

cell priming assays, κ-CAS suppressed DC mediated OVA specific T-cell responses, by 

abrogating the production of IL-2, a cytokine essential for propagation of adaptive immune 

responses, but also had a general non-specific suppressive effect on T-cell responses as 

well.  
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Figure 5.8 κ-CAS alters the ability of DCs to prime T-cell responses in-vitro. BMDCs from OTII mice were cultured with OVA (100 nM) in the 

presence of PBS or indicated concentrations of κ-CAS overnight. Cells were subsequently washed and co-cultured with CD4
+
 T-cells from naïve OTII 

mice at a 1:10 ratio in 96 well plates pre coated with anti-CD3 (1 μg/mL). After 72 hr supernatants were analyzed for the cytokines; IFN-γ (A), IL-13 (B), 

and IL-2 (C) by ELISA. Results are expressed as mean ±SD of three individual wells from three individual mice. P-values were calculated using 

ANOVA multiple comparisons test. * , p ≤ 0.05  ** , p ≤ 0.01 compared to PBS control. 
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Figure 5.9 κ-CAS alters the ability of DCs to prime T-cell responses in-vivo. BMDCs from OTII 

mice were cultured with OVA (100 nM) in the presence of PBS or κ-CAS (1 mg/mL) overnight. 

Cells were subsequently washed and subcutaneously injected over the sternum of naïve OTII mice. 

After 7 days, draining skin lymph nodes were removed for re-stimulation in-vitro with PBS, OVA 

(500 nM) or with PMA (20 ng/mL) and anti-CD3 (1 μg/mL). After 72 hr, supernatants were 

analyzed for the cytokines; IFN-γ (A), IL-13 (B), IL-10 (C) and IL-2 (D) by ELISA. Results are 

expressed as mean ±SD of three individual wells from three individual mice. P-values were 

calculated using ANOVA multiple comparisons tests. * , p ≤ 0.05  ** , p ≤ 0.01 compared to PBS 

treated group. 
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5.4  Discussion 

While a limited number of previous studies have presented evidence on the suppressive 

potential of κ-CAS and GMP (a κ-CAS derived bioactive peptide) on LPS mediated 

cytokine release from DCs (Mikkelsen et al., 2005), there is a dearth of research examining 

the ability of κ-CAS to modulate DC maturation, and function and what impact κ-CAS 

treated DCs have in driving the adaptive immune responses.  

In this study the effects of κ-CAS on DCs responsiveness to the maturation inducer and 

pro-inflammatory stimulant; LPS was examined. κ-CAS was shown to selectively reduce 

the secretions of the pro- inflammatory cytokines; TNF-α and IL-12p70 at all  time points 

similar to the observations of previous studies (Mikkelsen et al., 2005). κ-CAS also 

rendered DCs hypo-responsive to a panel of other TLR ligands with significant decreases in 

pro-inflammatory cytokine production. In contrast, we demonstrated that cytokine 

suppression by κ-CAS was selective, given that no significant decrease in the production of 

IL-10 was observed, a cytokine traditionally associated with an anti-inflammatory or 

regulatory response (Moore et al., 2001). The discrepancy may be accounted for by 

differences in the concentrations of κ-CAS used. We had previously demonstrated (chapter 

4) that lower concentrations of κ-CAS (0.1 mg/mL), similar to that used by Mikkelsen et 

al., suppressed IL-10 production in BMMφ (Figure 4.3F). κ-CAS treatment was also shown 

to significantly suppress the production of TNF-α from PMA; a non TLR stimulant that 

activates and matures DCs via the upregulation of protein-kinase C (PKC) signaling (Cejas 

et al., 2005; Lindner et al., 2007; Song et al., 2015).  

The timing of exposure of DCs to κ-CAS did not affect the suppressive response to TLR 

activation which would indicate that κ-CAS does not require pre-stimulation and therefore 
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does not block TLR ligands from binding, but rather attenuates inflammatory signalling 

pathways internally.  

 NFκB activation is a crucial signaling pathway involved in the induction of pro-

inflammatory genes (Liu et al., 2017; Lawrence 2009). TLRs and PMA stimulation of DCs 

has been shown to activate through this pathway, inducting the production of pro-

inflammatory cytokines like TNF-α (Song et al., 2015; Sakai et al., 2017). We 

demonstrated that the LPS mediated activation of NFκB in DC was attenuated by κ-CAS. 

This suppressive effect exerted by κ-CAS on LPS mediated degradation of the NFκB 

inhibitor protein; IκBα could explain the observed decrease in pro-inflammatory cytokines 

demonstrated in this study. Previous studies have also demonstrated that IκBα blockage 

disables LPS induced maturation of DCs (Rescigno et al., 1998).  

SOCS proteins have emerged as critical modulators of cytokine-mediated processes. κ-CAS 

also significantly induced SOCS1 and SOCS3, two prominent negative regulators of the 

TLR pathway. Both SOCS proteins bind and inhibit the janus kinases (JAKs); intracellular, 

non-receptor tyrosine kinases that signals via the JAK-STAT pathway critical to the 

initiation of NFκB signalling (Banerjee et al., 2017). SOCS3 is a prominent inhibitory 

protein, normally induced in response to inflammatory stimuli in a negative feedback loop 

that is essential in the resolution of inflammation (Yoshimura et al., 2012). The 

upregulation of SOCS1 has been shown to restrict pro-inflammatory IL-12 production & 

signaling in DCs (Evel-Kabler et al., 2005). 

Due to their central role in initiating adaptive immune responses the effect of κ-CAS on 

DCs priming capacity was also examined. This was confirmed in the T-cell priming 

studies, which demonstrated that κ-CAS treated DCs significantly suppressed CD4
+ 

T-cell 



131 
 

induced IL-2 both in in-vitro and in-vivo models, however did not display a prominent 

extracellular surface marker associated with anergy; CTLA4 (Buchbinder & Desai 2016). 

DCs T-cell priming capability is dependent on their maturation state. In order for this 

process to occur, the antigen-MHC complexes (signal 1) and co-stimulatory receptors 

(signal 2) provided by DCs must engage with their complimentary T-cell counterparts. 

These initial signals determine the magnitude and fate of an antigen-specific T-cell 

response. Moreover, cytokines (signal 3) are thought to be required for optimal T-cell 

activation, differentiation and clonal expansion (Curtsinger et al., 1999; Curtsinger & 

Mescher 2010). However, if any of these signals are suppressed, T-cell activation, 

production of IL-2, and subsequently proliferation can be hampered (Banchereau & 

Steinman 1998). We demonstrated that the co-stimulatory molecules; CD80 and 

activation/adhesion receptors; CD54 & CD209 were downregulated in response to κ-CAS 

which are important for the successful activation and differentiation of naïve CD4
+
 T-cells. 

CD80 is a well know co-stimulatory molecule. CD54 is an extracellular adhesion molecule.  

While there is no single universally accepted hallmark of APC activation, there is 

supporting evidence for the use of CD54 upregulation as a marker for assessing APC 

activation (Sheikh & Jones 2008). CD54 has also been shown to be implicated in the 

promotion of lymphocyte adhesion (Van Seventer et al., 1990) and its high expression on 

DCs is correlated with its antigen-presentation properties (McCarthy et al., 1997). Cell-cell 

contact between DCs and T-cells is an integral component of antigen-presentation and the 

involvement of CD54 in this process has been demonstrated by antibody-blocking studies, 

which show that CD54 is necessary for DC clustering of T-cells (Scheeren et al., 1991), 

stimulating allogeneic T-cell responses (Xu et al., 1992; Sheikh & Jones 2008) and for the 

migration of DCs to regional lymph nodes (Ma et al., 1994). Moreover, antibody blocking 
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of CD54 and LFA-1; an adhesion molecule binding receptor, has been shown to 

significantly prolong allograft survival in tissue transplantation models (Ozer & Siemionow 

2001). CD209 is a C-type lectin receptor highly expressed by DCs involved in the 

internalization of antigens and DC trafficking (Geijtenbeek et al., 2002). Moreover, it has 

been implicated in the early interaction between DCs and naive T-cells. CD209 has been 

demonstrated to bind the extracellular adhesion molecules CD50 and CD102 on T-cells, 

thereby promoting the adhesion of DCs to naive T-cells (Geijtenbeek et al., 2000). 

Therefore, the down regulation of these cell-cell contact receptors could hamper T-cell: DC 

interactions. 

SOCS 1 and SOCS 3 which were both upregulated by κ-CAS, have been identified as an 

important negative regulators of antigen presentation by DCs. SOCS 3-transduced DCs 

have been demonstrated to exhibit low expression levels of co-stimulatory receptors and 

immuno-stimulatory cytokines like IL- 12p70 and a decreased ability to induce T-cell 

proliferation (Li et al., 2006). Fasciola hepatica derived tegument proteins has been shown 

to enhance SOCS3 expression in DCs, which also display a decreased capacity to prime T-

cells (Vukman, Adams & O'Neill 2013). Studies have also demonstrated that the silencing 

of the SOCS1 gene resulted in enhanced antigen presentation by DCs and subsequently the 

induction of enhanced pro-inflammatory T-cell responses (Shen et al., 2004; Hanada et al., 

2005).  

These results would suggest that exposure of DCs to κ-CAS renders them hypo-responsive 

to inflammatory signals, reduces their co-stimulatory and adherent receptor repertoire 

expression which may interfere with the inflammatory capabilities of DCs. We could also 

deduce that κ-CAS treated DCs acquire an immature-like phenotype which impairs their 

function and ultimately their capacity to induce and propagate T-cell responses. Given the 
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powerful modulatory effect κ-CAS exerts on DCs, a cell type heavily involved in initiation 

of adaptive immune responses, a greater understanding its exact mechanisms may lead to 

the development of novel immune-modulatory nutraceutical therapeutic for the treatment of 

inflammatory diseases, by sequestering the initiation of T-cell responses, a critical process 

in the propagation of inflammatory responses.  
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Chapter 6 – κ-CAS activates human monocytes, suppresses their T-cell priming 

capacity and renders human macrophages hypo-response to TLR stimulation. 

6.1 Introduction 

Peripheral blood mononuclear cells (PBMC) are nucleated cells in the blood, which consist 

of 2 major sub-populations including; lymphocytes (T-cells, B-cells and NK-cells) and 

monocytes. Monocytes are the precursor cells to macrophages and DCs (Geissmann et al., 

2010) but also play a pivotal role in the innate immune defense against pathogens via 

phagocytosis, processing and presentation of antigens and the release of inflammatory 

effector molecules (Wong et al., 2011). Studies have demonstrated the infiltration of pro-

inflammatory monocytes and the accumulation of their macrophage progeny at the sites of 

inflammation in patients with inflammatory disorders. They are shown to display increased 

respiratory burst activity and pro-inflammatory cytokine release (Rugtveit et al., 1997; 

Kamada et al., 2008). Moreover, the aberrant production of TNF-α from macrophages in 

the inflamed mucosa of inflammatory bowel disease (IBD) patients has been shown to 

significantly contribute to the disruption of the epithelial barrier function, exacerbating 

intestinal inflammation (Lissner et al., 2015).    

CAS subunits and their hydrolysate derivatives have been shown to exhibit immuno-

modulatory properties in human PBMC populations. The treatment of PBMCs with bovine 

CAS has been previously used in studies that have investigated T-cell proliferative 

responses to cow’s milk protein allergy (CMPA), measured from clinically reactive and 

tolerised CMPA patients to α-, β- and κ-CAS subunits (Hoffman et al., 1997; Sletten et al., 

2007). Moreover, a limited number studies using CD14
+
 monocytes isolated from PBMCs 

demonstrated that α- CAS, and the κ-CAS derived GMP peptide, activated MAPK and 

IκB/NFκB signal transduction pathways, inducing monocytes to produce TNF-α, IL-1β, IL-
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6 and GM-CSF (Requena et al., 2009; Vordenbäumen et al., 2011); cytokines associated 

with the propagation of inflammatory and autoimmune disorders (Hamilton 2002; Turner et 

al., 2014). An enzymatic digest of β-CAS was also shown to act as a selective 

monocyte/macrophage chemoattractant, inducing the migration and infiltration of 

monocytes/macrophages (Kitazawa et al., 2007). In contract Aihara et al., demonstrated 

that a CAS derived peptide fragment abrogated monocyte adhesion; a mechanism required 

by monocytes to infiltrate to sites of inflammation, via attenuation of the JNK pathway, 

suggesting a distinct anti-inflammatory effect (Aihara et al., 2009).  

In previous chapters we observed the induction of suppressive/immature phenotypes of 

murine macrophages and dendritic cells (DC) by κ-CAS, which were hypo-responsive to 

pro-inflammatory stimuli and failed to induce robust T-cell responses. Apart from allergic 

responses in CMPA, there is a dearth of research on the effects of the whole κ-CAS subunit 

on PBMCs and herein we sought to determine if the suppressive effects κ-CAS exerted on 

murine macrophages and DCs were translatable in human cells using PBMC populations 

and monocytes; the progenitor cell of macrophages and DCs.   
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6.2 Experimental design 

Having observed the immunosuppressive effects κ-CAS exhibited on murine macrophages 

and DCs, we firstly sought to determine if these observations were translatable to humans 

by firstly comparing the ability of κ-CAS to modulate cytokine production in human 

PBMCs. PBMCs were isolated from human buffy coat blood packs sourced from the Irish 

Blood Transfusion Service, St James’ Hospital, Dublin, using density gradient 

centrifugation. Multiple blood donors were used for these studies. PBMCs were plated at 

1x10
6
 cells per mL and treated with κ-CAS (1 mg/mL) for 2.5 hr prior to the addition of 

LPS (100 ng/mL) or PMA (20 ng/mL) and ionomycin (1 μM). For some experiments, 

CD14
+
 monocytes were isolated from PBMCs by magnetic activated cell sorting. Human 

macrophages were differentiated from CD14
+
 cells over 14 days with human serum. 

Human macrophages, CD14
+
 cells and CD14

+
 depleted PBMCs were treated as outlined 

above. In some instances, to elucidate the mechanism by which TNF-α was induced by κ-

CAS treatment of CD14
+
 cells, CD14

+
 cells were incubated with BAY117821 (10 μM); a 

chemical antagonists of the NFκB pathway (Ghashghaeinia et al., 2011) for 30 min prior to 

κ-CAS treatment.  

Given that PBMCs are composed of a mixture of immune cell populations, binding studies 

were performed to determine which cell type’s interacted with κ-CAS. PBMCs were seeded 

at 1x10
5
 cells per 100 μL in 96 well plates, and incubated with 10 or 20 μg/mL of FITC-

488 labelled κ-CAS for 45 min at 37 °C. Cells were subsequently washed in ice cold PBS 

before being analysed by flow cytometry. As a control for non-specific binding, cells were 

incubated with 20 μg/mL of FITC-488 labelled BSA.  

From studies conducted in our mouse models, we have shown that macrophages and DCs 

treated with κ-CAS exhibited a reduced capacity to induce robust T-cell responses in mice. 
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To investigate if this could be replicated with human monocytes, CD14
+
 cells were 

incubated with PBS or κ-CAS overnight before being washed and co-cultured at a 1:10 

ratio with CD4
+
 T-cells in plates coated with anti-CD3 (1 μg/mL). After 72 hr supernatants 

were analysed for the production of cytokines by ELISA. Non-adherent cells were also 

washed and analysed by flow cytometry for viability or the expression of extracellular 

anergy markers.  
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6.3 Results  

6.3.1 κ-CAS induces the production of TNF-α from PBMCs. 

From the previous chapters we demonstrated that κ-CAS treatment suppresses pro-

inflammatory cytokine production from murine macrophage and DCs after LPS challenge. 

We examined if this phenomenon would be translatable to humans using human blood 

buffy coat derived PBMCs. PBMC isolated by gradient centrifugation were seeded at 1x10
6
 

cell/mL and stimulated with κ-CAS (1 mg/mL) 2.5 hr. PBS treated PBMCs were used as a 

control. Cells were subsequently stimulated in the presence or absence of LPS (100 ng/mL) 

(Figure 6.1A) or PMA (20 ng/mL) and ionomycin (1 mM) (Figure 6.1B). κ-CAS treatment 

alone induced a significant induction of TNF-α by PBMCs (Figure 6.1A * , p ≤ 0.05, 

Figure 6.1B * , p ≤ 0.05). No significant differences were detected between LPS stimulated 

PBMCs that were pretreated with PBS or κ-CAS. However, we observed a significant 

increase in the production of TNF-α between PMA & ionomycin stimulated PBMCs that 

were pretreated with κ-CAS compared to PBS control (Figure 6.1B ** , p ≤ 0.01). 
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Figure 6.1 Effects of κ-CAS on LPS & PMA/Ionomycin induced TNF-α in PBMCs. PBMCs 

were treated with κ-CAS (1 mg/mL) for 2.5 hr. Cells were subsequently stimulated in the presence 

or absence of LPS (100 ng/mL) (A) or PMA (20 ng/mL) and Ionomycin (1 μM) (B) for 18 hr. 

Supernatants were analysed for the secretion of the cytokines TNF-α by ELISA. Results are 

expressed as mean ±SD of 4 independent experiments from 5 individual donors for LPS treated 

samples or 3 independent experiments from 3 individual donors for PMA/ionomycin samples. P-

values were calculated using were calculated using ANOVA multiple comparisons tests. ** , p ≤ 

0.01, * , p ≤ 0.05 compared to PBS control group. 

 

6.3.2 The majority of monocytes bind κ-CAS 

Given that κ-CAS was observed to induce TNF-α from PBMC, a mixed population of 

different immune cell types, we next examined which PBMC population κ-CAS interacted 

with. PBMCS were isolated from human buffy coats by gradient centrifugation and seeded 

at 1x10
5
 cells/100 μL in a 96 well plate. Cells were treated with 488-FITC labelled κ-CAS 

(10 or 20 μg/mL) for 45 mins and were subsequently analysed by flow cytometry. 488-

FITC labelled BSA (20 μg/mL) was used a non-specific binding control. The binding of κ-

CAS to the whole PBMC population was measured and deemed to be specifically bound at 

20 μg/mL compared to BSA control (Figure 6.2A * , p ≤ 0.05). κ-CAS was bound by 18.6 % 
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± 8 of the total PBMC population (Figure 6.2B), and of the 2  main immune cell 

populations found in PBMCs, 73.7 % ± 2.6 of monocytes and 6.9 % ± 1 of lymphocytes 

were shown to bind κ-CAS (Figure 6.2C). 
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Figure 6.2 Monocytes bind κ-CAS. PBMCs were stimulated with 488-FITC labelled κ-CAS (10 – 20 μg/mL) or 488-FITC labelled BSA (20 μg/mL) for 

45 min before being analysed by flow cytometry. The binding of κ-CAS to PBMCs as a whole population at 10 μg/mL and 20 μg/mL was shown. P-

values were calculated using ANOVA multiple comparisons test. * , p ≤ 0.05 compared to BSA control group. Results were analysed using FlowJo 

software (Treestar, USA) and are expressed as the gMFI ±SD of 3 independent experiments from 3 individual donors. (A). PBMCs that bound FITC 

labelled κ-CAS (20 μg/mL) as a percentage of the total PBMC population was analysed from 3 individual donors (B). The percentage of lymphocytes or 

monocytes in the PBMC population that bound FITC labelled κ-CAS (20 μg/mL) was assessed from 3 individual donors (C). 
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6.3.3 CD14
+
 monocytes responsible for the induction of TNF-α from κ-CAS 

treatment in PBMCs.  

As the majority of monocytes bind κ-CAS, we investigated if these cells were involved in 

the induction of TNF-α when treated with κ-CAS. CD14
+
 monocytes were isolated from 

PBMCs by magnetic activated cell sorting. The isolated CD14
+
 cells were stimulated with 

κ-CAS (1 mg/mL) 2.5 hr in the presence or absence of LPS (100 ng/mL) (Figure 6.3A). 

CD14 depleted PBMCs were also stimulated with κ-CAS (1 mg/mL) 2.5 hr, but in the 

presence or absence of PMA (20 ng/ml) and Ionomycin (1 μM) (Figure 6.3B). PBS treated 

cells were used a control. Supernatants were analysed for the production of TNF-α. κ-CAS 

treatment alone induced a significant induction of TNF-α by CD14
+
 monocytes (Figure 

6.3A * , p ≤ 0.05, Figure 6.3B * , p ≤ 0.05). No significant differences were detected 

between LPS stimulated CD14
+
 cells that were pre-treated with PBS or κ-CAS. Moreover, 

no significant differences were observed in the production of TNF-α between PMA & 

ionomycin stimulated CD14
 
depleated PBMCs that were pretreated with κ-CAS compared 

to PBS control (Figure 6.3B ** , p ≤ 0.01). This would suggest that CD14
+
 monocytes are 

responsible for the induction of TNF-α in response to κ-CAS treatment.  
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Figure 6.3 κ-CAS treated CD14
+
 monocytes induce TNF-α in PBMCs. CD14

+
 monocytes (A) or 

CD14
+
 monocyte depleted PBMCs (B), were treated with κ-CAS (1 mg/mL) for 2.5 hr. CD14

+
 

monocytes were subsequently stimulated in the presence or absence of LPS (100 ng/mL). CD14
+
 

monocyte depleted PBMCs were stimulated in the presence or absence PMA (20 ng/mL) and 

Ionomycin (1 μM). After 18 hr, supernatants were analysed for the secretion of TNF-α by ELISA. 

Results are expressed as mean ±SD of 3 independent experiments from 4 individual donors for LPS 

treated samples or 3 independent experiments from 3 individual donors for PMA/ionomycin 

samples. P-values were calculated using were calculated using ANOVA multiple comaprisons tests. 

* , p ≤ 0.05 compared to PBS control group. 

 

6.3.4 NFκB pathway involved in the induction of TNF-α by κ-CAS treated CD14
+
 

monocytes. 

NFκB has long been considered the most prominent pathway involved in pro-inflammatory 

signaling, mainly due to its role in the induction of pro-inflammatory genes, which 

culminates in the production of a range of cytokines and chemokines upon activation (Liu 

et al., 2017; Lawrence 2009) Having observed the induction of TNF-α; a pro-inflammatory 

cytokine by CD14
+
 monocytes treated with κ-CAS, we sought to investigate if NFκB 

signaling was involved in this phenomenon. CD14
+
 monocytes were isolated from PBMCs 
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by magnetic activated cell sorting. The isolated CD14
+
 cells were pre-treated with a 

chemical antagonist of NFκB; BAY117821 (10 μM) for 30 min prior to stimulation with or 

without κ-CAS (1 mg/mL) overnight. Supernatants were analysed for the production of 

TNF-α. CD14
+
 monocytes significantly induced the secretion of TNF-α in response to κ-

CAS treatment alone as previously observed. However, pre-treatment with the chemical 

antagonist of NFκB activation significantly reduced the levels of TNF-α produced by κ-

CAS treatment. This data would indicate that the induction of TNF-α by κ-CAS in CD14
+
 

cells signals through the NFκB pathway.   

 

 

Figure 6.4 NFκB involved in κ-CAS induced TNF-α from CD14
+
 monocytes. CD14

+
 monocytes  

were pre-treated with the NFκB inhibitor; BAY117821 (10 μM) for 30 min and subsequently 

treated with κ-CAS (1 mg/mL) for 18 hr. Supernatants were analysed for the secretion of TNF-α by 

ELISA. Results are expressed as mean ±SD of 2 independent experiments from 3 individual donors. 

P-values were calculated using two-tailed student’s t-test. * , p ≤ 0.05  compared to PBS control.   
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6.3.5 κ-CAS suppresses CD14
+
 monocyte induced IL-2 from CD4

+
 T-cells in co-

culture.   

Having demonstrated the increases in pro-inflammatory cytokine production κ-CAS 

exhibits on CD14
+ 

cells, their ability to modulate CD4
+
 T-cell responses was investigated. 

CD14
+
 monocytes were isolated from PBMCs by magnetic activated cell sorting. The 

isolated CD14
+
 cells were stimulated with κ-CAS (1 mg/mL) overnight. PBS treated cells 

were used as a control. The cells were subsequently washed and co-cultured at a 1:10 ratio 

with CD4
+
 T-cells from allogenic or allergenic donors on plates coated with anti-CD3 (1 

μg/mL) for 72 hr. Supernatants were analysed for the production of cytokines. CD14
+
 

monocytes pre-treated with κ-CAS showed no significant differences for the induction of 

IFN-γ (Figure 6.5 A-B), IL-13 (Figure 6.5 C-D), or IL-10 (Figure 6.5 E-F) from CD4
+
 T-

cells in allogenic or allergenic co-cultures. However, the levels of IL-2 for both allogenic or 

allergenic co-cultures were significantly reduced (Figure 6.5 E-F * , p ≤ 0.05).  

 

 

.  
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Figure 6.5 κ-CAS alters the capacity of CD14
+
 monocytes to prime T-cell responses. CD14

+ 

monocytes were stimulated with PBS or κ-CAS (1 mg/mL) overnight. Cells were subsequently 

washed and co-cultured with allogenic (A, C, E, G) or allergenic (B, D, F, H) CD4
+
 T-cells at a 1:10 

ratio in 96 well plates pre coated with anti-CD3 (1 μg/mL). After 72 hr supernatants were analyzed 

for the cytokines; IFN-γ (A, B), IL-13 (C, D), IL-10 (E, F) and IL-2 (G, H) by ELISA. Results are 

expressed as mean ±SD of 3 independent experiments from 4 donors for allogenic samples and 3 

independent experiments from 3 donors for allergenic samples. P-values were calculated using 

ANOVA multiple comparisons test. * , p ≤ 0.05 compared to PBS control. 

 

6.3.6 CD4
+
 T-cells co-cultured with κ-CAS treated CD14

+
 monocytes do not display 

markers of anergy.  

To examine if the reduction in IL-2 observed was due to anergy or apoptosis, the 

expression of anergic markers; CTLA4 or apoptosis, was assessed following co-culture. 

CD14
+
 monocytes were isolated from PBMCs by magnetic activated cell sorting. The 

isolated CD14
+ 

cells were stimulated with κ-CAS (1 mg/mL) overnight. PBS treated cells 

were used as a control. The cells were subsequently washed and co-cultured at a 1:10 ratio 

with CD4
+
 T-cells from allogenic or allergenic donors on plates coated with anti-CD3 (1 

μg/mL) for 72 hr. Non-adherent cells were isolated and analysed for surface marker 

expression of CTLA4 and viability. No significant differences in the expression of the 

extracellular receptor; CTLA4 (Figure 6.5A) or viability (Figure 6.5B) were observed 

between T-cells co-cultured with PBS or κ-CAS treated CD14
+
 cells.   
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Figure 6.6 κ-CAS treated CD14
+
 monocytes do not induce anergy markers in CD4

+
 T-cells. 

Non-adherent cells were harvested after allogenic co-culture, washed and incubated for 30 min with 

antibodies for the detection of the extracellular anergy receptor marker; CTLA4 (A) or the apoptotic 

marker; propidium iodide (PI) (B) and analysed by flow cytometry. Results were analysed using 

FlowJo software and are expressed as the gMFI ±SD of 2 independent experiments from 2 donors. 

Representative histograms show the surface expression of CTLA4 (C) or uptake of the PI (D); 

unstained (gray line), isotype (dotted grey line), PBS (black dotted line), κ-CAS (black line) and 

anti-CD3 (tinted gray histogram). 

 

 

 

 



149 
 

6.3.7 κ-CAS suppresses LPS induced TNF-α from human macrophages.  

In previous chapters we demonstrated κ-CAS capacity to modulate murine macrophages 

cytokine production in response to TLR ligands. We next examined if a similar effect was 

observed in humans using human monocyte derived macrophages. CD14
+
 cells were 

isolated from PBMCs by magnetic activated cell sorting. Human macrophages were 

differentiated from CD14
+
 cells over 14 days with human serum. Macrophages were pre-

treated with κ-CAS (1 mg/mL) 2.5 hr prior to stimulation with and without LPS (100 

ng/mL) for 18 hr. PBS treated cells were used a control. Supernatants were analysed for the 

production of TNF-α. The addition of κ-CAS alone did not induce TNF-α, unlike that 

observed for CD14
+
 monocytes.  Moreover, κ-CAS significantly inhibited the secretion of 

TNF-α in response to LPS compared to PBS control (Figure 6.7 **, p>0.001).  
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Figure 6.7 Effects of κ-CAS on LPS induced TNF-α from hMφ. hMφ derived from CD14
+
 

monocytes were treated with κ-CAS (1 mg/mL) for 2.5 hr. Cells were subsequently stimulated in 

the presence or absence of LPS (100 ng/mL) for 18 hr. Supernatants were analysed for the secretion 

of the cytokines TNF-α by ELISA. Results are expressed as mean ±SD from 3 individual donors. P-

values were calculated using were calculated using ANOVA multiple comaprisons tests. ** , p ≤ 

0.01, compared to PBS control group. 
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6.4 Discussion  

In the previous chapters we showed κ-CAS capacity to impair the secretion of pro-

inflammatory cytokines; notably TNF-α, from murine macrophages and DCs in response to 

inflammatory stimuli. In this chapter, we sought to determine if our observations were 

transferable to human cells by investigating the response of PBMC populations to κ-CAS. 

Monocytes, a PBMC population of phagocytes involved in innate immune defense and the 

precursor cells to macrophages and DCs (Geissmann et al., 2010) were determined to be 

the PBMC population that had the strongest affinity for binding κ-CAS. Unlike the 

suppressive effects observed in murine macrophages and DCs, κ-CAS did not suppress the 

induction of TNF-α from LPS treated monocytes. Moreover, κ-CAS treatment alone 

induced the secretion of TNF-α in a mechanism related to the activation of the NF-κB 

signal transduction pathway. Similarly, Requena et al., demonstrated that GMP; a peptide 

derivative of κ-CAS, up-regulated the secretion of TNF-α, IL-1β and IL-8 in monocytes, 

dependent on the phosphorylation of IκB-α and the nuclear translocation of the NF-κB 

subunits p50 and p65 (Requena et al., 2009). The release of TNF-α by monocytes treated 

with κ-CAS would be suggestive of their development towards a ‘’classically activated’’ 

inflammatory phenotype normally associated with the release of pro-inflammatory 

cytokines like TNF-α (Zarif et al., 2016). 

In addition to the secretion of pro-inflammatory mediators in response to stimuli, 

monocytes can also function as APCs; bridging the gap between innate and adaptive 

immunity. It has become increasingly more evident that monocytes play a prominent role in 

influencing inflammatory responses in-vivo, affecting the generation, expansion and 

polarization of T-cells they encounter at the site of inflammation in-situ (Evans et al., 2007; 

Geissmann et al., 2008; Evans et al., 2009). The state of activation and maturation of APCs 
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determines their ability to interact with T-cells, influencing the type of immune response 

that is initiated (Banchereau & Steinman 1998). The release of the inflammatory cytokine 

TNF-α by monocytes treated with κ-CAS would be indicative of ‘’classical activation’’ 

(Zarif et al., 2016).  Evans et al demonstrated that in-vitro and in-vivo activated 

inflammatory monocytes promoted T-cell responses in CD4
+
 T-cells (Evans et al., 2009). 

Monocyte released TNF-α is thought to be implicated in the shaping of inflammatory T-cell 

responses, but monocyte/T-cell contact is also heavily involved (Evans et al., 2009). While 

κ-CAS treated monocytes induced TNF-α, co-culture with T-cells resulted in a significant 

decrease in the secretion of IL-2, a cytokine centrally involved in the activation and 

propagation of robust effector T-cell responses (Boyman et al., 2015). Hence, κ-CAS 

treatment of monocytes may present as a target to control excess cytokine production by T-

cells, as aberrant T-cell activity is associated with a large number of chronic inflammatory 

disorders, including RA, MS, and IBD (Tesmer et al., 2008; Waite et al., 2011; Weaver et 

al., 2012). 

Macrophages are key innate immune cells involved in inflammatory processes. They can be 

divided into “alternatively activated” M2 macrophages that are associated with TH2 T-cell 

activation, helminth defense, wound repair and immuno-suppression (Martinez et al., 

2006). In contrast, “classically activated” M1 macrophages produce pro-inflammatory 

cytokines like TNF-α and are involved in TH1 T-cell activation and mediate acute 

inflammation. In the previous chapter we demonstrated using murine macrophages that κ-

CAS induced a suppressive M2-like macrophage phenotype and attenuated the induction of 

key inflammatory cytokine mediators in response to LPS. Similarly, herein we observed 

human macrophages being rendered hypo-responsive, releasing significantly reduced levels 

of the pro-inflammatory cytokine TNF-α upon LPS stimulation. In contrast to monocytes, 
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κ-CAS treatment alone did not induce any basal levels of TNF-α from human macrophages, 

consistent with the observed results in murine macrophages. TNF-α is a monocyte-, 

macrophage- and T-cell-derived cytokine, and is considered to be a key mediator of 

inflammatory disorders such as RA, psoriasis and IBD (Plevy et al., 1997; Bradley 2008). 

TNF-α has been shown to be heavily implicated in the disruption to epithelial barrier 

function (McGuckin et al., 2009), and aberrant TNF-α production from macrophages was 

shown to significantly contribute to this disruption, exacerbating intestinal inflammation in 

IBD (Lissner et al., 2015). Hence, κ-CAS treatment of macrophages may present as a 

promising target to control excess TNF-α cytokine production in inflammatory conditions.   

Distinct cellular proteome differences are observed between macrophages, DCs and their 

monocyte precursors. Studies have confirmed that macrophages contain significantly higher 

levels of proteases and peptidases, involved in proteolysis, compared to monocytes 

(Rossman et al., 1990; Menard et al., 2000; Jin at al., 2004). Furthermore, monocytes 

contained significantly higher levels of protease inhibitors, specifically leukocyte elastase 

inhibitor, compared with macrophages (Jin at al., 2004). Considering that in previous 

chapters we established that κ-CAS required proteolytic cleavage by the cells to elicit its 

suppressive effects, the differences in proteases, peptidases and proteases inhibitors 

between monocytes and macrophages may result in differential cleavage and release of 

peptide fragments with immunomodulatory properties.  

In summary, this study reported on the interaction of κ-CAS with CD14
+
 monocytes, which 

induced their activation and production of TNF-α via the NFκB pathway. κ-CAS 

significantly reduced the capacity of these activated monocytes to prime T-cell induced IL-

2, potentially sequestering the ability of these cells to elicit an effective adaptive immune 

response, similar to results obtained in murine DCs. We reported on the suppression of LPS 
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induced pro-inflammatory cytokine production by κ-CAS in human macrophages, similar 

to the results obtained from murine macrophages. Given that the immuno-modulatory 

effects exhibited by κ-CAS in mice were transferable in human cells; further study is 

warranted as our data suggest that κ-CAS has potential to be developed into a novel 

immune-suppressive nutraceutical for the management of human inflammatory diseases in 

humans.  
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Chapter 7 - Final discussion: 

Research in the field of functional food derived nutraceutical’s has rapidly expanded in 

recent times as more evidence emerges on their positive health impacts (Kitts and Weiler 

2003). In particular, milk has a great potential to be used commercially as a source of 

bioactive nutraceuticals as its consumption and production has increased globally 

(O’Connor 2009) making milk as a source of nutraceutical’s culturally acceptable and the 

abundance of material means bio-actives can be produced at low cost in large quantities. 

These bio-actives derived from milk display an array of bioactive health enhancing 

properties (Savijoki et al., 2006; Madureira et al., 2007; Dziuba et al., 2009). The 

consumption of some of these bioactive proteins has been reported to be helpful in the 

management of many western diseases (Dhaval et al., 2016). Considering that many of 

these diseases are immune-related, immunomodulatory nutraceuticals have garnered special 

attention from both academic and industrial researchers for their potential use as 

therapeutics for the amelioration of chronic inflammatory disorders like IBD (Bouglé & 

Bouhallab 2015). 

This study sheds new light on immunomodulatory effects exhibited by κ-CAS, a milk 

derived CAS protein subunit, on APCs isolated from murine and human origin. The study 

has reported on a number of novel findings including the characterisation of suppressive 

M2-like macrophage and semi-immature DC phenotypes induced by κ-CAS in mice. We 

demonstrated that κ-CAS treated cells were rendered hypo-responsive to inflammatory 

stimuli, via the attenuation of the NFκB signalling pathway partially mediated by the 

enhanced expression of the negative regulators SOCS1 & SOCS3. κ-CAS stimulated 

murine APCs suppress or have a capacity to significantly reduce T-cell responses, a result 

which was transferable in human monocytes; progenitor cells of macrophages and DCs. 
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The following discussion will highlight key findings from the study and discuss future 

work. 

 

7.1 κ-CAS induces a novel suppressive M2-like macrophage and semi-immature 

DC phenotype that are hypo-responsive to inflammatory stimuli. 

Macrophage and DC activation, maturation and phenotypes are heavily influenced by 

exposure to exogenous stimuli (Hoshino et al., 1999; Martinez & Gordon 2014). Here, we 

demonstrated that κ-CAS induced a novel suppressive-like M2 phenotype as characterized 

by the expression of M2 related genes; Arg-1, RELM-α and YM-1 and the M2 associated 

CLR CD206 in macrophages. M2 macrophages are generally subdivided into tissue injury, 

helminth infection and allergy associated M2a or anti-inflammatory M2b/c macrophages. 

They are induced by a variety of stimuli and are characterized by the induction of Arg-1, C-

type lectin receptors (CLRs) and low expression of inflammatory mediators. The 

transcription factor STAT6 is a critical mediator in the induction of M2a phenotypes, while 

STAT3 is primarily responsible for the induction of M2b/c macrophages. In contrast, we 

demonstrated that neither STAT6 nor STAT3 were prominently involved in the induction 

of the M2-like phenotype induced by κ-CAS. In contrast, we demonstrated that STAT6 

antaganism induced more Arg-1 and IL-10 production form NaCAS treated BMMφ, 

suggesting that it may play a suppressive role in the induction of this novel phenotype. 

Moreover, this intermediate M2 state induced by NaCAS and κ-CAS does not conform to 

the M1/M2a/b/c categorization, more indicative of the phenotypes observed in-vivo or in 

disease states which often lack defined subsets, sharing M1/M2 phenotype characteristics 

(Vogel et al., 2013; Italiani et al., 2014), questioning the validity of the M1/M2 paradigm 

and a possible need now to expand and redefine macrophage phenotypes that include those 
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that are induced by antigens derived by pathogenic and non-pathogenic sources in the 

absence of more traditionally defined stimuli (Donnelly et al., 2005; Figueroa-Santiago et 

al., 2014). 

CD54 an adhesion receptor generally associated with inflammatory M1 phenotypes 

(Hubbard & Giardina 2000; Murray et al., 2014) was also shown to be upregulated by κ-

CAS. CD54 expression is often seen upregulated at sites of inflammation, which 

encourages infiltration of many immune cell types and cell-cell signalling. Studies have 

also demonstrated that CD54 overexpression on macrophages promotes M2 polarization 

(Gu et al., 2017) and is more a surrogate marker of antigen presenting cell activation rather 

than inflammatory status (Sheikh & Jones 2008). The majority of macrophages observed in 

inflammatory regions express CD54. However, more recently, CD54 on macrophages was 

shown to have immunosuppressive function on mesenchymal stromal cell at inflammatory 

sites, dampening the immune response (Espagnolle et al., 2017). This would suggest that 

CD54 expression on macrophages can be indicative of inflammatory M1 macrophage 

activation but can have a regulatory role, the upregulation of which reinforces our 

observation that κ-CAS induces a novel regulatory macrophage phenotype that could have 

a substantive role in immuno-suppression.    

DCs are generally phenotypically categorized based on their level of maturity. We 

demonstrated that κ-CAS reduced the expression of the co-stimulatory receptor CD80; as 

well as adhesion and activation markers CD209 and CD54. Given the association between 

antigen presenting cell activation and CD54 upregulation (Sheikh & Jones 2008) and the 

reduced co-stimulatory marker expression, we concluded that κ-CAS rendered DCs in a 

semi-immature state. DCs in a steady state prior to activation are termed immature and 

characterized by expressing low levels of cell surface co-stimulatory markers; CD80, 
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CD86, MHC II, CD40 and attenuated production of pro-inflammatory cytokines 

(Banchereau et al., 2000, Dowling et al., 2008). Once activated, DCs take up a “classical” 

activation status and mature, upregulating cell surface co-stimulatory markers, and produce 

immune-stimulatory cytokines like IL-12/ or suppressive cytokines like IL-10 depending 

on the stimulus (Reis e Sousa 2006; Dowling et al., 2008).  

κ-CAS was also shown to down regulate the secretion of cytokines from both macrophages 

and DCs in response TLR and non-TLR ligands both prior to and following TLR and non-

TLR stimulations. Here we demonstrated that the suppression of LPS induced responses by 

κ-CAS was shown to be mediated via a mechanism which attenuates the phosphorylation 

and degradation of the NFκB inhibitor protein IκBα, sequestering the activation of the 

NFκB signal transduction pathway. We propose that the upregulation of SOCS1 and 

SOCS3 by κ-CAS plays a role in suppressing the activation of NFκB resulting in the 

inhibition of cytokine secretion (Figure 7.1). While studies using plant derived bioactive 

metabolites have also been demonstrated to increase the expression of SOCS 1 and SOCS 

3, which were shown to suppresses inflammatory signalling pathways (Shakibaei et al., 

2008; Zhang et al., 2015), this is the first study to our knowledge that demonstrated a milk 

derived nutraceutical influencing SOCS protein expression and subsequent inflammatory 

signalling. Further studies have to be conducted to elucidate the mechanism by which κ-

CAS induces the upregulation of these SOCS proteins. SOCS proteins are classically 

induced by signalling cascades from inflammatory stimuli as a negative feedback to 

dampen the response. However, the upregulation of SOCS have been demonstrated to be 

also mediated though receptor signalling like DC-SIGNR1, or growth factor receptor 

signalling which has been shown to induce the activation of the cAMP response element-
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binding protein (CREB) pathways also involved in the upregulation of SOCS protein 

expression (Srivastava et al., 2009; Chakrabarti et al., 2017).  

The SOCS inhibitor peptide used in our study indiscriminately binds to both SOCS 1 & 

SOCS 3 proteins via their shared kinase inhibitory regions, sequestering the inhibitory 

activity of both proteins (Ahmed et al., 2015). Thus whether one or both SOCS proteins are 

involved in the inhibition of LPS induced cytokine production by κ-CAS has yet to be 

determined. Other more specific alternatives like knockout mice are not available as mice 

lacking SOCS1 develop a severe inflammatory syndrome within the first two weeks after 

birth (Marine et al., 1999), while SOCS3-deficient mice fail to complete embryogenesis 

(Roberts et al., 2001). Other alternatives like, chemical antagonist or gene silencing 

techniques (si-RNA) are available, which may help further define the role these SOCS 

proteins play in the immune-modulatory capacity of κ-CAS. However, while these 

techniques are more effective at targeting specific components, the work presented in this 

thesis used primary immune cells which required in-vitro differentiation, which could be 

influenced by gene silencing. The use of the macrophage like cell line; RAW267.4 could be 

used to further investigate the effects of SOCS 1 or SOCS3 proteins have on this process, 

although caution must be taken as cells lines can undergo chromosomal duplications, 

rearrangements, mutations, and epigenetic changes that alter their phenotypes, genes and 

receptor expression that may be involved.  
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Figure 7.1 Possible mechanisms by which κ-CAS suppresses inflammatory cytokine secretions 

in macrophages and dendritic cells. κ-CAS induces the transcription of SOCS1 and SOCS3, 

which are implicated in the suppression of TLR and PMA induced NFκB signalling, thus impairing 

pro-inflammatory cytokine production and release. However, inhibitory mechanisms other than the 

upregulation of SOCS proteins may be involved, mediated by receptor binding or other recognition 

and signalling processes. κ-CAS; kappa casein, SOCS; suppressor of cytokine signalling, NFκB; 

nuclear factor kappa-light-chain-enhancer of activated B cells, TLR; toll like receptor, PGN; 

peptidoglycan, PMA; phorbol myristate acetate, LPS; lipopolysaccharide, LOX; loxoribine, CpG; 

unmethylated CpG dinucleotides. Figure adapted from Vukman  2013 

 

While SOCS inhibitor peptides partially reversed κ-CAS induced suppression of LPS 

mediated TNF-α release in macrophages it is plausible that κ-CAS upregulates other 

inhibitory molecules which may act in synergy with SOCS1 & SOCS3 to target TLR and 

non-TLR signalling pathways in these cells which should be further investigated. Several 

other inhibitory molecules act to supress inflammation in a redundancy pathway that is 

heavily involved in the resolution of inflammatory responses such as the negative 

regulators including; docking protein 3 (DOK3), small heterodimer partner (SHP), B-cell 

lymphoma-3 encoded protein (BCL-3), that can sequester TLR and non TLR induced 
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activation of NFκB and subsequent release of TNF-α when upregulated in macrophages 

(Anwar et al., 2013). Deubiquitinating enzyme A (A20); a zinc finger protein has been 

shown to inhibit TLR signalling and NFκB activation by several TLR and non-TLR 

stimuli, sequestering subsequent induction of inflammatory cytokines (Verstrepen et al., 

2014).  We have yet to determine whether κ-CAS can suppress other members of the NFκB 

family (such as the p50 subunit) or any other interferon regulatory factors (IRF) 

transcription factors, such as IRF3, which are activated following TLR-ligand stimulation. 

The mechanism by which κ-CAS initiates’ intracellular signals that inhibit the 

aforementioned pathways remains to be elucidated. We revealed that κ-CAS was more 

significantly bound by cells then a protein control, in a Ca
2+

 dependant manner. This would 

infer that κ-CAS was specifically bound by a complex which requires Ca
2+

 rather than non-

specific binding. An array of receptor including G-protein coupled receptors, among others 

mediates intracellular signalling upon ligation, in Ca
2+

 dependant manner (Mitra et al., 

2013). Co-precipitation could be used to determine if this process is receptor mediated, 

examining the interactions between the known protein; κ-CAS and the components with 

which it complexes; a possible receptor. However, this technique requires antibody 

recognition of the known protein. Given that a fragment of κ-CAS is responsible for the 

observed effects, recognition epitopes may be lost during proteolytic cleavage. Therefore, 

whether proteolytic cleavage of the subunit occurs internally or externally would also need 

to be examined further. Confocal laser scanning techniques could be used to track any 

internalisation or compartmentalisation which may occur.  

The indirect inhibition or direct binding of the κ-CAS fragment to upstream signalling 

components would present as another possible alternative inhibitory mechanism exerted by 

κ-CAS which contributes to for the observed attenuation of the NFκB pathway and 
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subsequent inflammatory response. Previous studies have demonstrated that milk protein 

derived hydrolysates sequestered NFκB activation via targeting of p38 MAPK (Ming et al., 

2015; Song et al., 2017). Further studies examining the phosphorylation and subsequent 

activation of the upstream signalling molecules MAP kinases and IKK complexes, involved 

in the activation of the inflammatory and NFκB signalling pathway (Hippenstiel et al., 

2000) should be investigated.  

Studies using κ-CAS and its immune-modulatory role have mainly been focused on its 

interactions with cells of murine origin. The majority of studies using κ-CAS in humans 

models have been to investigate in-vitro T-cell proliferative responses in cow’s milk protein 

allergy (Hoffman et al., 1997; Sletten et al., 2007). Some studies have investigated the 

effects of the κ-CAS derived GMP peptide on the monocyte-like cell line THP-1 cells or 

primary monocytes isolated from PBMCs (Requena et al., 2009; Vordenbäumen et al., 

2011). We investigated the effect of κ-CAS on total PBMCs and the different sub-

populations. From our mouse studies, we demonstrated that κ-CAS treatment significantly 

supressed the secretion of LPS induced pro-inflammatory cytokines like; TNF-α and IL-

12p70 from macrophages and DCs. In contrast, κ-CAS treatment was shown to enhance 

TNF-α production from human PBMCs. We demonstrated that CD14
+
 monocytes were 

responsible for the induction of TNF-α by PBMCs in a mechanism dependant on NFκB 

activation. Similarly, studies by Requena et al., on human monocytes have shown that 

GMP induced the secretion of the inflammatory cytokines; TNF-α, IL-1β and IL-8 via the 

stimulation of MAPK and the phosphorylation of IκB-α, resulting in the nuclear 

translocation of the NFκB subunits; p50 and p65 (Requena et al., 2009). However, despite 

the increased production of TNF-α; associated with inflammatory monocyte activation, κ-
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CAS treated monocytes exhibited a reduced capacity to prime T-cell responses, similar to 

results obtained from murine macrophage and DC T-cell co-cultures.  

 

 7.2 κ-CAS treated macrophages supress T-cell responses while DCs have a 

reduced capacity to prime T-cells via the attenuation of IL-2. 

DCs are generally considered to be the major drivers of CD4
+
 T-cell responses; however, 

more evidence is accumulating that macrophages also play a prominent role in this process. 

The activation status of these cells not only affects their immediate innate effector function 

but can also heavily influence their ability to initiate and propagate adaptive immune 

responses (Takeda et al., 2003; Pasare & Medzhitov 2004). Previous studies observed that 

intact κ-CAS and GMP significantly inhibited the mitogen-induced proliferative response 

of mouse spleen lymphocytes and Peyer's patch cells (Otani & Hata 1995; Otani et al., 

1995). Given that κ-CAS was shown to induce novel phenotypes in murine macrophages 

and DCs and activated human CD14
+
 monocytes, the capacity of these cells modulate T-

cell responses cells was examined.  

Macrophages treated with κ-CAS significantly attenuated CD4
+
 T-cells from producing 

IFN-γ; a TH1 associated pro-inflammatory cytokine, and IL-2; a cytokine critical for the 

initiation and propagation of robust T-cell responses (Bachmann & Oxenius 2007), in in-

vitro co-cultures. In addition, κ-CAS treated DCs and monocytes co-cultured with CD4
+ 

T-

cells in-vitro also exhibited an impaired ability to produce IL-2, however IFN-γ production 

from CD4
+
 cells was not affected. Moreover, we conducted T-cell priming studies where κ-

CAS or PBS treated DCs stimulated with OVA peptide were adoptively transferred over 

the sternum of transgenic mice pre sensitised to OVA. We demonstrated that OVA specific 

T-cells responses from the skin draining lymph nodes of these mice were supressed when 
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re-stimulated with OVA peptide ex-vivo compared to the results obtained from PBS treated 

DC recipient mice. While all cytokines were attenuated, IL-2 was the only cytokine 

significantly inhibited.  

3 signals are required to elicit effective T-cell responses (Reis e Sousa 2006; Green et al., 

2009). The antigen-MHC complex is the main stimulatory signal (signal 1), co-stimulatory 

receptors bind their T-cell counterparts (signal 2) and the presence of immuno-stimulating 

factors (signal 3) like cytokines which influence which type of the effector T-cell response 

is elicited (Reis e Sousa 2006). All 3 signals lower the threshold needed for T-cell 

activation and the subsequent production of IL-2 (Lenschow et al., 1996). Reduced 

signalling strength, via downregulation of co-stimulatory receptor interactions can result in 

the suppression of T-cell responses, which was observed for κ-CAS DCs. However, no 

significant decreases in MHCII or co-stimulatory receptor expression were exhibited by κ-

CAS treated macrophages. In contrast, the co-stimulatory receptors CD40, OX40L were 

significantly upregulated which are generally associated with the induction of T-cell 

responses (Ozaki et al., 1999; Croft et al., 2009). Other possible receptors such as CD54 or 

CD209 could be responsible for the suppression of T-cell responses by κ-CAS activated 

macrophages. We demonstrated that CD54 an adhesion receptor was upregulated by κ-CAS 

in macrophages. CD54 is known to be involved in APC-T-cell communication (Vukman et 

al., 2013) However, more recently CD54 expression on macrophages was shown to have 

immunosuppressive function at inflammatory sites, dampening the immune response 

(Espagnolle et al., 2017). This would suggest that CD54 expression on macrophages can 

exhibit stimulatory and regulatory properties. κ-CAS treatment also upregulated the CLR 

CD206. Aldridge et al., demonstrated CD206 upregulation on APCs supressed T-cell 

cytokine responses in in-vitro co-culture (Aldridge & O'Neill 2016). Further studies 
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examining the effects the upregulation these receptors by κ-CAS has on T-cell responses 

should be carried out. Neutralization antibodies to the receptors can inhibit receptor 

interactions, while receptor specific knockout mice can be used to verify any positive 

results for further validation.       

The lack of inflammatory immuno-stimulatory factors produced by κ-CAS macrophages 

and DCs may account for the reduced T-cell responses.  M2 macrophages are known to 

produce polyamines (Hasko et al., 2000). Polyamines have been shown to exert regulatory 

effects on the immune responses inhibiting T-cell associated cytokines responses 

(Cordeiro-da-Silva et al., 2004). DCs in a semi-mature activation state; expressing some 

costimulatory molecules but only low levels of inflammatory cytokines, such as TNF-α and 

IL-12 have also been reported to exert  regulatory effects on T-cell responses (Lutz and 

Schuler, 2002). In contrast to κ-CAS treated macrophages and DCs, κ-CAS treated 

monocytes were shown to secrete high levels of inflammatory cytokines. However, in 

humans, monocytes and DC with high expression levels of costimulatory molecules and 

pro-inflammatory cytokine release have been demonstrated to  suppress T-cell activation 

via the release of a combination of factors like indoleamine 2,3 deoxygenase (IDO) and IL-

10 (Popov et al., 2008; Von Bergwelt-Baildon et al., 2006). 

Low doses of IL-2 appear to mainly support the maintenance of Tregs which play a 

prominent role in restricting effector T-cells cells (Yu et al., 2009; Klatzmann & Abbas 

2015). Cytokines derived from macrophages and DCs like IL-10 & TGF-β have been 

demonstrated to stimulate the expansion of Treg populations (Harden & Egilmez 2012). 

However, while activated κ-CAS treated DCs secreted high levels of IL-10, we observed no 

upregulation of the extracellular receptor CTLA4; a marker expressed by Tregs or 

upregulation of anti-inflammatory cytokines like IL-10 by co-cultured CD4
+
 T-cell.  
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Alternatively, activation through anergic pathways results in significantly reduced IL-2 

induction, loss of proliferation and can renders T-cells hypo-responsive (Wells et al., 2001). 

The presence of inhibitory ligands on antigen presenting cells can account for the inhibition 

of IL-2 and subsequent anergic T-cell response (Slavik et al., 1999; Okazaki and Honjo 

2006). However, CD4
+
 T-cells cultured with κ-CAS treated DCs did not display prominent 

extracellular surface markers associated with anergy; CTLA4 and PD-1 (Buchbinder & 

Desai 2016). In future studies, other key markers of anergy should be investigated like T-

cell proliferative responses and the enhancement of gene related to anergy in lymphocytes 

(GRAIL); an ubiquitin-protein ligase that plays a prominent role in T-cell anergy (Whiting 

et al., 2011). Future work should be conducted to investigate if the suppressive effects 

exerted by κ-CAS treated macrophages, DCs and monocytes are due to cell-cell mediated 

interactions leading to an anergic state or the release of immuno-stimulatory factors which 

induce a suppressive T-cell phenotype. 

This could have significant implication for the use of κ-CAS as a therapeutic, as it exhibits 

a duality of function. Our data demonstrated that κ-CAS attenuated the capacity of DC; key 

antigen presenting cells, from inducing IL-2 production from CD4
+
 T-cells, sequestering 

their ability to elicit T-cell responses, affecting the induction of adaptive immune 

responses. Moreover, macrophages persist at sites of inflammation, involved in the 

recruitment of additional inflammatory cells in a positive feedback loop that further 

propagates the chronic inflammatory state. The alteration of these macrophages towards a 

suppressive phenotype by κ-CAS would also significantly attenuate the propagation and 

exacerbation of inflammatory responses at the sites of inflammation.      
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7.3 A fragment of κ-CAS can mimic the immuno-modulatory effects of whole κ-

CAS.   

We demonstrated that κ-CAS, a subunit of the milk protein; casein, exhibited immuno-

modularity properties and moreover, a fragment of κ-CAS released by cell proteases, not 

the intact subunit was shown to be responsible for the observed effects. Several studies 

have reported immuno-modulatory properties arising from chymosin or pepsin cleavage of 

κ-CAS, resulting in the release of the ciliated C-terminal fragment; GMP and its derivatives 

(Wu et al., 2011; Ashare et al., 2005; Daddaoua et al., 2005; Otani & Monnai 1993). Cheng 

et al., demonstrated that GMP and a hydrolysed derivative inhibited LPS meditated 

inflammatory responses in macrophages via the suppression of the NFκB signalling 

pathway (Cheng et al., 2015). Similarly, we demonstrated that κ-CAS also supressed LPS 

induced inflammatory cytokine release, via a mechanism that attenuates NFκB activation. 

However, while GMP was shown to exert its suppressive effect via the upregulation of 

heme oxygenase-1, which once inhibited, restored inflammatory cytokine release and 

NFκB activity (Li et al., 2017), the inhibition of heme oxygenase-1 did not restore 

inflammatory cytokine release in κ-CAS treated macrophages (Appendix B). Moreover, 

Mikkelsen et al., demonstrated that DCs stimulated with κ-CAS significantly supressed 

LPS induced TNF-α and IL-12p70, while GMP only attenuated TNF-α secretion. The 

degree of LPS mediated suppression of TNF-α by GMP was also significantly less than that 

of κ-CAS (Mikkelsen et al., 2005). Furthermore, studies examining the modulatory effects 

of enzymatic digestion on GMP determined that proteolytic treatment with trypsin 

exhibited no significant effect on GMPs suppressive activity on pro-inflammatory cytokine 

release. However, we observed a reversal of the suppressive effects κ-CAS exerted on LPS 

stimulated macrophages when κ-CAS was treated with trypsin (Appendix C).  
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Another source of immunomodulatory κ-CAS fragments are casoxins, which have been 

shown to behave as opioid antagonists. Greeneltch et al., demonstrated that opioid 

antagonism inhibited acute endotoxic shock via the suppression of TNF-α production, 

however opioid antagonism in-vitro had no direct effect on LPS induced TNF-α production 

in macrophages which would suggest that casoxins only prevent LPS-induced septic shock 

via indirect inhibition (Greeneltch et al., 2004). Given these differences, we can deduce that 

the results obtained from our studies are unlikely to be due to GMP or casoxins but another 

fraction of κ-CAS with novel immuno-modulatory activities.  

Further studies are required to identify the bioactive sequence responsible for the immune 

mdulatory activities observed in this study. Given that a cocktail of multiple protease 

inhibitors supresses the release and subsequent activity of the κ-CAS fragment, targeting of 

specific cell proteases could help identify which are involved. If the protease/proteases are 

elucidated, the resulting protein fragments can be characterised and isolated via high phase 

liquid chromatography, separating peptides based on their size and hydrophobicity 

(Lemieux et al., 1991). Coupled to a mass spectrometer, it is also possible to determine the 

amino acid sequence of the detected fragments (Chen et al., 1995). These are the 

techniques most often used for the identification and characterisation of bioactive protein 

fragments from enzymatic digests (Mamone et al., 2003; Hernández-Ledesma et al., 2004; 

Manso et al., 2005; Jacobsen 2007). Depending on the size, the peptide could be 

synthesised by solid-phase peptide synthesis, allowing for further and more in-depth 

analysis of the bioactivity and mechanism to be investigated in-vivo or in-vitro. 
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7.4 Implications for the use of κ-CAS as a therapeutic for chronic gastrointestinal 

inflammatory conditions like IBD  

Purposively deploying immune-modulating nutraceuticals in existing or new dietary 

products is an attractive opportunity to manage immune-related diseases. The uses of 

bioactive peptides as a therapeutic possess several advantages over classical 

pharmacological drugs. Bioactive peptides are naturally occurring biologics and in contrast 

to synthetic substances are degraded into their component amino acids without the 

production of intermediate toxic metabolites, a major problem associated with synthetic 

chemical drugs. Due to peptides being readily degraded, they generally have short half-

lives which avoids their accumulation in bodily tissues. In addition, they are associated 

with lower manufacturing costs, high activity and greater stability (Jani et al., 2012; Kaspar 

& Reichert 2013). 

IBD that affect the gastrointestinal tract like CD and UC whose incidence and prevalence 

are increasing worldwide (Molodecky et al., 2012), are prime targets for the use of 

bioactive immuno-modulatory proteins and peptides as they are administered orally, a non-

invasive natural route that delivers the bio-actives to the inflammatory site. The oral route 

of entry for bioactive proteins and peptides can problematic due the highly acid 

environment of the stomach and expose to several proteolytic enzymes which may denature 

or sequester bioactivity (Madureira et al., 2007) Many of these drawbacks can be overcome 

via encapsulation in liposomes, and micelles, which ensure protein stability and allows for 

the controlled release of the bioactive at the site of interest (Martins et al., 2007). 

Immunological results from several human studies and animal models indicate that 

microbial antigen exposure is heavily implicated in the initiation, perpetuation, and 
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amplification of IBD (Lodes et al., 2004; Abreu et al., 2005; Kiesler et al., 2015).  IBD is 

characterized by severe inflammation of the gastrointestinal tract (Strober & Fuss 2011). 

The pro-inflammatory cytokines such as IL-1β, IL-2, IL-12, IL-23, and IFN-γ, are 

associated with the initiation and progression of IBD.  However, TNF-α is often cited as the 

master cytokine in this diseases pathogenesis (Murch et al., 1993). It initiates cytotoxic, 

apoptotic, and acute-phase responses (Baumann & Gauldie 1994) and increases the 

secretion of other pro-inflammatory cytokines IL-1β, IL-6, perpetuating and exacerbating 

inflammation (Sanchez-Munoz et al., 2008). The primary sources of TNF-α in IBD is 

proposed to be induced by inflammatory macrophages, but also differentiated TH1 T-cells 

(Begue et al., 2006). Macrophages and DCs isolated from IBD patients have also been 

demonstrated to have exaggerated inflammatory responses to the TLR ligand; LPS 

(Baumgart et al., 2009). Study on the effectiveness of κ-CAS in models of IBD should be 

examined as we demonstrated that κ-CAS was a potent inhibitor of TLR and non-TLR 

induced TNF-α, among other inflammatory cytokines in murine macrophages and DCs, the 

primary cells associated with the induction of TNF-α in IBD. Anti-TNF-α therapy is 

currently one of the most prominent treatments used in IBD (Cohen 2017). 

Due to the secretion of pro-inflammatory mediators, CD4
+
 T cells are considered as a 

subset of cells that play a pivotal role in the development of IBD. IL-2, together with IFN-

γ, is produced by activated TH1 T-cell subsets and enhances inflammatory macrophage, 

natural killer (NK) cells and cytotoxic T-cell activity (Breese et al., 1993). The presence of 

large numbers of activated T-cells in the involved mucosa of IBD patients suggests that IL-

2 is likely to be playing at least some role in stimulating inflammation. Moreover, there is a 

positive correlation between clinical activity index (CAI) and IL-2
+
 CD4

+
 T-cells, thought 

to contribute to the pathogenesis of disease. (Ebrahimpour et al., 2017). Our data 
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demonstrated that κ-CAS treated antigen presenting cells sequestered IL-2 production from 

CD4
+
 T-cells, which would merit further examination in models of IBD as a potential 

therapeutic, reducing T-cell activity and the pathogenesis of the disease.  

Further studies using murine models of IBD should be employed to deduce whether orally 

administered κ-CAS could alleviate the symptoms. Dextran sodium sulfate (DSS) is a well-

studied model which induces severe murine colitis which closely resembles human UC 

(Okayasu et al., 1990). The DSS colitis model would be of particular interest as the 

development of the intestinal inflammation is likely due to damage to the epithelial 

monolayer lining by DSS, allowing the dissemination of pro-inflammatory intestinal 

contents like bacteria that activate innate immune cells, like macrophages and DCs which 

in turn propagate and exacerbate the inflammatory response (Chassaing et al., 2014).  

 

7.5 Limitaions of the current study  

There are limitaions in the current study at predicting the efficacy of κ-CAS to be used as a 

potencial theriputic for inflammatory conditions. Most of the research conducted examined 

the effects κ-CAS exhibited on cell populations in isolation. In an in-vivo environment, no 

cell population exists in isolation and the interaction between different cell types is 

essential for many biological processes, including immunity (Pasqual et al., 2018). 

Moreover, cells in an in-vivo environment have been shown to exhibit differences in 

differentiation, maturation, response to stimuli, and cell-cell communication compared to 

in-vitro cultured cells (Antoni et al., 2015).  

In all experiemnts conducted, cells were directly exposed to κ-CAS. While in-vitro 

experiments can provide a detailed insight into the effects compounds exert, many factors 
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are not accounted for which may affect bioavailability that would heavily influence any 

compounds capacity to interact and induce similar effects to the same cell types in an in-

vivo environment (Craik et al., 2013). Given that oral ingestion would be envisioned as the 

route of adminiteration, some of these affects could be alluded to by use of enzymatic 

digest experiments with proteases and peptidases at pH’s encountered during digestion to 

account for any changes to the compounds activity and stability. The ability of the 

compound to be absorbed at the intestinal line can also be simulated using Caco-2 cells as a 

model of the absorptive (Sambuy et al., 2005). Chemical modification can be used to 

improve stability while formulation vehicles can protect compounds from enzymatic 

degredation and improve penetration/adsorbsion (Shaji & Patole 2008).   

 

7.6 Conclusion 

This study sheds new light on immunomodulatory effects exhibited by a fragment of κ-

CAS. In summary, we report that this κ-CAS fragment induces a novel M2-like suppressive 

macrophage phenotype, maintains DCs in a semi-immature state, rendering both cell types 

hypo-responsive to NFκB dependant inflammatory signalling, and impairs their capacity to 

development adaptive immune responses. These results were also found to be transferable 

in human monocytes and macrophages.  
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Figure 7.2 Immunomodulatory effects exerted by κ-CAS. NaCAS and κ-CAS induced M2 macrophage associated genes, notably Arg-1, potencially in 

a STAT3 dependant mechanism, while STAT6 was shown to exert regulatory effects on gene expression (A). κ-CAS abrogated TLR dependant induction 

of cytokines in macrophages (A) and DCs (B) by attenuating NFκB signalling, which is partially mediated by an increased induction of the negative 

regulators of cytokine signalling; SOCS1 and SOCS3. In contrast, κ-CAS induced the secretion of TNF-α from human monocytes in a NFκB dependant 

manner (C). However, κ-CAS reduced the capacity of all 3 cell types to induce T-cell repsonce, significantly attenulating their ability to induce IL-2 from 

CD4
+
 T-cells (D).   
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Given the powerful immune-modulatory effects exhibited by this fragment of k-CAS and 

considering that many human diseases are immune-related, there lies great potential and 

demand for its development as a immunomodulatory nutraceutical and possible use as a 

novel immune therapeutic to treat inflammatory diseases like IBD. Interest for the use of 

nutraceuticals in the management of diseases is growing as patients seek alternatives to the 

use of drugs that slow the progression of specific diseases, as they can often have 

unforeseen and potentially harmful side effects which can outweigh their benefits 

(Nongonierma & FitzGerald 2015). In this context, a κ-CAS bioactive protein fragment 

represents a viable alternative to the use of such drugs, as protein based therapeutics 

generally have low toxicity, are easily degraded and tend not to accumulate in bodily 

tissues (Gokhale & Satyanarayanajois 2014; Agyei et al., 2016). Thus additional 

investigations are merited to identify the sequence of the fragment of κ-CAS responsible 

for the observed effects and elucidate the exact mechanisms by which these effects are 

exerted.  
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Appendix 

Appendix A - No cytotoxic effects exhibited by κ-CAS treatment.  

To ensure that the observed immuno-modulatory effects displayed by κ-CAS treatment 

were not due cytotoxic effects,  cells were pre-treated for 2.5 hr with κ-CAS (1 mg/mL) 

prior to stimulation with and without LPS (100 ng/ml) for 24 hr. PBS and LPS alone were 

used as positive controls. 4 % PFA were used as negative controls. The results 

demonstrated that the doses used for κ-CAS (Figure 9.1) did not exhibit any significant 

cytotoxic effect on cells in-vitro compared to controls and as such were used at the same 

concentrations or lower for all subsequent experiments. 
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Figure 9.1 κ-CAS does not affect cell viability. Resazurin  assays were performed on murine 

BMMφ (A), murine BMDC (B), human PBMCs (C) or human CD14
+
 monocytes (D). 1 x 10

5
 cells 

were pre-treated for 2.5 hr with κ-CAS (1 mg/mL) prior to stimulation with and without LPS (100 

ng/ml) for 24 hr. PBS and LPS alone were used as positive controls while 4 % PFA was used as 

negative controls. Results are expressed as mean ±SD of at least 3 independent experiments in 

triplicate. P-values were calculated using multiple student’s t-test. Ns; no significant difference 

compared to positive control groups. 
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Appendix B - The Suppressive mechanism exerted by κ-CAS on LPS induced 

cytokines is independent of heme oxygenase-1  

More recently, GMP and its derivatives were found to supress TLR4 meditated responses 

in macrophages by attenuating the activation of NFκB signalling (Cheng et al., 2015). The 

mechanism by which this occurred was found to be due to the upregulation of heme 

oxygenase-1, which when inhibited resulted in the restoration of inflammatory cytokine 

release and NFκB activity (Li et al., 2017). Given that we attained similar results with κ-

CAS, which was also shown to abrogate LPS mediated inflammatory cytokine release and 

NFκB activation, the effect of heme oxygenase-1 inhibitors was examined on the 

suppressive capacity of κ-CAS on LPS induced cytokine release (Figure 9.2). BMMφ 

derived from C57BL/6J mice were pre-treated with PBS or the heme oxygenase-1 inhibitor; 

ZnPPIX (10 or 20 μM/mL) for 1 hr and then treated with or without κ-CAS (1 mg/mL) for 

2.5 hr, followed by stimulation with LPS (100 ng/mL) for 18 hr. While κ-CAS significantly 

supressed LPS induced TNF-α (Figure 9.2 ** , p ≤ 0.01), the inhibition of heme oxygenase-

1 by ZnPPIX did not restore inflammatory cytokine release. These results would suggest 

that the suppressive mechanism exerted by κ-CAS on LPS induced cytokine production is 

independent of heme oxygenase-1.  
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Figure 9.2 Effect of selective inhibitor ZnPPIX  on LPS induced TNF-α suppression by κ-CAS 

in BMMφ. BMMφ derived from C57BL/6J mice werepre-treated with ZnPPIX (10 μM or 20 μM) 

for 1 hr and subsequently treated with κ-CAS (1 mg/mL) for 2.5 hr followed by stimulation with 

LPS (100 ng/mL ) for 18 hr. . Supernatants were analysed for the secretion of TNF-α by ELISA. 

Results are expressed as mean ±SD of 3 independent experiments in triplicate. P-values were 

calculated using multiple two-tailed student’s t-test. ** , p ≤ 0.01, compared to κ-CAS treated 

control. n.s; non-significant, compared to non-ZnPPIX treated controls.   
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Appendix C - The suppressive effects exerted by κ-CAS on LPS induced cytokines is 

reversed following trypsin treatment.  

GMP and its derivatives have been found to supress TLR4 meditated responses in macrophages and 

other cells types (Cheng et al., 2015). However, after GMP digestion with trypsin, Otani and 

Monnai demonstrated that their inhibitory effects were increased (Otani and Monnai 1993). Given 

that we attained similar results with the whole κ-CAS subunit, which was also shown to abrogate 

LPS mediated inflammatory cytokine release; the effect of trypsin treatment on the suppressive 

capacity of κ-CAS was exaimed (Figure 9.3). κ-CAS (0.5 mg) was treated with trypsin (150 μg/mL) 

for 1 hr at 37
0
C. After incubation, the trypsin was heat inactivated at 90

o
C for 5 min. κ-CAS without 

trypsin was used as a control.  BMMφ derived from C57BL/6J mice were treated with or without 

trypsenised κ-CAS (0.5 mg/mL) for 2.5 hr, followed by stimulation with LPS (100 ng/mL) for 18 

hr. While κ-CAS significantly supressed LPS induced TNF-α (Figure 9.3 * , p ≤ 0.05), trypsin 

treatment reversed the suppressive effects exerted by κ-CAS on TNF-α secreation.  
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Figure 9.3 Effect of trypsin on κ-CAS suppressive activity in BMMφ. BMMφ derived from 

C57BL/6J mice were seeded at 1 x 10
6
 cells/mL, rested for 2 hr, pre-treated with and without 

trypsin treated κ-CAS (0.5 mg/mL) for 2.5 hr followed by stimulation with LPS (100 ng/mL ) for 

18 hr. Supernatants were analysed for the secretion of TNF-α by ELISA. Results are expressed as 

mean ±SD of 3 independent experiments in triplicate. P-values were analysed using ANOVA. * , p 

≤ 0.05 
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Appendix D – Representative scatter plots for flow cytometry data  

In order to confirm the presence, absence, increase or reduction of cellular markers, cells 

were stained with panels of marker specific fluorochrome-labelled monoclonal antibodies 

and analysed by flow cytometry. Results were presented as the geometric mean 

fluorescence intensity of multiple experiemnts, with a representative histogram. 

Representative scatter plot of all data is also presented below.   
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Figure 9.4 NaCAS induced receptors associated with both M1 & M2 macrophages. BMMφ 

derived from C57BL/6 mice were pre-treated with NaCAS (1 mg/mL) for for 24 hr. M2 stimulants 

IL-4 (20 ng/mL) or PGE2 (5μM) and M1 stimulants IFNγ (20 ng/mL) & LPS (100ng.mL) were used 

as macrophage differentiating controls. PBS was used as a control. Cells were analysed by flow 

cytometry and representative scatter plots show the surface expression of CD206, MGL, Dectin-1 

and CD54; isotype (gray), treated (black).  
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Figure 9.5 κ-CAS induced a mixed M1 & M2 receptor repertoire and selectively upregulated 

co-stimulatory molecules. BMMφ derived from C57BL/6 mice were pre-treated with κ-CAS (1 

mg/mL) for for 24 hr. PBS was used as a negative control. Cells were analysed by flow cytometry 

and representative scatter plots show the surface expression of of CD206, CD40, OX40L and 

CD54; isotype (gray), treated (black).  
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Figure 9.6 CD4
+
 T-cells cultured with κ-CAS treated BMMφ do not display anergic markers. 

BMMφs from C57BL/6 mice were pre-treated with κ-CAS (1 mg/mL) for 18hr. Control BMMφ 

were treated with PBS. PBS and κ-CAS treated macrophages were subsequently co-cultured with 

CD4
+
 T-cells at a ratio of 1:4 on plates pre-coated with anti-CD3 (1 μg/well). CD4

+
 T-cells cultured 

with anti-CD3 alone were used an anergic control. Cells were analysed by flow cytometry and 

representative scatter plots show the surface expression of CTLA4 and PD-1; isotype (gray), treated 

(black).  
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Figure 9.7 κ-CAS downregulates co-stimulatory & adhesion receptors. BMDCs derived from 

C57BL/6 mice were pre-treated with κ-CAS (1 mg/mL) for 18 hr. PBS was used as a negative 

control. Cells were analysed by flow cytometry and representative scatter plots show the surface 

expression of CD54 (E), CD209 (F), CD80 (G) and OX40L; isotype (gray), treated (black).    
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Figure 9.8 κ-CAS treated CD14
+
 monocytes do not induce anergy markers in CD4

+
 T-cells. 

After 72 hrs, non-adherent human CD4 cells were harvested following allogenic co-culture at a 

ratio of 1:10 with CD14
+
 monocytes pre-treated with PBS or κ-CAS (1 mg/mL) for 18 hrs. CD4 

cells cultured with anti-CD3 alone were used as an anergic control.  Cells were analysed by flow 

cytometry and representative scatter plots show the uptake of the apoptotic marker PI or the surface 

expression of CTLA4; isotype (gray), treated (black).    

 

 

 

 

 


