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Abstract. River–aquifer exchange fluxes influence local and
regional water balances and affect groundwater and river
water quality and quantity. Unfortunately, river–aquifer ex-
change fluxes tend to be strongly spatially variable, and it
is an open research question to which degree river bed het-
erogeneity has to be represented in a model in order to
achieve reliable estimates of river–aquifer exchange fluxes.
This research question is addressed in this paper with the
help of synthetic simulation experiments, which mimic the
Limmat aquifer in Zurich (Switzerland), where river–aquifer
exchange fluxes and groundwater management activities
play an important role. The solution of the unsaturated–
saturated subsurface hydrological flow problem including
river–aquifer interaction is calculated for ten different syn-
thetic realities where the strongly heterogeneous river bed
hydraulic conductivities (L) are perfectly known. Hydraulic
head data (100 in the default scenario) are sampled from the
synthetic realities. In subsequent data assimilation experi-
ments, whereL is unknown now, the hydraulic head data are
used as conditioning information, with the help of the en-
semble Kalman filter (EnKF). For each of the ten synthetic
realities, four different ensembles ofL are tested in the exper-
iments with EnKF; one ensemble estimates high-resolution
L fields with differentL values for each element, and the
other three ensembles estimate effectiveL values for 5, 3 or 2
zones. The calibration of higher-resolutionL fields (i.e. fully
heterogeneous or 5 zones) gives better results than the cali-
bration ofL for only 3 or 2 zones in terms of reproduction of
states, stream–aquifer exchange fluxes and parameters. Ef-
fectiveL for a limited number of zones cannot always repro-
duce the true states and fluxes well and results in biased es-
timates of net exchange fluxes between aquifer and stream.

Also in case only 10 head data are used for conditioning,
the high-resolution characterization ofL fields with EnKF
is still feasible. For less heterogeneous river bed hydraulic
conductivities, a high-resolution characterization ofL is less
important. When uncertainties in the hydraulic parameters of
the aquifer are also regarded in the assimilation, the errors in
state and flux predictions increase, but the ensemble with a
high spatial resolution forL still outperforms the ensembles
with effectiveL values. We conclude that for strongly het-
erogeneous river beds the commonly applied simplified rep-
resentation of the streambed, with spatially homogeneous pa-
rameters or constant parameters for a few zones, might yield
significant biases in the characterization of the water balance.
For strongly heterogeneous river beds, we suggest adopting
a stochastic field approach to model the spatially heteroge-
neous river beds geostatistically. The paper illustrates that
EnKF is able to calibrate such heterogeneous streambeds
on the basis of hydraulic head measurements, outperforming
zonation approaches.

1 Introduction

It is now well known that rivers and streams closely inter-
act with the adjacent groundwater body (Bouwer and Mad-
dock, 1997; Winter, 1999; Sophocleous, 2002). These in-
teractions have a number of consequences on the hydrolog-
ical, chemical and biological environment around streams.
For example, the resulting exchange fluxes between these
two compartments influence the regional water balance and
groundwater flow (Woessner, 2000) and thus also affect the
yield of management activities close to streams, such as river
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bank filtration (Zhang et al., 2011; Schubert, 2002). Addi-
tionally, the different chemical composition of river water
and groundwater also has implications on chemical and eco-
logical processes around streams (Brunke and Gonser, 1997;
Sophocleous, 2002).

The exchange mechanisms between river systems and
aquifers are complex and mainly depend on the pressure dif-
ference between stream and aquifer (Sophocleous, 2002), the
form of the river bed (Cardenas et al., 2004; Boano et al.,
2006), hydraulic properties of the river bed and the adjacent
aquifer (Genereux et al., 2008) and the state of hydraulic
connection between river and groundwater (Brunner et al.,
2009). Exchange fluxes can exhibit a high degree of spatial
and temporal variability, which is often related to the spatial
heterogeneity of hydraulic parameters of the river bed and
the adjacent aquifer (Conant, 2004; Rosenberry and Pitlick,
2009; Genereux et al., 2008), making the model-based pre-
diction of exchange fluxes challenging.Calver(2001) com-
pared literature data on river bed conductivities which ranged
from 10−9 to 10−2 ms−1 with a concentration of values in the
range of 10−7 to 10−3 ms−1. A striking feature in this data
compilation is that estimated river bed permeabilities can
also vary considerably for a single measurement site. This
variability of hydraulic river bed properties can be found at
different scales along a river reach.Genereux et al.(2008) de-
termined river bed conductivities with permeameter tests for
46 locations along a 262 m-long river reach. They observed
a spatial variation in hydraulic conductivity of nearly four
orders of magnitude ranging from approximately 1× 10−7

to 7.5× 10−4 ms−1. They also found that measured river
bed conductivities had a bimodal distribution and tended to
be higher in the middle of the stream.Hatch et al.(2010)
estimated river bed conductivities along a 11 km-long river
reach of the Pajaro River and determined values ranging from
10−6 to 10−4 ms−1. Springer et al.(1999) determined hy-
draulic conductivities for five reattachment bars of the Col-
orado River over a range of 200 miles. Measured hydraulic
conductivities varied over 2 orders of magnitude within the
reattachment bars, and differences between the medians of
the five reattachment bars were up to one log unit.

Different modelling studies have already tried to assess the
consequences of river bed and aquifer heterogeneity on the
prediction of exchange fluxes between streams and ground-
water. For example,Bruen and Osman(2004) investigated
the impact of heterogeneous aquifer hydraulic conductivi-
ties on river–aquifer exchange fluxes with a synthetic 2-D
stream–aquifer model. They compared Monte Carlo simu-
lations using heterogeneous fields of hydraulic conductiv-
ity with simulations using homogeneous fields. This com-
parison was made for different geostatistical parameters and
connection regimes between river and aquifer. They found
that the uncertainty in fluxes increases with an increasing de-
gree of heterogeneity. They also found that a homogeneous
and an ensemble of heterogeneousK fields gave similar re-
sults under connected conditions but different results for a

disconnected regime and unsaturated conditions below the
river bed.Fleckenstein et al.(2006) compared simulation re-
sults for six realizations of geostatistically simulated facies
distributions with a homogeneous aquifer model and found
comparable net seepage fluxes for the different models. How-
ever, they also identified that the different facies distributions
show considerable variability in the spatial distribution of
seepage fluxes and in the state of connection between stream
and aquifer.Kalbus et al.(2009) investigated the effect of het-
erogeneous conductivities within the streambed and the ad-
jacent aquifer by simulating 2-D groundwater flow and heat
transport using the leakage concept. They found that the het-
erogeneity of aquifer properties has more impact on river–
aquifer exchange than that of the streambed. However, they
also mention that homogeneous streambeds lead to an un-
realistic homogenization of water fluxes between river and
aquifer.Frei et al.(2009) simulated the spatio-temporal dis-
tribution of seepage fluxes for a losing river reach in a Monte
Carlo framework. They applied a hydrofacies model for the
distribution of hydraulic conductivities and found that highly
permeable parts of the river reach (≈ 50 % of total length)
make up 98 % of total seepage within their simulations.
They argue that heterogeneity at the hydrofacies scale domi-
nates the spatial pattern of river–aquifer interactions and that
within-facies heterogeneity is of minor importance.

These different studies emphasize that the incorporation
of heterogeneity in models for river–aquifer exchange can
be important for a reliable prediction of exchange fluxes.
In practical applications river bed conductivities are mostly
estimated through calibration but heterogeneity is often ne-
glected in the calibration procedure. One reason is that mea-
surements of river bed conductivities are usually scarce and
an estimation of the corresponding heterogeneity would re-
quire intensive field measurements. Especially for larger
streams, in situ measurements are difficult to perform be-
cause of the higher discharge. As a consequence, in most
cases there is only limited prior knowledge on the hetero-
geneity of hydraulic parameters for a certain site. Another
reason is that the computational demand for inversions with
gradient-based methods and also the complexity of the in-
version increases with a higher-resolution representation of
heterogeneity in the model. Due to a lack of prior knowl-
edge on the magnitude and variability of river bed properties
and in order to ease the inversion procedure, leakage param-
eters are often lumped together in leakage zones; i.e. the in-
version is only done for very few parts of the river and the
underlying heterogeneity is reduced to the different leakage
zones.Irvine et al.(2012) carried out a systematic analysis
on the simplification of heterogeneity to quantify its implica-
tions on the prediction of infiltration fluxes. They simulated
infiltration curves (i.e. the relationship between water table
depth and infiltration flux) for a variety of heterogeneous dis-
tributions of river bed conductivities. Different data points
from these synthetic infiltration curves were then used to cal-
ibrate models with a homogeneous distribution of river bed
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conductivities. Forward simulations with the derived homo-
geneous values of river bed conductivities were subsequently
used to compare the simulated infiltration curves with the
equivalent ones for the fully heterogeneous medium. They
found that the calibrated homogeneous models reproduced
exchange fluxes well when the state of connection between
stream and aquifer was equal for calibration and prediction
of the homogeneous models. However, when the state of con-
nection was transitional or differed between calibration and
prediction, the homogeneous models could not adequately
reproduce the infiltration fluxes of the corresponding hetero-
geneous references.

One way to account for the underlying heterogeneity of
river–aquifer systems in the calibration of groundwater mod-
els in a stochastic framework is the ensemble Kalman filter
(EnKF) (Evensen, 1994). EnKF and its variants have already
been applied successfully for the characterization of het-
erogeneous subsurface properties in groundwater modelling.
Examples are the work ofChen and Zhang(2006), Hendricks
Franssen and Kinzelbach(2008), and Nowak (2009), who
assimilated piezometric heads with EnKF to improve the es-
timation of hydraulic conductivity fields.Sun et al.(2009)
assessed the value of different deterministic ensemble filters
for subsurface characterization.Liu et al.(2008) andLi et al.
(2012) used tracer data, andCamporese et al.(2011) assim-
ilated time-lapse data of electrical resistivity tomography to
infer hydraulic conductivity fields. The studies ofJafarpour
and Tarrahi(2011) and Huber et al.(2011) addressed the
influence of variogram uncertainty and prior information
in the initial parameter ensemble on the estimation of hy-
draulic conductivity fields with EnKF.Zhou et al.(2011) and
Schoeniger et al.(2012) investigated techniques to account
for non-Gaussianity in the assimilation with EnKF. A general
advantage of ensemble-based data assimilation with EnKF
and its variants is that they are able to calibrate model param-
eters on the basis of the forward integration of an ensemble
of different parameter fields and therefore explicitly account
for the high variability of hydraulic parameters in natural set-
tings. Therefore, this methodology should also be well suited
for the characterization of highly variable river bed proper-
ties. In Kurtz et al. (2012) EnKF has been applied specifi-
cally to river–aquifer systems in order to identify the tempo-
ral change of river bed conductivities. In this study we con-
centrate on the question whether the estimation of a few ef-
fective values for river bed hydraulic conductivity can repro-
duce spatially and temporally strongly variable river–aquifer
exchange fluxes with the use of data assimilation. For this
purpose we compare different ensembles of leakage param-
eters that either resemble the fully heterogeneous structure
of different synthetic reference fields or where different de-
grees of spatial aggregation are used. Our specific research
questions are as follows:

– To which degree does a zonation of river bed properties
change predicted exchange fluxes between river and

aquifer compared to a full representation of river bed
heterogeneity?

– Is EnKF able to identify the main structural features of
a fully heterogeneous field of river bed conductivities
through assimilation of hydraulic head measurements?

– How does EnKF perform for different parameteriza-
tion approaches (i.e. detailed representation of hetero-
geneity versus few zones) under conditions with differ-
ent amounts of observation data and additional sources
of uncertainty?

2 Data assimilation with the ensemble Kalman filter

2.1 General description of the data assimilation
algorithm

The ensemble Kalman filter (EnKF) is a sequential data as-
similation approach which can be utilized to improve the
prediction capability of a particular model in a Monte Carlo
framework. The methodology was originally applied for at-
mospheric and oceanographic models (e.g.Evensen, 1994;
Houtekamer and Mitchell, 1998) and later used in mod-
ified variants, which include parameter estimation in sur-
face hydrology (e.g.Moradkhani et al., 2005) and subsur-
face hydrology (e.g.Chen and Zhang, 2006; Liu et al., 2008;
Hendricks Franssen and Kinzelbach, 2008; Nowak, 2009).
The basic idea of EnKF is that different model realizations
(e.g. with different forcings and/or parameters) are propa-
gated forward in time until state measurements become avail-
able. The predicted states are then improved by optimally
combining the ensemble of model predictions and measure-
ment data. EnKF can also be used to jointly estimate model
states and parameters. In this case the model statesψ i and
the model parametersφi for realizationi are combined in
the state–parameter vector9i (e.g.Chen and Zhang, 2006;
Hendricks Franssen and Kinzelbach, 2008):

9i =

(
ψ i
φi

)
. (1)

For each assimilation cycle (i.e. at times when measurements
become available) EnKF then performs a Bayesian update on
the ensemble of the state–parameter vector9.

p(9 | y0)∝ p(y0
|9)p(9), (2)

wherep(9 | y0) is the posterior (updated) distribution of the
state–parameter vector9 given the observationsy0, p(y0

|

9) is the likelihood of measurementsy0 given9 andp(9)
is the prior distribution of9. The prior distribution of the
statesψ (as part of9) is usually obtained by advancing each
realizationi of the ensemble with a modelM:

ψ ti =M
(
ψ t−1
i ,φi,ζ i

)
, (3)
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whereψ ti is the predicted state vector for time stept ,ψ t−1
i is

the predicted state vector of the preceding time stept−1,φi
are model parameters andζ i are model forcings.

The posterior distribution of9 in Eq. (2) is then calcu-
lated with the EnKF analysis scheme which proceeds in the
following steps: first, the forecasted values ofψ at observa-
tion points have to be extracted from the ensemble:

ψ̂ ti = Hψ ti, (4)

whereψ̂ ti is the state vector at observation points andH is
a matrix that maps or interpolates the whole state vectorψ ti
on the observation points. Next, the measured statesy0 have
to be perturbed with values from a normal distribution for
each realization. This perturbation is necessary to derive the
correct posterior variance of9 after the assimilation step
(Burgers et al., 1998) and the magnitude of this perturbation
is usually derived from the measurement error of the state
measurement:

yi = y0
+ εi, (5)

whereyi are the perturbed observations for realizationi, y0

is the measurement vector andεi is the corresponding per-
turbation vector which is sampled from a normal distribution
N (0,R) with a mean of zero and a covariance that corre-
sponds to the covariance matrix of observation dataR.

Finally, the posterior distribution of9 is found by apply-
ing the following equation on each ensemble memberi:

9a
i =9 ti +αG

(
yi − ψ̂

t
i

)
, (6)

where9a
i is the analysed (updated) state–parameter vector

for realizationi, 9 ti is the forecasted state–parameter vec-

tor (with ψ ti from Eq.3), ψ̂ ti is the simulated state vector at
observation points andyi is the perturbed measurement vec-
tor. α is a damping factor which is used to decrease the ef-
fect of filter inbreeding for parameter updates (seeHendricks
Franssen and Kinzelbach, 2008). G is the Kalman gain which
is calculated as follows:

G = CHT (HCHT
+ R)−1, (7)

whereC is the covariance matrix of9 t andR is the covari-
ance matrix of observation datay0. The Kalman gainG is
calculated once for all ensemble members and weights the
uncertainties in the prediction of9 from the forward sim-
ulations with the measurement error ofy0. In the analysis
step (Eq.6) the weighted factors ofG are used to correct
each member of9 ti with the residuals at observation points
(bracketed term in Eq.6). In order to deriveG it is not nec-
essary to calculate the full covariance matrix of9 t . Instead,
it is sufficient to only calculate the covariances between9 t

andψ̂ t :

CHT
=

(
C
ψ t ψ̂ t

C
φψ̂ t

)
. (8)

2.2 Specific usage of EnKF for river–aquifer
interactions

In this study the focus is on the investigation of river–aquifer
exchange fluxes. Thus the model states of interest are piezo-
metric headsh, and the most relevant model parameters are
hydraulic conductivities of the river bed, which are imple-
mented in the model as leakage coefficientsL. Therefore, the
state–parameter vector9 which was introduced in the previ-
ous section is composed ofh and log10(L). For a subset of
simulations also the hydraulic conductivities of the aquifer
(K) are updated in the assimilation process. For these simu-
lations9 consists ofh, log10(K) and log10(L). The model
M(ψ t−1

i ,φi , ζ i) that is used to advanceh in time is a ground-
water model that is capable of simulating variably saturated
flow and that includes a parameterization to simulate river–
aquifer exchange fluxes. The observation datay0 consist of
measurements ofh in the aquifer. The covariance matrixR
includes the measurement errors of observation data on the
diagonal, but covariances between observation points are as-
sumed to be zero (i.e. measurement errors are assumed to be
independent).

3 Model description

Synthetic data assimilation experiments were performed
with a 3-D finite element model of the Limmat valley
aquifer in Zurich (Switzerland). The boundary conditions for
this model are given schematically in Fig.1. Groundwater
recharge is imposed as a flux boundary condition on the first
model layer. Groundwater inflows from the surrounding hills
on the northern and southern boundary of the model were
also treated as flux boundary conditions. Within the model
domain also management activities take place: groundwater
is withdrawn close to the river through several bank filtra-
tion and drinking water wells. The pumped water from the
bank filtration wells is recharged to the aquifer through sev-
eral recharge wells and three recharge basins which are lo-
cated south of the drinking water wells. At the western side
of the model domain a constant head boundary condition is
imposed. The two rivers in the model (Limmat and Sihl) re-
side at the northern and eastern boundary of the model re-
spectively, and river stages are imposed on each river node
of the model.

All model forcings (recharge, lateral inflows, river stages,
pumping rates) are transient and based on real-world mea-
surements for that site. A more detailed description on the
calculation of forcing data is given inHendricks Franssen
et al.(2011).

The groundwater modelling software SPRING (Delta h
Ingenieurgesellschaft mbH, 2006) was used to numerically
solve the transient saturated/unsaturated flow equation for
each realization of the ensemble. In SPRING, river–aquifer
exchange fluxes for each leakage nodei are calculated
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Fig. 1. Schematic representation of model domain and boundary
conditions.

according to a Cauchy-type boundary condition (leakage
principle):

Qi = LiAi

(
hriver
i −h

gw
i

)
, (9)

whereQi is the volumetric flux between river and aquifer
[L3T−1], Li is leakage coefficient [T−1], Ai is the predefined
area for each leakage node [L2], hriver

i is river stage [L] and
h

gw
i is groundwater level underneath the river [L].
Internally, SPRING does not directly make use of the leak-

age coefficientL (as in Eq.9) as an input parameter but in-
stead requests leakage coefficients combined with areal in-
formation. In this study, the leakage coefficientL multiplied
with half of the river width is used as an input parameter
(denotedL∗). The usage ofL∗ instead ofL does not have a
significant influence on the comparability of different simu-
lation results because the river width is almost constant in the
utilized model. Hence, the term leakage coefficient is used
synonymously forL andL∗ in the following.

Porosities in the model domain were set to a constant value
of 0.15 for all simulations. Hydraulic conductivities of the
aquifer (K) were taken from a prior calibration of the model
with a modified pilot point method (Alcolea et al., 2006) us-
ing 87 piezometric head measurements (for further details
on the calibration seeHendricks Franssen et al., 2011; Huber
et al., 2011). The calibratedK field was used for the majority
of simulations performed in this study (for exception see be-
low). Van Genuchten parameters for unsaturated flow were
taken from the standard lookup table that is provided in the
utilized groundwater modelling software SPRING (summa-
rized in Table1) and were the same for all conducted simu-
lations.

Table 1. Lookup table for van Genuchten parameters in SPRING.
Sres is residual saturation,αvg is the parameter related to the in-
verse of air entry suction andn is the parameter related to pore size
distribution.

saturated hydraulic
conductivity van Genuchten parameters
K [ms−1] Sres [–] αvg [m−1] n [–]

K ≥ 9.81× 10−4 0.2 1.37× 10−2 1.5
9.81× 10−4 
K 
 9.81× 10−7 0.4 2.24× 10−3 1.35
K ≤ 9.81× 10−7 0.9 1.23× 10−3 1.3

4 Synthetic experiments

The general setup of the synthetic experiments consists of the
following steps:

1. Generation of ten spatially heterogeneous distribu-
tions of log10(L

∗)with sequential Gaussian simulation
(SGS).

2. Finite elements solution of the transient variably sat-
urated flow equation (for 609 days) using SPRING.
A solution is calculated for each of the ten generated
log10(L

∗) fields of step1. The calculated hydraulic
heads and river–aquifer exchange fluxes for these ten
simulations serve as the ten “true” reference solutions.

3. Generation of log10(L
∗) ensembles (100 realizations)

for a fully heterogeneous case and three different zona-
tions (5, 3 and 2 leakage zones).

4. For each of the ten references (step 1 and 2): assimila-
tion of hydraulic head data from step 2 with EnKF for
the four log10(L

∗) ensembles of step 3.

This procedure is used for four scenarios which differ in
the degree of heterogeneity of log10(L

∗) reference fields, the
information content of the initial ensemble and the sources
of parameter uncertainty:

A Strongly heterogeneous log10(L
∗) fields for references

and initial ensembles (no prior information)

B Moderately heterogeneous log10(L
∗) fields for refer-

ences and initial ensembles (no prior information)

C Strongly heterogeneous log10(L
∗) fields with prior in-

formation in the initial ensembles

D Same as A but with uncertain log10(K) fields

Scenario A serves as a base scenario for which the relevant
results of the simulation experiments are presented in detail.
The results for scenarios B, C and D are then discussed with
respect to deviations from scenario A. In this sense, scenario
B is utilized to assess the performance of data assimilation
for different degrees of heterogeneity and scenario C should
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give insight into the value of prior information for the data
assimilation with EnKF. Scenario D is used to investigate the
effect of uncertainty in the aquifer hydraulic parameters on
the assimilation process and parameter identifiability.

4.1 Reference fields

The reference fields of leakage coefficients for scenario
A were generated by adding perturbation fields to a prede-
fined mean value of log10(L

∗) of −2.78 log10(ms−1). The
perturbation fields were generated by SGS with the code
GCOSIM3D (Gómez-Hernández and Journel, 1993) for the
rivers Sihl and Limmat. These perturbation fields had a grid
size of 50 m and a spatial extend of 7000× 1000 m for the
river Limmat and 2500× 500 m for the river Sihl. A spheri-
cal variogram was chosen for geostatistical simulations of the
ten perturbation fields. The nugget was set to 0 log10 (m s−1)
for all simulations. The range of the variograms was sampled
from a uniform distribution with values ranging from 1000
to 2000 m for each reference field. Values for the sill were
also sampled from a uniform distribution ranging from 1 to
2 log10 (m2 s−2). The simulated fields were directed onto the
main axis of the rivers, and the leakage coefficient log10(L

∗)

for each river node was determined by the overlying grid
block of the geostatistically simulated perturbation field plus
the predefined mean value of−2.78 log10 (m s−1). The dif-
ferent reference fields of leakage coefficients along the river
reach are shown in Fig.2.

For the creation of reference fields for scenario B a similar
methodology as for scenario A was applied. The only differ-
ence between these two scenarios is that for scenario B a sill
between 0.1 and 0.5 log10 (m2 s−2) was used, which results
in a lower degree of variability for these references.

For scenario C the reference fields of log10(L
∗) have a pre-

defined zonation with five leakage zones whose spatial loca-
tion corresponds to the one of ensembleZ5 (see below). The
predefined zonal values for log10(L

∗) are summarized in Ta-
ble 2. Similar to scenario A, perturbation fields were added
to these predefined zonal values. These perturbation fields
were created in a similar way as for scenario A with a nugget
of 0 log10 (m s−1), a sill of 1 log10 (m2 s−2) and a range of
600 m. Compared to scenario A these reference fields include
a higher contrast between different parts of the river reach
(realized through the predefined zonation) and an additional
component of intrazonal variability (realized through the per-
turbation fields).

For all reference runs of the different scenarios theK field
from the prior calibration of the model (see Sect.3) was used.

4.2 Zonation

For the assimilation experiments four ensembles of leakage
coefficients were generated which differed in their spatial
representation of heterogeneity. The first ensembleZhet rep-
resents the full heterogeneity of the reference fields, and the

Table 2.Predefined zonal leakage values for generation of reference
fields for scenario C. Leakage zones are numbered from west to
east.

leakage zone log10(L
∗
zonal) [log10 (m s−1)]

I −5.51
II −1.96
III −3.88
IV −5.37
V −6.44

number of zones is equal to the number of river nodes (i.e.
457). The second ensembleZ5 only represents 5 leakage
zones, which were positioned according to the main hydro-
logical features of the river reach (i.e. position of two weirs,
confluence of the rivers Sihl and Limmat), and the groundwa-
ter management activities at this site, which resulted in four
leakage zones for the river Limmat and one leakage zone for
the river Sihl. For the third ensembleZ3 the river Limmat is
divided into two leakage zones and the river Sihl is the third
leakage zone. For the fourth ensembleZ2 the river Limmat
is aggregated to one leakage zone and again the river Sihl
serves as a separate leakage zone. The spatial arrangement
of leakage parameters for the fully heterogeneous case (Zhet)
and the three zonation approaches (Z5, Z3 andZ2) is de-
picted in Fig.3.

4.3 Ensemble generation

The generation of the ensembles forZhet for the different sce-
narios corresponded closely to the generation of the respec-
tive reference fields. However, a higher degree of uncertainty
with respect to geostatistical parameters was used for the en-
sembles. For scenario A the range parameter varied between
50 and 5000 m and the sill value between 0.1 and 3.0 log10
(m2 s−2). For scenario B the sill forZhet had values between
0.1 and 1.5 log10 (m2 s−2) and the range varied between 50
and 5000 m. For scenario C the ensemble forZhet was gener-
ated with the same geostatistical parameters as for scenario
A.

For each scenario, the initial log10(L
∗) ensembles ofZ5,

Z3 and Z2 were derived from the corresponding initial
log10(L

∗) ensemble ofZhet. This was done by calculating
the arithmetic average of log10(L

∗) values for each realiza-
tion ofZhet according to the respective zonation scheme. For
example, the value of log10(L

∗) for one of the five leakage
zones ofZ5 for a single realization is calculated from the
corresponding realization ofZhet by averaging the log10(L

∗)

of Zhet that are within the respective zone ofZ5. This proce-
dure is then repeated for all leakage zones and all realizations
of Z5. In Fig. 4 the generated ensembles for scenario A are
compared to reference field I.

For scenarios A, B and C the utilizedK fields were iden-
tical to the ones of the reference field; i.e. the only source
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Fig. 2. Reference fields of leakage coefficients for scenario A along the river reach. DistanceXriver is calculated starting from the two most
western river nodes.L∗ has units m s−1.
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Fig. 3. Spatial representation of heterogeneity for four parameter ensembles. In the fully heterogeneous case (Zhet) an individual leakage
coefficient is assigned to each river node. For the zonated ensembles (Z5, Z3 andZ2) each colour corresponds to a separate leakage zone.
The river nodes within a leakage zone share the same leakage coefficient.

of uncertainty are the unknown leakage parameters. For sce-
nario D also the initialK fields of the different ensembles
were made uncertain andK was jointly updated together
with h andL. The initial K fields were the same for all
four ensembles and were generated by adding perturbation
fields to the calibratedK field of the reference runs. These
perturbation fields were generated by SGS with the code
GCOSIM3D (Gómez-Hernández and Journel, 1993) on a
very fine grid (1 m× 1 m× 1 cm) and then upscaled to the
model grid through simplified renormalization (Renard et al.,
2000). The geostatistical parameters for SGS (nugget: 0 log10
(m s−1); sill: 0.584 log10 (m2 s−2); range in horizontal direc-
tion: 99 m; range in vertical direction: 3.2 m) were derived
from real-world measurements of hydraulic conductivities
for the Hardhof site (approx. 800K measurements from flow
meter surveys and pumping tests).

4.4 Settings for data assimilation with EnKF

The meta parameters for data assimilation experiments for
scenario A, B, C and D with EnKF are summarized in Ta-
ble 3. The value for the damping factorα of 0.1 was based
on recommendations fromHendricks Franssen and Kinzel-
bach(2008) and was the same for all calculations. The up-
dating frequency of 10 days was chosen in order to allow the
model states to synchronize to the updated model parameters

between the updating cycles. This setting was used to reduce
the problem of inconsistency between model states and pa-
rameters after the update with EnKF. For all four scenarios
100 observation points were used as input data for EnKF.
Scenario A was additionally simulated with a lower amount
of observations (10 measurements). The other settings for as-
similation with EnKF were held constant for all scenarios.

4.5 Performance assessment of simulations

The performance of the data assimilation experiments is as-
sessed by the prediction error of hydraulic heads throughout
the model domain, the prediction error of river–aquifer ex-
change fluxes and the correction of leakage coefficients dur-
ing the update. For the prediction error of hydraulic heads
the root mean square error (RMSEh) between the predicted
mean hydraulic head and the hydraulic head of the reference
is calculated using

RMSEh(t)=

√√√√ 1

Nnodes

Nnodes∑
i

(
hi(t)−h

ref
i (t)

)2
, (10)

wherehi is the mean hydraulic head for model nodei [L],
href
i is the hydraulic head of the reference simulation for node
i [L], N nodesis the total number of model nodes andt is time
step [T].

www.hydrol-earth-syst-sci.net/17/3795/2013/ Hydrol. Earth Syst. Sci., 17, 3795–3813, 2013
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Fig. 4. Initial ensembles of leakage coefficients (coloured) and reference field I (black) for scenario A for all river nodes (rivers Limmat and
Sihl) along the river reach. DistanceXriver is calculated starting from the two most western river nodes.L∗ has units m s−1.

Table 3.Default settings for data assimilation with EnKF.

parameter value

ensemble size 100
observation points 100 (10)
damping factorα 0.1
update frequency 10 days
measurement error 0.05 m

For the evaluation of river–aquifer exchange we present
either the evolution of the leakage fluxes over timeQ(t) or
statistics for the total volume of water that was exchanged
between river and aquifer during the whole simulation period
1Vtot:

Q(t)=

Nleak∑
i

Qi(t) (11)

1Vtot =

ttot∑
j

Nleak∑
i

Qij1tj , (12)

whereQ(t) is the river–aquifer exchange flux over time
[L3T−1], Qi(t) is the leakage flux for river nodei over time,
Nleak is total number of leakage nodes,1Vtot is the volume
of water that is exchanged between river and aquifer over
the whole simulation period [L3], Qij is the volumetric flux
between river and aquifer for theith leakage node and the
j th time step [L3 T−1], 1tj is time step [T] andttot is total
number of time steps.Q(t) was calculated direction depen-
dent; i.e. fluxes from river to aquifer (positive) and fluxes
from aquifer to river (negative) were summed up separately.

4.6 Computational requirements for data assimilation
experiments

In general, data assimilation experiments require a high
amount of computational resources due to the forward prop-
agation of multiple instances of the same model. For our sim-
ulations, one assimilation run consists of 100 forwards runs

of the model (each with 609 time steps), which translates into
16 000 forward runs for all scenarios. In order to reduce the
total runtime of the simulations we used a parallel imple-
mentation of EnKF in which multiple realizations are pro-
cessed at once (each model realization using a single CPU).
With this implementation, the runtime for one assimilation
experiment was about 16 hours using 8 CPUs. Simulations
were performed on the supercomputing facilities (JUROPA)
of Forschungszentrum Jülich (Germany).

5 Results

5.1 Strongly heterogeneous case (scenario A)

In order to get a first overview on the worth of data assim-
ilation, Fig. 5 compares RMSEh for reference I with open-
loop simulations (no update with EnKF) and simulations
where onlyh was updated with measurements. Generally,
head predictions improve through the update with EnKF,
and this improvement is stronger when also log10(L

∗) val-
ues are updated. The errors for the open-loop simulations
differ between the four ensembles especially betweenZhet
and the zonated ensembles. This is related to the fact that the
zonated ensembles were derived through spatial averaging of
the log10(L

∗) ensemble ofZhet. As a consequence, the effect
of state and parameter updates is larger forZhet than for the
other ensembles.

Figure6 compares RMSEh of the four log10(L
∗) ensem-

bles for all ten highly heterogeneous reference fields of sce-
nario A for a joint state–parameter update (see also Table5
for a quantitative overview on RMSEh values). The highest
improvement is observed forZhet where RMSEh is consis-
tently reduced to about 0.1 m among all references. For the
other ensembles the performance in terms of RMSEh is more
dependent on the specific reference. For example, RMSEh of
Z5 is similar to the one ofZhet for some references (e.g. IV,
VII and X) but is worse for other references (e.g. II and IX).
A similar behaviour can be observed forZ3 andZ2.

The updated net fluxes between river and aquifer are
shown in Fig.7 for reference field I. For this reference
field the updating with EnKF led to an improvement of the
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Fig. 5. RMSEh for open-loop simulations, update of hydraulic heads and joint update of hydraulic heads and leakage coefficients (scenario
A). Four different ensembles are compared.
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Fig. 6. RMSEh of conditional simulations with EnKF for ten reference fields of leakage coefficients (scenario A). Four different ensembles
are compared. EnKF jointly updated hydraulics heads and leakage coefficients with 100 piezometric head data.

prediction of fluxes from river to aquifer for all four ensem-
bles. Fluxes from aquifer to river were well reproduced by
Zhet andZ5, whereas forZ3 andZ2 a larger deviation be-
tween ensemble mean and true values was found. The en-
semble variance of leakage fluxes decreases very fast, with
most of the decrease happening in the first 100 simulation
days. One exception is the flux from aquifer to river forZhet.
The general decrease of variance within the first 100 days is
observable for all ten references, whereas the higher variabil-
ity for Zhet was a special feature of reference I.

An overview of the net exchange between river and aquifer
for all ten references is given in Fig.8. Here the total amount
of exchanged water summed over the complete simulation
period (1Vtot) is displayed for each of the reference fields
and for each of the zonation approaches. The net exchange
for Zhet is very close to the net exchange of the respective
reference and thus shows the best performance among the
four ensembles.Z3 andZ2 show a good fit for some refer-
ences (e.g. reference IV), but the fluxes are significantly over-
or underestimated for other references.Z5 does not show the
partially high deviations from the references that can be ob-
served forZ3 andZ2. However, the performance ofZ5 is not
better than that ofZhet in the majority of cases.

Fig. 7. Cumulative directional fluxes between river and aquifer for
conditional simulations with EnKF for four representations of spa-
tial heterogeneity (scenario A). Results are shown for reference I.
Fluxes from river to aquifer have a positive sign.
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Table 4.Root mean square error of mean leakage coefficients log10(L
∗) in [log10 (m s−1)] at the end of the simulation period. Results are

shown for all scenarios and references.

I II III IV V VI VII VIII IX X

scenario A Zhet 0.964 0.826 0.707 0.859 0.814 0.988 0.750 1.000 0.770 0.689
Z5 1.710 2.177 1.531 1.070 0.882 1.337 0.732 1.117 0.973 0.852
Z3 1.093 1.307 0.903 0.809 1.052 1.460 1.079 1.111 1.398 1.133
Z2 1.087 1.474 1.175 0.834 1.339 1.468 1.296 1.302 1.391 1.138

scenario A Zhet 1.121 0.951 0.941 1.138 0.996 1.288 0.916 1.192 1.119 0.803
10 observations Z5 1.136 1.379 0.948 0.786 0.875 1.291 0.754 1.120 1.029 0.902

Z3 1.114 1.261 0.940 0.801 1.032 1.396 1.052 1.104 1.364 1.127
Z2 1.099 1.458 1.181 0.829 1.312 1.432 1.264 1.293 1.366 1.138

scenario B Zhet 0.363 0.377 0.338 0.295 0.375 0.336 0.265 0.410 0.452 0.353
Z5 0.469 0.586 0.319 0.573 0.488 0.412 0.347 0.470 0.630 0.452
Z3 0.451 0.573 0.404 0.412 0.519 0.579 0.444 0.573 0.733 0.414
Z2 0.463 0.571 0.338 0.439 0.521 0.483 0.468 0.875 0.629 0.441

scenario C Zhet 1.083 1.065 0.963 1.341 1.243 1.074 1.008 0.991 1.188 1.057
Z5 1.045 0.937 1.050 1.277 1.148 0.975 1.094 0.922 1.144 0.805
Z3 1.828 1.467 1.692 2.131 2.240 1.489 1.283 1.466 1.702 1.806
Z2 1.858 1.507 1.742 2.196 2.600 1.542 1.303 1.493 1.702 1.903

scenario D Zhet 1.046 1.033 1.011 1.111 1.048 1.250 0.909 1.138 1.047 0.948
Z5 1.407 1.396 0.913 0.811 0.947 1.335 0.754 1.149 1.032 0.931
Z3 1.092 1.251 0.907 0.787 1.112 1.463 1.097 1.116 1.399 1.128
Z2 1.083 1.467 1.192 0.836 1.825 1.530 1.564 1.470 1.455 1.136

Table 5.Root mean square error of mean hydraulic heads (for the whole model domain) in [m] calculated for the second half of the simulation
period (day 300 to day 609). Results are shown for all scenarios and references.

I II III IV V VI VII VIII IX X

scenario A Zhet 0.070 0.055 0.110 0.104 0.034 0.039 0.030 0.090 0.092 0.066
Z5 0.102 0.184 0.212 0.101 0.078 0.088 0.050 0.113 0.207 0.073
Z3 0.151 0.182 0.197 0.119 0.092 0.092 0.070 0.145 0.249 0.129
Z2 0.165 0.203 0.333 0.125 0.222 0.092 0.178 0.200 0.249 0.122

scenario A Zhet 0.240 0.101 0.167 0.129 0.082 0.153 0.103 0.118 0.171 0.146
10 observations Z5 0.107 0.180 0.158 0.096 0.081 0.101 0.057 0.104 0.193 0.071

Z3 0.152 0.167 0.173 0.111 0.095 0.106 0.078 0.104 0.235 0.124
Z2 0.162 0.191 0.314 0.115 0.225 0.099 0.180 0.167 0.233 0.124

scenario B Zhet 0.100 0.100 0.103 0.080 0.076 0.106 0.095 0.113 0.362 0.071
Z5 0.149 0.163 0.100 0.110 0.169 0.222 0.151 0.135 0.299 0.154
Z3 0.178 0.133 0.116 0.115 0.137 0.241 0.115 0.151 1.273 0.168
Z2 0.175 0.137 0.265 0.118 0.182 0.264 0.186 0.203 0.513 0.142

scenario C Zhet 0.094 0.074 0.326 0.093 0.088 0.088 0.075 0.076 0.091 0.115
Z5 0.213 0.139 0.265 0.166 0.254 0.214 0.289 0.151 0.219 0.250
Z3 0.459 0.313 0.550 0.228 0.440 0.406 0.312 0.251 0.346 0.614
Z2 0.533 0.339 0.552 0.257 0.465 0.412 0.317 0.248 0.435 0.584

scenario D Zhet 0.189 0.138 0.356 0.157 0.124 0.166 0.144 0.168 0.234 0.184
Z5 0.229 0.344 0.448 0.218 0.153 0.174 0.106 0.210 0.340 0.244
Z3 0.319 0.345 0.457 0.233 0.166 0.185 0.140 0.191 0.423 0.262
Z2 0.323 0.299 0.477 0.246 0.278 0.195 0.255 0.286 0.437 0.282
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Fig. 8. Total amount of water exchanged between river and aquifer over the whole simulation period (609 days) for scenario A. Red lines
mark the water exchange for the different reference runs. On the right-hand side the description of the boxplots is illustrated.
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Fig. 9. Fluxes between river and aquifer along the river reach for conditional simulations with EnKF at simulation day 300 (scenario A,
reference IV). Fluxes from river to aquifer have a positive sign. DistanceXriver is calculated starting from the two most western river nodes.

Figure9 gives an example of the spatial distribution of ex-
change fluxes for time step 300 and reference IV. ForZhet the
spatial distribution of exchange fluxes of the reference run
is principally captured by the ensemble, and the exchange
fluxes of the reference run are within the uncertainty bounds
of the ensemble. ForZ5,Z3 andZ2 some of the principal fea-
tures of the reference run, i.e. the river parts with the highest

positive exchange fluxes, are also present although the refer-
ence fluxes are no longer within the uncertainty bounds of the
zonated ensembles. In other parts of the river the exchange
fluxes of the reference run are not present in the ensemble
calculations ofZ5, Z3 andZ2, e.g. the negative fluxes in the
western part of the model.
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Fig. 10.Ensembles of leakage coefficients (coloured) and reference field (black) along the river reach at day 1 (upper row) and at day 600
(lower row) for scenario A. DistanceXriver is calculated starting from the two most western river nodes.L∗ has units m s−1.

Figure10 compares the initial ensembles of leakage co-
efficients with the updated ones at day 600 for reference
I. In general, the updated ensembles at time step 600 have
a smaller variance than the initial ensembles. ForZhet the
updated log10(L

∗) ensemble mostly covers the spatial pat-
tern of the reference field. For some parts of the riverZhet
still has a relatively high variance, while in other parts vari-
ance is low and the spatial pattern of the ensemble is close to
the pattern of the reference field. ForZ5 the mean values for
the different zones remain more or less constant during the
updates, while the ensemble variance for the different zones
strongly decreases for four of the five zones. ForZ3 andZ2
also a very strong decrease in ensemble variance is visible.
The overview of RMSElog10(L∗) in Table4 additionally em-
phasizes thatZhet usually gives the closest approximation to-
wards the reference fields.

5.2 Strongly heterogeneous case (scenario A) with lower
observation density

In order to investigate how a lower density of observa-
tion points affects the results for the different zonation ap-
proaches, the assimilation experiments of scenario A were
repeated with hydraulic head time series measured at only 10
points instead of 100. The overall error in terms of RMSEh
for Z5, Z3 andZ2 was comparable to those in the assimila-
tion experiments with 100 observation points (see Table5).
ForZhet the overall deviations to the reference were higher
when only 10 observation points were used. Especially in the
first part of the simulation period the lower observation den-
sity led to a slower decrease of RMSEh forZhet. At the end of
the simulation period, RMSEh for Zhet was similar to those
of the zonated ensembles but not significantly better.

The predicted mean fluxes in both directions (i.e. fluxes
to river or to aquifer) forZhet were underestimated in most
cases, whereas there were no major differences for the other
ensembles. Flux predictions forZhet were also associated
with a higher degree of uncertainty compared to the assim-
ilation of 100 observations. Despite an underestimation of
both fluxes from river to aquifer and fluxes from aquifer
to river for Zhet, the predicted net fluxes between river and
aquifer were comparable to the simulations with 100 obser-
vation points; i.e.Zhet gave good results for all references.
Net fluxes for the other ensembles were also similar to the
assimilation of 100 measurements, and especially forZ3 and
Z2 higher deviations occurred for some references. The up-
date of leakage coefficients forZhet was not as good as for
the assimilation of 100 observations. The main structural fea-
tures of the reference fields were captured during the assimi-
lation, but the ensemble variance at the end of the simulation
period was significantly higher when only 10 observations
were assimilated (see Fig.11). From Fig.11 it becomes ob-
vious that there are more extreme values than for the assim-
ilation of 100 observations. This can be seen as a reason for
the higher variability of fluxes forZhet. The variability of
log10(L

∗) for the other ensembles increased only marginally
and also the mean values forZ3 andZ2 were similar to the
assimilation of 100 measurements.

5.3 Mildly heterogeneous case (scenario B)

For scenario B the variability of log10(L
∗) fields for the refer-

ences and the initial ensembles was reduced. Results for this
case show that RMSEh for Z5, Z3 andZ2 correspond more
closely to RMSEh of Zhet. Nevertheless,Zhet still shows the
best performance in terms of RMSEh for all ten references.

Hydrol. Earth Syst. Sci., 17, 3795–3813, 2013 www.hydrol-earth-syst-sci.net/17/3795/2013/



W. Kurtz et al.: High-resolution characterization of heterogeneous river beds 3807

Fig. 11.Ensembles of leakage coefficients (coloured) and reference field (black) along the river reach at day 600 for scenario A when only
10 observation points are available. DistanceXriver is calculated starting from the two most western river nodes.L∗ has units m s−1.
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Fig. 12.Total amount of water exchanged between river and aquifer over the whole simulation period (609 days) for conditional simulations
with EnKF (scenario B). Red lines mark the water exchange for the different reference runs.

The temporal evolution of leakage fluxes for the ten refer-
ences is captured well by all four ensembles. Compared to
scenario A the systematic differences that occurred between
reference fluxes and simulated fluxes were reduced (espe-
cially for Z3 andZ2). This is also reflected in the cumulative
net exchange over the simulation period (Fig.12).

It can be seen that ensembles are generally closer to the
reference values, and this is especially pronounced forZ3
andZ2. But still there are some references where the uncer-
tainty bounds ofZ2 do not cover the reference flux. Although
the prediction of cumulative net fluxes for scenario B is better
for ensembles with a lower number of leakage zones, the spa-
tial representation of fluxes is still worse forZ2, Z3 andZ5
than forZhet where the spatial distribution of leakage fluxes
closely corresponds to the reference fluxes.

5.4 Strongly heterogeneous case with a predefined
zonation (scenario C)

In scenario C the references include a predefined zonation
with a relatively high contrast of log10(L

∗) between the indi-
vidual zones. A second important feature of this scenario is
that forZ5 the location of leakage zones is similar to those of
the references. Thus the initial ensemble ofZ5 includes prior
information on the spatial distribution of log10(L

∗).
RMSEh of Zhet andZ5 are very similar for this scenario

with slightly lower errors forZhet. In contrast,Z3 andZ2
perform worse in terms of RMSEh compared to scenario A.
For the net fluxes between river and aquifer a similar relation
is found. AgainZhet andZ5 show relatively similar values
which are very close to the reference values, whereasZ3 and
Z2 consistently underestimate the net exchange, leading to
a higher error compared to scenario A (Fig.13).

The general worse performance forZ3 andZ2 in terms
of head and flux predictions is a consequence of the spatial
averaging of log10(L

∗). For the ensembles used for scenario
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Fig. 13.Total amount of water exchanged between river and aquifer over the whole simulation period (609 days) for conditional simulations
with EnKF (scenario C). Red lines mark the water exchange for the different reference runs.

Fig. 14.Ensembles of leakage coefficients (coloured) and reference field (black) along the river reach at day 1 (upper row) and at day 600
(lower row) for scenario C. DistanceXriver is calculated starting from the two most western river nodes.L∗ has units m s−1.

C the spatial contrasts for log10(L
∗) are higher due to the

predefined zonation in the references and initial ensembles.
Therefore, the leakage zones ofZ3 andZ2 cover parts of
the reference fields that have very different log10(L

∗) val-
ues. This can be seen in Fig.14 where the initial log10(L

∗)

ensemble is compared with the updated one at the end of
the simulation period. BecauseZ3 andZ2 are not flexible
enough to account for the variability of the references due to
their limited number of leakage zones the simulated piezo-
metric heads and leakage fluxes deviate stronger from the
reference values thanZhet andZ5.

5.5 Strongly heterogeneous case with uncertainK
values (scenario D)

In order to verify the influence of uncertain hydraulic aquifer
properties on the estimation of log10(L

∗) fields, scenario A
was repeated with an uncertain initial ensemble ofK fields
(scenario D). In this scenario, log10(K) values were jointly
updated together withh and log10(L

∗). From Table5 it is
obvious that RMSEh is about two to three times higher for
all four log10(L

∗) ensembles when the additional uncertainty
in K is introduced. In 9 out of 10 casesZhet shows the best
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Fig. 15.Total amount of water exchanged between river and aquifer over the whole simulation period (609 days) for conditional simulations
with EnKF (scenario D). Red lines mark the water exchange for the different reference runs.
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Fig. 16.Total amount of water exchanged between river and aquifer over the second half of the simulation period (day 300 to day 609) for
conditional simulations with EnKF (scenario D). Red lines mark the water exchange for the different reference runs.

results among the four log10(L
∗) ensembles, which is similar

to the findings for scenario A (with deterministicK values).
Data for the total amount of exchanged water1Vtot over

the whole simulation period (Fig.15) generally show a
higher variability than for scenario A (Fig.8). For scenario
D Zhet is significantly closer to the reference values only for
references I–III . When1Vtot is solely calculated for the sec-
ond half of the simulation period (Fig.16) the uncertainty in
total water exchange is greatly reduced and there are more
cases in which the heterogeneous ensemble performs better
than the zonated ensembles.

The data for RMSElog10(L∗) from Table4 show that the
average deviation from the reference fields stays about the
same forZ3 andZ2 but gets slightly worse forZhet and

Z5 compared to scenario A. However, forZhet the struc-
ture of the reference fields is still captured well by the fi-
nal log10(L

∗) ensemble with a slightly lower variability than
for scenario A. Figure17 gives some summary information
on the update of log10(K) fields for the different ensembles.
The diagram shows the statistics of RMSElog10(K) for the fi-
nalK fields for all ten references. It can be seen that a higher
degree of aggregation of leakage parameters also leads to a
higher error in the estimatedK fields. The reason is that for
the zonated ensembles (especiallyZ3 andZ2) the lower flex-
ibility in adapting to the true fields ofL is compensated by
a stronger adjustment ofK values (in order to correct the
mismatch between observed and simulated heads).

www.hydrol-earth-syst-sci.net/17/3795/2013/ Hydrol. Earth Syst. Sci., 17, 3795–3813, 2013



3810 W. Kurtz et al.: High-resolution characterization of heterogeneous river beds

●

●
R

M
S

E
 (l

og
10

(K
fin

al
))

  [
lo

g 1
0(m

s−1
)]

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Zhet Z5 Z3 Z2

Fig. 17.Statistics of root mean square error of mean hydraulic con-
ductivity (RMSE(log10(K̄final))) after the last update step calcu-
lated from all references of scenario D.

6 Discussion

Simulations with EnKF generally lead to an improvement for
all four ensembles in terms of RMSEh. It was found that
a stochastic field approach (i.e. each discretization point of
the model grid has a different leakage value, which results in
457 values in this study) gave the best results. Data assimi-
lation with EnKF made it possible to correct the cumulative
fluxes between river and aquifer almost completely. ForZhet
also the spatial distribution of log10(L

∗) gets quite close to
the reference fields during data assimilation, and this is also
reflected in the spatial distribution of exchange fluxes which
closely coincides with those of the reference runs.

For the three zonated ensembles the overall performance
was usually slightly worse than for the ensemble with full
heterogeneity. Especially the net fluxes showed significant
deviations from the true values forZ3 andZ2 for several ref-
erences. This is reflected in the spatial distribution of fluxes
along the river where regions with higher fluxes in the refer-
ence runs were not adequately represented by the ensembles
Z3 andZ2. EnKF was only partly able to correct for the sys-
tematic errors that arose from the wrong spatial distribution
of exchange fluxes, and as a result of this the prediction of
net fluxes was not as good as forZhet. ForZ5 the predicted
net fluxes were often similar to the ones ofZhet, but the spa-
tial distribution of fluxes was not as good as forZhet. This
was also the case whenZ5 closely matched the spatial distri-
bution of log10(L

∗) of the reference runs (scenario C). Even
with this prior information only the net fluxes were estimated
correctly but not their spatial distribution. This also applies
for references with a lower degree of heterogeneity (scenario
B). Even in this case the predicted spatial distribution of leak-
age fluxes was better withZhet than with the different zona-
tion approaches. A precise estimation of high local leakage
fluxes is highly relevant for transport calculations in order to

determine source regions of contaminants or regions of high
biogeochemical turnover. For such applications, the usage of
effective parameters will therefore only lead to averaged con-
centration levels that are derived from the net exchange be-
tween river and aquifer.

For a lower observation density the results forZ5, Z3 and
Z2 were not very different from the ones for 100 observa-
tion points. ForZhet the uncertainty in the log10(L

∗) en-
semble was larger than for the case with 100 measurement
data, and as a consequence also the uncertainty regarding the
exchange fluxes was higher. Generally, a lower information
content mainly affected the parameter identification for the
heterogeneous ensemble. Nevertheless, the errors in head and
flux predictions forZhet were still comparable to the ones for
the zonated ensembles especially at the end of the simula-
tion period. Of course, comparisons with respect to obser-
vation density always depend on site-specific conditions like
the spatial location of observations and the degree of spatial
heterogeneity of the estimated parameter field. In our case
the correlation length of the reference fields is relatively high
(1000 to 2000 m), and therefore conditioning to a low amount
of observation data still gives satisfactory results. However,
for cases with a shorter integral scale a higher amount of ob-
servations may be necessary.

Overall, the results from these synthetic studies suggest
that the high-resolution characterization of river bed proper-
ties is feasible because, even with a limited number of mea-
surements, the high-resolution reconstruction resulted in bet-
ter results than an approach where the spatial variability of
the river bed was represented with a few effective param-
eters only. We expect that in case only very few measure-
ments are available, high-resolution and zonation approaches
might give predictions of similar quality, and that in the case
of more measurements the high-resolution approach will in-
creasingly outperform the approaches where only a few ef-
fective parameters are estimated. It can be important to con-
dition multiple equally likely stochastic high-resolution re-
alizations of river bed properties, because the quality of the
estimated net exchange fluxes between aquifer and stream
are better with this approach than with a zonation approach.
Replacing the heterogeneous streambed with a few effective
parameters results in biased predictions of exchange fluxes.
Over long streams such a systematic bias might result in an
important under- or overestimation of the groundwater infil-
tration in the river, as well as an under- or overestimation of
the loss of river water to the aquifer under flood conditions.
Therefore, we recommend the calibration of equally likely
stochastic realizations of river bed properties using EnKF to-
gether with an augmented state vector approach, for a better
characterization of river–aquifer exchange fluxes. This ap-
proach is especially needed in the case of very heterogeneous
streambeds and in case enough conditioning measurements
(hydraulic head data) are available.

Of course, our findings were derived on the basis of
a simplified model which only accounts for uncertainties
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regarding leakage parameters (for most cases) and where the
initial ensemble mean of leakage parameters closely corre-
sponded to the reference values. In real-world applications
uncertainties may also arise from the poorly known distri-
bution of aquifer properties, a biased initial parameter en-
semble, model structural errors and uncertainties in the de-
termination of forcing terms for the model. Thus, the cali-
bration of log10(L

∗) distributions with EnKF in real-world
cases will probably not be as accurate as in our synthetic
simulations due to the higher overall uncertainties. Neverthe-
less, the incorporation of uncertainty regardingK in one of
the scenarios already showed that the principal differences
between simulations with spatially highly resolved ensem-
bles and simulations with zonated log10(L

∗) ensembles re-
main. This is related to the higher flexibility of the stochastic
field approach, and similar results are also expected if other
sources of uncertainty are included.

It is also noteworthy that the differences between the het-
erogeneous and the zonated ensembles in this study are
derived from a pure assimilation experiment where the
state variable (h) was continuously updated. If the updated
log10(L

∗) ensembles were used in a predictive forward sim-
ulation (i.e. with no update of state variables), the differ-
ences with respect to exchange fluxes and RMSEh would
very likely increase due to the lack of a continuous correc-
tion of aquifer states.

7 Conclusions

In this study we performed data assimilation experiments
with a synthetic river–groundwater interaction problem
where piezometric heads and heterogeneous river bed con-
ductivities were jointly updated with EnKF. In this context,
different parametrizations of river bed heterogeneity (full
heterogeneity versus different amounts of effective parame-
ters) were tested for their effect on the prediction of ground-
water levels and river–aquifer exchange fluxes. A high-
resolution representation of the river bed hydraulic conduc-
tivities (compared to a coarse representation with constant
values in a few zones) results in a better characterization
of stream–aquifer exchange fluxes, both in terms of the net
exchange between the two compartments and the spatio-
temporal distribution of this exchange. When the river was
divided into a relatively limited number of leakage zones
(2, 3 or 5) the net exchange between river and aquifer was
not predicted accurately for all references and in general the
errors increased with a decreasing representation of hetero-
geneity. In the case of a reduced amount of head observa-
tions (10 instead of 100), the high-resolution calibration of
river bed conductivities still outperformed the scenarios with
a coarse representation of river bed conductivities. However,
differences between the scenarios were smaller. Similar re-
sults were found when also uncertain aquifer hydraulic pa-
rameters were regarded in the assimilation process. In this

case, the overall mismatch between simulations and refer-
ence values generally increased, but the ensemble with a
higher spatial resolution consistently performed better than
its zonated counterparts.

In summary, it is concluded that a zonation of river bed
conductivities should be avoided because small regions with
high exchange fluxes might be averaged out by zonation
which affects the local water balance. We recommend there-
fore that for highly heterogeneous river beds a geostatisti-
cal simulation approach is used where river bed properties
change from grid cell to grid cell. Our simulations showed
that parameter updates with EnKF are able to adapt an en-
semble of such high-resolution fields of river bed conductiv-
ity towards the true reference field. Furthermore, the CPU
demand for parameter adaptation with EnKF is not depen-
dent on the number of defined leakage zones as opposed to
other calibration techniques. This approach will also avoid
a bias in the estimation of the regional water balance.
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