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Abstract. The present study is a comprehensive application
of a methodology developed for the classification of synoptic
situations using artificial neural networks. In this respect, the
500 hPa geopotential height patterns at 12:00 UTC (Univer-
sal Time Coordinated) determined from the reanalysis data
(ERA-40 dataset) of the European Centre for Medium range
Weather Forecasts (ECMWF) over Europe were used. The
dataset covers a period of 45 years (1957–2002) and the neu-
ral network methodology applied is the SOM architecture
(Self Organizing Maps). The classification of the synoptic
scale systems was conducted by considering 9, 18, 27 and 36
synoptic patterns. The statistical analysis of the frequency
distribution of the classification results for the 36 clusters
over the entire 44-year period revealed significant tenden-
cies in the frequency distribution of certain clusters, thus sub-
stantiating a possible climatic change. In the following, the
database was split into two periods, the “reference” period
that includes the first 30 years and the “test” period compris-
ing the remaining 14 years.

1 Introduction

There is a strong relationship between large scale circula-
tion patterns and regional surface variables, such as surface
pressure, relative humidity, evaporation, precipitation, wind
and temperature. As a consequence, the analysis of synoptic
upper air charts at certain levels, and especially the 500 hPa
level that represents the middle troposphere, provides a valu-
able tool for the operational weather forecaster to diagnose
and even predict surface parameters in a qualitative man-
ner. Considering a longer time scale, these upper-air pat-
terns could be representative of the climate that characterizes
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the domain under study. An investigation of the time evo-
lution of the geopotential height pattern could produce sup-
porting evidence for any climatic trends. In order to simplify
the statistical processing of the height pattern distribution,
stochastic downscaling methods are often applied to the in-
put weather patterns in order to create clusters of synoptic
cases with similar characteristics. There is a variety of meth-
ods to classify synoptic patterns. For a review of various
classifications, including their applications, refer to Key and
Crane (1986), El-Kadi and Smithoson (1992), Hewitson and
Crane (1996). The method explored in this work is the Ko-
honen’ Self Organizing Maps (SOM) architecture which is
an Artificial Neural Networks (ANN) method with unsuper-
vised learning (Kohonen, 1990). A detailed description of
the method and procedures proposed is provided elsewhere
(Michaelides et al., 2007).

The aim of this paper is to show that the ANN method-
ology developed to classify synoptic patterns into distinctive
clusters (see Michaelides et al., 2007; Philipp et al., 2010)
can be applied in an effort to investigate trends in synoptic
patterns which can be attributed to climatic change. Also,
a (climatic) “reference” period can be compared against a
“test” period, thus revealing differences between the frequen-
cies of synoptic patterns that are associated with specific
weather conditions over an area.

In the following, the data and methodology used are de-
scribed in Sect. 2; the results and discussion are presented in
Sect. 3 and concluding remarks in Sect. 4.

2 Data and methodology

2.1 Database

For the present study, gridded data from the ERA-40 re-
analysis dataset were used. ERA-40 is a re-analysis of me-
teorological fields from September 1957 to August 2002,
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produced by the European Centre for Medium-Range
Weather Forecasts (ECMWF; see Uppala et al., 2005). The
ERA-40 project started in 2000, aiming at producing global
re-analyses for the 1957–2002 period with a 6-h tempo-
ral resolution (Simmons and Gibson, 2000). All of the
available observations including both in-situ and remote-
sensing measurements were taken into account. The ba-
sic analysed variables included not only the conventional
meteorological wind, temperature and humidity fields, but
also stratospheric ozone and ocean-wave and soil conditions.
The re-analyses were produced on a T159 horizontal spec-
tral resolution (nearly 125 km) and 60 vertical levels (up to
65 km height), using the 3-D-FGAT data assimilation tech-
nique with 6 hourly frequency throughout the period, sup-
plemented by intermediate 3-h forecasts. The results are
available through the ECMWF MARS database. Model
biases are mostly responsible for discrepancies among re-
analyses and real observations. There are two major prob-
lems reported through the years, regarding systematic errors
in the database, namely, excessive precipitation over tropi-
cal oceans and too strong Brewer-Dobson circulation, both
of which are pronounced in later years. These are consid-
ered negligible for our pressure level of interest, namely, the
500 hPa and the area of interest in this study.

In the present study, the dataset consists of the 12:00 UTC
500 hPa isobaric heights, measured in geopotential meters,
over an area defined by the geographical latitude circles
30◦ N and 76◦ N and meridians 37◦ W and 56◦ E; a time pe-
riod of 44 years (1958 to 2001) was considered, as calendar
years which were not complete (i.e., 1957 and 2002) were
excluded. The dataset is originally available at high resolu-
tion (i.e., 1◦ × 1◦) but for computational reasons the density
of the grid was coarser, namely, 2◦

× 3◦.

2.2 Artificial Neural Networks

An Artificial Neural Network (ANN) is an interconnected
structure of simple processing units whose functionality re-
sembles that of the biological processing elements, the neu-
rons, organized in such a way that the network structure
adapts itself to the problem being considered. The process-
ing capabilities of this artificial network assembly are deter-
mined by the strength of the connections between the pro-
cessing units, the specific architecture pattern followed dur-
ing the construction of the network and a special set of pa-
rameters adopted during the training of the network. During
the last two decades, ANN proved to be excellent tools for
research, as they are able to handle non-linear interrelations
(non-linear function approximation), separate data (data clas-
sification), locate hidden relations in data groups (clustering)
or model natural systems (simulation).

The building block of any neural computing system is an
artificial representation of the fundamental cell of the brain:
the neuron. Artificial neurons (or processing elements) are
designed to respond to the applied inputs and to behave

consistently. The original artificial neuron is considered to
be the Threshold Logic Unit, proposed by McCulloc and
Pitts (1943). For a comprehensive introduction to artificial
neurons the reader can refer to Tymvios et al. (2008).

The artificial implementation of a biological neuron is, in
reality, an algorithm or an electronic circuit whose operation
can be summarized in a few simple steps:

– All the input values are multiplied by a predetermined
weight and summed.

– A bias is aggregated to the result.

– The sum is introduced to the activation function and is
altered accordingly. The activation function’s role is to
control the amplitude of the output according to the cho-
sen ANN architecture.

– The signal flows to the next neuron(s).

ANN are a collective sets of neural units, in which the
individual neurons are connected through complex synaptic
joints characterized by weight coefficients; every single neu-
ron makes its contribution towards the computational prop-
erties of the whole system. As models of specific biological
computational structures, ANN consist of distributed infor-
mation processing elements, possessing an inherent potential
for parallel computation. In fact, parallel processing operates
in the brain but not as yet in ANN: in most personal comput-
ers the processes are performed sequentially.

The neural network architecture used in this work is the
Kohonen’ Self Organizing Maps (SOM). Kohonen networks
provide a way of representing multidimensional data in much
lower dimensional spaces – usually one or two dimensions.
In order to implement this methodology, the matrix of height
patterns is transformed to a one dimensional vector. This
merging was achieved by placing the 24 rows in each day
sequentially, thus transforming each of the two-dimensional
arrays corresponding to each day (24 rows and 32 columns)
into a single column. The array resulting from the merging
of the daily vectors has a dimension of 16 436 columns and
768 rows.

The 16 436 vectors containing the data to be processed
were randomly fed as input to a neural network implemented
in Matlab 7.5. Using Matlab’s own annotation, the SOM
implemented for the European domain as defined above is
shown in Fig. 1.

The training procedure is summarized as follows:

1. The initial value of the weights was set to small random
numbers around the mean height value of the first day
while the learning rate and the neighbourhood were as-
signed to relatively large values. Steps 2 to 5 (below) are
repeated until the weights of the network are stabilized.

2. The input vectors were randomized. One vector is cho-
sen from the dataset as an input to the network.
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Fig.1. A Kohonen Network using Matlab’s notation, build to classify a vector of 768 
members to 36 classes. The number of the ouput nodes of the SOM equals the number of 
classes.  

Fig. 1. A Kohonen Network using Matlab’s notation, build to clas-
sify a vector of 768 members to 36 classes. The number of the ouput
nodes of the SOM equals the number of classes.

3. A winning neuron is determined by examining the Eu-
clidian distance between input vector and all individual
vectors represented by neurons in the network.

4. The winning neuron and (to a far less extent) its neigh-
bourhood are altered towards the input vector.

5. The neighbourhood and the learning rate of the param-
eters are decreased.

When all vectors in the training set are presented once at
the input, an “epoch” is finished. The procedure is then re-
peated as many times as necessary until no further improve-
ment is observed.

2.3 Experimental setup

Kohonen networks are trained with no supervision for a fixed
number of epochs. Small scale problems may require a train-
ing period of just 50 epochs while for large problems this
number may be as large as 10 000 or even more. These net-
works are extremely demanding as far as computer process-
ing power and memory are concerned. For the classification
purpose of this work, the input data were randomized and
the networks were trained for 2000 epochs. The learning rate
and neighbourhood size are automatically reduced as training
progresses (Charalambous et al., 2001). The neighbourhood
size should begin with a relatively high number, such as 90%
of the number of neurons in the output layer. The termina-
tion of the learning process (presentation of learning events)
occurs after the completion of the preset number of epochs
or when the neighbourhood becomes zero.

2.4 Selection of cluster classification

A series of experimentations was conducted in which the
500 hPa patterns in the 44-year period were classified into
9, 18, 27 and 36 clusters. The 36-cluster classification ap-
peared to be the most suitable to utilize over a synoptic size
domain such as the one used in this work, because it provides
sufficient discretization of patterns and also because it can be
connected with surface observed parameters such as rainfall
or dust events. The justification is provided by Tymvios et
al. (2007, 2010) and will not be discussed further here. As
a result of these arguments, the 36-cluster classification was
chosen for further study.

 
Fig. 2. Seasonal appearance (percentage) of the 36 clusters (NDJF=November, December, 
January and February, MJJA= May, June, July and August, MASO= March, April, 
September, October). 
 

Fig. 2. Seasonal appearance (percentage) of the 36 clus-
ters (NDJF = November, December, January and February;
MJJA = May, June, July and August; MASO = March, April,
September, October).

3 Results and discussion

3.1 Seasonality of clusters

The ability of ANN to group synoptic patterns into sea-
sonally dependent clusters was noted by Michaelides et
al. (2007). This seasonal discretization of clusters should
be an essential attribute of a classification technique. Fig-
ure 2 shows the percentage of occurrence of the 36 clusters
in each of the three seasonal periods adopted for demonstrat-
ing the seasonality discretization of the ANN methodology.
The three periods were chosen by considering the Mediter-
ranean climate as a reference: November, December, Jan-
uary and February were considered to belong to the “cool
and wet” season (i.e., they belong to the Mediterranean Win-
ter season); May, June, July and August were considered to
belong to the “warm and dry” season (i.e., they belong to
the Mediterranean Summer season); March, April, Septem-
ber and October are considered as “transitional” months (i.e.,
the transition from “cool and wet” to “warm and dry” and
vice versa).

It is worth noting that the “transitional” months include
patterns from all of the 36 clusters. Certain clusters are
present in the “warm and dry” season but not in the “cool
and dry” season and vice versa.

The frequency of occurrence of each of the 36 clusters in
the entire 44-year period studied is shown in Fig. 3. The most
frequent is Cluster 24 that is a “warm and dry” cluster; this
is followed by Cluster 1that is a “cold and wet” cluster (see
Fig. 2).

3.2 Annual variability of cluster membership

This sub-section deals with the annual variability in the num-
ber of synoptic patterns belonging to individual clusters.
However, due to space limitations, it is not possible to discuss
all of the 36 clusters. Instead, selected clusters are briefly
presented, in order to illustrate the kind of analysis that can
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Fig.3. Frequency of occurrence of the 36 clusters. 

Fig. 3. Frequency of occurrence of the 36 clusters.

 
Fig.4. Typical pattern of Cluster 24: 14 July 2000 (units: gpm). 

 
 

Fig. 4. Typical pattern of Cluster 24: 14 July 2000 (units: gpm).

be made. In this respect, one “warm and dry” and one “cool
and wet” clusters are discussed; also, one cluster which is as-
sociated with extremely heavy rainfall events in the eastern
Mediterranean is presented.

As mentioned above, the most frequent is Cluster 24. This
is a “warm and dry” cluster, dominant in July and August.
It corresponds to a persistent summer-time weather pattern.
For instance, it persisted for 18 consecutive days in 1969
(from 25 July 1969 to 11 August 1969), for 21 consecutive
days in 1972 (from 26 June 1972 to 16 July 1972) and for
22 consecutive days in 1981 (from 22 July 1981 to 13 Au-
gust 1981). The frequency of the yearly occurrences of this
cluster can be connected to the frequency of dry spells over
eastern Mediterranean.

A typical member of Cluster 24 on 14 July 2000 is illus-
trated in Fig. 4. It displays a combination of a well estab-
lished ridge over Azores, 5880 gpm (geopotential metres) at
the 500 hPa isobaric surface and a shallow low located over
Scandinavia, 5500 gpm; this results in a meridional flow over
the British Isles and further east. A weak upper trough is
present over the eastern Mediterranean with heights around
5820 gpm, associated with a light westerly flow.

 

 

 

Fig.5. Frequency of appearance of Cluster 24, a 5-year moving average and a linear fit. 

Fig. 5. Frequency of appearance of Cluster 24, a 5-year moving
average and a linear fit.

 

 

Fig.6. Typical pattern of Cluster 1: 24 March 2000 (units: gpm). 

 

Fig. 6. Typical pattern of Cluster 1: 24 March 2000 (units: gpm).

The annual variation of the membership of this cluster is
presented in Fig. 5. In the same figure, the 5-year moving av-
erage and a linear projection in time is also presented. This
figure exhibits a noticeable increase in the number of Clus-
ter 24 occurrences over time. The increase of the occurrences
can be connected with dry periods over he island of Cyprus,
like the periods of 1957–1962, 1969–1974 and 1993–1997.

Cluster 1 is the most frequent “cold and wet” cluster and
an example of a synoptic situation representative of this clus-
ter is illustrated in Fig. 6, for 24 March 2000. The south-west
to northeast orientation of the axis of the upper trough over
the eastern Mediterranean frequently leads to surface cyclo-
genesis over the eastern part of the basin, often associated
with heavy rainfall.

The dominant pattern for the heavy rainfall analysis is the
one represented by Cluster 1 (Tymvios et al., 2010) and the
frequency of appearance of this cluster over time is shown
in Fig. 7, along with a 5-year moving average and a linear
projection. Although there is a notable variation in the fre-
quency of this cluster in the last 15 years, overall, there is a
tendency for increase.
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Fig.7. Frequency of appearance of Cluster 1, a 5-year moving average and a linear fit. Fig. 7. Frequency of appearance of Cluster 1, a 5-year moving av-
erage and a linear fit.

 

 

 

Fig.8. Typical pattern of Cluster 9: 2 December 2001 (units: gpm). 

 

 

Fig. 8. Typical pattern of Cluster 9: 2 December 2001 (units: gpm).

Another important cluster is number 9. Cluster 9 is actu-
ally a collection of significant synoptic situations, in terms of
extreme rainfall events. It is a cluster that is almost equally
shared between the “cool and wet” and “transitional” months
(see Fig. 2); it is connected with heavy rainfall events (e.g.,
with the most extreme rainfall day ever recorded on the island
of Cyprus, as reported by Tymvios et al., 2010). A typical
synoptic pattern of this cluster is shown in Fig. 8: a cold polar
air mass gradually penetrates northern Europe, while warm
humid air from the Mediterranean Sea is essentially stagnant
over eastern Mediterranean. An upper low is centred near
Crete, with a central height around 5500 gpm being asso-
ciated with a surface low between Crete and Cyprus. This
upper low has been cut-off from the circulation over cen-
tral Europe and slowly progresses eastwards and filling. This
system produced a mean accumulated rainfall of 62.3 mm on
2 December 2001 in the island of Cyprus.

The annual frequency of Cluster 9 is shown in Fig. 9.
Overall, there is no significant change in the number occur-
rences of this cluster over time, as suggested by the year-to-
year frequency of occurrences illustrated in this figure.

 

 

Fig.9. Frequency of appearance of Cluster 9, a 5-year moving average and a linear fit. 

 

 

Fig. 9. Frequency of appearance of Cluster 9, a 5-year moving av-
erage and a linear fit.

3.3 Comparing different time periods

In this sub-section, a procedure is put forward which can be
followed in order to identify possible changes in the mem-
bership of clusters over different time periods. Although this
procedure can be used in order to identify possible changes,
it does not propose any reasoning behind them (e.g., climatic
change).

In order to investigate whether the frequency of synop-
tic patterns (as represented by clusters) has changed with
respect to a reference period, the database was split in two
parts: in the first period, the first 30 years (1 January 1958 to
31 December 1987) and in the second period the subsequent
14 years are used. The first period is considered to repre-
sent a “reference” climatic period; the second represents the
“test” period which was compared against the reference.

For each cluster, a Ko index is calculated as:

Ko =
Relative frequency of cluster in the reference period

Relative frequency of cluster in the test period
(1)

This index can be used to compare the number of occur-
rences of each cluster over the two periods. For Ko equal to
unity, there is no change in the frequency of the respective
cluster in the two periods; when Ko is greater (less) than one,
then the respective cluster is less (more) frequent in the “test”
period than in the “reference” period.

The Ko index for each of the 36 clusters is presented in
Fig. 10. Comparing the relative frequencies in the two peri-
ods, a remarkable change is noted for some clusters, whereas,
the change is not noteworthy for others. The most promi-
nent change is noted for Cluster 1, whereby the Ko index
is 0.64. As mentioned in Sect. 3.2, this cluster is the most fre-
quent “cold and wet” cluster and it is often associated with
heavy rainfall events. Regarding the most frequent “warm
and dry” Cluster 24, the change between the two periods is
very small. The same is true for the “transition” Cluster 9,
discussed above.
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Fig.10. The Ko index for the 36-cluster classification. 

Fig. 10. The Ko index for the 36-cluster classification.

4 Concluding remarks

In the present study, a comprehensive application of a
methodology developed for the classification of synoptic sit-
uations using artificial neural networks is presented. The
neural network methodology applied is the SOM architec-
ture (Self Organizing Maps) and the dataset used comprises
the 500 hPa geopotential height patterns at 12:00 UTC cov-
ering a period of 44 years (1958–2001). Selected results of
the classification with 36 clusters are presented. The statisti-
cal analysis of the frequency distribution of the classification
results for the 36 clusters over the entire 44-year period re-
vealed significant tendencies in the frequency distribution of
certain clusters.

The pronounced trend for increase in the occurrences of
Clusters 1 and 24 shows a distinctive tendency for change of
the patterns’ distribution. Cluster 1, a winter-time cluster, is
associated with rainfall days and Cluster 24, a summer-time
cluster, is the most frequent cluster representing dry condi-
tions. The increase of the occurrences of both types can be
used to explain the large variability of dry and above-average
rainfall years observed during the last two decades in Cyprus.

Also, the database was split into two periods: the “ref-
erence” and the “test” periods. The classification with the
36 clusters features some interesting deviations over the
two periods for some clusters, whereas, for some others no
change is noted.
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