Locating subsets of $\mathcal{B}(H)$ relative to seminorms inducing the strong-operator topology

DOUGLAS BRIDGES

Abstract: Let H be a Hilbert space, and A an inhabited, bounded, convex subset of $\mathcal{B}(H)$. We give a constructive proof that A is weak-operator totally bounded if and only if it is located relative to a certain family of seminorms that induces the strong-operator topology on $\mathcal{B}(H)$.

2000 Mathematics Subject Classification 03F60, 47S30 (primary)

Keywords: Constructive, located, totally bounded, strong/weak operator topology

This paper is a contribution to the programme of research in constructive functional analysis and operator theory. It lies entirely within a Bishop-style constructive framework; in other words, the logic is intuitionistic, and we use an underlying set theory, such as that presented by Aczel and Rathjen [1, 2], which avoid axioms that would imply essentially nonconstructive principles such as the law of excluded middle.¹

Although carried out by strictly constructive means, our work is not insignificant within classical-logic-based computational functional analysis: each of our results and proofs is, *a fortiori*, classical. But constructive proofs, by their very nature, embody algorithms, and hence estimates,² that can be extracted—sometimes with surprising ease—and then implemented; such program-extraction and implementation can be found in Constable [8], Hayashi [9], and Schwichtenberg [13]. For example, consider our main result, Theorem 1, which deals with an inhabited,³ bounded, convex set \mathcal{A} of operators on an infinite-dimensional Hilbert space \mathcal{H} . The first half of its proof is, essentially, an algorithm for converting

¹A popular alternative foundation for constructive mathematics is Martin-Löf's type theory [12].

²A very different approach to the extraction of estimates (often optimal ones) is adopted by Kohlenbach: working with classical logic, he uses *proof-mining* to extract computational information from classical proofs; see Kohlenbach [11].

³To say that a set is **inhabited** means that we can construct an element of it. This is a constructively stronger notion that *nonempty* (although, confusingly, some earlier work on constructive analysis uses *nonempty* in the sense of *inhabited*).

- finite ε -approximations to \mathcal{A} relative to the seminorms defining the weak-operator topology on $\mathcal{B}(H)$

- into a computation of distances from \mathcal{A} relative to a certain family of seminorms that induces the strong-operator topology on $\mathcal{B}(H)$.

The second half is an algorithm for carrying out this conversion in reverse. Of course, the practical extraction and implementation of these algorithms would be a nontrivial business; but it could be done.

We begin by recalling some definitions from the constructive theory of locally convex spaces. A subset S of a locally convex space $(X,(p_i)_{i\in I})$, where the p_i are the seminorms defining the topology on X, is said to be **located** in X if

$$\inf\left\{\sum_{i\in F}p_i(x-s):s\in S\right\}$$

exists for each $x \in X$ and each finitely enumerable 4 subset F of I. On the other hand, S is said to be **totally bounded** if for each finitely enumerable subset F of I and each $\varepsilon > 0$, there exists a finitely enumerable subset T of S with the property that for each $x \in S$ there exists $y \in T$ with $\sum_{i \in F} p_i(x - y) < \varepsilon$; such a set T is then called a **finitely enumerable** ε -approximation to S relative to the seminorm $\sum_{i \in F} p_i$.

We note these facts about total boundedness and locatedness:

- The image of a totally bounded set under a uniformly continuous mapping between locally convex spaces is totally bounded ([6], Proposition 5.4.2).
- Every totally bounded subset of *X* is located, and every located subset of a totally bounded set is totally bounded ([6], Propositions 5.4.4 and 5.4.5).

The following two locally convex topologies play a fundamental role in the classical theory of subalgebras of the space $\mathcal{B}(H)$ of bounded operators on a Hilbert space H:

ightharpoonup The **strong operator topology** τ_s : the weakest topology on $\mathcal{B}(H)$ with respect to which the mapping $T \rightsquigarrow Tx$ is continuous for each $x \in H$; sets of the form

$$\{T \in \mathcal{B}(H) : ||Tx|| < \varepsilon\},$$

with $x \in H$ and $\varepsilon > 0$, form a sub-base of strong-operator neighbourhoods of the zero operator.

⁴A set is **finitely enumerable** if it is the range of a mapping from $\{1, ..., n\}$ for some natural number n; the set is **finite** if the mapping can be chosen one-one.

▷ The **weak operator topology** τ_w : the weakest topology on $\mathcal{B}(H)$ with respect to which the mapping $T \rightsquigarrow \langle Tx, y \rangle$ is continuous for all $x, y \in H$; sets of the form

$$\{T \in \mathcal{B}(H) : |\langle Tx, y \rangle| < \varepsilon \},$$

with $x, y \in H$ and $\varepsilon > 0$, form a sub-base of weak-operator neighbourhoods of the zero operator.

These topologies are induced, respectively, by the seminorms of the form $T \leadsto ||Tx||$ with $x \in H$, and those of the form $T \leadsto |\langle Tx, y \rangle|$ with $x, y \in H$.

For each integer $N \ge 2$ we denote, for example, by \mathbf{x} the N-tuple (x_1, \ldots, x_N) of elements of H, and we define H_N to be the Hilbert direct sum of N copies of H. Although one frequently describes the strong-operator topology by means of the L_1 -like seminorms

$$\| \|_{1,\mathbf{x}} : T \leadsto \sum_{n=1}^{N} \|Tx_n\|,$$

where $\mathbf{x} \in H_N$, in this paper we focus our attention on an alternative family of seminorms inducing τ_s : namely, the family of L_2 -like seminorms

$$\| \|_{2,\mathbf{x}} : T \leadsto \left(\sum_{n=1}^{N} \| Tx_n \|^2 \right)^{1/2},$$

where $\mathbf{x} \in H_N$. We say that a subset \mathcal{A} of $\mathcal{B}(H)$ is **k-located** if it is located relative to the family of L_k -like seminorms (k = 1, 2). Note that although each of the two L_k -families induces the strong-operator topology on $\mathcal{B}(H)$, it is not *a priori* the case that the metric-dependent notions of 1-locatedness and 2-locatedness coincide on a given subset \mathcal{A} of $\mathcal{B}(H)$. It will be a consequence of our main result, which we now state, that these two notions of locatedness do coincide when \mathcal{A} is inhabited, bounded, and convex.

Theorem 1 Let H be an infinite-dimensional Hilbert space, and A an inhabited, bounded, convex subset of $\mathcal{B}(H)$. Then A is **2**-located if and only if it is weak-operator totally bounded.

In the case where H is separable, the equivalence of 1-locatedness and weak-operator total boundedness for inhabited, bounded, convex subsets of $\mathcal{B}(H)$ was proved by Spitters ([14], Corollary 10), who took a non-elementary route through trace-class operators and normal states. In the non-separable case, the implication from weak-operator total boundedness to 1-locatedness is proved by Bridges, Ishihara and Vîță [7]

(Theorem 3.8), using general results about infima of real-valued continuous functions on convex sets in normed spaces (a counterpart of which plays a role in our work below).

We shall prove Theorem 1 without separability and by relatively elementary methods. Before doing so, we remind ourselves of a common construction and deal with some preliminary results. The complicated proof of the first of these, due to Ishihara, can be found in [10] (Corollary 5) or Bridges and Vîţă [6] (Corollary 6.2.9).

Proposition 2 Let C be an inhabited, bounded, convex subset of an inner product space H. Then C is located if and only if

$$\sup \{ \operatorname{Re} \langle x, y \rangle : y \in C \}$$

exists for each $x \in H$.

Our second preliminary result is a version of a classically trivial result about Banach spaces ([6], Proposition 5.3.4), whose known constructive proof is not trivial as it uses the Hahn-Banach theorem. However, in the case where X is a Hilbert space, there is a natural, more elementary proof, for which we need two items of information about dimensionality in a normed space X. First, we note that every finite-dimensional subspace of X is located ([6], Lemma 4.1.2). Secondly, we say that X is **infinite-dimensional** if for each finite-dimensional subspace Y of Y, there exists Y with Y in which case the orthogonal complement of Y contains a unit vector). For additional material on finite- and infinite-dimensionality in normed spaces, see Chapter 4 of Bridges and Vîță [6].

Lemma 3 Let H be an infinite-dimensional Hilbert space, and let x_1, \ldots, x_N be vectors in H. Then for each t > 0, there exist pairwise orthogonal unit vectors e_1, \ldots, e_N in H such that the vectors $x'_n \equiv x_n + te_n$ $(1 \le n \le N)$ are linearly independent.

Proof To begin with, pick a unit vector e_1 such that $x_1' \equiv x_1 + te_1 \neq 0$. Suppose that for some n < N we have found the desired vectors e_1, \ldots, e_n , and let V be the n-dimensional subspace of H generated by the vectors $x_k' \equiv x_k + te_k$ $(1 \leq k \leq n)$. Either $\rho(x_{n+1}, V) > 0$ or $\rho(x_{n+1}, V) < t$. In the first case, $V \cup \{x_{n+1}\}$ generates an (n+1)-dimensional subspace W of H, and we can pick a unit vector e orthogonal to e. Then for each e is e in the first case, e in the first

$$||x_{n+1} + te - v|| = t ||e - t^{-1}(v - x_{n+1})|| \ge t\rho(e, W) = t.$$

Hence $\rho(x_{n+1} + te, V) \ge t > 0$, so $x_{n+1} + te$ is linearly independent of V, and we can take $e_{n+1} \equiv e$.

In the case where $\rho(x_{n+1}, V) < t$, we pick a unit vector e orthogonal to V. With P the projection of H on V, and I the identity operator on H, we have

$$||(I-P)(x_{n+1}+te)|| \ge ||t(I-P)e|| - ||(I-P)x_{n+1}||$$

= $t-\rho(x_{n+1},V) > 0$.

Hence $\rho(x_{n+1} + te, V) > 0$, so $x_{n+1} + te$ is linearly independent of V, and we can take $e_{n+1} \equiv e$.

Returning to the set-up of Theorem 1, for each $T \in \mathcal{B}(H)$ define

$$\widetilde{T}\mathbf{x} \equiv (Tx_1, \ldots, Tx_N)$$
,

and for any subset A of B(H) define

$$\widetilde{\mathcal{A}} \equiv \left\{ \widetilde{T} : T \in \mathcal{A} \right\}.$$

Lemma 4 If A is an inhabited, bounded, **2**-located subset of $\mathcal{B}(H)$, and $\mathbf{x} \in H_N$, then

$$\widetilde{\mathcal{A}}\mathbf{x} \equiv \left\{\widetilde{T}\mathbf{x} : T \in \mathcal{A}\right\}$$

is located in H_N .

Proof We may assume that $A \subset \mathcal{B}_1(H)$. Let $0 < \alpha < \beta$, and set $\varepsilon \equiv \frac{1}{3}(\beta - \alpha)$. By Lemma 3, since H is infinite-dimensional, there exist pairwise orthogonal unit vectors e_1, \ldots, e_N such that the vectors

$$x_n' \equiv x_n + \frac{\varepsilon}{\sqrt{N}} e_n$$

are linearly independent. Given $\mathbf{y} \in H_N$, construct $S \in \mathcal{B}(H)$ such that $Sx'_n = y_n$ for each n. (This is possible since the locatedness of the n-dimensional span V of $\{x'_1, \ldots, x'_N\}$ implies the existence of the projection P of H onto V, and hence enables us to set Sx = 0 if x is in the orthogonal complement of V.) Since \mathcal{A} is **2**-located in $\mathcal{B}(H)$,

$$\lambda \equiv \left\{\inf\left(\sum_{n=1}^{N}\left\|(S-T)x_{n}'\right\|^{2}\right)^{1/2}: T \in \mathcal{A}\right\}$$

exists. Either $\lambda > \alpha + \varepsilon$ or $\lambda < \beta - \varepsilon$. In the former case, for each $T \in \mathcal{A}$ we have

$$\left(\sum_{n=1}^{N} \|y_n - Tx_n\|^2\right)^{1/2}$$

$$\geqslant \left(\sum_{n=1}^{N} \|(S - T)x_n'\|^2\right)^{1/2} - \left(\sum_{n=1}^{N} \|T(x_n - x_n')\|^2\right)^{1/2}$$

$$\geqslant \lambda - \left(\sum_{n=1}^{N} \|x_n - x_n'\|^2\right)^{1/2}$$

$$> \alpha + \varepsilon - \left(\sum_{n=1}^{N} \frac{\varepsilon^2}{N}\right)^{1/2} = \alpha.$$

In the case $\lambda < \beta - \varepsilon$, there exists $T \in \mathcal{A}$ such that

$$\left(\sum_{n=1}^{N} \left\| y_n - Tx_n' \right\|^2 \right)^{1/2} < \beta - \varepsilon$$

and therefore

$$\left(\sum_{n=1}^{N} \|y_n - Tx_n\|^2\right)^{1/2} \leq \left(\sum_{n=1}^{N} \|y_n - Tx_n'\|^2\right)^{1/2} + \left(\sum_{n=1}^{N} \|T(x_n - x_n')\|^2\right)^{1/2} < \beta - \varepsilon + \left(\sum_{n=1}^{N} \frac{\varepsilon^2}{N}\right)^{1/2} = \beta.$$

It now follows from the constructive greatest-lower-bound principle ([6], Theorem 2.1.19) that

$$\rho\left(\mathbf{y},\widetilde{\mathcal{A}}\mathbf{x}\right) = \inf\left\{\left(\sum_{n=1}^{N} \|y_n - Tx_n\|^2\right)^{1/2} : T \in \mathcal{A}\right\}$$

exists.

The following lemma is similar to Lemma 3.2 of Bridges and Vîţă [7], and is needed to remove a preliminary restriction in part of the proof of Theorem 1.

Lemma 5 Let $f_1, ..., f_N$ be bounded, nonnegative functions on a set S such that for each $\delta > 0$,

$$m_{\delta} \equiv \inf \left\{ \left(\sum_{n=1}^{N} (f_n(x) + \delta)^2 \right)^{1/2} : x \in S \right\}$$

Journal of Logic & Analysis 3:3 (2011)

exists. Then $\inf \left\{ \left(\sum_{n=1}^{N} f_n(x)^2 \right)^{1/2} : x \in S \right\}$ exists.

Proof Compute c > 0 such that $\sum_{n=1}^{N} f_n(x) \le c$ for each $x \in S$. Given $\varepsilon > 0$, pick $\delta > 0$ such that

$$2c\delta + N\delta^2 < \frac{\varepsilon}{2}.$$

Since m_{δ} exists, we can find $x_0 \in S$ such that

$$\sum_{n=1}^{N} (f_n(x_0) + \delta)^2 < \sum_{n=1}^{N} (f_n(x) + \delta)^2 + \frac{\varepsilon}{2}$$

for each $x \in S$. Then

$$\sum_{n=1}^{N} f_n(x_0)^2 \leq \sum_{n=1}^{N} (f_n(x_0) + \delta)^2 < \sum_{n=1}^{N} (f_n(x) + \delta)^2 + \frac{\varepsilon}{2}$$

$$= \sum_{n=1}^{N} f_n(x)^2 + 2\delta \sum_{n=1}^{N} f_n(x) + N\delta^2 + \frac{\varepsilon}{2}$$

$$\leq \sum_{n=1}^{N} f_n(x)^2 + 2c\delta + N\delta^2 + \frac{\varepsilon}{2} < \sum_{n=1}^{N} f_n(x)^2 + \varepsilon.$$

Since $\varepsilon > 0$ is arbitrary, it follows that

$$\inf\left\{\sum_{n=1}^{N} f_n(x)^2 : x \in X\right\}$$

exists; whence the desired infimum also exists.

We now give the **proof of Theorem 1.**

Proof Assume that \mathcal{A} is 2-located in $\mathcal{B}(H)$. Let N be any positive integer, and define $H_N, \widetilde{T}, \widetilde{\mathcal{A}}$ as above. Then $\widetilde{\mathcal{A}}$ is an inhabited, bounded, convex subset of $\mathcal{B}(H_N)$. By Lemma 4, for each $\mathbf{x} \in H_N$ the inhabited, bounded, convex set

$$\widetilde{\mathcal{A}}\mathbf{x} \equiv \left\{\widetilde{T}\mathbf{x} : T \in \mathcal{A}\right\}$$

is located in H_N . It follows from Proposition 2 that for all \mathbf{x}, \mathbf{y} in H_N ,

$$\sigma_{\mathbf{x},\mathbf{y}} \equiv \sup \left\{ \operatorname{Re} \left\langle \widetilde{T}\mathbf{x},\mathbf{y} \right\rangle : T \in \mathcal{A} \right\} = \sup \left\{ \operatorname{Re} \left\langle \mathbf{y},\widetilde{T}\mathbf{x} \right\rangle : T \in \mathcal{A} \right\}$$

exists. Now,

$$S_{\mathbf{x},\mathbf{y}} \equiv \{(\langle Tx_1, y_1 \rangle, \dots, \langle Tx_N, y_N \rangle) : T \in \mathcal{A}\}$$

Journal of Logic & Analysis 3:3 (2011)

is an inhabited, bounded, and convex subset of the Hilbert space \mathbb{C}^N , taken with the usual inner product. Moreover, for each $\eta \in \mathbb{C}^N$,

$$\sup \left\{ \operatorname{Re} \left\langle \eta, \zeta \right\rangle : \zeta \in S_{\mathbf{x}, \mathbf{y}} \right\} = \sup \left\{ \operatorname{Re} \sum_{k=1}^{N} \eta_{k} \overline{\zeta_{k}} : \zeta \in S_{\mathbf{x}, \mathbf{y}} \right\}$$

$$= \sup \left\{ \operatorname{Re} \sum_{k=1}^{N} \left\langle \eta_{k} y_{k}, T x_{k} \right\rangle : T \in \mathcal{A} \right\} = \sigma_{\mathbf{x}, \mathbf{z}}$$

exists, where

$$\mathbf{z} \equiv (\eta_1 y_1, \dots, \eta_N y_N) \in H_N.$$

Again applying Proposition 2, we see that $S_{\mathbf{x},\mathbf{y}}$ is located in \mathbf{C}^N , regarded as a Hilbert space over \mathbf{C} ; being also bounded, $S_{\mathbf{x},\mathbf{y}}$ is therefore totally bounded. Since all norms on \mathbf{C}^N are equivalent, it follows that for each $\varepsilon > 0$, there exists a finitely enumerable subset $\{T_1, \ldots, T_m\}$ of \mathcal{A} such that the elements

$$(\langle T_k x_1, y_1 \rangle, \dots, \langle T_k x_N, y_N \rangle)$$
 $(k = 1, \dots, m)$

form a finitely enumerable ε -approximation to $S_{\mathbf{x},\mathbf{y}}$ relative to the norm

$$(\zeta_1,\ldots,\zeta_N) \leadsto \sum_{n=1}^N |\zeta_n|$$

on \mathbb{C}^N . Hence for each $T \in \mathcal{A}$ there exists $k \leq m$ such that

$$\sum_{n=1}^{N} \left| \left\langle (T - T_k) x_n, y_n \right\rangle \right| < \varepsilon.$$

Thus $\{T_k : 1 \leq k \leq m\}$ is a finitely enumerable ε -approximation to \mathcal{A} relative to the seminorm $T \leadsto \sum_{n=1}^N |\langle Tx_k, y_k \rangle|$. It follows that \mathcal{A} is weak-operator totally bounded.

To prove the converse, assume that A is weak-operator totally bounded. Let $S \in \mathcal{B}(H)$ and $\mathbf{x} \in H_N$. We need to prove that

(1)
$$\inf \left\{ \left(\sum_{n=1}^{N} \| (S-T) x_n \|^2 \right)^{1/2} : T \in \mathcal{A} \right\}$$

exists. For each $n \leq N$ and each $y \in H$, since the mapping $T \rightsquigarrow \text{Re} \langle y, Tx_n \rangle$ is weak-operator uniformly continuous on the weak-operator totally bounded set A,

$$\sup \{ \operatorname{Re} \langle y, Tx_n \rangle : T \in \mathcal{A} \}$$

exists, by Corollary 2.2.7 of Bridges and Vîţă [6]; whence Ax_n is located, by Proposition 2. Suppose for the moment that

(2)
$$\rho(Sx_n, Ax_n) > 0 \quad (1 \le n \le N).$$

Note that \widetilde{A} is bounded, convex, and weak-operator totally bounded in $\mathcal{B}(H_N)$. It follows that

$$C \equiv \left\{ \left(\widetilde{S} - \widetilde{T}\right) \mathbf{x} : T \in \mathcal{A} \right\}$$

is a bounded, weakly totally bounded, convex subset of the Hilbert space H_N . Define $f: C \to \mathbf{R}$ by

$$f\left(\left(\widetilde{S}-\widetilde{T}\right)\mathbf{x}\right) \equiv \left(\sum_{n=1}^{N} \left\|\left(S-T\right)x_{n}\right\|^{2}\right)^{1/2}.$$

Then f is a convex function. In view of (2) and Lemma 3.6 of Bridges, Ishihara and Vîţă [7], we see that the mappings $(\widetilde{S} - \widetilde{T}) \mathbf{x} \leadsto \|(S - T) x_n\|$ are uniformly differentiable on C, and hence (again note (2)) that f is also. It follows from Theorem 2.2 of the same reference that the infimum in (1) exists.

We now remove the condition (2). Let H' denote the direct sum $H \oplus H$ of two copies of H, let $\delta > 0$, and let $\mathcal{A}' \equiv \mathcal{A} \oplus \{\delta^{1/2}I\}$, where I is the identity operator on H and

$$\left(T \oplus \delta^{1/2} I\right)(x,y) \equiv \left(Tx, \delta^{1/2} y\right) \quad (T \in \mathcal{B}(H); \ x,y \in H).$$

Define $S \in \mathcal{B}(H')$ by $S'(x,y) \equiv (Sx,0)$. Fix a unit vector $e \in H$, and let $x'_n \equiv (x_n,e)$ $(1 \le n \le N)$. Then for each $n \le N$ and each $T \in \mathcal{A}$,

$$\left\|S'x_n'-\left(T,\delta^{1/2}\right)x_n\right\|^2=\left\|Sx_n-Tx_n\right\|^2+\delta\geqslant\delta,$$

so $\rho\left(S'x_n', \mathcal{A}'x_n'\right) > 0$. It is easy to verify that \mathcal{A}' is weak-operator totally bounded. Applying the first part of the proof to \mathcal{A}', S' , and \mathbf{x}' , we see that

$$m_{\delta} \equiv \inf \left\{ \left(\sum_{n=1}^{N} \left\| S' x'_n - \left(T, \delta^{1/2} \right) x'_n \right\|^2 \right)^{1/2} : T \in \mathcal{A} \right\}$$

$$= \inf \left\{ \left(\sum_{n=1}^{N} \left\| (S - T) x_n \right\|^2 + \delta \right)^{1/2} : T \in \mathcal{A} \right\}$$

exists. Since $\delta > 0$ is arbitrary, it follows from Lemma 5 that the infimum at (1) exists in the general case. Since S and \mathbf{x} are arbitrary, we conclude that \mathcal{A} is 2-located. \square

Referring to Spitters [14] (Corollary 10) and Bridges, Ishihara and Vîţă [7] (Theorem 8), we immediately obtain

Corollary 6 Let H be an infinite-dimensional Hilbert space, and A an inhabited, bounded, convex subset of B(H). Then A is 1-located if and only if it is 2-located.

Let \mathcal{A} be a linear subspace of $\mathcal{B}(H)$ with weak-operator totally bounded unit ball \mathcal{A}_1 . Taken with the case N=1 of Lemma 4, Theorem 1 tells us, in particular, that \mathcal{A}_1x is located in H for each $x \in H$. A major open question in constructive operator theory is this: under what conditions on the linear subspace \mathcal{A} and the element x is the linear space $\mathcal{A}x$ located (in which case the projection on its closure exists)? The case of real interest is when \mathcal{A} is a **von Neumann algebra**: a strong-operator closed subalgebra that contains the identity operator, has weak-operator totally bounded unit ball, and is closed under adjoints (in the sense that if $T \in \mathcal{A}$ and the adjoint T^* exists, $T^* \in \mathcal{A}$). Spitters has shown that if $T^* \in \mathcal{A}$ is an abelian von Neumann algebra, then the space $T^* \in \mathcal{A}$ is located for each $T^* \in \mathcal{A}$ in a dense subset of $T^* \in \mathcal{A}$ is located from the antecedent.

References

- [1] P. Aczel and M. Rathjen, *Notes on Constructive Set Theory*, Report No. 40, Institut Mittag–Leffler, Royal Swedish Academy of Sciences, 2001.
- [2] P. Aczel and M. Rathjen, *Constructive Set Theory*, monograph, forthcoming.
- [3] E.A. Bishop, Foundations of Constructive Analysis, McGraw-Hill, New York, 1967.
- [4] E.A. Bishop and D.S. Bridges, *Constructive Analysis*, Grundlehren der Math. Wiss. **279**, Springer Verlag, Heidelberg, 1985.
- [5] D.S. Bridges and F. Richman, *Varieties of Constructive Mathematics*, London Math. Soc. Lecture Notes **97**, Cambridge Univ. Press, London, 1987.
- [6] D.S. Bridges and L.S. Vîţă, *Techniques of Constructive Analysis*, Universitext, Springer Verlag, Heidelberg, 2006.
- [7] D.S. Bridges, H. Ishihara, and L.S. Vîţă: Computing infima on convex sets, with applications in Hilbert spaces, *Proc. Amer. Math. Soc.* **132**(9), 2723–2732, 2004; doi:10.1090/S0002-9939-04-07496-9.
- [8] R.L. Constable et al., *Implementing Mathematics with the Nuprl Proof Development System*, Prentice-Hall, Englewood Cliffs, New Jersey, 1986.
- [9] S. Hayashi and H. Nakano, *PX: A Computational Logic*, MIT Press, Cambridge, Mass., 1988.
- [10] H. Ishihara, Locating subsets of a Hilbert space, *Proc. Amer. Math. Soc.* **129**(5), 1385–1390, 2001; doi:10.1090/S0002-9939-00-05674-4.

⁵The statement 'every element of $\mathcal{B}(H)$ has an adjoint' is essentially nonconstructive; see page 101 of Bridges and Vîță [6].

- [11] U. Kohlenbach, *Applied Proof Theory: Proof Interpretations and their Use in Mathematics*, Monographs in Mathematics, Springer Verlag, Heidelberg, 2008.
- [12] P. Martin-Löf, Intuitionistic Type Theory, Bibliopolis, Napoli, 1984.
- [13] H.A. Schwichtenberg, Program extraction in constructive analysis, in *Logicism, Intuitionism, and Formalism—What has become of them?* (S. Lindström, E. Palmgren, K. Segerberg, and V. Stoltenberg-Hansen, eds), 255–275, Synthese Library **341**, Springer Verlag, Berlin, Germany, 2009; doi:10.1007/978-1-4020-8926-8_13.
- [14] B. Spitters, Constructive results on operator algebras, J. Univ. Comp. Sci. **11**(12), 2096–2113, 2005; doi:10.3217/jucs-011-12-2096.

Department of Mathematics & Statistics, University of Canterbury, Christchurch 8140, New Zealand

```
d.bridges@math.canterbury.ac.nz
http://www.math.canterbury.ac.nz/~d.bridges/
```

Received: 1 September 2010 Revised: 27 January 2011