
Corresponding author: tbouktir@yahoo.fr.
Department of Electrical Engineering
University of Larbi Ben M’hidi
Oum El Bouaghi, 04000 Algeria.

Copyright © JES 2005 on-line : journal.esrgroups.org/jes

T. Bouktir
L. Slimani

J. Electrical Systems 1-2 (2005): 19-34

Regular paper

Object-Oriented Economic Power
Dispatch of Electrical Power System

with minimum pollution using a
Genetic Algorithm

JES

Journal of
Electrical
Systems

This paper presents solution of optimal power flow (OPF) problem of electrical
power system via a genetic algorithm of real type. The objective is to minimize the
total fuel cost of generation and environmental pollution caused by fossil based
thermal generating units and also maintain an acceptable system performance in
terms of limits on generator real and reactive power outputs, bus voltages, shunt
capacitors/reactors, transformers tap-setting and power flow of transmission lines.
CPU times can be reduced by decomposing the optimization constraints to active
constraints that affect directly the cost function manipulated directly the GA, and
passive constraints such as generator bus voltages and transformer tap setting
maintained in their soft limits using a conventional constraint load flow. The
algorithm was developed in an Object Oriented fashion, in the C++ programming
language. This option satisfies the requirements of flexibility, extensibility,
maintainability and data integrity. The economic power dispatch is applied to
IEEE 30-bus model system (6-generator, 41-line and 20-load). The numerical
results have demonstrate the effectiveness of the stochastic search algorithms
because its can provide accurate dispatch solutions with reasonable time. Further
analyses indicate that this method is effective for large-scale power systems.

Keywords: Power flow, Optimal Power Flow, Environmental Pollution, Genetic
Algorithm.

1. INTRODUCTION

The planning, design and operation of electrical power system require
simulation analyses to determine the performance and the reliability of the
current and future system. During the last three decades, many power system
computer programs have been described in the open literature [1-3]. Some of
these softwares were designed to provide various engineering analysis ranging
from load flow to transient stability. Others were developed for planning and
controlling power system in real-time [4,5]. However, these programs have
proved their limitation to specified power configuration. For different
applications, the data structures are different depending on the programming
languages. With the conventional programming languages, the data structures
and the algorithm procedures are very strong. So that any change even minor

T. Bouktir & L. Slimani: Object-Oriented Economic Power Dispatch of...

20

may propagate through a whole developed modules of the program. This
requires tremendous efforts to debug and time period is proportional to the size
of the program source rather than the magnitude of the change. For a large-
scale software system, this could conduct to a catastrophic consequence so that
the system becomes unmanageable and requires to be redesigned. The
limitations of the software in turn restrict the potential use of modern electronic
equipment to help manage and protect the grid, because the software cannot
manage the increased data such equipment can deliver. The New York Times
of August 18, 2003 wrote (after the August 14, 2003 Northeast Blackout),
regarding transmission lines in Ohio and the Midwest, “Problems on the lines
were becoming more frequent, and a series of reports, by the industry's own
quality-control offices and government agencies, described the risks and urged
utilities to be more aware of the physical limits of the Midwest system. The
complexity and magnitude of the power flows, one report by the Federal
Energy Regulatory Commission said, could ‘overwhelm the electronic and
software tools used to model and manage power flows on the grid’”.

To overcome these disadvantages of traditional softwares, one promising
approach to achieve software reliability, maintainability and extensibility is to
use Object-Oriented Methodology (OOM) [6].

Object-Oriented Technology (OOT) has proved to be an effective tool for
complex systems modeling. It allows expansions and modifications over a long
period and supports a wide range of applications. With OOP, problems are
modeled based on physical real-world concepts. Its greatest benefits come from
helping developers express abstract concepts (objects) clearly and communicate
them to each other. Object-oriented approaches use the concept of objects as
the unit of the organization. Objects are simple entities which are specified
what they can do rather how they are done.

During the few last years, the application of the OOP to electric power system
has gained widespread acceptance. The object-oriented modeling scheme is not
unique and affects directly the performance of the developed software. Many
authors have developed various packages and proposed interesting object-
oriented power system model using different OOP languages like C++,
Smalltalk, Eiffel [7,8]. However, most of the developed packages are limited to
specific subjects among the various fields of power systems engineering.

In a previous article [9], the authors have proposed an object model of power
system which has been tested successfully for load flow application on
Sonelgaz network. This paper describes the integration of an object Optimal
Power Flow (OPF) application as a module in our developed object-oriented
software called Object Oriented Electrical Network Simulator (OOENS). This
one has been implemented using Borland C++ Builder 5 and run under
Windows XP environment.

J. Electrical Systems 1-2 (2005): 19-34

21

The objective of the OPF is to minimize the total fuel cost of generation and
environmental pollution caused by fossil based thermal generating units and
also maintain an acceptable system performance in terms of limits on generator
real and reactive power outputs, bus voltages, shunt capacitors/reactors,
transformers tap-setting and power flow of transmission lines.

2. OVERVIEW OF THE OBJECT-ORIENTED MODELING

The central theme in OO modeling is the process of discovering classes, object,
operations as well as the relationships among classes. In this section, we shall
give a brief overview of these concepts.

2. 1 Classes and objects

Somewhat predictably, the idea of an object is central to object-oriented
programming. An object is defined as an item of data, very much like a variable
(or constant) in a conventional programming language. Every object belongs to
an object class, which is analogous to a data type in a conventional language.
However, one of the most important things about object classes is that new
classes can be defined by the programmer, based on existing classes. Every
object is an instance of a class. A class defines the methods and attributes that
each instance of the class will possess (intentional view). It can also be seen as
defining the set of objects which are instances of the class (extensional view).
Using the Rumbaugh's notations [11], a class in object models is represented as
a rectangle with three parts as shown in Figure 1; at the Top is indicated the
name of the class, the middle part contains all data attributes of the class and at
the lower part the class functions (methods) are defined. The constructor "Line
(){}" is a function which initializes all the class variables. The destructor
"~Line (){}" is a special function for freeing the allocated memory.

LINE
Bus FromBus
Bus ToBus
complex Current
…………………….
complex Impedance();
complex PowerLoss();
Line (){};
Line (){};
~Line (){};

Figure 1: Class representation.

T. Bouktir & L. Slimani: Object-Oriented Economic Power Dispatch of...

22

2. 2 Principles of OOM

Four major principles underlie object-oriented modeling [6,11,12]. These are:

 i. Abstraction which denotes the capability to capture the essential
properties of an entity without undue details. It consists of filtering of
details not immediately needed.

 ii. Encapsulation this defines the hiding of implementation. It requires the
packaging of the entity into one impermeable unit.

 iii. Polymorphism means that an entity can assume many forms.

 iv. Inheritance (generalization) which allows new object classes to be
defined in terms of existing object classes, inheriting both data structure
and behavior (definition of methods) from the defining parent class or
superclass. A class which inherits from another class is said to be a
subclass of its parent. It is possible to define a method in a subclass with
the same name as a method in its parent class, and this new method will
override the method from the parent class. Complete class hierarchies
can be built up through inheritance, perhaps representing hierarchies in
the real-world.

2. 3 Stages of object modeling

In Object Modeling Technique (OMT), building a model of an application
domain is achieved following three major stages [11,13]:

1 Object-Oriented Analysis (OOA): during this stage, the real-world
system is modeled as an aggregate of simple linked objects. Their
relationships are identifying using the application-domain concepts.

2 Object-Oriented Design (OOD): During this phase, decisions are made
about how the problem will be solved. This includes two design stages:

 i. System design: in this phase, the overall system architecture is
decided.

 ii. Object design: which involves the building of the model by defining
the classes and their associations used in the implementation and
algorithms of the methods used to implement operations.

3 Implementation and testing: during this phase, the developed objects
and classes are finally translated in a particular OOP language (e.g.
C++Builder) to become complete software.

Object-oriented modeling uses the same conceptual model across analysis,
design and implementation. Analysis and design stages are intertwined in some
OO methodologies.

J. Electrical Systems 1-2 (2005): 19-34

23

3. ANATOMY OF THE DEVELOPED SOFTWARE

The main idea presented in this project software is based upon the object
concept. So, all parts of the software are designed separately as objects using
OOT in order to facilitate modifications or enhancements.

It consists of five major objects:

• A user-friendly Graphical User Interface (GUI)

• A central Object-Oriented Database (OODB)

• A number of power system applications

• An Object Mathematical Library.

• A network container.

The electrical network is modeled using two main object concepts: the
classification which groups similar objects into classes and the specialization
which refines classes into subclasses.

According to this approach, an object-oriented system is viewed as a collection
of classes and instances ordered by two relations: instantiation and inheritance.
The inheritance is a powerful abstraction for sharing simulates among classes
while preserving their differences. It is the relationship between a class and one
or more refined versions of it. The facilities of the base class are automatically
available to all subclasses. The electrical network model is structured in the
same way as the physical network. In the present case, the plant components
that make up the power system for the static analysis consist of elements such
as generators, transformers, transmission lines, loads and capacitor banks.

class Device // class name
{
private: // Private part of the class
AnsiString FNames; // device name
int FNum; // device number
AnsiString GetName(); // getting the name
void SetName(AnsiString); // setting name
int GetNum();// getting number
void SetNum(const int); // setting number
public: // Public part
__property AnsiString Names= {read=GetName,
write=SetName};
__property int Num = {read=GetNum, write=SetNum};
Device(){} // Constructor
~Device(){} // Destructor } // {Device}

Figure 2: The base class Device of the electrical network

T. Bouktir & L. Slimani: Object-Oriented Economic Power Dispatch of...

24

Figure 2 illustrates the implementation of the class Device that has been defined
as the base class for all the electrical network classes. The class Device has a
private part consisting of parameters that are normally used for describing the
electrical behavior of the component and a public part consisting of data
accessing methods used to coordinate the class with the other classes and to
communicate with the external environment of the class.

Figure 3 shows the global design of the base classes and their subclasses. Four
base classes are identified and derived from the base class Device.

The class Bus represents a main base class because all the electrical
components are connected to one or two buses. DeviceWithTwoConnections
represents the electrical components which are linked to two buses whereas
those linked to a single bus are grouped in DeviceWithOneConnection class.
The fourth class is grouping all protection devices. Using inheritance, new
classes representing the remaining network elements are derived from these
classes. For example, the class DeviceWithTwoConnections is the base class of
the network lines and transformers. Attributes and operations attached to the
base class DeviceWithTwoConnections such as the sending bus and the
receiving bus numbers, and also the resistance, reactance and susceptance are
inherited by the line and transformer subclasses.

Figure 3. Class diagram of the electrical network object model

J. Electrical Systems 1-2 (2005): 19-34

25

4. NETWORK CONTAINER CLASS

The network container is a dynamic vector instance inclosing the different components
of the network model. The topology of the electrical system is defined by the admittance

matrix which is declared in the public part. This can be used by other applications
having an instance of the network container. Figure 4 illustrates the network container
class with its different parameters and necessary methods providing access to manage

the component objects.

class Network: public Device{
private:
vector<Bus> Bus;
vector<Generator> Generator;
vector<Line> Line;
vector<Load> Load;
vector<Transformer> Transformer;
void Admittance();
public:
__property nit NB = {read=GetTotalBusesNumber,
write=SetTotalBusesNumber};
__property int NL = {read=GetTotalBranchesNumber,
write=SetTotalBranchesNumber};
__property int NSLACK ={read=GetBusBar,
write=SetBusBar};
__property double BASE ={read=GetBasePU,
write=SetBasePU};
..................................
Network(){};// Constructor
~Network(){};// Destructor};

Figure 4: Network container class with its attributes and Operations

5. DATABASE MODULE AND DATA DICTIONARY

5.1 Database Module

The data associated with any electrical device can be stored using windows-
based database system, and can be invoked by any analysis application. The
advantages of database structure are: Flexibility of data transfer between the
environment and other applications and data source. Data can be imported and
exported easily via the SQL (structured Query Language) Security of data from
loss or corruption is correctly ensured. Extension to the database can be made
without difficulties.

5.2. The Data Dictionary

Attributes of all electrical objects are defined using Power System Application
Data Dictionary (PSADD).

T. Bouktir & L. Slimani: Object-Oriented Economic Power Dispatch of...

26

Figure 5: The main form of the simulator

Figure 6: Attributes of electrical devices stored using database system

Its can be stored using windows-based database system in order to build a
flexible general-purpose power flow environment that have great expendability
and flexibility (Figure 6). The PSADD is an attempt by IEEE to extend and
renovate the old standby of the power industry, the IEEE Common Format,
which served the industry well for many years. The Data Dictionary is meant
primarily as a definition of terms used for analytical applications within power
system models. It is organized around the notion of objects. In this paper, we us
this Data dictionary to define attributes of all electrical objects. The PSADD
integrates two viewpoints: a bus-oriented viewpoint common to analytical
studies, and an equipment-oriented viewpoint common to measured values and
system operation. The communication between the graphics, the database,
network classes and power system applications are presented in the figure 7.

J. Electrical Systems 1-2 (2005): 19-34

27

Network Container

GUI

OODB

Applications

Object Math Library

Events

I/O Files Help Files

Figure 7. Architecture of the OOP environment.

6. OBJECT MATH LIBRARY MODULE

The power system analysis requires powerful numerical methods to obtain
accurate results. Using OOP concepts and operators overloading inline
functions, a flexible mathematical library which includes the commonly used
numerical methods has been implemented. The main idea is to include
numerical algorithms and methods as conceptual objects. The heart of this
module is arrays objects (vector and matrix) which are called in solving
iterative and non-iterative equations. These arrays have been implemented as
templates objects in order to support all types of data declaration (integer,
complex and float). The memory is dynamically managed using the new and
delete C++ keywords.

7. POWER SYSTEM APPLICATIONS

7.1 Load flow calculation

Performing a load flow solution in a distribution network is required after any
change in loads. This will provide updated voltages, angles and transformer
taps and points out generators having exceeded reactive limits. to determining
all active and reactive power of all generators and to determine power that it
should be given by the slack generator after any change in load. The load flow
is also necessary to perform other studies such as fault analysis, transient
stability, and optimal power flow. All these require a fast and robust load flow
program with best convergence properties. The developed load flow module is
based upon the full Newton-Raphson algorithm.

By clicking the appropriate push button on the main window, an interactive and
graphic interface for the Load Flow Application is invoked (see figure 8).

T. Bouktir & L. Slimani: Object-Oriented Economic Power Dispatch of...

28

Figure 8: Power Flow Window

Optimisation

Newton-Like Local Optimisation Global Optimisation

Newton Direct Search

Simplex Quasi-Newton Conjugate Gradient

Q-N using BFGS Q-N using DFP

Gradient
Genetic

Algorithm
Evolutionary

Algorithm

Quasi-Newton

Figure 9: Optimization method hierarchy

To perform the PF calculation, the user clicks the run button then the load flow
program is executed, and the results are displayed on the load flow window.

7.2 Object Oriented Optimization library

Using Object Oriented Programming, the optimisation methods used to
compute the optimal power flow are designed in a hiearchical structure. In this
structure, low-level objects are relatively abstract or general, while higher-level
ones are more problem-specific. We will devide the methods into three classes:

• Local optimization methods class

J. Electrical Systems 1-2 (2005): 19-34

29

• Global optimization methods class

• Newton type methods class.

In the local optimization methods, the current iterates in the optimization
process are derived from the update of previous iterates that lie in a nearby
neighborhood. For example the nonlinear conjugate gradient method, the
Nelder-Mead simplex method and the Quasi-Newton methods fall into the local
optimization methods class.

If the objective function has a high degree of complexity, then optimization
might require the use of stochastic algorithms. The genetic algorithm and
evolutionary algorithm fall into this global optimization methods class.

Due to their evolutionary nature, genetic algorithms will search for solutions
without regard for the specific inner structure of the problem. GAs can handle
any kind of objective functions and any kind of constraints, linear or nonlinear,
defined on discrete, continuous, or mixed search spaces. In The Newton type
methods, we need the availability of the objective function and analytic first
and the second derivatives. In Figure 9, we present the optimization method
hierarchy.

7.3 Optimal Power Flow Class

The Optimal Power Flow (OPF) problem is modelled as a class multi-inherited
from a Load Flow (LF) class and a Genetic Algorithm (GA) class and has a
direct access to a main power system object class. The necessary data for
performing the optimization are the upper and lower constraint vectors and the
coefficient vector of the cost function. Several computing methods are available
in this class such as the cost function method, the optimal line search of the
minimum, the integration of the inequality constraints and the method for
updating the design vectors (Figure 10).

The OPF module is treated using a genetic algorithm and can be used in large
power distribution systems. To make the dispatch more practical, our OPF
takes into account the network losses. To accelerate the processes of the
optimization, the controllable variables are decomposed to active constraints
and passive constraints. The active constraints which effect directly the cost
function are included in the GA process. The passive constraints which affect
indirectly this function are maintained in their soft limits using a conventional
constraint load flow, only, one time after the convergence of GA. The search of
the optimal parameters set is performed taking into the account that the power
losses are 2% of the power demand. The slack bus parameter will be
recalculated in the load flow process to take the effect of the passive constraints
and the exact power losses.

T. Bouktir & L. Slimani: Object-Oriented Economic Power Dispatch of...

30

Figure 10. Optimal Power Flow Window

Therefore one can say that a more natural representation of the problem offers
more efficient solutions. Then one of the greater improvements consists in the
use of real numbers directly. Genetic Algorithms with real code in Economic
Power Dispatch provide an edge over common GA mainly because they do not
require any special coding of individuals. In this case, since the desired
outcome is the operating point of each of the dispatched generators (a real
number), each of the individuals can be directly presented as a set of real
numbers, each one being the produced power of the generator it concerns.

Our Genetic Algorithm is based on the completed Genocop III system [15],
developed by Michalewicz, Z. and Nazhiyath, G. Genecop III for constrained
numerical optimization (nonlinear constraints) is based on repair algorithms.
Genocop III incorporates the original Genocop system [16] (which handles
linear constraints only), but also extends it by maintaining two separate
populations, where a development in one population influences evaluations of
individuals in the other population. The first population Ps consists of so-called
search points, which satisfy linear constraints of the problem; the feasibility (in
the sense of linear constraints) of these points is maintained by specialized
operators (as in Genocop). The second population, Pr, consists of fully feasible
reference points. These reference points, being feasible, are evaluated directly
by the objective function, whereas search points are “repaired”' for evaluation.

J. Electrical Systems 1-2 (2005): 19-34

31

8. APPLICATION STUDY

The OOOPF using Genetic Algorithm (GA) has been developed by the use
of Borland C++ Builder version 5 . More than 6 small-sized test cases were
used to demonstrate the performance of the proposed algorithm. Consistently
acceptable results were observed. The IEEE 30-bus system with 6 generators is
presented here. The total load was 283.4 MW. We propose to apply a genetic
algorithm of real type to present active powers of the 6 generators directly. The
parameters of the developed GA are: the number of maximal iteration is 5000,
the size of population is 70, the crossover used is of heuristic type, the mutation
of “non-uniform” type, the operator of selection remains identical as the one of
the roulette wheel, the probability of replacement is 0.25.

Upper and lower active power generating limits and the unit costs of all
generators of the IEEE 30-bus test system are presented in Table 1. The NOx
emission characteristics of generators are grouped in Table 2.

Table 1: Power generation limits and cost coefficients for IEEE 30-bus system.

Bus Pgmin
(MW)

Pgmax
(MW)

a
($/hr)

b
($/MW.hr)

c.10-4

($/MW².hr)
01 50.00 200.00 0 2.00 037.5
02 20.00 080.00 0 1.75 175.0
05 15.00 050.00 0 1.00 625.0
08 10.00 035.00 0 3.25 083.0
11 10.00 030.00 0 3.00 250.0
13 12.00 040.00 0 3.00 250.0

Table 2: Pollution coefficients for IEEE 30-bus system

Bus a.10-2 b.10-4 c.10-6 d.10-4 e.10-2

1 4.091 -5.554 6.490 02.00 2.857

2 2.543 -6.047 5.638 05.00 3.333

5 4.258 -5.094 4.586 00.01 8.000

8 5.326 -3.550 3.380 20.00 2.000

11 4.258 -5.094 4.586 00.01 8.000

13 6.131 -5.555 5.151 10.00 6.667

T. Bouktir & L. Slimani: Object-Oriented Economic Power Dispatch of...

32

Table 3. Results of minimum total cost for IEEE 30-bus system in three cases (α=1,
α=0.5 and α=0)

Variable Initial
state

Generation
cost
minimum

Generation
cost +
Emission
minimum

Emission
minimum

Pg01(MW) 0099.2110 0180.8180 0128.2124 0066.6384
Pg02(MW) 0080.0000 0048.9381 0065.5900 0065.7536
Pg05(MW) 0050.0000 0018.9533 0023.7065 0049.9997
Pg08(MW) 0020.0000 0020.5136 0026.4992 0034.9999
Pg11(MW) 0020.0000 0010.3941 0024.6192 0029.9395
Pg13(MW) 0020.000° 0013.7138 0021.7388 0039.9998
Generation
cost ($/hr) 0901.9180 0803.1060 0824.9884 0943.1008

Power Loss
(MW) 0005.8120 0009.9308 0006.9661 0003.9309

Emission
(ton/h) 0000.2391 0000.3771 0000.2659 0000.2051

Total cost
($/h) 1033.6 1010.7 0971.4 1056.1

The results including the generation cost, the emission level and power losses
are shown in Table 3. This table gives the optimum generations for minimum
total cost in three cases: minimum generation cost without using into account
the emission level as the objective function (α=1), an equal influence of
generation cost and pollution control in this function and at last a total
minimum emission is taken as the objective of main concern (α=0). The active
powers of the 6 generators as shown in this table are all in their allowable
limits. We can observe that the total cost of generation and pollution control is
the highest at the minimum emission level (α=0) with the lowest real power
loss (3.931 MW). As seen by the optimal results shown in the table 3, there is a
trade-off between the fuel cost minimum and emission level minimum. The
difference in generation cost between these two cases (803.1060 $/hr compared
to 943.1008 $/hr), in real power loss (9.9308 MW compared to 3.9309 MW)
and in emission level (0.3771 Ton/hr compared to 0.2051 Ton/hr) clearly shows
this trade-off. To decrease the generation cost, one has to sacrifice some of
environmental constraint. The minimum total cost is at α=0.5. The security
constraints are also checked for voltage magnitudes, angles and branch flows.
The voltage magnitudes and the angles are between their minimum and the
maximum values. No load bus was at the lower limit of the voltage magnitude.

J. Electrical Systems 1-2 (2005): 19-34

33

The branch MW/MVAR/MVA flows do not exceed their upper and lower
limits. These results are not included in this paper.

The figure 11 shows the best fitness found for every generation (for α=0.5). We
note a fast progress of the value of the best fitness for every generation. The
optimum has been obtained after only 1 second for the 5000 generations tested
with P4 1.5,GHz,128MO. Ever since the iteration 2968, it converges already,
toward the optimum value of the order of 973.05 $/h. This value does not take
into account the exact cost of the total real power losses. We proceed then to a
power flow calculation of type Newton-Raphson and readjust slack generation
that takes in consideration the exact losses of real powers. The convergence of
the method of N-R is achieved after 4 iterations and 0.1 sec.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 970
975
980
985
990
995

1000
1005
1010
1015

generation number

B
es

t F
itn

es
s

va
lu

e(
$/

h)

Figure 11: Better Fitness during the EP processes for IEEE 30-bus system

9. CONCLUSION

In this paper, the application of the object-oriented concepts and the Builder
C++ programming language to the OPF computation using genetic algorithm
have been explored and tested. The implementation of the OPF algorithm takes
full advantage of inheritance from the load flow, genetic algorithm and network
container. This has provided facilities in terms of easy programming,
reusability and easier maintenance. The proposed OOOPF-GA program has
been tested and validated on the IEEE 30-bus system. It shows that OPF-GA is
a global method since it converges to the same solution from almost any
starting control vector and gives a secure control vector. This method would be
very useful for power planner and/or operator treat not only cost but also with
environmental objective power system. In this approach, only the active
constraints are taken to calculate the optimal solution set using evolutionary
programming based on GENECOP III system and the passive constraints are
taken in an efficient load flow by recalculating active power of the slack bus.

T. Bouktir & L. Slimani: Object-Oriented Economic Power Dispatch of...

34

REFERENCES

[1] T. Adielson, SIMPOW- A digital program system for static and dynamic
simulation of power systems" OEPSI conference, Bankok, Nov. 1982.

[2] A. F. Neyer, F. F. Wu and K. Imhof, object-oriented programming for flexible
software; example of a load flow, IEEE Trans. on Power Systems, Vol. 5, No.3,
Aug. 1990.

[3] M. Rochefort, N. De Guise and L. Gingras, Development of a graphical user
interface for a real-time power system simulator, Electric Power Systems Research
36, 1996, pp.203-210.

[4] M. Foley and A. Bose, Object-orientated on-line network analysis, IEEE Trans. on
Power Systems, Vol. 10, pp.125-132, 1995.

[5] K. Hasan K, B. Ramsay and I. Moyes, Object oriented expert system for real-time
power system alarm processing- Part 1. selection of a toolkit, Electric Power
System Research 30, pp. 77-82, 1994.

[6] B. Belkhouche, Object-oriented modeling tools, www.eecs.tulane.edu/Belkhouche
[7] E. Z. Zhou, Object-oriented programming, C++ and power system simulation,

IEEE Trans. on Power Systems, Vol. 11, No. 1, pp. 206-214, Feb. 1996.
[8] G. Eldridge, Introducing Eiffel: An Object-technology approach to power system

analysis, www.progsoc.uts.edu.au/~geldridg/psa-objects/ppr_9601.zip.
[9] T. Bouktir, A. Gherbi, L. Belfarhi and M. Belkacemi, An efficient object-oriented

load flow applied to a large-scale power system: Application to sonelgaz network,
ICEL2000, Oran, Algeria.

[10] J. Rumbaugh, M. Baha, W. Premerlani, F. Eddy and W. Lorensen, Object-oriented
modeling and design, Prentice Hall, Englewood Cliffs, New Jersey, USA, 1991.

[11] K. Reisdorph, Borland C++ Builder 3, Simon & Schuster Macmillan, France,
1998.

[12] G. Booch, Object-oriented design with applications, 2nd Edition, Benjamin
Cummings, Coleman Arnold, 1994.

[13] J. Zhu and D. L. Lubkeman, Object-oriented development of software systems,
IEEE Trans. on Power systems, Vol. 12, No. 2, pp. 1002-1007, May 1997.

[14] G. W. Stagg and A. H. El-Abiad, Computer methods in power system analysis,
McGraw Hill, 1968.

[15] Z. Michalewicz and G. Nazhiyath, Genocop III: A co-evolutionary algorithm for
numerical optimization problems with nonlinear constraints, Proceedings of the
Second IEEE ICEC, Perth, Australia, 1995.

[16] Z. Michalewicz and C. Janikow, Handling constraints in genetic algorithms,
Proceedings of Fourth ICGA, Morgan Kauffmann, pp. 151-157, 1991.

