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Abstract. Natural geophysical timeseries bear the signature
of a number of complex, possibly inseparable, and gener-
ally unknown combination of linear, stable non-linear and
chaotic processes. Quantifying the relative contribution of,
in particular, the non-linear components will allow improved
modelling and prediction of natural systems, or at least de-
fine some limitations on predictability. However, difficulties
arise; for example, in cases where the series are naturally
cyclic (e.g. water waves), it is most unclear how this cyclic
behaviour impacts on the techniques commonly used to de-
tect the nonlinear behaviour in other fields. Here a non-linear
autoregressive forecasting technique which has had success
in demonstrating nonlinearity in non-cyclical geophysical
timeseries, is applied to a timeseries generated by videoing
the waterline on a natural beach (run-up), which has some
irregular oscillatory behaviour that is in part induced by the
incoming wave field. In such cases, the deterministic shape
of each run-up cycle has a strong influence on forecasting re-
sults, causing questionable results at small (within a cycle)
prediction distances. However, the technique can clearly dif-
ferentiate between random surrogate series and natural time-
series at larger prediction distances (greater than one cycle).
Therefore it was possible to clearly identify nonlinearity in
the relationship between observed run-up cycles in that a lo-
cal autoregressive model was more adept at predicting run-up
cycles than a global one. Results suggest that despite forc-
ing from waves impacting on the beach, each run-up cycle
evolves somewhat independently, depending on a non-linear
interaction with previous run-up cycles. More generally, a
key outcome of the study is that oscillatory data provide a
similar challenge to differentiating chaotic signals from cor-
related noise in that the deterministic shape causes an addi-
tional source of autocorrelation which in turn influences the
predictability at small forecasting distances.
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1 Introduction

Most timeseries collected from natural systems are to some
degree difficult to predict. The possibility that this property
is a signature of low-dimensional chaotic underlying dynam-
ics has sparked a keen interest in exploring non-linear tech-
niques for data analysis, model development and prediction
across a wide range of fields. Early attempts in nearshore
oceanography centred on direct applications of techniques
developed primarily for theoretical chaotic signals, for ex-
ample applying fractal or correlation dimensions (e.g. Grass-
berger and Procaccia, 1983) to beach morphology measure-
ments (Southgate and M̈oller, 2000) or wave timeseries (El-
gar and Mayer-Kress, 1989) or calculating the Lyapunov ex-
ponents of ocean water levels (Frison et al., 1999). However,
there is a growing body of literature that shows these tech-
niques do not generally work for the stochastic timeseries
characteristic of natural systems, because they are very sen-
sitive to, for example, noise, pre-processing, sampling strat-
egy and timeseries length (Shirer et al., 1997, give a re-
view). The key issue is that natural systems, even if they
have a chaotic element, do not evolve in isolation but receive
stochastic forcing from external sources. The techniques that
have been developed for theoretical chaotic signals are not
equipped to deal with such mixed and noisy processes, and,
dangerously, often provide spurious results. For example,
synthetic linear timeseries with random noise added can pro-
vide equally strong “evidence” of chaotic behaviour in ocean
gravity waves (Elgar and Mayer-Kress, 1989), beach profile
behaviour (Elgar, 2001) and in radar measurements of the
ocean surface (sea clutter) (Haykin et al., 2002).

As with research in the marine environment generally
(e.g. Hsieh et al., 2005), these kinds of problems have
sadly deterred exploration of chaotic behaviour in nearshore
oceanography particularly in environments that are already
known to comprise a mixture of many different processes.
For example, there are few published results that have
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successfully demonstrated chaotic behaviour in common sig-
nals such as timeseries of gravity waves, seabed ripples,
beach morphology and run-up (run-up is the movement of
the waterline on a beach). In fact, to what degree this chaotic
behaviour emerges in natural systems is not clear.

The case of run-up is particularly interesting because it
encompasses a feedback behaviour which clearly has the po-
tential of inducing a chaotic response. As a wave crest enters
the run-up zone, it progresses up the beachface as a thin-
ning tongue of water (“uprush”) until the influence of gravity
causes a reversal of flow direction. The water flows back
down the beachface under the influence of gravity (“down-
rush”). However, depending on the size of the wave, on
the timing between successive wave crests and the beach
slope, the downcoming water can interact, sometimes vio-
lently with the incoming water, removing momentum from
the new incoming wave. Alternatively, the incoming wave
can join the uprush of the previous wave and produce an ex-
tra large run-up event. So the process is complex in that it
is some unknown combination of forcing from the incom-
ing wave field and dynamics which evolve within the run-up
zone. The mismatch between the timing of the forcing and
run-up cycle is critical to the dynamics. Such a system is
reminiscent of some of the classic examples of chaotic be-
haviour such as the ball bouncing on an oscillating plate or
a kicked rotor (see Tuffillaro and Albano, 1986; or Moon,
2005, for a review). In such an analogy, the run-up cy-
cles represent the bouncing ball or the rotor and the forc-
ing caused by the incoming waves represents the oscillating
plate or the “kick”. Although intriguing, there is no evidence
to prove or disprove the existence of chaotic behaviour in
run-up.

Natural signals that are potentially chaotic require differ-
ent analysis approaches because they represent a combina-
tion of a deterministic chaotic signal combined with mea-
surement and dynamical noise. Measurement noise is simply
superimposed on the system and thus techniques aim to sim-
ply extract the signal from the noise. Conversely, dynamical
noise can force the deterministic nonlinear portion of the sig-
nal to occupy different states (e.g. stable or non-stable) and
thus techniques for detecting stochastic chaos must be de-
veloped with regard to this inherent inseparability (Sugihara,
1994).

Casdagli (1989) and later Sugihara and May (1990) apply
a nonlinear autoregressive forecasting technique developed
by Farmer and Sidorowich (1987) as a tool for detecting non-
linearity in stochastically-forced non-linear signals. Casdagli
(1992) used the relative difference in performance of mod-
els with differing numbers of nearest neighboursk included
in the model as an indicator of nonlinearity, where superior
performance at largerk (global model) indicates a linear un-
derlying process and superior performance at smallerk (local
model) indicates that the modelled timeseries exhibits local
behaviour and thus the underlying process is more likely to
be chaotic. Intermediatek is an indication of stochastic non-

linearity (Sugihara, 1994). The behaviour of the correlation
between forecast and observations with increasing prediction
time (e.g. Sugihara and May, 1990) can be used to differenti-
ate between stable and unstable nonlinearity (or chaos), with
unstable correlation coefficients decaying exponentially and
more quickly with time (Sugihara, 1994).

This nonlinear forecasting technique has successfully
demonstrated local behaviour in natural systems such as phy-
toplankton dynamics, electrical heart rate signals (both in
Sugihara, 1994), sediment transport (Jaffe and Rubin, 1996),
airborne cedar pollen timeseries (Delaunay et al., 2004), ther-
moregulatory responses in plants (Ito and Ito, 2005), fish-
eries timeseries (fish landings, larval abundance (Hsieh et
al., 2002)) and photos of wind ripples (Rubin, 1992). How-
ever, often global autoregressive models seem more adept at
predicting natural geophysical timeseries such as sea surface
temperature signals (Hsieh et al., 2005), geomagnetic time-
series associated with volcanic activity (Currenti et al., 2004)
and eruptive activity of a volcano (Marzocchi et al., 1997)
and electrical precursory timeseries used for earthquake pre-
diction (Cuomo et al., 1998) possibly because of the levels of
dynamical noise associated with these signals. Such failures
have lead to conclusions that “evidence of chaos in geophysi-
cal timeseries does not seem statistically significant” (p. 3207
in Marzocchi et al., 2004).

Here we apply the same non-linear forecasting technique
to timeseries generated from digitizing video footage of the
water’s edge (the run-up) on a beach as it moves up and down
the beachface with each incoming wave. Such a timeseries
provides an interesting challenge, as it encompasses a more-
or less deterministic shape (the parabola traced by the run-up
as it moves up and down the beachface) appended together in
a timeseries, with each parabola related to each other in some
unknown way depending on stochastic forcing from the in-
coming wave field and interactions between run-up events.
The nonlinearity of interest here is not the nonlinear shape
of the parabola followed by each run-up cycle (which is not
a signature of dynamic nonlinearity), but the nonlinearity as-
sociated with interactions between run-up events, which we
believe has the potential to be unstable and therefore exhibit-
ing chaotic behaviour.

2 Methods

2.1 Description of non-linear forecasting technique

In a linear or global autoregressive model every point in a
time seriesx(t) is regressed against the previous sequence of
pointsx(t−j1t) to evaluate the coefficientsaj in

x(t + d1t) = ao +

j=m−1∑
j=0

aj+1x(t − j1t) (1)

where1t is the time lag between points in the sequence,
d represents distance into the future andm is the number
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Fig. 1. (a)An example of the run-up timeseries. Bullets indicate the points for which a forecast is made.(b) Thed=1t (=3.5 s) forecast
usingm=7 andk=500. The line indicates the original series and the bullets represent the points for which a forecast is made.(c) Thed=51t

forecast for the same data.

of coefficients. This time lag can be evaluated using the
first minimum in the average mutual information (e.g. Abar-
banel, 1986), which is a measure of the information gained
about one measurement using another. To evaluate the per-
formance of the model, timeseries can be divided into train-
ing and testing series where predictions for the testing series
are made using the coefficientsaj that are evaluated by using
all available sequences from the training dataset. The predic-
tion can be evaluated by either the correlation (e.g. Sugihara
and May, 1990) or the root-mean-square error (e.g. Farmer
and Sidorowich, 1987) between prediction and observation.

In a non-linear or local autoregressive model, the coeffi-
cientsaj are only evaluated using training sequences which
are nearest neighbours to the testing sequence for which a
prediction is required. Therefore the model can be tuned to
local behaviour and therefore can provide improved predic-
tions for non-linear processes. In the linear model, the sys-
tem evolves in the same way regardless of initial conditions,
so maximizing the number of nearest neighboursk will give
the best model because this will minimize the noise compo-
nent most effectively. As a consequence, it is this difference
in predictive ability between the global (k=n, wheren is the
total number of available sequences) and local model (k<n)
that allows the autoregressive model to be used as a tool to
explore the underlying nature of the process generating the
timeseries. In this case the placket size (or the number of
points in the sequences),m, is analogous to the embedding
dimension of the non-linear system. The ability of the tech-
nique to perform in cases where timeseries lengths are short
and contaminated by moderate levels of noise make the tech-
nique more appropriate for analysis of timeseries from natu-
ral systems than tools such as the fractal dimension, correla-
tion dimension and the Lyapunov exponents that have been

developed for deterministic chaotic signals. However, when
the level of measurement noise increases significantly, the
linear model provides a better prediction regardless of the
underlying nature of the timeseries (Rubin, 1995).

2.2 Run-up data collection and analysis

The timeseries of run-up (e.g. Fig. 1a) used here were dig-
itized from sub-aerial video imagery collected at the US
Army Corps of Engineers Field Research Facility at Duck
North Carolina, on 6 September 1994 (these timeseries
have been used previously in Burnet (1998) and Ciriano et
al. (2005). In addition, Coco et al. (2003) provide details on
the methods used to extract run-up timeseries from video).
Timeseries were collected at 2 Hz and converted to variations
in water level elevation with the help of surveyed measure-
ments of beachface morphology and standard camera rectifi-
cation techniques. The observations reported here were col-
lected during a day where the incoming waves were from a
narrow range of directions and periods, with a peak spec-
tral period of 12 s. Above the main peak, the spectrum de-
cayed at∼f −3, wheref is frequency, which is similar to
the theoretical spectral signature of a timeseries of parabo-
las (∼f −4 (Mase, 1988)). In the high frequency region of
the spectrum of run-up, the energy remained constant as fre-
quency increased, indicating that the signal was below the
measurement capabilities of the video technique. This was
assumed to be the measurement noise component of the sig-
nal and (vnoise)

0.5 equated to<9% of the (vsignal)
0.5, where

vnoiseandvsignalare the summed variance associated with the
noise and the run-up signal in the spectrum respectively.

To implement the forecasting technique, a randomly-
selected testing sequence of lengthm+d1t was removed
from the original detrended 14 000 point run-up timeseries,
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Fig. 2. (A) The natural timeseries.(B) The surrogate created by appending parabolas with usingSmax, Smin, dT , T equal to the mean of the
values in library created by measuring these values in the natural series.(C) The surrogate created usingSmax andSmin selected randomly
from the library, butdT andT set equal to the mean of available library values.(D) Smax, andT all selected randomly from the library.(E)
Smin, dT , andT given the same order as in the natural series,Smax selected randomly from the library.(F) Smax, Smin, anddT given the
same order as in the natural series,T selected randomly from the library.(G) Smax, Smin, dT , T selected randomly from the library, and a
sinusoid with amplitude of 0.2 and period of 20 s superimposed.

and the remaining 14 000-m−d1t were used as the train-
ing data set. This method was implemented to maximize
the training dataset, since smaller training datasets (although
computationally advantageous) appeared to provide more
variable results. The regression coefficients (and the selec-
tion of nearest neighbours) were re-evaluated for each step
into the futured. This process was repeated 6000 times (in-
suring each testing sequence was only included once) to al-
low a robust estimate of the correlation between prediction
and observation (smaller numbers of repetition resulted in
more variable results). The analysis was then repeated to op-
timize the number of nearest neighboursk and the placket
sizem. Significance levels on the resulting correlations were
calculated by randomising the original timeseries, and re-
peating the analysis 100 times using 500 test cases each time
(rather than the computationally-intensive 6000 test cases).

2.3 Surrogate series

One of the difficulties in interpreting the results is isolating
the influence of the somewhat deterministic parabolic shape
of each run-up event on the forecasting technique. To ad-
dress this, a number of surrogate series were created to mimic
timeseries of naturally occurring surf-zone processes, using
similar methods to Theiler et al. (1992). The difficulty is cre-

ating a surrogate series that is random, yet with many of the
properties of the original series (Small and Tse, 2002). In our
case the challenge is to preserve shape that is characteristic
of each run-up event and the gross statistical properties of all
the events. The water level during each run-up cycle does
not return to a common level, therefore the shuffling scheme
used by Theiler (1995) and Stone (1992) needed adaptation.
To this end, the height and timing of the maximum and min-
imum of each run-up cycle was extracted from the natural
timeseries and used to create a library of∼760 run-up max-
imaSmax, run-up minimaSmin, the time separation of consec-
utive run-up maximaT , and the time separation of consec-
utive run-up maxima and minimadT. Synthetic series were
created by randomnly selecting characteristics from the li-
brary, and fitting two half parabolas for each run-up cycle:
between the minimum and maximum, and between the max-
imum and the following minimum. The selections from the
library required a limitation in thatSmax>Smin anddT <T .
However, in practice these cases were rare. In this way, the
resulting run-up series had the same statistical distribution of
Smax, Smin, dT , T , but different order.

A number of synthetic series were created using this tech-
nique, ranging from using the original sequence of parame-
ters (so that the resulting series was very similar to the data
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which is shown in Fig. 2a, using constant values for the pa-
rameters (the averages) (Fig. 2b), randomly selectingSmax
andT , but using theSmin anddT associated with thatSmax so
that the shape of the leading face of each run-up event is pre-
served exactly (Fig. 2d), and combinations thereof (Figs. 2c,
e and f). It must be noted, that in cases in which all 4 param-
eters are randomly selected independently from the library
(not shown), the resulting timeseries appeared quite different
from the original because the joint probability distributions
are not preserved. Finally, relationships between run-up cy-
cles were added to the random surrogate series, for exam-
ple Smax was related to the previousSmax, or the previous
Smax−Smin, or a low frequency sinusoid added (Fig. 2g), to
mimic low frequency energy generally observed in run-up
timeseries (the data used here included). All series were de-
trended and standardised and normally distributed random
noise with 0.09 standard deviation superimposed. Many
more variations were trialled than presented in Fig. 2.

3 Results

3.1 Run-up on a natural beach

The predictions (examples given in Figs. 1b and c) capture
the cyclic nature of the observations, albeit an under predic-
tion of maxima and an overprediction of minima which wors-
ens with increasingd. Interesting behaviour occurs around
t=3380 s where the uprush event of several run-up cycles
merge to result in an extra high and long run-up cycle. The
prediction atd=1t (=3.5 s) does reproduce some of this low
frequency behaviour, although entirely misses the minima at
3400 s.

The time lag1t was calculated using the average mutual
information to be 7 data points (3.5 s), which, considering the
averageT is 9.2 s, is approximately a third of a typical run-
up cycle. The optimum placket size or the dimension of the
system appears to be 6 or 7 points (Fig. 3), which means be-
tween two and three run-up cycles are needed to learn the be-
haviour of the system. The correlation of prediction with the
observation atd=1t and at the optimumm andk is ∼0.64.

The optimum number of nearest neighbours needed is
∼500 which corresponds to 3.5% of the training data set
(Figs. 3 and 4). The local model clearly provides a better pre-
diction than the global model, although the enhancement in
the correlation coefficient is only on the order of 15%. As the
prediction is stepped into the future, the correlation rapidly
diminishes accompanied by an increase in the optimum num-
bers of nearest neighbours, so that atd=101t or 35 s ahead
(∼4 run-up cycles), correlation is 0.2 andk=10 000 or∼73%
of the training dataset (Fig. 4).

3.2 Surrogate time series

The various surrogate run-up series revealed the controls of
period and memory on the predictability and the optimum
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k. Examples are shown in Fig. 5. Unsurprisingly, the run-
up series surrogate in which the order of parameters was the
same as in the observations produced nearly identical results
to the actual data (not shown) which was a good check on the
method of producing surrogates. Fixing all the parameters to
their mean values allowed near perfect predictability (apart
from the superimposed random component), with the predic-
tion reaching a constant level atk>300 for alld, indicating
that∼2% of a run-up cycle is enough to learn the parabolic
shape (Fig. 5, lines with crosses). There is a very slight en-
hancement (∼0.1%) of the nonlinear over the linear model,
where the former is more capable of tuning to the sharp point
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at the join between parabolas. We tried other shapes such as a
saw-tooth, sinusoid, and repeated spikes, and in all cases the
smoother the shape, the better the linear model performs (al-
beit with only very slight differences). Larger plackets also
provided better results in these cases.

In the case in whichSmax andT were chosen randomly
from the library (Fig. 5, diamonds), the timeseries was com-
pletely unpredictable beyond one run-up cycle (d>9.2 s).
Within the run-up cycle, there was a small degree of pre-
dictability (correlation∼0.2). The optimumk appeared to be
inversely related to the correlation in that within this first run-
up cycle, the optimumk was similar to the results obtained
using the natural series, and beyond the first cycle the global
model was the best (maximumk). Likewise, the placket size
changed from∼3 within the first run-up cycle to the maxi-
mum trialled (12 points) beyond the first run-up cycle.

Fixing T only, while selecting the other variables ran-
domly dramatically increased the predictability over the
completely random case, and the predictability remained rel-
atively constant for increasingd (compare Fig. 5, triangles
and diamonds). Finally, randomisingSmax andT separately

while using the observed order for the other variables de-
creased predictability by 30% and 50% respectively both
within and beyond the first run-up cycle. Interestingly, the
optimumk increased much more quickly with increasingd

for these two cases than it did for the results obtained using
the natural series (Fig. 5b). For both cases with fixedT , the
largest placket size (e.g. 12 points) provided the optimum
prediction, whereas for all other cases other than the exact
replica of the data, a placket of 3–4 points provided the opti-
mum fit, increasing with increasingd. (One run-up cycle is
approximately 3–4 points).

Finally, adding a low frequency undulation to the surrogate
did not succeed in replicating the results obtained using the
observations. For example, adding a low-frequency sinusoid
(Fig. 5, “x”) to the otherwise completely random case, served
to increase the predictability beyond the first run-up cycle,
and maintain this predictability at a constant level (Fig. 5,
compare “x” and diamonds). Interestingly the optimumk
andm increased dramatically, as in the cases using constant
T . It is possible to manipulate the out-of-cycle predictability
in the case where all four parameters are chosen randomly,
by adding a (linear) memory toSmax. However, in contrast to
the results obtained using the natural timeseries, the global
model (maximumk) provided the best out-of-cycle predic-
tion in these cases and we could not reproduce the level of
predictability that was obtained using the natural run-up se-
ries by using a simple linear model.

4 Discussion and conclusions

It is clear from the surrogate testing that the results need to
be interpreted differently for predictions that are within cy-
cle (in which the placket includes a portion of the cycle that
is being predicted) and those that are out-of-cycle (in which
a prediction is being made for an entirely new run-up cy-
cle). It was always possible to make some level of prediction
within-cycle, even when the parameters controlling the shape
of run-up events were randomly chosen. This was because
all run-up events were based on the same shape. The natural
timeseries was best predicted by a local model, withk=500,
and therefore the model is using the information from∼27
sequences of 2 run-up cycles (=18.4×2 points) to train the
model. There are a total of∼760 sequences of 2 run-up cy-
cles in the 14 000-point timeseries, so this amounts to using
approximately 3.5% of the available information to train the
model. When makingwithin cycle predictions, the placket
that is used includes points from the current cycle, so the
model can make a successful prediction by finding a run-
up cycle that is evolving in a similar way from the cycles
available in the training dataset. This is in contrast to the
out-of-cyclepredictions where the model includes no infor-
mation from the cycle it is attempting to predict. Note that
it is impossible to randomly orderSmax andT at the same
time as creating a series of parabolas that exactly mimic the
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shape of run-up cycles in the data, and this is why the surro-
gate in which the cycles are randomised (Fig. 5a, diamonds)
has considerably reduced within-cycle correlation relative to
results based on the natural timeseries.

Although the forecasting technique can successfully iden-
tify the parabolic shape as nonlinear because thewithin-cycle
behaviour is best predicted by a local model, as stated previ-
ously, this parabolic shape can be modelled with a linear dy-
namical equation and so is unlikely to be an indication of dy-
namic nonlinearity. There do exist weakly non-linear terms
in, for example, the effect of bottom friction, which play a
role in the evolution of the run-up cycle. However, given
the results of the surrogate testing, the “nonlinearity” identi-
fied by studying the behaviour of the within-cycle forecasts
is not of interest in our goal of understanding the complex
dynamics of run-up cycles. For example, the surrogate series
with randomly appended parabolas was best fit (for within-
cycle predictions) with the local model with the optimumk
the same as for the natural timeseries, even though such a
series is completely synthetic and clearly does not represent
underlying chaotic dynamics. With 760 synthetic run-up cy-
cles with which to train the model, many combinations of
2 run-up cycles are represented in the training dataset, and
the local model is more adept to tuning to these shapes. Ru-
bin (1992) discuss a similar case, in which a deterministic
pattern is randomly repeated, which mimicked some of the
gross properties of a chaotic signal in forecasting analysis.
This is probably similar to the difficulties encountered in dis-
tinguishing chaotic series from coloured noise (Tsonis and
Elsner, 1992). We can therefore conclude that,within cycle,
the out-performance of the non-linear model over the linear
model is not a good indicator of dynamic non-linearity in the
timeseries because it cannot differentiate between the surro-
gate and the natural timeseries.

Conversely,out-of cycleforecasts for the natural time-
series are clearly different than the results obtained using
the surrogate where properties are randomly ordered (com-
pare squares and diamonds in Fig. 5). In the latter case, the
forecast and surrogate timeseries are essentially uncorrelated
and the optimumk andm are maximised, whereas the cor-
relation decays for the natural timeseries, along with a slow
increase ink accompanying this decorrelation. Unlike in Ru-
bin (1992), increasing embedding dimension (packet sizem)
does not improve the performance of the linear over the non-
linear model in forecasting our natural run-up series (Fig. 2).
Therefore, although the forecasting technique cannot distin-
guish dynamically nonlinear and randomly-generated signals
at within-cycle forecasting distances, beyond the cycle the
technique has clearly shown that run-up is non-linear in a
dynamical sense. It is possible to predict to some degree a
run-up cycle using only information from previous run-up
cycles, and that prediction is better done with a local model.

Placket size appeared to provide some indication of the na-
ture of the series. A placket size of approximately two run-up
cycles provides the best prediction for the natural timeseries,

whereas the largest placket size tested provided the best pre-
diction for the surrogates in which period was held constant.
In the case of the linear timeseries, the more data that can be
included in the model (through largerm andk), the more the
random noise component can be suppressed and the better
the fit (Fig. 5, bottom panel, lines with crosses and “x”s).
In the surrogates that remove the effect of memory by ran-
domisingSmax, Smin, T anddT, the optimum placket size is
reduced to less than one run-up cycle (Fig. 5, bottom panel,
lines with diamonds, stars and circles). When there is no
ability to predict the next run-up cycle, the model then op-
timised the prediction within a run-up cycle (d<3) and only
a few points are needed for the model to learn how a run-up
cycle will evolve.

Given the change in behaviour betweend=2 (7 s) andd=3
(10.5 s) caused by the differing behaviour ofwithin andout-
of-cycleforecasts, it is difficult to conclude whether or not
the forecast and natural timeseries decorrelate exponentially
as expected for chaotic timeseries (Tsonis and Elsner, 1992).
The relationship between log(1−r(d)), wherer is the cor-
relation, versusd does display a linear scaling at prediction
times beyond one run-up cycle in that there was little signifi-
cant increase in fit between a line (r2=0.985 and a 2nd order
polynomialr2=0.988). However, there are only 5 points with
which to draw this conclusion.

Clearly the ability to predict the natural timeseries beyond
one cycle using only information from previous cycles indi-
cates a dependence of each run-up event on previous run-up
events. The results from the randomised run-up surrogates
show that this is not simply due to the run-up events being
generally similar in shape. Even in the case of the surrogate
in which only Smax is randomised, the out-of-cycle predic-
tions are much reduced (Fig. 5, lines with stars). In the case
of the natural timeseries, the evolution of each run-up cy-
cle depends on the size and period of the bore that impacts
onto the beachface, but also on the nature of the interaction
of the previous run-up event. If the previous run-up event
was short and small, it is like that its cycle would be com-
plete before the next event came along. Conversely, if the
run-up event was long and large, it is likely that the next up-
rush would interact with the downrush of the previous event.
If the run-up event was very long, the two progressive up-
rush events would combine. In general, this run-up cycle is
likely to influence the 3rd and so on. Thus the “memory” of
previous run-up cycles should gradually diminish with time.
Although not linear, the predictions and observations roughly
decorrelate by about 0.14 per run-up cycle, and so, on aver-
age, the “memory” lasts just over 4 run-up cycles. The tests
with surrogates show that makingSmax a linear function of
the previousSmax indicates that natural run-up series cannot
be modelled with a simple linear interaction, and suggest,
along with the other evidence, that processes acting in the
run-up zone are inherently non-linear.

A low-frequency structure in the incoming bore such as
caused by groupiness (in which there are sets of waves with
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higher wave heights) or infragravity waves (which cause a
low frequency modulation of the mean water line) could also
provide a source of memory in the series. It is interesting to
note that the series with randomly appended parabolas has a
low frequency spectral signal, which is generated when the
timing between parabolas is such that the “water-line” does
not return to the same level between parabolas (Fig. 2d). This
is present in natural run-up series, and indeed has been some
of the evidence provided for the existence of surf-zone infra-
gravity waves. The tests with surrogate series (Fig. 5, lines
with “x”) indicate that a low-frequency signal in the time-
series would create a completely different type of result in
which a maximumk andm are optimum and the correlation
is fairly constant withd, similar to the case in whichT is
constant. The source of this low frequency signal appears
not to be a linear infragravity wave.

Despite the confounding effect of the roughly-parabolic
shape of run-up cycles on thewith-in cycle forecasts, we
can confidently conclude using theout-of-cycle forecasts
that the run-up timeseries we have measured here is better
modelled with a local autoregressive than a global autore-
gressive model, and thus, using the practical definition of
non-linear provided by Sugihara (1994), is dynamically non-
linear. However, whether the non-linear relationship between
run-up cycles identified here is stable or unstable is harder to
determine conclusively. An obvious next step is to use the
same technique to investigate the nature of the timeseries of
waves entering the run-up zone (the forcing).
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