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Abstract. A simplified stochastic model for earthquake oc-
currence focusing on the spatio-temporal interactions be-
tween earthquakes is presented. The model is a marked point
process model in which each earthquake is represented by its
magnitude and coordinates in space and time. The model in-
corporates the occurrence of aftershocks as well as the build-
up and subsequent release of strain. The parameters of the
model are estimated from a maximum likelihood calculation.

1 Introduction

Earthquake forecasting in the strict sense with the exact pre-
diction of the time, the location, and the magnitude of an
earthquake has been a difficult area of research for several
decades. One outcome of this research, however, is that we
today know much more about why earthquake prediction is
difficult (e.g. Kagan, 1997; Sykes et al., 1999). This diffi-
culty is in part tied to concepts such as self-similarity, criti-
cality and nucleation processes: All earthquakes start small,
and while we know much about the limits to growth, we do
not know in sufficient details when and why a rupture stops
before that.

In this paper we outline a stochastic model for earthquake
occurrence which is focusing on the spatio-temporal inter-
actions between earthquakes, including the effects of after-
shocks as well as the build-up and release of strain. The
model is a marked point process model (e.g. Cressie, 1993;
Ripley, 1987) in which each earthquake is represented by its
magnitude and coordinates in space and time. Hence, this is
a simplified earthquake model which does not include phys-
ical quantities such as the dimensions of the faults, rupture
characteristics, etc. Because each earthquake is represented
separately, however, it is feasible to include known physical
quantities connected to the individual earthquakes in an ex-
tended version of the model.
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The model is based upon a Bayesian approach with user
specified prior distributions for all parameters, while empir-
ical data are used for deriving posterior distributions. There
are many ways to parameterize the model, however, and in
this paper we present only one of these. The basic princi-
ples behind the algorithms we have used and the following
calculations remain independent of this particular parameter-
ization. Another freedom of the model is the choice of prior
distributions, where, when faced with an unresolved situa-
tion, one may revert to flat priors. This, however, gives less
information and subsequently may lead to less precision in
the estimates.

2 Marked point process model

Marked point processes are commonly used stochastic mod-
els for representing a finite number of events located in space
and time. Earthquake occurrence can very well be described
by a marked point process model. Each earthquake has, in
addition to a location in space and time, parameters repre-
senting the magnitude and quite often also information about
the earthquake fault lines. Point process models for earth-
quakes have previously been discussed by Vere-Jones (1995)
and Ogata (1998). The model presented in this paper treats
aftershocks in a similar fashion to the work by Ogata. In ad-
dition, the model takes into account the effect of strain build-
up. The ultimate goal is to include as much information as
possible of known physical processes into the model.

2.1 The model

In our notation an earthquake is represented byE = (x, M)

andt , wherex = (x1, x2, x3) is the hypocenter coordinates
(x1 = longitude,x2 = latitude,x3 = depth),M is the moment
magnitude, andt is the time. An earthquake catalogHT =

{(Ei, ti)}ti<T = {(xi, Mi, ti)}ti<T consists of all observed
earthquakes above a certain magnitude in a specified region,
and in a given time period(T0, T ).
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The two major assumptions made in the proposed model
are:

– The intensityλ1(E, t |Ht , β) of earthquakes is a func-
tion of the parameters(E, t) = (x,M, t), all previous
earthquakesHt in the region, and some parametersβ

to be determined by Bayesian updating. If additional
data or physical information is available, this should be
included in this intensity.

– The time averaged intensityλ(E) = λ(x)λ(M|x) as a
function of magnitude and location is known.

The time independent intensityλ(x) represents the average
number of earthquakes per unit time and unit volume. We
have here estimatedλ(x) from a catalog. It may, however,
be possible to estimateλ(x) on the basis of additional ge-
ological data of earthquakes in combination with a catalog.
This is believed to give more stable estimates because a cat-
alog may have completeness problems. In particular, it may
not cover a sufficient number of large earthquakes in each re-
gion to give the stability that is desired. There has also been
a great deal of debate recently concerning the frequency-
magnitude distribution for very large earthquakes (e.g. Ka-
gan, 1999; Main, 2000). For the simple model presented
here, however, any particular choice of the high-end cutoff
is of no fundamental importance for the results. To simplify
matters to this end we have letλ(M|x) be determined by
the well-known Gutenberg-Richter frequency-magnitude law
such thatλ(M|x) ∝ 10−bM , where the value of the scaling
parameterb usually is in the interval(0.7, 1.2) (e.g. Vere-
Jones, 1995).

We will assume that the intensityλ1 is given by

λ1(E, t |Ht , β) = λ2(E|β)s(x, t |Ht , β)+λ3(E, t |Ht , β),(1)

whereλ2 is the background intensity,s represents the effect
of strain build-up, andλ3 represents the increase in the in-
tensity after an earthquake and is used for modeling the af-
tershocks. The background intensityλ2(E|β) depends im-
plicitly on the parametersβ through the requirement that
λ1(E, t |Ht , β), averaged over time, equalsλ(E). If the strain
build-up is omitted,s = 1, while if the aftershock treatment
is omitted,λ3 = 0. In the case that boths = 1 andλ3 = 0
the model is just reduced to a simple Poisson model.

The intensityλ3 is used to model the aftershocks. LetMi

be the magnitude of a shock in the catalog at the timeti ,
andM the magnitude of a subsequent shock. Aftershocks
M are then modeled byλ3(E, t |Ht , β) > 0 for earthquakes
M < Mi for t > ti . We will assume thatλ3 has the form

λ3(E, t |Ht , β) =

∑
(Ei ,ti )∈Ht

g(E, t, Ei, ti, β), (2)

where

g(E, t, Ei, ti, β) =

β1g1(M, Mi, β2) g2(t, ti, β3, β4) g3(x, xi, β5). (3)

The functionsg1, g2, and g3 represent magnitudial, tem-
poral, and spatial effects, respectively. Note that the sum-
mation implies that if there is a large earthquake followed
by a series of smaller earthquakes, all of these earth-
quakes contribute to the intensity. A typical form ofg1
is g1(M, Mi, β2) = exp(β2Mi) 10−bM , in accordance with
the Gutenberg-Richter law. For the temporal effect we as-
sume thatg2(t, ti, β3, β4) = 1/(t − ti + β4)

β3, which is es-
sentially Omori’s law for aftershocks (see e.g. Lay and
Wallace, 1995). The spatial effect can be represented by a
function based on the distance between the hypocenters, i.e.
g3(x, xi, β5) = exp(−β5||x − xi ||

2).
It seems to be generally accepted that there is more regu-

larity in the occurrence of earthquakes than can be accounted
for in a Poisson model (Working Group on California Earth-
quakes Probabilities, 1995). The assumption is that in any
particular region, strain is slowly building up and then re-
leased due to earthquakes. This effect can be incorporated
into a point process model. We first define a state variableS

that can be connected to strain, or to stress, for that matter.
The interpretation ofS may be different than the standard
definition of strain (or stress), but its general nature will be
such that it reflects the spatio-temporal release of strain/stress
energy. For simplicity, we refer toS as strain in the follow-
ing. We defineS by

S(x, t |Ht , β) =

S0(x, T0) + φ(x, β) (t − T0) −

∑
(Ei ,ti )∈Ht

h(x,Ei, β), (4)

with

φ(x, β) =

∫
h(x, E′, β)λ(E′)dE′, (5)

and

h(x, E′, β) = exp(β7M
′) exp(−β8||x − x′

||
2), (6)

where the integral in Eq. (5) means an integration
∫
R

dx over
the particular regionR we are considering, plus a sum over
magnitudes

∑Mmax
Mmin

, whereMmin is the smallestM in the
catalogHT andMmax is taken to be the largestM in HT .
The functionφ represents the average strain build-up per unit
time andh is the release of strain for each earthquake. We
have made the assumption that the mean strain release equals
the mean strain build-up, which of course is not quite correct
for catalogs being shorter than the recurrence time for larger
earthquakes. At the current stage of testing the model, how-
ever, this is not so crucial. A mismatch between the assump-
tion and reality is not likely to affect the balance between the
estimated parameters significantly.

The strain releaseh is factored into two terms related to
the magnitude of the earthquake and a spatial effect, respec-
tively. Thus,S represents the strain at any point(x, t) in
space and time, given all the previous earthquakes contained
in the catalogHt . It is assumed thatS builds up linearly and
then decreases instantaneously with each earthquake. The
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Fig. 1. The location of earthquakes with
M ≥ 4.0 plotted together with the ma-
jor faults (left), and the magnitude vs.
time for earthquakes withM ≥ 3.0
(right) in Southern California in the pe-
riod 1932–1999.

strain has a variability that is independent of time, ands is an
increasing function ofS given by

s(x, t |Ht , β) = exp(β6S). (7)

By this parametrization it is implicitly given that the time-
averaged intensity of earthquakes equalsλ(E). The effect
of s is to reduce the variability of strain in time periods be-
tween very large earthquakes compared to the simple Poisson
model. The variability in time periods between large earth-
quakes becomes smaller and smaller with increasingly large
values ofβ6 andβ7. The parameterβ8 specifies the surround-
ing region of an earthquake in which strain is released.

2.2 Posterior distributions for the parameters

From the real catalogHT of the period(T0, T ) it is possible
to find the posterior distributions of the parametersβ. These
posterior distributions represent the best guesses for the pa-
rameters and should be used in all predictions. The posterior
distributions for the parametersβ, given the data in the cata-
log HT , are defined by the equation

f (β|HT ) ∝ f (β)f (HT |β). (8)

The likelihoodf (HT |β) can be calculated from

f (HT |β) =

exp

(
−

∫ T

T0

∫
λ1(E, t |Ht , β)dEdt

) n∏
i=1

λ1(Ei, ti |Hti , β)

≈ c(β)

n∏
i=1

λ1(Ei, ti |Hti , β), (9)

where the factor exp
(
−

∫ T

T0

∫
λ1(E, t |Ht , β)dEdt

)
is ap-

proximated by a constantc(β). This factor is due to
periods (ti−1, ti) without earthquakes, while the factor∏n

i=1 λ1(Ei, ti |Hti , β) represents the intensities for the ac-
tual earthquakes. The maximum likelihood estimates for the
parameters are the parameters that maximizes the expres-
sion (9).

2.3 Simulations and predictions

Simulation from the model is fairly straightforward. The
simulated earthquakes are generated one at a time in chrono-
logical order, and the intensity for each new earthquake is
given by Eq. (1). An example of a simulation is given in the
next section.

Predictions can be done by first samplingn values of the
parameter setβ from the distributions (8), using the most
recent earthquake catalogHt for the region. These param-
eter sets can be found by simulatingβ by Markov chain
Monte Carlo methods (e.g. Cressie, 1993; Ripley, 1987). In
a Markov chain Monte Carlo simulation one defines a chain
of parameter setsβ that satisfies the specified distributions.
For each of these sets of parametersβ new earthquakes are
simulated based upon the intensityλ1(E, t |Ht , β), whereHt

is continuously updated during simulation. Probabilistic pre-
dictions are then obtained simply by counting the number of
earthquakes in the different simulations. For short-term pre-
dictions and when the intensity is low it is also possible to
use the intensities directly.

3 Results

3.1 Parameter estimation

The initial body of work for testing our model has been to
implement an optimization algorithm in C++ that maximizes
the likelihood (9), i.e. an algorithm that calculates the max-
imum likelihood estimator for the parametersβ. The em-
pirical data we have used are based on an earthquake cata-
log over the time span 1932–1999 compiled by the Southern
California Earthquake Center, SCEC (2000), and limited to
the region 31–36◦ N, 115–120◦ W. We have also limited the
data to include only the epicenter coordinatesx1 = longitude
andx2 = latitude, thus neglecting the hypocenter coordinate
x3 = depth. The location of all earthquakes of magnitudes
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Table 1. The absolute values of the relative variations of
logf (HT , β) (given in %) when the parametersβ are varied±1%
relative to the values giving maximum likelihood

Relative variations of logf (HT , β) (in %)

Parameter No strain Strain

β1 0.00438 0.00446
β2 0.101 0.103
β3 0.0470 0.0477
β4 0.000442 0.000447
β5 0.00416 0.00422
β6 – 0.0000870

M ≥ 4.0 for this region and the given time span are shown in
Fig. 1 (left). We have included all earthquakes of magnitude
M ≥ 3.0 in our data set, which comprises 15 804 earthquakes
over the time-span of 24837 days, giving an average inten-
sity of 0.636 earthquakes per day. A simple time-magnitude
plot in Fig. 1 (right) shows that the completeness seems to be
reasonable back to 1944. The 5× 5 degree area is divided
into 1600 grid cells, with each cell corresponding to a size
of about 14× 12 km. The intensityλ(E) for each grid cell
is calculated from the empirical data. An averageb-value of
0.93 for the Gutenberg-Richter relation is estimated from the
data.

To calculate the maximum likelihood estimator for the
parametersβ, we have used the 58-year period 1942–1999
of the SCEC catalog. When the strain build-up is omitted,
and hences = 1, the estimation yieldsβ1 = 0.478, β2 =

1.20, β3 = 1.24, β4 = 0.0191, andβ5 = 2.07 × 103. In
the estimation we have assumed that the contributions to
λ3(E, t |Ht , β) for each earthquake go no more than 10 years
back in time. Hence, the 10-year period 1932–1941 of the
empirical data is used indirectly in the calculation, giving
contributions toλ3 for quakes in the period 1942–1951. A
detailed analysis of the parameters indicates that about 60%
of the earthquakes in the period 1942–1999 (according to the
model) were aftershocks, while the remaining 40% of the
earthquakes were related to background activity. An inter-
pretation of the parameterβ2 is that the increased intensity
due to an earthquake of magnitudeM = 5.6 is twice that of
aM = 5.0 earthquake. The values ofβ3 andβ4 indicate that
the increase of intensity is halved 20 minutes after an earth-
quake. Finally, the value ofβ5 indicates that the increased
intensity is halved at a distance of 1.9 km from the epicenter
of the earthquake.

If we include the build-up of strain, the calculation of the
maximum likelihoods yieldsβ1 = 0.480,β2 = 1.20, β3 =

1.24, β4 = 0.0193, β5 = 2.07× 103, β6 = 0.000470, β7 =

0, andβ8 = 0. Therefore, turning on the strain build-up
yields minor corrections only toβ1, β2, β3, β4, andβ5, while
β7 andβ8 both vanish. The direct interpretation ofβ7 = 0
is that the build-up and release of strain (note that this is not
strain energy) is independent of the magnitudes of the indi-

vidual earthquakes, and that it is the number of earthquakes
(the cumulative effect) that matters in this context. Indirectly,
however, a large earthquake has a greater impact than a small
one because it triggers a larger number of aftershocks.

The resultβ8 = 0 means that each earthquake in the cata-
log has a global effect on the build-up and release of strain.
This is difficult to interpret physically but a plausible ex-
planation of the result is that we so far in the model have
used epicentral distances instead of the smallest distance to
the causative fault (the rupture plane). Another significant
source of error may be related to our crude assumption that
S = S0 at the beginning and the end of the catalog. This
assumption was made from simplicity and from the lack of
knowledge about the actual state of strain in the various re-
gions and different points of time. It is also clear that the
earthquake catalog we have used in estimating the parame-
ters of the model covers a too short time span (1932–1999)
to carry sufficient information on the build-up and release of
strain. The vanishing ofβ7 suggests that this parameter, as
given by the expression (6), is superfluous in the model. A
better representation of the strain release might therefore be
given by

h(x, E′, β) = exp(−β7||x − x′
||

2/10M ′

), (10)

in accordance with the common observations that the spatial
extensionL of small earthquakes behaves likeL ∝ 10M/2.
With M ∝

2
3 logM0, whereM0 is the seismic moment, this

corresponds toM0 ∝ L3, implying self-similarity. In the ex-
pression (10) the parameterβ7 corresponds toβ8 in (6), i.e.,
there is advantageously one less parameter in the model to be
estimated. For large earthquakes the scaling law question is
a lot more controversial, even though the original suggestion
by Scholz (1982) ofL ∝ 103M/4 (or M0 ∝ L2) still seems
to be the most viable one. In that case a slightly different
expression forh(x, E′, β) would have to be used. The incor-
poration of such scaling relationships, however, lies in future
work of our model.

To test the sensitivity of the likelihood (9) with respect to
the parametersβ we calculated the values of logf (HT , β)

when the parameters in turn were varied 1% away from the
values giving maximum likelihood. In Table 1 are shown
the absolute values of the relative variations of logf (HT , β)

when the parameters are varied for both the case of no strain
and the case of including the build-up of strain. Since
logf (HT , β) is fairly symmetric about its maximum in all
directions, the given variations are the means of the relative
variations of logf (HT , β) when the parameters are varied
±1% relative to the values corresponding to maximum like-
lihood. We notice that logf (HT , β) is very stable with re-
spect to variations in theβ ’s. Furthermore, the sensitivity
of logf (HT , β) to the parametersβ1, . . . , β5 is quite unaf-
fected by the turn-on of strain.

3.2 Simulations of earthquakes

The second part of our work has been to implement an al-
gorithm for simulating earthquakes in the region of interest,
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Fig. 2. Earthquakes ofM ≥ 4.0
in the period 1990–1999 in Southern
California (left), and simulated earth-
quakes over the same 10-year period
using the marked point process model
(right). The simulation is based on data
from the time period 1932–1999.
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Fig. 3. Magnitude vs. time of ac-
tual earthquakes in the period 1990–
1999 (left), and of simulated earth-
quakes over the same 10-year period
(right) in Southern California.
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Fig. 4. The strain functions(x, t |Ht , β) for a typical simulation
taking into account the build-up and release of strain.s(x, t |Ht , β)

increases when the activity is below the average background inten-
sity and drops suddenly due to the aftershock activity following a
large earthquake. The abrupt increase ofs(x, t |Ht , β) over the first
500 days is due to a lowS0 value.

given the estimated values of theβ ’s. Simulated earthquakes
are generated one at a time in chronological order. For each
new earthquake there is an increase or a decrease in the inten-
sity (1), due to a sudden increase in the termλ3 and a sudden
decrease in the strain functions. The algorithm may use a
longer catalog to establish the intensity of the background

activity, while it may use a 10-year catalog to establish an
intensity for the aftershock activity. As the simulation pro-
ceeds, the latter catalog is gradually replaced with the simu-
lated earthquakes to regulate the intensity of aftershocks. An
example of a simulation over the 10-year period 1990–1999
in the case ofs = 1 is shown to the right in Figs. 2 and
3. This particular simulation thus does not take the build-up
and release of strain into account. The background activity is
due to the 1932–1999 catalog and the aftershock activity is
initially due to the 1980–1989 data. The simulation resulted
in 2315 earthquakes over 3652 days, corresponding to 0.634
earthquakes per day. This agrees very well with the average
intensity of 0.636 earthquakes per day found for the entire
period 1932–1999 in the same region. Furthermore, of the
2315 earthquakes, 1419 (or 61.3%) were aftershocks, which
is in good agreement with the 60% of aftershocks estimated
from the model for the period 1942–1999. For a comparison
with observed data, the corresponding data from the period
1990–1999 are shown to the left in Figs. 2 and 3. Except
for the fact that the period 1990–1999 is a period of higher
than average intensity, we see from Fig. 2 that the simula-
tion produces earthquakes with a similar spatial distribution
as the observed data. In addition it can be seen that the simu-
lated catalog reflects features in the 1932–1999 data that are
not present in the 1990–1999 data. The simulation results
also display aftershock activity indicated by event sequences
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Fig. 5. The frequency of earthquakes in intervals of 30 days for a given simulation. The left figure shows the frequency when the parameter
β6 = 0.000470, while to the right is shown the frequency whenβ6 = 0.470.

following the larger earthquakes as shown in Fig. 3 (right),
although this effect is not as pronounced as for the observed
data in Fig. 3 (left).

Simulations where the build-up and release of strain are
taken into account produce results that are similar to those
displayed in Figs. 2 and 3. This is not so surprising since
we do not expect to see any real periodicity pattern on the
occurrence of large earthquakes over the time-span of only
10 years. The return period for the largest earthquakes in
this region is much longer than this. In Fig. 4, however,
we have shown the typical behavior of the strain function
s(x, t |Ht , β) during a given simulation. The sudden drops in
the graph correspond to the release of strain due to the after-
shocks following a large earthquake. To demonstrate the pure
effect of the strain functions(x, t |Ht , β) in our model, we
have done simulations where the aftershocks treatment have
been omitted by settingβ1 = 0, effectively givingλ3 = 0.
The other parameters are left unchanged, except that in the
first simulation we setβ6 = 0.000470 (unchanged), while
in the second simulation we takeβ6 to be three orders of
magnitude higher. The effect of varyingβ6 in this manner
is shown in Fig. 5 where the graphs show the frequency of
earthquakes for each 30-day period of the simulation period.
A greater value ofβ6 yields a more even release of strain in
each time interval, and hence a more even frequency of earth-
quakes in each 30-day period. The model is not particularly
sensitive to the value ofβ6 since it was necessary to multiply
β6 with a factor 103 to achieve a significant difference. How-
ever, an improved estimate of the parameterβ8 (or β7 in the
expression (10)) may imply a greater sensitivity toβ6.

4 Concluding remarks

In conclusion, we have by maximum likelihood optimiza-
tion estimated the parametersβ of the marked point process
model, using earthquake data from Southern California from
the period 1932–1999. The first five parametersβ1, . . . , β5
are connected to the termλ3 and represent the aftershock ac-
tivity. The estimated values for these parameters seem plau-

sible. For instance, we may compare the resultsβ3 = 1.24
and β4 = 0.0191 with the corresponding estimates found
by Ogata (1998) in various extensions of his Epidemic Type
Aftershock-Sequences model. Applied to data from two dif-
ferent districts of Japan, Ogata estimated a parameterp (cor-
responding toβ3 in our model) to be in the range 0.900–
1.136 and a parameterc (corresponding toβ4) to be in the
range 0.00172–0.0357. The last three parametersβ6, β7, β8
are connected to the factors, which represents the build-up
and release of strain in the model. Surprisingly, we found
bothβ7 andβ8 to vanish in the maximum likelihood estima-
tion. The vanishing ofβ7 suggests that the release of strain
locally is independent of the magnitude of the earthquakes.
The release of total strain energy, however, does depend on
the size of the earthquake since a large earthquake causes
release of strain over a much larger area than a small earth-
quake. Because of this, the parameterβ7 seems superfluous
in the model and could be omitted by a slightly different rep-
resentation of the strain release, as indicated in the previous
section. The vanishing ofβ8 in our estimation is difficult
to interpret physically, however. This implies that all earth-
quakes in the catalog have a global effect on the release of
strain for the region considered. This is not what we would
have expected and suggests that the given parametrization
is too crude to handle the spatial dependencies between the
release of strain and the individual earthquakes. One expla-
nation for this may simply be that we have used epicentral
distances instead of the distances to the rupture plane. We
are hoping to incorporate distances to the rupture plane in
future work, together with the inclusion of more geological
information (such as extended sources) in the model. The
present set-up does facilitate such extensions.

An obvious problem in the current estimation, however,
is that the catalog time 1932–1999 is very short compared
to the recurrence times of larger earthquakes in California.
From Fig. 1 (right) we see that the Southern California Cata-
log is reasonably homogeneous back to the early 1940’s. For
the initial testing of our model we have therefore chosen to
use the period 1942–1999 for calculating the maximum like-
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lihood estimator for the parametersβ. When the build-up
and release of strain is omitted, this choice does not seem to
impose any kind of problems. In fact, the values obtained
for β1, . . . , β5 are in agreement both with what we expected
and with previous work (e.g. Lay and Wallace, 1995; Ogata,
1998). But when the build-up of strain is included and the
parametersβ6, β7, β8 are estimated, the shortness of the cat-
alog may very well impose difficulties. The next step for test-
ing and further development of the model is therefore clearly
to extend the test catalog with data prior to 1932. However,
since the quality of data gets poorer the further back we go
in time, such an extension is likely to introduce some new
problems, albeit most likely not any serious ones. With an
assumption that the intensity of the background activity prior
to 1932 was the same as for the period 1932–1999, it would
be straightforward to simulate a background intensity for ear-
lier times with our simulation algorithm. This background
intensity can then be used to complement data sets that orig-
inally are incomplete. We believe that this method will lead
to improved estimates for the parametersβ6, β7, β8, or for
β6, β7 if (10) is used. The key point is that our marked point
process model is very flexible to changes, and that the results
presented in this paper follow from initial testing of the al-
gorithms involved. More realistic exercises will follow later,
including, as already noted, the use of extended sources.
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