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THE STURM–LIOUVILLE INVERSE SPECTRAL
PROBLEMWITH BOUNDARY CONDITIONS
DEPENDING ON THE SPECTRAL PARAMETER

Abstract. We present the complete version including proofs of the results announced
in [1]. Namely, for the problem of small transversal vibrations of a damped string of
nonuniform stiffness with one end fixed we give the description of the spectrum and solve
the inverse problem: find the conditions which should be satisfied by a sequence of complex
numbers to be the spectrum of a damped string.
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1. INTRODUCTION

The boundary-value problem
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was considered in [2]. It describes small transversal vibrations of a string of nonuni-
form stiffness T (s) subject to constant damping proportional to p > 0. Here u(s, t)
is the transversal displacement and l > 0 is the length of the string. The left end of
the string is fixed and the right end is equipped with a ring of mass µ > 0 moving
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in the direction orthogonal to the equilibrium position of the string. The damping
coefficient of the ring is ν > 0. Substituting u(s, t) = v(λ, s) eiλt into (1.1)–(1.3) we
obtain the system for the amplitude function v(λ, s):

(T (s)v′(λ, s))′ + λ2v(λ, s) − ipλv(λ, s) = 0, (1.4)

v(λ, 0) = 0, (1.5)

v′(λ, l) + iνλv(λ, l) − µλ2v(λ, l) = 0. (1.6)

The boundary problem (1.4)–(1.6) is invariant under the transformation s′ = rs,
l′ = rl, T ′(s′) = r2T (s), ν′ = r−1ν, µ′ = r−1µ, p′ = p, where r is an arbitrary
positive number, and therefore the spectrum which is a set of normal eigenvalues
(see below) does not determine the set of parameters {l, T (s), p, ν, µ} uniquely. It was
shown in [2] that in the case of a so-called weakly damped string, i. e. one having no
purely imaginary eigenvalues, the spectrum and the length l of the string uniquely
determine the set {T (s), p, ν, µ} starting from an appropriate class of data. The
theory developed in [3] being slightly modified enables us to avoid the restriction
of absence of purely imaginary eigenvalues and to solve the direct problem (the
description of the spectrum) and the inverse problem (the recovery of the set of
parameters {T (s), p, ν, µ}).

Assume that T (s) > 0 for s ∈ [0, l] and T (s) ∈ W 2
2 (0, l). It enables us to apply

the Liouville transformation [5]:

x(s) =

s∫
0

(T (s′))−1/2
ds′, (1.7)

y(λ, x) = (T [x])1/4
v[λ, x]. (1.8)

Here v[λ, x] = v(λ, s(x)) and T [x] = T (s(x)).
Substituting (1.7), (1.8) into (1.4)–(1.6) we obtain:

y′′(λ, x) + (λ2 − i λp− q(x))y(λ, x) = 0, (1.9)

y(λ, 0) = 0, (1.10)

y′(λ, a) + (−mλ2 + iαλ+ β)y(λ, a) = 0, (1.11)

where:

q(x) = (T [x])−1/4 d2

dx2
(T [x])1/4

, (1.12)

m = µ (T [a])1/2
, (1.13)

α = ν (T [a])1/2
, (1.14)
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β = −1
4

(T [a])−1 dT [x]
dx

∣∣∣∣
x=a

, (1.15)

a =

l∫
0

(T (s))−1/2
ds. (1.16)

Let us introduce the following operator pencils:

1) the operator pencil

L̃(λ) = λ2M̃ − iλK̃ − Ã,
(
D

(
L̃(λ)

)
= D(Ã)

)
acting on L2(0, l) ⊕ C, where:

D(Ã) =
{(

v(s)
v(l)

)
: v(s) ∈ W 2

2 (0, l), v(0) = 0
}
,

ÃY = Ã

(
v(s)
v(l)

)
=

(−(T (s)v′(s))′

T (l)v′(l)

)

K̃ =
(
pI 0
0 T (l)ν

)
, M̃ =

(
I 0
0 T (l)µ

)
,

2) the operator pencil
L(λ) = λ2M − iλK −A (1.17)

acting on L2(0, a) ⊕ C, where:

D(L) = D(A) =
{(

y(x)
y(a)

)
: y(x) ∈ W 2

2 (0, a), y(0) = 0
}
,

A

(
y(x)
y(a)

)
=

(
−y′′ + q(x)y
y′(a) + βy(a)

)
, (1.18)

and

K =
(
pI 0
0 α

)
, M =

(
I 0
0 m

)
,

2. BASIC PROPERTIES OF THE OPERATOR PENCILS

In this section we give some definitions and discuss basic properties of the spectra
of the operator pencils defined in Sec. 1.

Definition 2.1. Let L(λ) be an operator pencil defined on a complex Hilbert space
H. The set of values λ ∈ C such that L(λ)−1 exists as a bounded linear operator on
H is called the resolvent set "(L) of the operator pencil L(λ). We denote by σ(L)
the spectrum of L(λ), i.e., the set σ(L) = C\"(L). The number λ0 ∈ C is said to be
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an eigenvalue of L(λ) if there exists a nonzero vector y0 (called an eigenvector) such
that L(λ0)y0 = 0. The vectors y1, y2, · · · , yr−1 are called corresponding associated
eigenvectors if

n∑
s=0

1
s!

ds

dλs
L(λ)

∣∣∣∣
λ=λ0

yn−s = 0, n = 1, · · · , r − 1. (2.1)

The number r is called the length of the chain composed of the eigenvector and
its associated eigenvectors. The geometric multiplicity of an eigenvalue is defined
to be the maximal number of corresponding linearly independent eigenvectors. Its
algebraic multiplicity is defined as the maximal value of the sum of the lengths of
chains corresponding to linearly independent eigenvectors. An eigenvalue is said to be
isolated if it has a deleted neighbourhood contained in the resolvent set. An isolated
eigenvalue λ0 of finite algebraic multiplicity is said to be normal if the image ImL(λ0)
is closed. We denote by σ0(L) the set of normal eigenvalues of L(λ).

We identify the spectrum of the problem (1.4)–(1.6), i. e. the spectrum of the
problem (1.9)–(1.11), with the spectrum of the operator pencil L(λ) or what is the
same with the spectrum of the operator pencil L̃(λ).

Lemma 2.2. The operator pencil L̃(λ) has the following properties:

1) The spectrum of L̃(λ) consists only of normal eigenvalues.

2) All eigenvalues of L̃(λ) have geometric multiplicity one.

3) The eigenvalues of L̃(λ) are located in the open upper half-plane.

The first part follows from the fact that the operator pencil L̃(λ) is compactly
invertible for λ = −iγ with γ > 0 large enough. The second statement follows from
the existence of only one linearly independent solution of (1.9) which vanishes at
x = 0. The third statement follows from Theorem 2.1 of [4].

It was shown in [2] that the spectra of the operator pencils coincide with the
set of zeros of the function

χ(λ) = S′[λ, a] + (−mλ2 + iαλ+ β)S[λ, a], (2.2)

where S[λ, x] is the solution of (1.9) satisfying the conditions S[λ, 0] = S′[λ, 0]−1 = 0.
This solution can be presented (see [11], Corollary after Theorem 1.2.1) in the form

S[λ, x] = S(τ(λ), x) =
sin τ(λ)x
τ(λ)

+

x∫
0

K(x, t)
sin τ(λ)t
τ(λ)

dt, (2.3)

where τ(λ) =
√
λ2 − iλp.
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3. MAIN RESULTS ON THE DIRECT PROBLEM

Definition 3.1. A sequence of complex numbers {λk}k∈Z or {λk}0 �=k∈Z is said to be
properly enumerated if:

1) Reλk ≥ Reλp for all k > p;

2) λ−k = −λk for all λk not purely imaginary;

3) a certain complex number appears in the sequence at most finitely many times.

To state these results, let {−iγk}κ
k=1 be the eigenvalues of L̃(λ) located in the

closed lower half-plane and hence on the nonpositive imaginary axis, numbered such
that 0 ≤ γ1 < . . . < γκ−1 < γκ.

Definition 3.2. Let κ be a nonnegative integer. Then the properly enumerated sequ-
ence {λk}0 �=k∈Z is said to have the SHB−

κ property if:

1) All but κ terms of the sequence lie in the open upper half-plane.

2) All terms in the closed lower half-plane are purely imaginary and occur only
once. If κ ≥ 1, we denote them as λ−j = −i |λ−j | (j = 1, . . . , κ). We assume
that |λ−j | <

∣∣λ−(j+1)

∣∣ (j = 1, . . . , κ− 1).

3) If κ ≥ 1, the numbers i |λ−j | (j = 1, . . . , κ) (with the exception of λ−1 if it equals
zero) are not terms of the sequence.

4) If κ ≥ 2, then the number of terms in the intervals (i |λ−j | , i
∣∣λ−(j+1)

∣∣) (j = 1,
. . . , κ− 1) is odd.

5) If |λ−1| > 0, then the interval (0, i |λ−1|) contains a nonzero and even number of
terms.

6) If κ ≥ 1, then the interval (i |λ−κ| , i∞) contains an odd number of terms.

7) If κ = 0, then the sequence has an even or zero number of positive imaginary
terms.

Definition 3.3. Let us denote by B∓ the class of sets {a, q, p,m, α, β} such that
a > 0, p > 0, m > 0, ±(α − pm) > 0, β ∈ R, and q is a real function in L2(0, a)
having the property that the selfadjoint operator B defined by:

Bf = −f ′′ + qf,

D(B) =
{
f ∈ W 2

2 (0, a) : f ′(a) + βf(a) = 0, f(0) = 0
}
,

is strictly positive. In addition, if q belongs to the Sobolev space W 2
2 (0, a), then we

shall say that the set {a, q, p,m, α, β} belongs to B0
∓. Furthermore, if {a, q, p,m, α, β}

belongs to B+ (resp., B0
+) and α > 0, then we shall say that {a, q, p,m, α, β} belongs

to B̂+ (resp., B̂0
+).
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By B1 we denote the selfadjoint operator acting in L2(0, a) according to the
formulae:

B1f = −f ′′ +
(
q − p2

4

)
f,

D(B1) =
{
f ∈ W 2

2 (0, a) : f ′(a) +
(
β − αp

2
+
mp2

4

)
f(a) = 0, f(0) = 0

}
.

Theorem 3.4. Let {a, q,m, p, α, β} ∈ B0
−. Then the spectrum of problem (1.9)–(1.11)

being properly enumerated satisfies the following conditions:

1) {λk}0 �=k∈Z ∈ SHB−
0 ;

2) {λk − (ip/2)}0 �=k∈Z ∈ SHB−
κ , where κ is the number of nonpositive eigenvalues

of the operator B1;

3) we have the following equation:

λk
k→+∞=

π(k − 1)
a

+
ip

2
+

p0

k − 1
+

i p1

(k − 1)2
+

p2

(k − 1)3
+
bk
k3
, (3.1)

where p0, p2 ∈ R, p1 > 0, and
∑

0 �=k∈Z |bk|2 < ∞.

Proof. Statements 1 and 3 were proved in [2]. In order to prove statement 2 let
us transform the spectral parameter: z = λ − ip

2 . Performing this transformation in
(1.17) we obtain

L̃(z) =: L(z +
ip

2
) = z2M − izK1 −A1 (3.2)

acting in L2(0, a) ⊕ C, where:

D(L) = D(A1) = D(A) =
{(

y(x)
y(a)

)
: y(x) ∈ W 2

2 (0, a), y(0) = 0
}

A1 = A−
(

p2

4 I 0
0 αp

2 − mp2

4

)
(3.3)

and

K1 =
(

0 0
0 α− pm

)
=: (α− pm)P1. (3.4)

According to Definition 3.3, α > pm in our case and therefore the operator K1 is
nonnegative. Thus we can apply Theorem 3.1 of [4] (taking into account the difference
in enumeration) and obtain statement 2) with κ equal to the number of nonpositive
eigenvalues (which are all simple) of the operator A1. It is obvious that the spectrum
of the operator B1 coincides with the spectrum of the linear pencil λP −A1, where
P = I − P1. The number of nonpositive eigenvalues of λP − A1 is the same as that
of the operator A1.
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The spectrum of problem (1.9)–(1.11) coincides with the set of zeros of the entire
function

χ(λ) = S′(τ(λ), a) +
(
−mλ2 + iλα+ β

)
S(τ(λ), a), (3.5)

where the prime denotes the derivative with respect to x. We need the following
proposition.

Proposition 3.5. If χ(iγ) = 0 for some γ ∈
(
0, p

2

)
, then χ(ip− iγ) �= 0.

Proof of Proposition 3.5. Since τ2(iγ) = τ2(ip − iγ) the two functions S′(τ(λ), a)
and S(τ(λ), a) being even functions of τ satisfy

S′(τ(iγ), a) = S′(τ(ip− iγ), a), (3.6)

S(τ(iγ), a) = S(τ(ip− iγ), a). (3.7)

Let χ(iγ) = 0 for some γ ∈ (0, p
2 ). Then due to (3.5) we obtain

S′(τ(iγ), a) + (mγ2 − γα+ β)S(τ(iγ), a) = 0. (3.8)

Substituting (3.6)–(3.7) into (3.8), we obtain

S′(τ(ip− iγ), a) + (mγ2 − γα+ β)S(τ(ip− iγ), a) = 0. (3.9)

Suppose now that χ(ip− iγ) = 0. Then

S′(τ(ip− iγ), a) + (m(p− γ)2 − (p− γ)α+ β)S(τ(ip− iγ), a) = 0. (3.10)

Combining (3.9) and (3.10) we obtain

(mp− α)(p− 2γ)S(τ(ip− iγ)) = 0

and
S(τ(ip− iγ), a) = 0. (3.11)

Substituting (3.11) into (3.9) we obtain

S(τ(ip− iγ), a) = S′(τ(ip− iγ), a) = 0,

which implies that S(τ(ip− iγ), x) ≡ 0, a contradiction.

To continue the proof, let us consider the operator pencil

L̃(z, η) = z2M − izηP1 −A1

in which η occurs as a parameter, keeping z as the spectral parameter. The spectrum
of L̃(z, 0) = z2 I −A1 is symmetric with respect to both the real and the imaginary
axis. Evidently, L̃(z, α−mp) = L̃(z). The eigenvalues of L̃(z, η) are piecewise analytic
functions of η which may loose their analyticity only when they collide [6, 7].
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Differentiating the identity (L̃(zj , η)yj(η), yj(η)) = 0 with respect to η, where
zj(η) is a purely imaginary eigenvalue of L̃(z, η) and yj(η) is the corresponding
eigenvector, and taking into account Rellich’s theorem [8] (Theorem XII.3) we obtain
the following identity (cf., e.g., [4]):

z′j(η) =
i zj(η)(P1yj(η), yj(η))

2zj(η)(Myj(η), yj(η)) − iη(P1yj(η), yj(η))
, (3.12)

where P1 is defined by (3.4) and the prime indicates the derivative with respect to
η. Of course, (3.12) has sense only if the denominator is not zero.

Consequently,

z′j(0) =
i (P1yj(0), yj(0))
2 (Myj(0), yj(0))

. (3.13)

In the next proposition it is proved that the numerator and denominator of
(3.13) are positive numbers.

Proposition 3.6. For any purely imaginary zj(0) we have (P1yj(0), yj(0)) > 0.
Hence,

Re z′j(0) = 0, Im z′j(0) > 0.

Proof. Since P1 ≥ 0, the identity (P1yj(0), yj(0)) = 0 implies that P1yj(0) = 0 and
consequently yj(η = 0, a) = 0 and hence yj(η = 0) = 0. On the other hand, P1(0) = 0
implies

zj(0)2Myj(0) −A1yj(0) = 0,

which means that

zj(η = 0)2yj(η = 0, x) +
d2

dx2
yj(η = 0, x) − qyj(η = 0, x) = 0,

yj(η = 0, a) =
d

dx
yj(η = 0, x)

∣∣∣∣
x=a

= 0.

Hence yj(η = 0, x) ≡ 0, which is a contradiction.

Let us continue the proof of Theorem 3.4. Taking into account the symmetry of
the problem on reflection with respect to the imaginary line, we have z−k(η) = −zk(η)
for all not purely imaginary z−k(η) with η ≥ 0, and hence new eigenvalues can appear
on the imaginary axis only in pairs, which implies statements 1)–3) of the theorem.

Proposition 3.7. There exists a constant C > 0 such that all the eigenvalues of
L̃(λ, η) lie in a horizontal strip |Imzj(η)| ≤ C for all η : 0 ≤ η ≤ α−mp.

This proposition is a consequence of Lemmas A.1 and A.2 of [2].
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Due to the symmetry of the problem on reflection with respect to the imaginary
line, new eigenvalues can appear on the imaginary axis only in pairs. This means that
the number of purely imaginary eigenvalues (with multiplicities taken into account)
is even. Then assertion 5) follows. Assertion 4) now follows if we take into account
assertion 3).

Theorem 3.8. Let {a, q,m, p, α, β} ∈ B0
+. Then:

1) statement 3) of Theorem 3.4 is true with p1 < 0;

2) {(ip/2) − λk}0 �=k∈Z ∈ SHB−
κ , where κ is the number of nonpositive eigenvalues

of B1;

3) if {a, q,m, p, α, β} ∈ B̂0
+, then statement 1) of Theorem 3.4 is also satisfied.

Proof. Assertion 1) has been proved in [2]. To prove assertion 2) let us consider the
operator pencil

L̃1(z)
def
= L̃(−z) = L(−z +

ip

2
) = z2M + izK1 −A1.

Under the conditions of our theorem pm − α > 0 and consequently −K1 ≥ 0.
According to Theorem 3.4 the spectrum {zk}0 �=k∈Z of L̃1(z) satisfies the condition
{zk}0 �=k∈Z ∈ SHB−

κ , where κ is the same as in Theorem 3.4. That means the spectrum
{λk}0 �=k∈Z of L(λ) obtained from the spectrum {zk}0 �=k∈Z via transformation λ =
= ip

2 − z satisfies the condition {(ip/2) − λk}0 �=k∈Z ∈ SHB−
κ . Assertion 3) follows

from Theorem 2.1 of [4].

4. INVERSE PROBLEM

Definition 4.1. An entire function ω(λ) is said to belong to the Hermite–Biehler
class HB [9] if it has no zeros in the closed lower half-plane and∣∣∣ω(λ)/ω(λ)

∣∣∣ < 1, Imλ > 0. (4.1)

Definition 4.2. The function ω ∈ HB is said to belong to the symmetric Hermite-
Biehler class SHB if

ω(−λ) = ω(λ), λ ∈ C. (4.2)

Any function ω ∈ HB can be presented in the form [9]

ω(λ) = P (λ) + iQ(λ),

where P (λ) and Q(λ) are real entire functions (i.e., they are real on the real line).
Moreover, if ω ∈ SHB, then (4.2) implies that

P (−λ) + iQ(−λ) = P (λ) − iQ(λ), λ ∈ R.
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This means that for ω ∈ SHB the functions P (λ) and Q̂(λ) = λ−1Q(λ) are even
entire functions satisfying

P (λ) =
ω(λ) + ω(−λ)

2
, (4.3)

Q̂(λ) =
ω(λ) − ω(−λ)

2iλ
. (4.4)

Notice that the set of zeros of a function ω ∈ SHB belongs to one of the two
disjoint sets of properly enumerated sequences SHB+

0 and SHB−
0 .

Theorem 4.3. Let the properly enumerated sequence {λk}0 �=k∈Z of complex numbers
satisfy the following conditions:

1) {λk}0 �=k∈Z ∈ SHB−
0 ,

2) {λk − (ip/2)}0 �=k∈Z ∈ SHB−
κ for some κ ≥ 0, and some p > 0,

3) formula (3.1) is valid with p1 > 0, p0 ∈ R, p2 ∈ R and
∑

0 �=k∈Z |bk|2 < ∞.

Then there exists a unique set {a, q, p,m, α, β} ∈ B− such that {λk}0 �=k∈Z is the
spectrum of problem (1.9)–(1.11) generated by the set {a, q, p,m, α, β}.

Proof. Put
a = lim

k→∞
(πk/λk). (4.5)

By (3.1), this limit exists. As will be shown shortly, this limit a will turn out to be
the length of the interval on which (1.9) is valid.

Consider the auxiliary function

ϕ0(λ) =
(
λ− π

4
− iε

) (
λ+

π

4
− iε

) sin
(
(λ− iε)a

)
λ− iε

, ε > 0. (4.6)

Then φ0 ∈ SHB. Let us denote its properly enumerated sequence of zeros by
{λ(0)

k }0 �=k∈Z, where λ
(0)
±1 = ±π

4 +iε and λ(0)
k = π

a sign(k)(|k|−1)+iε for k = ±2,±3, . . . .
Put

P0(λ) =
ϕ0(λ) + ϕ0(−λ)

2
,

Q̂0(λ) =
ϕ0(λ) − ϕ0(−λ)

2iλ
.

Then the functions P0(λ) and Q̂0(λ) are both even functions. Let us introduce the
real entire functions

P̃0(λ) = P0(
√
λ),

˜̂
Q0(λ) = Q̂0(

√
λ).
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Due to Theorem 3, p. 311 [9], the zeros
{
ζ
(0)
k

}
0 �=k∈Z

of P0(λ) and the zeros

{ξ(0)
k }0 �=k∈Z of Q̂0(λ) interlace, i.e., we have

. . . < ξ
(0)
−2 < ζ

(0)
−2 < ξ

(0)
−1 < ζ

(0)
−1 < 0 < ζ

(0)
1 < ξ

(0)
1 < ζ

(0)
2 < ξ

(0)
2 < . . . . (4.7)

Proposition 4.4. There exists a sequence of continuous and piecewise analytic func-
tions {λk(t)}0 �=k∈Z such that λk(0) = λ

(0)
k and λk(1) = λk − ip

2 (0 �= k ∈ Z) and

{λk(t)}0 �=k∈Z ∈ SHB−
κ(t)

for any fixed t ∈ [0, 1].

The proof of this proposition can be found in [3] (Proposition 4.8 there).
Continuing the proof of Theorem 4.3, let us construct the function

ϕ(λ, t) def=
(
λ− λ1(t)

)(
λ− λ−1(t)

) ∞∏
2

(λ− λk(t))(λ− λ−k(t))a2

π2(k − 1)2
. (4.8)

Then

ϕ(λ, 0) = Cφ0(λ), C �= 0,

ϕ(λ) def= ϕ(λ, 1) =
(
λ− λ1(1)

)(
λ− λ−1(1)

) ∞∏
2

(λ− λk(1))(λ− λ−k(1))a
π2(k − 1)2

. (4.9)

Put

P (λ, t) =
ϕ(λ, t) + ϕ(−λ, t)

2
, (4.10)

Q̂(λ, t) =
ϕ(λ, t) − ϕ(−λ, t)

2iλ
, (4.11)

and then define P (λ) = P (λ, 1) and Q̂(λ) = Q̂(λ, 1).

Denote by {ζk(t)}0 �=k∈Z the set of zeros of P (λ, t) and by {ξk(t)}0 �=k∈Z the set
of zeros of Q̂(λ, t). Then {ζk(t)2}∞k=1 are the zeros of P̃ (λ, t) and {ξk(t)2}∞k=1 are the

zeros of ˜̂
Q(λ, t).

Proposition 4.5. For any fixed t ∈ [0, 1] the sets of squared zeros {ζk(t)2}∞k=1 and
{ξk(t)2}∞k=1 interlace, i.e.,

−∞ < ζ1(t)2 < ξ1(t)2 < ζ2(t)2 < ξ2(t)2 < . . . . (4.12)

The proof of this proposition is the same as the proof of Proposition 4.9 in [3],
although the function ϕ0(λ) given by (4.6) is different from the one in [3].
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Denote

P̃ (λ, s) = P (λ) − s

(
−mλ2 − αp

2
+
mp2

4
+ β

)
(α−mp)−1Q̂(λ) (4.13)

and denote {ζ̂k(s)}0 �=k∈Z the set of zeros of P̂ (λ, s).

Proposition 4.6. For any fixed s ∈ [0, 1] the sets of squared zeros {ζ̂k(s)2}∞k=1 and
{ξk(1)2}∞k=1 interlace, i.e.,

−∞ < ζ̂1(s)2 < ξ1(1)2 < ζ̂2(s)2 < ξ2(1)2 < . . . (4.14)

Proof of Proposition 4.6. Due to Proposition 4.5, this statement is true for s = 0.
The function P̂ (λ, s) is an entire function of λ for every s ∈ [0, 1] and a continuous
function of t ∈ [0, 1] for every λ ∈ C. This means that the inequalities (4.14) can only
be violated if for some s1 ∈ [0, 1] we have ξk(1)2 = ζ̂k(s1)2 or ξk(1)2 = ζ̂k+1(s1)2.
But either identity implies

P (ξk(1), s1) = Q̂(ξk(1)) = 0,

P (−ξk(1), s1) = Q̂(−ξk(1)) = 0,

because P (λ, s) and Q̃(λ, s) are even functions and, consequently,

P (ξk(1)) = Q̂(ξk(1)) = 0,

which contradicts Proposition 4.5.
Due to (3.1), (4.8) and condition 1) of Theorem 4.3 the function ϕ(λ) satisfies

the conditions of Theorem 6 (Chap. VII.3) in [9] and therefore belongs to HB. It
belongs to SHB due to the symmetry of the sequence {λk}0 �=k∈Z.

We now need the following definition.

Definition 4.7. An entire function ω(λ) of exponential type σ > 0 is said to be a
function of sine-type [10] if:

1) There exists h > 0 such that the zeros of ω(λ) are lying in the strip |Imλ| < h.

2) There exists h1 ∈ R such that 0 < m ≤ |ω(λ)| ≤ M < ∞ for all λ with Imλ = h1.

3) The exponential type of ω(λ) in the lower half-plane coincides with its exponential
type in the upper half-plane.

We make use of the following lemma (the proof can be found in [2], Lemma 4.1).

Lemma 4.8. Let {λk}0 �=k∈Z be a sequence satisfying the conditions of Theorem 4.3
and having the asymptotics (3.1) with a > 0 and p > 0. Then the entire function
ϕ(λ− ip

2 ) can be presented in the form

254 Cornelis van der Mee, Vjacheslav Pivovarchik



χ(λ) def= ϕ

(
λ− ip

2

)
=

= E0

((
τ + iE1 + E2τ

−1 + iE3τ
−2

)
sin τa+

(
F1 + iF2τ

−1 + F3τ
−2

)
cos τa

)
+

+ Ψ1(τ)δ1(τ)τ−2 + Ψ2(τ)δ2(τ)τ−2, (4.15)

where: τ =
√
λ2 − ipλ, p ∈ R, Fk ∈ R (k = 1, 2, 3), Ek ∈ R (k = 0, 1, 2, 3), F1 �= 0,

E0 �= 0, Ψ1(τ) =
∫ a

0
eiτxf1(x)dx, Ψ2(τ) =

∫ a

0
e−iτxf2(x)dx, fk ∈ L2(0, a), δk(τ)

(k = 1, 2) are bounded functions,

a = lim
n→∞

πn

λn
, (4.16)

p = −2i lim
n→∞

(
λn − πn

a

)
. (4.17)

Let the function ϕ(λ) = ϕ(λ, 1) be defined by (4.8) where λk(1) = λk − ip
2 and

put χ(λ) = ϕ
(
λ− ip

2

)
. Then, according to Lemma 4.8, χ(λ) is of the form (4.15).

Hence, we can find the constants involved.
Set

θn =
ip

2
+

√( π
2 + 2πn

a

)2

− p2

4
,

where Re θn > 0 for n large enough. Then using (4.15) we obtain

E0 = lim
n→∞

(
χ(θn)

a

2πn

)
, (4.18)

E1 = −i lim
n→∞

(
E−1

0 χ(θn) − 1
a

(
2πn+

π

2

))
, (4.19)

E2 = lim
n→∞

2πn
a

(
E−1

0 χ(θn) − 1
a

(
2πn+

π

2

)
− iE1

)
, (4.20)

E3 = −i lim
n→∞

(
2πn
a

)2 (
E−1

0 χ(θn) − 1
a

(
2πn+

π

2

)
− iE1 −

aE2

2πn+ π
2

)
. (4.21)

Set

ξn =
ip

2
+

√(
2πn
a

)2

− p2

4
,

where Re ξn > 0 for n large enough. Then

F1 = E−1
0 lim

n→∞χ(ξn), (4.22)

F2 = −i lim
n→∞

2πn
a

(
E−1

0 χ(ξn) − F1

)
, (4.23)

F3 = lim
n→∞

(
2πn
a

)2 (
E−1

0 χ(ξn) − F1 −
iaF2

2πn

)
. (4.24)
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Lemma 4.9. Under the assumptions of Theorem 4.3 the constants given by (4.18),
(4.19) satisfy the inequalities E0 < 0, E1 < 0.

Lemmas 4.9 and 4.10 as well as Corollaries 4.11 and 4.12 and Lemma 4.13 have
been proved in [2] under the additional assumption of absence of purely imaginary λk.
But under the assumptions of Theorem 4.3 the proof does not require any changes.
It should be mentioned that Lemma 4.2 of [2] contains a misprint. Namely, it should
be B1 < 0 instead of B1 > 0 and vice versa in the case of conditions in Theorem 4.16
(see below).

Lemma 4.10. The assumptions of Theorem 4.3 imply F1E1 > F2, where F1, F2, E1

are defined by (4.22), (4.23), (4.19).

Set:

m = E1 (F2 − F1 E1)
−1

, (4.25)

α = m (p− E1) , (4.26)

β = E2m+ 8−1p2m+ 2−1p(α−mp) + F2E
−1
1 −mE3E

−1
1 . (4.27)

Lemmas 4.9, 4.10 imply the following corollaries.

Corollary 4.11. The inequality m > 0 holds.

Corollary 4.12. The inequality α > mp holds.

Set:

g1(τ)
def=

−m
(
χ

(
ip
2 +

√
τ2 − p2

4

)
− χ

(
ip
2 −

√
τ2 − p2

4

))
2E0i(α−mp)

√
τ2 − p2

4

(4.28)

g2(τ)
def= − m

2E0

(
χ

(
ip

2
+

√
τ2 − p2

4

)
+ χ

(
ip

2
−

√
τ2 − ip

2

))
+

+
(
m

(
τ2 − p2

2

)
+
αp

2
− β

)
g1(τ).

(4.29)

Lemma 4.13. g1(τ) and g2(τ) are entire functions of τ and admit the representations

g1(τ) =
sin τa
τ

+
F2

E1

cos τa
τ2

+
E3

E1

sin τa
τ3

+
Ψ1(τ)
τ3

, (4.30)

g2(τ) = cos τa− F2

E1

sin τa
τ

+
Ψ2(τ)
τ

, (4.31)

where Ψk(τ) (k = 1, 2) are entire functions of exponential type ≤ a belonging to
L2(−∞,∞).
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Corollary 4.14. The zeros of g1(τ) and g2(τ) behave asymptotically as follows:

νn =
πn

a
− F2

πE1n
+
b1n

n
,

µn =
π(n− 1

2 )
a

− F2

πE1n
+
b2n

n
,

where n ∈ N, {bkn}∞n=1 ∈ l2, k = 1, 2.

Proof. Applying Lemma 3.4.2 of [11, p. 225] adapted to the interval (0, a) to the
functions g1(τ) and g2(τ) we get Corollary 4.14.

Lemma 4.15. The squares of the zeros {νk} of g1(τ) and {µk} of g2(τ) interlace:

µ2
1 < ν2

1 < µ2
2 < ν2

2 < . . .

Proof. The definitions (4.28), (4.29), (4.15), (4.10), (4.11), (4.3) and (4.4) imply that

g2(τ) = − m

E0
P̃

(√
τ2 − p2

4
, 1

)
,

g1(τ) = − m

E0(α−mp)
Q̂

(√
τ2 − p2

4
, 1

)
.

Now it is clear that

µ2
k − p2

4
= ζk(1)2,

ν2
k − p2

4
= ξk(1)2.

Thus, the statement of Lemma 4.15 follows from Proposition 4.6.
Due to Corollary 4.14 and Lemma 4.15 the sequences {µk}0 �=k∈Z and {νk}0 �=k∈Z

satisfy the conditions of Theorem 3.4.1 of [11] adapted to the interval (0, a). Therefore
they are the spectra of the Dirichlet–Neumann and Dirichlet–Dirichlet problems,
respectively, generated by a potential which can be recovered as follows. Without
loss of generality let us assume that µ2

1 > 0, otherwise we can apply a shift. The
function

e(τ) = e−iτa (g2(τ) + iτg1(τ))

is the so-called Jost function of the corresponding prolonged Sturm–Liouville problem
on the semiaxis. In our case this function has no zeros in the closed lower half-plane.
Introduce the so-called S-function

S(τ) =
e(τ)
e(−τ)
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and the function

F (x) =
1
2π

∞∫
−∞

(1 − S(τ))eiτxdτ.

Then the Marchenko integral equation

K(x, t) + F (x+ t) +

∞∫
−∞

K(x, s)F (s+ t)ds = 0

has a unique solution K(x, t) and

q̃(x) = −2
dK(x, x)

dx

is the potential of the prolonged Sturm–Liouville problem on the semiaxis. We have
to prove now that the restriction q(x) = q̃(x) (x ∈ [0, a]) is the unknown function
(potential) we are looking for.

The proof that this potential together with a, p, m, α, β found via (4.16),
(4.17), (4.25)–(4.27) generates problem (1.9)–(1.11) with the spectrum {λk}0 �=k∈Z is
given in [2]. Using Theorem 2.1 of [4] we conclude that the number of nonpositive
eigenvalues of the operator A or what is the same that of the operator B is equal to
the number of λk in the closed lower half-plane, i.e. equal to zero. This means the
operator B is strictly positive.

Theorem 4.16. 1. Let the properly enumerated sequence {λk}0 �=k∈Z of complex
numbers satisfy the following conditions:

1) {(ip/2) − λk}0 �=k∈Z ∈ SHB−
κ for some κ ≥ 0, and some p > 0,

2) formula (3.1) is valid (with p1 < 0).

Then there exists a unique set {a, q, p,m, α, β} such that a > 0, m > 0, α ∈ R,
β ∈ R, q ∈ L2(0, a) is real-valued and {λk}0 �=k∈Z is the spectrum of problem (1.9)–
(1.11) generated by the set {a, q, p,m, α, β}.

2. If in addition {λk}0 �=k∈Z ∈ SHB and E1 < p, where E1 is given by (4.19), χ(λ)
is defined by (4.15) and ϕ(λ) = ϕ(λ, 1) by (4.8), then we have {a, q, p,m, α, β} ∈ B−.

Proof. The proof of existence of a real-valued q(x) ∈ L2(0, a) generating together
with the constants {p,m, α, β} the constants the prescribed spectrum is the same
as that in Theorem 4.3 with −λ instead of λ. The proof of the inequalities m > 0,
α > 0 is given in [2]. The proof of the fact that the corresponding operator B is
strictly positive has been given while proving Theorem 4.3.

Now consider the problem of recovering the parameter set {T (s), p, µ, ν} of the
string from given {λk}0 �=k∈Z and l > 0. Denote by T +

l , (T −
l ) the class of sets

{T (s), p, µ, ν} such that T (s) ∈ W 2
2 (0, l), T (s) > 0 for s ∈ [0, l], p > 0, µ > 0, ν > pµ

(0 < ν < pµ). Now we conclude that for our string admitting purely imaginary
eigenvalues the following theorem proven in [2] remains true.
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Theorem 4.17. Let {λk}0 �=k∈Z be a set of complex numbers satisfying the conditions
of Theorem 4.3 (conditions 1 and 2 of Theorem 4.16). Then for any l > 0 there
exists a unique set {T (s), p, µ, ν} from T +

l (from T −
l ) such that the spectrum of the

corresponding problem (1.4)–(1.6) coincides with {λk}0 �=k∈Z.
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