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SUMMARY: A procedure of gridification of the computation of asteroid proper
orbital elements is described. The need to speed up the time consuming computa-
tions and make them more efficient is justified by the large increase of observational
data expected from the next generation all sky surveys. We give the basic notion
of proper elements and of the contemporary theories and methods used to com-
pute them for different populations of objects. Proper elements for nearly 70,000
asteroids are derived since the beginning of use of the Grid infrastructure for the
purpose. The average time for the catalogs update is significantly shortened with
respect to the time needed with stand-alone workstations. We also present basics
of the Grid computing, the concepts of Grid middleware and its Workload manage-
ment system. The practical steps we undertook to efficiently gridify our application
are described in full detail. We present the results of a comprehensive testing of the
performance of different Grid sites, and offer some practical conclusions based on
the benchmark results and on our experience. Finally, we propose some possibilities
for the future work.

Key words. Minor planets, asteroids – Methods: data analysis

1. INTRODUCTION

The methods of observing Solar System bod-
ies have changed dramatically in the recent years and
will be changing even faster in the next future due to
advances in digital astrometry. The new powerful fa-
cilities and the improved strategies of data collection
give rise to an unprecedented improvement of the ac-
curacy and efficiency of astronomical observations in
general and of the astrometric observations in partic-
ular, and we are now facing a task of handling huge
amounts of raw observational data in terms of their
storage, reduction and post processing.

The obvious question arises, what needs to be
improved in terms of the computing power and in the
existing algorithms to cope with the expected rate of
data from the next generation all-sky surveys? The
issue is not with the reduction of the raw observa-
tions, as available computational resources grow at
essentially the same rate as the capability of gener-
ating astrometric data. An exponential growth with
time of the number of elements on a chip or, as of re-
cently, of a number of chips on a platform, affects the
number of pixels in a CCD camera and the perfor-
mance of the computers used to process astrometric
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data much in the same way. Reliability of the data
reduction is the main problem when handling large
sets of raw observations (Milani et al. 2008).

Once produced, the output of observations re-
duction must be processed in such a way to extract as
much information contained in the data as possible,
and it is at this stage that the significant increase of
the data can cause more serious problems with the
necessary resources. The algorithms often contain
code of non linear complexity, which can affect the
performance to the point of their failure to meet the
requirements of the specific task (timely production
of the results, accuracy, reliability, etc.) In addi-
tion, there is an ever growing need to improve upon
the existing solutions, and this, as a rule, involves
more complex and extensive computations and re-
quires more and more powerful and efficient resources
to cope with such demands. This is the challenge
which puts forward new ideas and approaches, that
become necessary even in the case of the well known
problems and their widely used and well tested solu-
tions.

In the present paper we describe one such
problem to become critical in the immediate future,
that of computing asteroid proper elements for tens,
even hundreds of thousands of newly discovered as-
teroids, to be performed in the real time (essentially
between two successive lunations). The data have to
be collected, processed and retrieved, stored in cat-
alogs and made available on-line, and all this must
be performed in a highly automated manner, with as
little human interactive involvement as possible. We
would also like to extend the time span covered by
the numerical integrations of orbits in order to better
account for the long term variations of orbital ele-
ments which could have hitherto been only partially
dealt with or had to be entirely neglected due to the
short integrations limited by the available computing
power. This in turn means to recalculate the proper
elements for all the asteroids in the catalogs from the
scratch in order to get a homogeneous data set. Such
a formidable task cannot be completed without re-
sort to parallel computing, and an obvious, cost effec-
tive way to achieve these goals is to resort to the use
of the existing Grid infrastructures. A considerable
effort is already devoted in the astronomical commu-
nity towards adopting and using the Grid computing
(e.g. ESAGrid Planck project1, UK AstroGrid Vir-
tual Observatory2, German Astronomy Community
Grid3, ESA Gaia Grid4, US National Virtual Obser-
vatory5, EGEE Grid Observatory6). The gridifica-
tion of already existing applications is the next step
in using of the new and powerful e-Science tools and
of the available infrastructures in this field of science.

The paper is organized as follows: in Section 2.
we give a brief review of basic definitions and meth-
ods to compute asteroid proper elements, of their
usage in the Solar System research, in Section 3.
we discuss the Grid computation, its infrastructure,
middleware and workload management, in Section
4. we describe in full detail the PROPEL project
within which we implemented our asteroid proper el-
ements computation application on the Grid, we dis-
cuss specific software solutions, Grid interface devel-
opment and improvement (gridification and automa-
tion), and we give some basic results of the software
performance testing and benchmarks. In Section 5.,
we present our conclusions.

2. ASTEROID PROPER ELEMENTS

The proper orbital elements are derived from
the instantaneous osculating elements by removing
the short and long periodic perturbations. By defi-
nition they represent the integrals of motion and are
thus supposed to be a sort of average characteristics
of motion and constant in time. It is, however, well
known that a full N-body problem is non integrable,
and that therefore it does not poses such integrals.
The proper elements can only be computed as quasi
integrals of motion, that is, as more or less good ap-
proximations of the real dynamics, or as the true
integrals of motion, but of a significantly simplified
dynamics. It is just the deviation of proper elements
from constancy (over the time spans of interest) that
is used as a measure of the goodness of the approxi-
mation and of the accuracy of the theories and pro-
cedures used to compute them.

The classical proper orbital elements are: the
proper semimajor axis (ap), the proper eccentricity
(ep), the proper inclination (Ip), the proper longi-
tude of perihelion ($p), and the proper longitude of
node (Ωp). Let us note that the term ”proper” is in
practice sometimes used in the sense of the constancy
of a certain quantity in time. Thus, different param-
eters sharing this property have been used for the
same or similar purposes, like the resonant proper pa-
rameters (Milani 1993, Morbidelli 1993), the proper
fundamental frequencies (Carruba and Michtchenko
2007), even the simple long term averages of the in-
stantaneous values, etc.

In the case of asteroids, the proper orbital ele-
ments are used for two main purposes: as parameters
for the classification of asteroids into families, and as
tools to study their long term dynamical evolution
(see Knežević et al. 2003), and the references there-

1http://www.rssd.esa.int/index.php?project=Planck

2http://www.astrogrid.ac.uk/

3http://www.gac-grid.de/

4http://gaiagrid.esa.int/

5http://www.us-vo.org/

6http://technical.eu-egee.org/index.php?id=393
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in for a comprehensive review of the classical and
contemporary methods to compute the asteroid
proper elements and for the discussion on their ap-
plication). The proper elements for the majority of
asteroids of low to moderate eccentricities and/or in-
clinations are computed by means of the analytical
theories based on the series development of the per-
turbing Hamiltonian. These theories are extremely
complex and cannot be pursued too far. They re-
quire handling of complicated, cumbersome relations
and are subject to problems of the convergence of so-
lutions. The most advanced available theory of the
kind is the theory by Milani and Knežević (Milani
and Knežević 1990, 1994), based on the Lie series
canonical transformations (Hori 1966, Yuasa 1973).
It takes into account terms in the expansion of the
perturbing Hamiltonian up to the second order in
perturbing mass and up to degree four in eccentricity
and inclination. Once developed, the procedure to
compute proper elements by means of the analytical
theory is very efficient and suitable for the computa-
tion of large catalogs of proper elements for hundreds
of thousands of asteroids; the results, however, are
supplied without error estimates (because these can-
not be computed analytically), and are known to be
of limited accuracy.

Let us note that several specially adapted the-
ories exist for dynamically specific asteroid popu-
lations, as for the high eccentricity and inclination
asteroids (Lemaitre and Morbidelli 1993), for Tro-
jans (Milani 1993, Beauge and Roig 2001), Hildas
(Schubart 1982), etc.

Knežević and Milani (2000) have recently de-
veloped a new method for computation of the so
called synthetic proper elements of asteroids, which
consists of a set of purely numerical procedures, col-
lectively called the synthetic theory. The procedure
includes: (i) numerical integration of asteroid orbits
in the framework of a realistic dynamical model; (ii)
online digital filtering of the short periodic perturba-
tions to compute the mean elements and the proper
semimajor axis; (iii) Fourier analysis of the output
to remove main forced terms and extract proper ec-
centricity, proper inclination, and the corresponding
fundamental frequencies; (iv) check of the accuracy
of the results by means of running box tests. The
accuracy of the synthetic proper elements is better
by a factor of more than 3 on the average with re-
spect to the results derived by means of the above
mentioned most advanced version of the analytical
theory (Milani and Knežević 1994).

The synthetic proper elements of asteroids in
the outer part of the main belt (between 2.5 and
4.0 AU) are computed by using the dynamical model
including the four outer major planets as perturbing
bodies. To account for the indirect effect of the inner
planets, the barycentric correction is applied to the
initial conditions (Milani and Knežević 1992). The
orbits are integrated by means of the ORBIT9 inte-
grator, which employs as starter a symplectic single
step method (implicit Runge-Kutta-Gauss), while a
multi-step predictor performs most of the propaga-
tion (Milani and Nobili 1988). The integration ini-
tially covers a span of 2 Myr for all the bodies, but

it is subsequently extended to 10 Myr for those as-
teroids for which the results of the short run prove
to be insufficiently accurate.

To compute accurate synthetic proper ele-
ments for asteroids in the inner main belt (between
2.0 and 2.5 AU) the orbits of asteroids in this re-
gion are integrated in the framework of a dynamical
model including the direct perturbations by 7 ma-
jor planets, from Venus to Neptune. The indirect
effect of Mercury is taken into account by applying a
barycentric correction to the initial conditions. Or-
bits of all the included asteroids are integrated for
2 Myr (1 Myr forward and 1 Myr backward in time),
and the proper values with their errors in terms of
the standard deviations and maximum excursions are
computed by joining data from both runs.

The setup similar to the one employed for the
asteroids in the outer main belt is used also in the
case of the transneptunian objects (TNO). The in-
tegrations are performed only forwards in time, but
using a much longer time step; thus the interval of
time of 100 Myr is covered in the case of the num-
bered TNOs, and of 10 Myr for the multiopposition
ones. Finally, an adjusted synthetic theory is used
to compute proper elements for Trojan asteroids. In
this case the integrations cover 5Myr and 50Myr.

The computation of the synthetic proper ele-
ments is a time consuming procedure. It currently
takes hundreds of hours of CPU time on a stan-
dard workstation for each monthly update (when,
typically, the proper elements are computed for sev-
eral thousands of newly numbered asteroids). It is
also not a fully automated procedure, with signif-
icant interactive user intervention in data prepara-
tion, input and output. A 100-fold increase of the
new discoveries is expected from the next generation
observational surveys like Pan-STARRS (Jedicke et
al. 2007) and LSST (Ivezić et al. 2007). Thus, it
is absolutely necessary to resort to a new approach,
both in terms of the resources (like making use of
the distributed computation on the Grid) and of the
software (parallelization of the code, automation of
the procedures of data handling, etc.)

What is the most important is the availability
of both analytic and synthetic proper elements for all
discovered asteroids, with frequent updates, as this
allows new insights in the dynamics and evolution of
the entire asteroid population.

3. GRID COMPUTING

Many science experiments generate enormous
amounts of data. The processing of these data re-
quires huge computational and storage resources, as
well as human resources for operation and support.
Scientists also face problems requiring vast comput-
ing power, i.e. number crunching problems. We
can roughly categorize these tasks into: tasks with
large amounts of distributed data; number crunch-
ing tasks; tasks which require simultaneous work of a
group of researchers/developers, accessing the same
resources at the same time. Note that typical prob-
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lems may consist of overlapping tasks from differ-
ent categories, i.e. they may contain computing-
intensive analysis of a large amount of distributed
data etc. Often a single computer, a cluster of com-
puters or even a special-purpose supercomputer is
not enough for solving challenging science or devel-
opment problems of today.

In order to avoid these obstacles, middleware
concept is introduced - layer of software that is able
to interconnect distributed computing and storage
resources, and make them interoperate, providing
users with the unified access to all resources, even
if the underlying software (e.g. batch system on in-
dividual clusters) or hardware (e.g. different types of
storage elements, ranging from tape robots to generic
PCs with several HDDs attached) is different. Of
course, this middleware layer is built on top of the
existing network infrastructure, which is essential for
the proper functioning of Grids.

This approach is in some way similar to the
World Wide Web (WWW), and people expect that
what WWW has done for the information exchange
and sharing, the Grids will do for computing re-
sources sharing. However, there are some substan-
tial differences between WWW and Grids: while on
the Internet the basic idea is to provide informa-
tion and we usually have client-server interaction, in
Grids the resources are valuable assets and their use
should be governed according to the policies of re-
source providers. Moreover, in order to have most ef-
ficient use of available computing resources, complex
algorithms and internal information system need to
be developed and deployed, and a set of new ser-
vices that will allow simple usage by the end users
provided.

There are many kinds of Grids with different
purposes, such as national Grid infrastructures (aim-
ing to couple high-end resources across a nation, e.g.
Academic and Educational Grid Initiative of Serbia
- AEGIS7, or the UK e-Science program), project
Grids (funded by certain funding agencies), goodwill
Grid infrastructures provided by individuals aiming
to help in solving important common problems (e.g.
in finding drugs for diseases), consumer Grids estab-
lished by commercial companies, etc.

Project Grids is currently the main provider
of different middleware distributions, some of which
are freely available, thus enabling general public to
join the Grid, or to adapt it for their own needs.
Project Grids is created to meet the needs of a
variety of multi-institutional research groups and
multi-company ”virtual teams”, to pursue short- or
medium-term projects (scientific collaborations, en-
gineering projects). Such a project is World wide
LHC Computing Grid Project8 (WLCG), which was
created to prepare the computing infrastructure for
the simulation, processing and analysis of the data
of the Large Hadron Collider (LHC) experiments.

The WLCG project shares a large part of its
infrastructure and works in conjunction with the En-
abling Grids for E-Science project9 (EGEE), large
European series of e-Infrastructure projects with the
main goal to provide researchers with access to a ge-
ographically distributed computing Grid infrastruc-
ture, available 24 hours a day. SEE-GRID is the
regional series of projects aiming to provide Grid in-
frastructure in the South East Europe region, incu-
bate new regional communities, and stimulate devel-
opment of new Grid-aware applications 10.

3.1. Grid middleware

The essence of the Grid is the software that
enables the user to access computers distributed
over the network. This software is called ”middle-
ware”, because it is distinct from the operating sys-
tems software that makes the computers run (e.g.
Linux) and also different from the applications soft-
ware that solves a particular problem for a user (e.g.
a computer visualization program). The term ”mid-
dleware” refers to the fact that it is conceptually
in between these two types of software. The mid-
dleware’s task is to organize and integrate the dis-
tributed computational resources of the Grid into a
coherent structure. This means the objective of the
middleware is to get the applications running on the
appropriate computers, wherever they may be on the
Grid, in an efficient and reliable way. It also provides
users with a single interface to the Grid.

Different distributions of middleware exist to-
day - Globus, LCG, gLite, UNICORE, GAT. The
gLite middleware (gLite 2007) is successor of the
LCG-2 (Peris et al. 2005) middleware, and is the one
used by the EGEE, SEE-GRID and several other e-
Infrastructures. The EGEE series of projects, among
other aims, focuses on maintaining the gLite middle-
ware and on operating a large computing infrastruc-
ture for the benefit of a vast and diverse research
community. The gLite middleware hides much of
the complexity of this environment from the user,
giving the impression that all of these resources are
available in a coherent virtual computer center.

In the following we briefly describe basic en-
tities (”building blocks”) and available interfaces
which allow user to run jobs and manage data (Burke
et al. 2007).

(i) The access point to the WLCG/EGEE/SEE-
GRID Grid is the User Interface (UI). This
can be any machine where users have a per-
sonal account and where their user digital
certificate is installed. From a UI, user
can be authenticated and authorized to use
the WLCG/EGEE/SEE-GRID resources, and
can access the functionalities offered by the In-
formation, Workload and Data management
systems.

7http://aegis.phy.bg.ac.yu/

8http://lcg.web.cern.ch/LCG/

9http://www.eu-egee.org/

10http://www.see-grid.eu/ and http://www.see-grid-sci.eu/

78



COMPUTATION OF ASTEROID PROPER ELEMENTS ON THE GRID

(ii) A Computing Element (CE) is a set of com-
puting resources localized at a site (often re-
ferred to as a cluster, or a computing farm)

(iii) A Storage Element (SE) provides uniform
access to storage resources at a certain
site. The Storage Element may control sim-
ple disk servers, large disk arrays or tape-
based Mass Storage Systems (MSS). Most
WLCG/EGEE/SEE-GRID sites provide at
least one SE. Storage Elements can support
different data access protocols and interfaces.

(iv) The Information Service (IS) provides infor-
mation about the Grid resources and their sta-
tus.

(v) In a Grid environment, files can have replicas
at many different sites. Ideally, the users do
not need to know where a file is located, as
they use logical names for the files that the
Data Management services will use to locate
and access them

(vi) The Workload Management System (WMS)
accepts user jobs, assigns them to the most
appropriate Computing Element, records their
status and retrieves their output (Pacini 2005)

(vii) Finally, the Logging and Bookkeeping service
(LB) tracks jobs managed by the WMS. It col-
lects events from many WMS components and
records the status and history of the job.

3.2. Workload management system

Central element in any Grid infrastructure is
WMS. The purpose of WMS is to accept requests
for job submission and management coming from its
clients and take the appropriate actions to satisfy
them. The complexity of the management of appli-
cations and resources in the Grid is hidden to the
users by the WMS. Their interaction with the WMS
is limited to the description of the characteristics and
requirements of the request via a high-level, user-
oriented specification language, the Job Description
Language (JDL), and to the submission of the re-
quest through the provided interfaces. The WMS
is responsible for translation of these abstract re-
source requirements into a set of actual resources,
taken from the overall Grid resource pool, to which
the user has access permission.

The JDL allows the description of the follow-
ing request types supported by the WMS:

(i) Job: a simple application
(ii) DAG: a direct acyclic graph of dependent jobs
(iii) Collection/Bulk: a set of independent jobs

There is a set of client tools, referred to as
WMS-UI, which allows the user to access the main
services (job management services). These client
tools include a command line interface, a graphical
interface and an API, providing both C++ and Java
bindings, which allow the requests to be submitted
and managed programmatically. Through the WMS
UI user can find the list of resources suitable to run
a specific job, submit a job/DAG for execution on
a remote Computing Element, check the status of a
submitted job/DAG, cancel one or more submitted
jobs/DAGs, retrieve the output files of a completed

job/DAG (output sandbox), retrieve and display log-
ging and bookkeeping information about submitted
jobs/DAGs.

After submission, the request passes through
several components of the WMS, before it completes
its execution. The internal architecture of the WMS
is given in Fig. 1. There are two approaches for
accepting the incoming requests: one is based on a
generic daemon, and the other on the Web Services
based interface.

Fig. 1. Overview of the WMS architecture.

The Network Server (NS) is a generic network
daemon that provides support for the job control
functionality. It is responsible for accepting incom-
ing requests from the WMS-UI (e.g. job submission,
job removal), which, if valid, are then passed to the
Workload Manager. The approach based on NS com-
ponent has been discontinued in gLite middleware,
and is no longer available.

The Workload Manager Proxy (WMProxy)
is a service providing access to WMS functional-
ity through a Web Services based interface. Be-
sides being the natural replacement of the NS dur-
ing the migration to the fully compliant Service Ori-
ented Architecture (SOA) WMS, it provides addi-
tional features such as bulk submission and the sup-
port for shared and compressed sandboxes for com-
pound jobs.

The Workload Manager (WM) is the core
component of the Workload Management System.
Given a valid request, it has to take the appropriate
actions to satisfy it. It coordinates other modules
that provide a matchmaking service (Resource Bro-
ker), the actual job management operations (Con-
dorC), preparation of the CondorC submission file
and creation of the appropriate execution environ-
ment in the CE worker node (Job Adapter).

The Logging and Bookkeeping (LB) service
provides support for job monitoring functionality: it
stores all information concerning events generated by
the various components of the WMS.

For a generic job there are two main types of
request: submission and cancellation. The submis-
sion request passes the responsibility for the job to
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the WM. The WM will then pass the job to an ap-
propriate CE for execution, taking into account the
requirements and the job preferences expressed in the
job description file. The decision which resource is to
be used is the outcome of the matchmaking process
between the submission requests and the available
resources. The job can also be cancelled by the user
at any time after it is submitted using the job ID
that uniquely identifies each job.

4. GRIDIFICATION

Gridification can be defined as a process of
deploying/integrating an application onto the Grid
infrastructure (Temizsoylu and Zengin 2006). It is a
sensitive process that must be worked on carefully so
that a reasonable efficiency can be obtained from the
use of the infrastructure. The application should be
analyzed in detail, in a systematic way and the na-
ture of the application should be taken into account
to appreciate whether it enables and justifies the use
of Grid. When considering whether an application is
a good candidate to execute in a Grid environment,
one must first understand the basic structure of a
Grid (see Section 3.), the services that are and are
not provided, and how this can affect the application.

Often people assume that for an application to
gain advantage from a Grid environment, it must be
highly parallel or otherwise able to take advantage
of parallel processing. In fact, some like to think of a
Grid as a distributed cluster. Although such parallel
applications certainly can take advantage of a Grid,
one should not dismiss the use of Grids for other
types of applications as well. Even a single threaded
batch job could benefit from a Grid environment by
runing on any of a set of systems in the Grid, making
use of unused cycles.

The upcoming set of applications will be able
to solve large scale computational and data-intensive
problems, previously limited by constraints of re-
source availability. Science comes as natural area
which can take advantage of working in the Grid en-
vironment. In astronomy, applications for solving N-
body problems are well known to be computationally
complex, CPU intensive and time consuming, what
makes them perfectly suitable for Grid. An exam-
ple, how Grid can be used for N-body simulations,
was presented recently by Groen et al. (2008) who
applied it for the star cluster simulations.

In this Section we describe the process of grid-
ification of an application for computing asteroid
proper elements on the Grid, which we named PRO-
PEL. Among the computational problems arising in
science, some of the most difficult to parallelize are
N-body problems. Therefore, as the best choice for
gridification of PROPEL application we have cho-
sen the parallel batches strategy (Jakob et al. 2003).
The parallel batches strategy is based on simple par-
allelization by grouping similar orbits into indepen-
dent batches. In this way, many independent batches
could be run in parallel on different CPUs or on dif-
ferent Grid sites. A main gridification goals can be
summarized as follows:

(i) All batches must be eventually completed and
collected,

(ii) The whole process in Grid environment must
be fully automated,

(iii) The system must be adaptive to exponentially
growing number of newly discovered objects.
The whole process of producing asteroid

proper elements is divided in three main steps: pre-
processing, processing and post-processing. The pre-
processing and post-processing are computationally
very cheap and they can be done on a PC. On the
other hand processing is a part of PROPEL applica-
tion which is computationally expensive and should
be executed in the Grid environment.

During the pre-processing the set of asteroids
(for which proper elements are to be calculated) is
extracted from the catalog of asteroid osculating ele-
ments. Subsequently, this set of asteroids is divided
in small batches of similar orbits in terms of eccen-
tricity and inclination. These batches are input files
used by the PROPEL during its execution in the
Grid environment. The post-processing is step when
outputs produced by PROPEL, for each batch, are
joined back together in to single file.

Gridification process of PROPEL application
consists of three separate steps. The first step is the
software management of an application in the Grid
environment, part of which is the installation pro-
cess of the PROPEL application itself. The second
step is the automation of the PROPEL application
in the Grid environment, where the goal is to autom-
atize certain operations in the usage of application
so that the user can take full advantage of using the
Grid environment. This step also includes match-
making the best available resources. The last step is
benchmarking performances of the application. De-
tailed workflow of PROPEL application is presented
in Fig. 2.

4.1. Software Management of PROPEL
Application

Software management of the PROPEL appli-
cation in the Grid environment includes several pro-
cedures:

(i) Installation - Installation procedure allows
the user to install PROPEL application on the
desired Grid site.

(ii) Validation - Validation procedure allows the
user to validate already installed PROPEL ap-
plication in order to verify that all the steps
performed during the installation stage were
successful. In case of a successful validation,
appropriate information about the installation
is submitted to the Information Service (IS).
This provides the users, who wish to use PRO-
PEL application, with information on which
Grid sites PROPEL application is available.

(iii) Removal - Removal procedure allows the user
to remove already installed and validated in-
stance of PROPEL application from the des-
tination Grid site. In case of a successful re-
moval, information about the installation of
PROPEL application on the destination Grid
site is removed from the IS.
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(iv) Running the application - Successfully in-
stalled and validated PROPEL application
can be run by the regular users. Users need to
submit Job Description File (JDL) in which
they specify some of the job parameters (e.g.
input and output files, rank and requirements
expressions, etc.).
First three procedures (installation, validation

and removal) are performed using the Experimen-
tal Software Manager (ESM) (Peris et al. 2005)
user class. This class has special privileges in the
Grid environment which allows to manage software
installations. These procedures are performed us-
ing specially created scripts, which in turn, use
the LCG-ManageSoftware (SEE-GRID Gridification
Guide, 2007) utility.

4.2. Automation of PROPEL application

Some of the most common operations in the
automation of any application in the Grid environ-
ment include:

(i) Creation of a number of similar jobs with dif-
ferent arguments and input files

(ii) Keeping track and checking status of many
similar jobs

(iii) Manipulating many output files of different
jobs in an organized manner.
The idea behind automation of PROPEL ap-

plication is to divide asteroids into segments of op-
tional size, and then process each segment in one
partial (sub) job. Partial jobs are identical except
for a few different arguments which include asteroid

WMS 

   User    User 

   User defined input 
data describing partial 
            jobs

Create a collection of 
partial jobs and send 
     it to the WMS

   Check 
partial jobs

Check & 
manipulate with 
the results

Find appropriate CEs 
to execute partial jobs

Execute a partial 
job on a WN & 
store the results 
on a SE

Result files are stored in a 
hierarchy (directory structure)

Result files

User 

Interface

CE CECE

LFC

SE SE SE 

    submit jobs 

      check  
        jobs

Fig. 2. Detailed workflow of PROPEL application.
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segment to be processed and Computing Element
(CE) where the job will be executed. Because the
partial jobs executions are independent, partial jobs
are organized in the form of a job collection.

Two scripts are available, submit jobs which
handles creation and submission of jobs to the Grid
and check jobs that handles checking jobs status and
management of output (results) files. These scripts
are designed to work in the gLite middleware (Burke
et al. 2007). Script submit jobs does the following:

(i) Reads the user defined input where job options
and partial jobs parameters are stored

(ii) Creates temporary JDL file containing the col-
lection of partial jobs

(iii) Submits JDL file to the Grid
(iv) Creates LFC (LCG File Catalogue) directories

where output files will be stored
(v) Creates run scripts for each partial job
(vi) Creates an output file which is used by check

jobs script
Check jobs script offers following functionali-

ties:
(i) Checking job results - script checks which of

the partial jobs have submitted output (re-
sults) files to the LFC and reports the missing
output files. In this way user can easily find
out what is the problem and why some of the
jobs are aborted.

(i) Retrieval of job results - script allows the user
to download partial job results to the User In-
terface (UI) from LFC and Storage Element
(SE), user can specify whether he/she wants
to download all of the output files or just some.

(iii) Checking job status - script checks the status
of partial jobs to see if jobs are still running
or if some are aborted or have failed.

(iv) Checking job output information - script al-
lows the user to download output information
for partial jobs (console outputs); this can be
useful for debugging in case some of the jobs
have failed.

(v) Removal of output files - script allows the user
to delete all or some of the output files from
the remote LFC directory and SE Input file for
the check jobs script is a file generated by the
submit jobs script which contains information
about submitted partial jobs.

4.3. Requirements and Rank

As the Grid consists of different resources
(e.g. CPU clocks, CPU vendors, amount of avail-
able memory) an important task in our procedure is
matchmaking the best appropriate resource. This is
done through the Requirements and Rank expres-
sions which allow the user to specify respectively
which are the needs and preferences, in terms of re-
sources, of their applications. The matchmaking pro-
cess proceeds by evaluating the Rank and Require-
ments expressions for each pairwise combination of
queued jobs and available resources. The pair sat-
isfying the Requirements and having the maximum
Rank is selected, and the job is assigned to the ap-
propriate resource.

Following the idea described in Agarwal et.
al. (2007) we developed an algorithm for Rank ex-
pressions which can be used to cope with two main
problems:

(i) to achieve a balanced distribution of jobs to
each resource

(ii) to estimate waiting time (WT) and to match
a site where the job will start executing the
soonest
An appropriate Rank expression which fulfills

both conditions mentioned above is based on the fol-
lowing formula:

Ri = max(
Ai −Qi

Ci
, 0) + min(0,

−WT − P ∗Mi

T avg
i

)

(1)
Here R indicates the Rank of the resource, A

is the number of free processors, Q is the number
of queued jobs, C indicates the total number of pro-
cessors, P is a penalty equal to the estimated mean
increase in the WT from the currently matched jobs,
M is the number of matches in the current match-
making cycle, T avg is the average running time of the
previous jobs, while subscript i indicates ith resource
(i.e. SEE-GRID site).

The first term in the right hand side of the
Eq. (1), refers to the load balancing while the sec-
ond term refers to the waiting time. This Rank ex-
pression reduces to load balancing when there are
free processors, while the second term becomes im-
portant when there are no free processors and the
first term becomes insignificant. On the other hand
one should bear in mind that in a Grid environment
it is difficult to balance requests from the applica-
tion point of view because the Grid is being used
by other applications, using other rank expressions,
what usually leads to unbalanced situations. Never-
theless, using algorithm to balance requests is still
useful in a Grid.

The Rank expression presented above is not
the only possible solution but many other algorithms
could be used (e.g. Casavant and Kuhl 1994, Xu and
Lau 1997, Yagoubi and Slimani 2007). Some of them
might be even more efficient. Analysis of other Rank
expressions and looking for the best possible solution
for our application we intend for future work.

4.4. Benchmark

As the final step in our gridification procedu-
re, we performed several benchmarks in order to test
application and Grid infrastructure reliability, stabil-
ity and performance. Benchmarking is a widely ac-
cepted method to evaluate the performance of com-
puter architectures. Grid performance evaluation is
an important approach to improve the performance
of applications intended for use in the Grid environ-
ment.

In general, we can identify three aspects that
should be assessed when evaluating the Grid and ap-
plication developed for Grid, namely: functionality,
reliability and performance (Montero et al. 2006).
Therefore, Grid benchmarks should verify a basic
functionality of the environment. A suitable method-
ology for Grid benchmarking should help to identify
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sites with the best performances, to determine the
reliability of the Grid and/or application, to test the
best choices for application’s controls and parame-
ters, and to identify and quantify failure situations.

The first set of benchmarks was performed to
identify sites with the best performances. In order to
measure computational time at various SEE-GRID
sites, the same job has been executed ten times on
each site. The average computational time (ACT), in
minutes, was determined for each site and obtained
results are presented in Table 1. In addition, in Ta-
ble 1, CPU’s models and operating systems for each
site are given. All sites operate under one of the ver-
sions of Scientific Linux. Scientific Linux (SL) is an
open source free Linux distribution, co-developed by
Fermi National Accelerator Laboratory and the Eu-
ropean Organization for Nuclear Research (CERN),
which aims to be 100% compatible with and based
on Red Hat Enterprise Linux.

It is known that computational time in the
case of N-body problems is growing as CT (N2).
However, to compute the orbits of asteroids it is not
necessary to take into account attraction of the as-
teroids on the major planets (Milani et al. 1990).
The masses of the asteroids are so much smaller than
the masses of the planets that we can, without any
significant loss in accuracy, resort to a heliocentric
(N+M)-body problem, that is, we can use the model
with N planets attracting each other and attract-
ing each of the M asteroids, but with the asteroids
massless and not affecting at all the motion of the
planets.

As we were interested to find out what is the
optimum number of asteroids per job, that is, how
the computational time scales with the number of as-
teroids per job for PROPEL application, several tests
were performed in order to determine this relation.
We define a function P = CT/M , which allows us to
study how the computational price for one asteroid
depends on the number of asteroids per job. The
obtained results are presented in Fig. 3. The two
curves in this plot represent results obtained when
the determination of Lyapunov characteristic expo-
nent (LCE) is included (open circles), and when it is
switched off (filled circles). As expected, the results
without calculation of LCE are almost independent
of the number of asteroids per job, except for the
sharp surge observed for very small M . This surge
is due to the fact that for small numbers of asteroids
the integration time is dominated by the determina-
tion of initial conditions for the propagation of orbits
and by the computation of the mutual perturbations
of planets which must be done at each step regard-
less of the number of asteroids involved. Dividing
this time with ever increasing number of asteroids
produces the sharp drop of the single asteroid’s com-
putational price until the propagation of asteroid or-
bits becomes the most time consuming part of the
procedure for large enough number of the included
asteroids, thus bringing the ratio P to the observed
near constancy. Let us just note that we also verified
that the computational price does not depend on the
time span covered by the integration.

The LCE indicators of chaotic motion are
computed from the variational equations and the

procedure involves frequent normalization of the ex-
ponentially growing values of the metrics. This is
a time consuming process, which affects the compu-
tation of asteroid proper elements by increasing P
by some 50%, for the small to moderate number of
asteroids per job, and by giving rise to an almost lin-
ear growth of the value of P with M , although only
for large enough M (M > 250). The correspond-
ing curve presented in Fig. 3. has a minimum for
M ∼ 70 suggesting that the best choice is to use
70 asteroids per job. However, a steep increase of
the curve that begins only beyond some 250 bodies
per job, implies that the number of bodies per job
up to this latter value does not affect the compu-
tational price significantly. On the other hand, one
should always take care of a rational use of the avail-
able Grid resources and bear in mind that increasing
the number of jobs increases the probability to get
aborted jobs. Given that, we have chosen to adopt
250 asteroids per job as an optimum choice repre-
senting a reasonable compromise between the best
performance and a number of jobs to run.
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Fig. 3. The normalized average computational time
per asteroid (computational price) as a function of
the number of asteroids per job for two different tests,
with (filled circles) and without the computation of
the LCE (open circles).

Finally, we study the failure situations and
stability of application in the Grid environment.
Since we have started working in the Grid environ-
ment in November 2005, over 1600 jobs have been
submitted and about 1400 of them have been com-
pleted successfully. It gives an estimation of about
15% of aborted jobs, but it is important to note
here that this rate decreased from about 25% (in the
year 2006) to less than 3% (August-December 2007).
There are two main reasons for this: firstly, our ap-
plication became more stable and more suitable for
the Grid environment, and secondly, the Grid itself
became much more reliable and stable.

These 1400 successfully executed jobs were
performed in order to calculate asteroid proper el-
ements for different purposes; out of these several
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Table 1. PROPEL benchmark results at various SEE-GRID sites.

SEE-GRID CPU Model CPU Clock ACT Operating
Site [GHz] [min] System

ce.phy.bg.ac.yu AMD Opteron 285 2.60 90.6 SL 4.5
ce02.grid.acad.bg AMD Opteron 250 2.40 99.6 SL 4.5
ce01.csa-incas.ro AMD Athlon 64 3500+ 2.20 106.8 -
ce01.info.uvt.ro AMD Opteron 280 2.40 109.6 SL 4.6

grid01.aob.bg.ac.yu AMD Opteron 265 1.80 109.8 -
grid01.rcub.bg.ac.yu AMD Sempron 2800+ 2.00 122.3 SL 4.5

ce01.info.uvt.ro Intel Pentium 3.00 125.4 SL 4.6
cluster1.csk.kg.ac.yu AMD Athlon 2600+ 2.10 125.7 SL 4.5
ce01.isabella.grnet.gr Intel Xeon 2.80 129.4 SL 3.0.3
ce001.grid.uni-sofia.bg AMD Opteron 265 1.80 131.4 SL 4.5

grid-ce.feit.ukim.edu.mk Intel Pentium 3.00 133.8 SL 3.0.9
ce01.info.uvt.ro Intel Celeron 2.80 135.6 SL 4.6

rti29.etf.bg.ac.yu AMD Sempron 2600+ 1.60 147.6 SL 3.0.8
ce001.grid.uni-sofia.bg AMD Opteron 242 1.60 148.5 SL 4.5

yildirim.grid.boun.edu.tr Intel Xeon 5110 1.60 153.4 SL 4.5
cluster1.csk.kg.ac.yu Intel Pentium 1.70 207.4 SL 4.5
sn0.hpcc.sztaki.hu Intel Pentium 1.60 229.2 -

tens of jobs were performed to test the application
itself and the Grid infrastructure. Over 150,000 as-
teroid proper elements have been calculated using
the Grid, about 70,000 of them as part of regular
AstDys11 database update. The rest have been cal-
culated for fictitious asteroids used in other research.
About 450 jobs have been executed as part of the up-
date and the total CPU time was about 4,000 hours.
As we performed 12 updates in the period from the
beginning of the use of Grid for the purpose, this
gives us the estimate that we spent some 333 hours
per update on the average. Thus, we would need
about two weeks to perform the update if we used
the single PC, and this would cause a significant de-
lay in the availability of the proper elements for the
newly discovered asteroids. By using Grid, even with
all the problems and failures we encounter in prac-
tice, the typical update now takes approximately two
days.

5. CONCLUSIONS

In this paper we described the procedure of
gridification of the application to compute asteroid
proper elements on the Grid. We explained the ra-
tionale for this undertaking by the need to speed up
the time consuming computations and make them
more efficient. For the time being we preferred to
achieve these goals without substantial intervention
in the existing, well tested and reliable software (like
the parallelization of the code). The improvement we
are striving for is particularly important in view of
the expected large increase of observational data to
be collected by the next generation all sky surveys.
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Fig. 4. The number of asteroids with calculated
proper elements since we have started using Grid en-
vironment.

We give the basic notion of asteroid proper el-
ements, of the contemporary theories and methods
used to compute them, and we discuss current status-
of-the art and setups in use for dynamically distinct
populations of the main belt, resonant and distant
objects. In Fig. 4. we show the steep increase of
the total number of computed proper element sets
since the beginning of use of the Grid infrastruc-
ture for the purpose. Synthetic proper elements for
about 70,000 asteroids are derived in this way, which
represents nearly one third of the total number of
synthetic proper element sets computed so far. The
more important, however, is that the average time
for the regular update of the catalogs is significantly
shortened with respect to the time needed previously

11http://hamilton.dm.unipi.it/astdys/
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when working with stand-alone workstations. This
is in the first place due to the fact that we could
use as many as 25 parallel jobs on the SEE-GRID
e-Infrastructure available to us; the obvious possi-
bility to run even more jobs in parallel depends on
the number of asteroids for which proper elements
have to be computed and on the available Grid re-
sources. In any case, the use of Grid proved to be
an efficient and cost effective (no significant new in-
vestments needed) approach, which guarantees that
with some minor additional effort we might be ready
to cope with the task of computing asteroid proper
elements for many more objects to be discovered by
the next generation observational surveys.

We also present basics of the Grid computing,
the concepts of Grid middleware and its Workload
Management System for the reader to better under-
stand and appreciate its advantages. The practical
steps we undertook to efficiently gridify our applica-
tion are described in full detail, the software manage-
ment procedures we use and interfaces and scripts
we developed to automatize the runs. Finally, we
present the results of a comprehensive and thorough
testing of the resources we made use of on different
Grid sites, coming to the following conclusions based
on the obtained benchmark results and our experi-
ence:

(i) since our application is number crunching in-
tensive, the CPU speed is, as expected, the
most important factor in terms of the effi-
ciency of our application.

(ii) as the outputs from PROPEL application are
relatively large files, having enough Grid stor-
age space on SEs is also important

(iii) the network speed between WNs and SEs is
relevant as well.

(iv) amount of RAM memory per WN is not a
critical parameter (providing there is at least
512MB).

(v) PROPEL application works slightly better on
platforms based on AMD processors.

(vi) stability of the Grid has significant influence
on the stability of application.
The gridification of the PROPEL application

not only allows us to efficiently use the currently
available computing resources to compute asteroid
proper elements, but also ensures an easy way to
access additional resources that may become avail-
able in the future on the Grid. The gridified ver-
sion of PROPEL allows dynamic use of available re-
sources as they are added to the e-Infrastructure,
without any special configuration steps. Such ap-
proach in using computing resources is flexible and
scalable, thus minimizing the work needed to deploy
the application. In addition, such gridified version
of the application can be easily deployed on other
e-Infrastructures and make their use transparent to
researchers.

The full automation of the entire procedure,
parallelization of the code and deployment of the ap-
plication to many more sites on different Grids are
obvious possibilities for the future work. The prac-
tical implementation of these possibilities will cer-
tainly be considered, but the timetable and extent
of the necessary developments will depend on the

availability of the raw data from surveys suitable for
this kind of postprocessing.
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(Cambridge University Press), pp.341–352.
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Originalni nauqni rad

U radu je opisana procedura raqunaǌa
sopstvenih elemenata kretaǌa asteroida na
Gridu. Potreba za ubrzaǌem vremenski
zahtevnih izraqunavaǌa i unapre�eǌa ǌi-
hove efikasnosti objaxǌena je dramatiqnim
uve�aǌem koliqine posmatraqkih podataka
koje se oqekuje od pregleda neba slede�e gen-
eracije. Objaxǌena je priroda sopstvenih
elemenata i opisane su aktuelne teorije i
metode ǌihovog izraqunavaǌa za razliqite
grupe objekata. Sopstveni elementi za
oko 70 000 asteroida odre�eni su od po-
qetka upotrebe Grid infrastrukture u tu
svrhu. Proseqno vreme potrebno za a�uri-

raǌe kataloga znaqajno je skra�eno u odnosu
na vreme potrebno za isti posao na jednoj
radnoj stanici. Tako�e, objaxǌene su os-
nove funkcionisaǌa Grida, koncept midlvera
i elementi upravǉaqkog i kontrolnog sis-
tema. Praktiqni koraci, koje smo pre-
duzeli u ciǉu efikasne gridifikacije naxe
aplikacije, detaǉno su opisani. Dati su
rezultati sveobuhvatnog testiraǌa perfor-
mansi razliqitih Grid sajtova, i izvedeni su
praktiqni zakǉuqci, bazirani na rezultatima
naxih testova, kao i na naxem iskustvu. Na
kraju, predlo�eno je nekoliko mogu�nosti za
budu�i rad.
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