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Abstract. In this talk, recent results are presented of calculations of electromagnetic form factors
of hadrons in the framework of two quantum field theories (QFT), (a) Dual-LargeNc QCD (Dual-
QCD∞) for the pion, proton, and∆(1236), and (b) the Kroll-Lee-Zumino (KLZ) fully renormalizable
Abelian QFT for the pion form factor. Both theories provide aQFT platform to improve on naive
(tree-level) Vector Meson Dominance (VMD). Dual-QCD∞ provides a tree-level improvement by
incorporating an infinite number of zero-width resonances,which can be subsequently shifted from
the real axis to account for the time-like behaviour of the form factors. The renormalizable KLZ
model provides a QFT improvement of VMD in the framework of perturbation theory. Due to the
relative mildness of theρππ coupling, and the size of loop suppression factors, the perturbative
expansion is well defined in spite of this being a strong coupling theory. Both approaches lead
to considerable improvements of VMD predictions for electromagnetic form factors, in excellent
agreement with data.
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INTRODUCTION

In its original formulation [1], Vector Meson Dominance (VMD) is an effective
tree-level model based on the notion ofγ −ρ0 conversion. When applied to e.g. electro-
magnetic form factors, it can roughly account for the pion form factor in the space-like
region, and with some modifications, also in the time-like region around the rho-meson
peak. However, for non-zero spin hadrons such as nucleons and ∆(1236), VMD is in
serious disagreement with the observedq2 fall-off of these form factors. This situation
can hardly be remedied without a dynamical platform allowing to go beyond naive,
single pole, tree-level in a systematic fashion, i.e. a renormalizable QFT framework.
An attempt in this direction was made long ago by incorporating radial excitations of
the rho-meson into VMD, i.e. Extended VMD [2]. At the time, however, there was
no known renormalizable QFT to support this approach. Today, we know that in the
limit of an infinite number of colours, QCD is solvable leading to a hadronic spectrum
consisting of an infinite number of zero-width states [3]. Unfortunately, the masses and
couplings of these states remain unspecified, so that modelsare needed to fix these
parameters. An attractive and highly economical candidate(in terms of free parameters)
is Dual-QCD∞ [4]-[6], inspired in the Dual Resonance Model for scattering amplitudes
of Veneziano [7], the precursor of string theory. It is very important to stress the word
inspired, as Dual-QCD∞ does not share any of the unwanted features of the original
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Veneziano model, such as lack of unitarity, unphysical particles in the spectrum, etc. In
fact, in Dual-QCD∞ the masses and couplings of the zero-width states are fixed sothat
form factors become Euler Beta functions, involving one single free parameter which
controls their asymptotic power behaviour. This remains the only connection between
Dual-QCD∞, which so far has only been applied to three-point functions, and the Dual
Resonance Model originally formulated for n-point functions (n ≥ 4). Another aspect
of Dual-QCD∞ which needs to be stressed, to avoid misunderstandings, is that it is not
intended to be an expansion in powers of 1/Nc [8]. In fact, Nc is taken to be infinite
from the start, as this is the limit in which QCD is solvable and leads to the hadronic
spectrum mentioned above. Unitarization can subsequentlybe performed by shifting the
poles from the real axis into the second Riemann sheet in the complex energy (squared)
plane. This induces corrections to form factors of orderO(Γ/M ≃ 10%). But essentially
Dual-QCD∞ remains a tree-level QFT improvement over VMD.

Another highly attractive improvement of tree-level VMD can be achieved in the
framework of the Kroll-Lee-Zumino QFT of pions and a massive(neutral) rho-meson
[9]. In spite of the presence in the KLZ Lagrangian of an explicit mass term for the rho-
meson, this theory is perfectly renormalizable as long as the gauge field remains Abelian
[9]. The great advantage of a renormalizable QFT is the absence of free parameters.
However, since in this case we are dealing with a strong coupling theory, it is essential
to have a meaningful perturbative expansion. This has been shown to be the case for the
pion form factor in the time-like [10], as well as the space-like region [11]. This is due
to the relative smallness of theρππ coupling, and the large loop suppression factors. An
extension of this theory to include vector meson radial excitations is certainly possible,
and would establish an interesting connection with Dual-QCD∞. It would also extend
the momentum transfer (time-like) region of validity of thecalculated pion form factor.

DUAL-QCD∞

In QCD∞, a typical form factor has the generic form

F(s) =
∞

∑
n=0

Cn

(M2
n − s)

, (1)

wheres ≡ q2 is the momentum transfer squared, and the massesMn, and the couplings
Cn remain unspecified. In Dual-QCD∞ they are given by

Cn =
Γ(β −1/2)

α ′√π
(−1)n

Γ(n+1)
1

Γ(β −1−n)
, (2)

whereβ is a free parameter, and the string tensionα ′ is α ′ = 1/2Mρ
2, as it enters the

rho-meson Regge trajectoryαρ(s) = 1+α ′(s−M2
ρ). The mass spectrum is chosen as

M2
n = M2

ρ(1+2n). This simple formula correctly predicts the first few radialexcitations.
Other, e.g. non-linear mass formulas could be used, but thishardly changes the results
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FIGURE 1. Pion form factor in Dual-QCD∞ (solid curve), which overlaps with the KLZ result, and
VMD (broken curve).

in the space-like region, and only affects the time-like region behaviour for very large
q2. With these choices the form factor becomes an Euler Beta-function, i.e.

F(s) =
Γ(β −1/2)√

π

∞

∑
n=0

(−1)n

Γ(n+1)
1

Γ(β −1−n)
1

[n+1−αρ(s)]

=
1√
π

Γ(β −1/2)
Γ(β −1)

B(β −1, 1/2−α ′s) , (3)

where B(x,y) = Γ(x)Γ(y)/Γ(x + y). The form factor exhibits asymptotic power be-
haviour in the space-like region, i.e.

lim
s→−∞

F(s) = (−α ′ s)(1−β ) , (4)

from which one identifies the free parameterβ as controlling this asymptotic behaviour.
Notice that while each term in Eq.(3) is of the monopole form,the result is not nec-
essarily of this form because it involves a sum over an infinite number of states. The
exception occurs for integer values ofβ , which leads to a finite sum. The imaginary part
of the form factor Eq.(3) is

Im F(s) =
Γ(β −1/2)

α ′√π

∞

∑
n=0

(−1)n

Γ(n+1)
1

Γ(β −1−n)
π δ (M2

n − s) . (5)
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Unitarization can be performed by shifting the poles from the real axis in the complex
s-plane. The simplest model is the Breit-Wigner form

πδ (M2
n − s)→ ΓnMn

[(M2
n − s)2+Γ2

nM2
n ]

, (6)

where one expectsΓn to grow with Mn. Other, more refined choices, are certainly
possible, e.g. the Gounaris-Sakurai form in which the widthis momentum transfer
dependent.
Space-like results in this framework are shown, together with the data, in Fig. 1 for

FIGURE 2. Sachs magnetic form factorGM(Q2) (left), and ratio of electric to magnetic Sachs form
factors (right). Data is from the reanalysis of [13], andQ2 ≡−q2.

the pion (data from [12]), Fig. 2 for the proton, and Figs. 3 and 4 for the∆(1236).
In the case of the proton, Eq.(3) is used for the Dirac and Pauli form factors,F1(q2)
andF2(q2), as these have the correct analyticity properties. Once fitted to the data, the
Sachs form factorsGE(q2) andGM(q2) follow. The fits have been made not to the raw
data, but rather to the data base as corrected in [13]. These corrections take into account
the discrepancies between unpolarized (SLAC) and polarized (JLAB) experiments. For
the ∆(1236), the three so called Scadron form factorsG∗

M,E,C(q
2) were fitted using

Eq.(3), and data onG∗
M(q2), and the two ratios betweenG∗

E,C(q
2) and G∗

M(q2) [14]-
[15]. The value of the free parameterβ in the form factor, Eq. (3), which determines
its asymptotic behaviour, is as follows: for the pion,βπ = 2.3, for F1 and F2 of the
proton,β1 = 2.95−3.03, andβ2 = 4.13−4.20, and forG∗

M, G∗
E , G∗

C of the ∆(1236),
β ∗

M = 4.6−4.8,β ∗
E ≃ β ∗

M, andβ ∗
C = 6.0−6.2. Taking the middle values of these numbers,

the asymptotic behaviour in the space-like region of these form factors is approximately
as follows:Fπ ∼ (−q2)−1.3, F1 ∼ (−q2)−2.0, F2 ∼ (−q2)−3.2, G∗

M ∼ G∗
E ∼ (−q2)−3.7,

andG∗
C ∼ (−q2)−5.1. The pion form factor has also been determined in the time-like

region using the simple unitarization procedure as in Eq. (6). In spite of the simplicity of
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the model, the result is in good agreement with data at and around theρ peak [4]. Proton
form factors in the time-like region are currently under study, together with neutron form
factors [16].

FIGURE 3. ∆(1236) magnetic form factor in Dual-QCD∞ (solid line).
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FIGURE 4. ∆(1236) ratios of electric to magnetic and Coulomb to magnetic form factors in Dual-
QCD∞ (solid line).
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KROLL-LEE-ZUMINO QUANTUM FIELD THEORY

The KLZ theory is defined by the Lagrangian [9]

LKLZ = ∂µ φ ∂ µ φ∗−m2
π φ φ∗− 1

4
ρµν ρµν +

1
2

m2
ρ ρµ ρµ +gρππρµJµ

π , (7)

whereρµ is a vector field describing theρ0 meson (∂µ ρµ = 0), φ is a complex pseudo-
scalar field describing theπ± mesons,ρµν is the usual field strength tensor, andJµ

π
is the π± current. Omitted from Eq.(7) is an additional term of higherorder in the
coupling, of the formg2

ρππ ρµ ρµ φ φ∗, which is not relevant to the present work.
In spite of the explicit mass term for the rho-meson in this Lagrangian, this QFT
has been shown to be renormalizable. This is due to the fact that the neutral vector
mesons are coupled only to conserved currents. At leading order in perturbation theory
(tree-level) KLZ reproduces VMD predictions. However, at next-to-leading order and
beyond, it provides a QFT framework to systematically calculate corrections to VMD.
Because of renormalizability, these corrections do not involve free parameters (the
masses and couplings in the Lagrangian are known from experiment). The one-loop

k

p1

p1 + k

p1

k

p1 p1

FIGURE 5. Vacuum polarization in KLZ.
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FIGURE 6. Vertex diagram in KLZ.

level corrections due to vacuum polarization, Fig.5, have been calculated in [10], and
those due to the vertex diagram, Fig.6, in [11]. These calculations were performed in
dimensional regularization, and subsequently a standard renormalization procedure was
followed. Vacuum polarization has been renormalized on mass shell (q2 = M2

ρ ), and
vertex renormalization atq2 = 0 in order to make use of the known value of the pion
form factorFπ(0) = 1. This form factor is given by

Fπ(q
2) =

M2
ρ +Π(0)|vac

M2
ρ −q2+Π(q2)|vac

+
M2

ρ

M2
ρ −q2

[

G(q2)−G(0)
]

, (8)

whereΠ(q2)|vacstands for the vacuum polarization contribution (see [10]), andG(q2)
is the vertex correction, both terms being of orderO(g2

ρππ ) (for details see [11]). Results
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FIGURE 7. Pion form factor at lowq2 from KLZ (solid line), and from VMD (dotted line). The KLZ
form factor basically overlaps with that from Dual-QCD∞, Fig.1.

for Fπ(q2) in the space-like region essentially overlap with those of Dual-QCD∞, Fig.1.
To highlight the differences with VMD, Fig.7 shows the lowq2 data together with the
KLZ and VMD form factors. Turning to the time-like region, atthe one-loop level, i.e. to
orderO(g2

ρππ), the vacuum polarization correction does not appear in the second term
of Eq.(8). At and near the rho-meson peak, the widthΓρ (identifiable from the imaginary
part ofΠ(q2)) exhibits a momentum transfer dependence, i.e.

Γρ(s)|KLZ =
Mρ Γρ√

s

[ s−4µ2
π

M2
ρ −4µ2

π

]
3
2
, (9)

with s ≡ q2. This is precisely the momentum dependent Gounaris-Sakurai (GS) width,
known to provide an excellent fit to the data in this region. This is a rather intriguing
feature, as it follows automatically fromΠ(q2=M2

ρ)|vac, while the GS width is a purely
empirical fit formula. A very important feature of KLZ is thatthe one-loop corrections
to tree-level VMD turn out to be small, in spite of KLZ being a strong coupling theory.
This is due to the relative mildness of theρππ coupling (gρππ ∼ 5), and the large
loop suppression factor 1/(4π)2. This fortunate circumstance guarantees a meaningful
perturbative expansion.

CONCLUSIONS

In this talk I have reviewed two QFT frameworks in which to compute corrections to
VMD results for electromagnetic form factors of hadrons. The first is Dual-QCD∞, a
Dual Resonance Model inspired realization of QCD in the limit of an infinite number
of colours. This is a tree-level improvement of naive (single rho-meson) VMD, which
incorporates an infinite number of vector meson radial excitations. Due to this infinite
number of states, the form factor is no longer restricted to an asymptotic monopole
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type of behaviour. In fact, since the form factor becomes an Euler Beta function, its
asymptotic behaviour is given by Eq.(4). This feature is essential to account for the
fact that the pion form factor deviates slightly from a monopole, while the nucleon and
∆(1236) form factors show a very strong deviation. Dual-QCD∞ form factors involve
a single free parameter in the space-like region, and at least one more in the time-like
region (after unitarization). The second platform is the KLZ renormalizable Abelian
gauge QFT of pions and a neutral rho-meson. This allows for a systematic calculation of
corrections to tree-level VMD in the framework of perturbation theory. The perturbative
expansion is meaningful, in spite of the strong coupling nature of the theory, due to the
relative mildness of theρππ coupling and to large loop suppression factors. An added
advantage is that KLZ involves no free parameters on accountof renormalizability.
Results from these two frameworks are in excellent agreement with experimental data
for the pion, proton, and∆(1236).
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