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Abstract. In this article we conduct a broad numerical in-

vestigation of stability of breather-type solutions of the non-

linear Schrodinger (NLS) equation, a widely used model ofiu; + txx + 2ul®u =0 (1)
rogue wave generation and dynamics in deep water. NLS

breathers rising over an unstable background state are fredften appears in studies of rogue wave formation in deep
quently used to model rogue waves. However, the issue ofvater when wave amplification is assumed to be primarily
whether these solutions are robust with respect to the kind oflue to nonlinear focusing and modulational instability. As a
random perturbations Occurring in physica' Settings and |abIeSU|t, Several C|asseS Of SO|Uti0nS Of the NLS equation are
oratory experiments has just recently begun to be addressefonsidered to be prototypes of rogue waves. For periodic
Numerical experiments for spatially periodic breathers with boundary conditionsy(x + L, 7) = u(x,t), one such class
one or two modes involving large ensembles of perturbed ini4S the family of homoclinic orbits of unstable plane waves
tial data for six typical random perturbations suggest interestWith N unstable modedysthe and TrulserL999 Osborne

ing conclusions. Breathers over an unstable background wit/§t &l 2000 Calini and Schober2002 Akhmediev et al.

N unstable modes are generally unstable to small perturba20093. We will refer to these homoclinic orbits, which can
tions in the initial data unless they are “maximal breathers”have M < N modes excited, a8/ mode spatially periodic
(i.e., they haveN spatial modes). Additionally, among the breather (SPB) solutions (see Figs. 1 and 2). Time-periodic
maximal breathers with two spatial modes, the one of highesPreather-type solutions as well as rational solutions, which
amplitude due to coalescence of the modes appears to be tiggise as singular limits of breather-type solutions and which
most robust. The numerical observations support and extenélecay polynomially in space and time, have also been stud-
to more realistic settings the results of our previous stabilityied (Ankiewicz et al, 201Q Akhmediev et al.2009h Ohta
analysis, which we hope will provide a useful tool for iden- @nd Yang2012.

tifying physically realizable wave forms in experimental and  FOr modeling purposes, the issue of robustness of these
observational studies of rogue waves. families of solutions is important. To successfully observe

or reproduce rogue waves in a setting where noise and small
higher order nonlinear effects are inherent requires solutions:
(i) to remain close to unperturbed ones in the presence of
small random variations of initial conditions and (ii) to per-

. . sist in perturbations of the NLS equation.
Interest in understanding rogue wave phenomena has been . . ) ) . . .
In this article we examine the first requirement by investi-

steadily growing for the pa_st decade, especially W.Ith Curren:g[;ating the stability with respect to perturbation of initial data
concerns over potential climate changes and their effect o

the likelihood and height of rogue waves. The focusin non-Of the one-mode SPBs over a plane wave with one or two
. . 9 gu ' 9 unstable modes (UMs) and the two-mode SPBs over a plane
linear Schrodinger (NLS) equation

wave with two UMs. In Sect. 2 we recall the basic elements

1 Introduction
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of the associated Floquet theory, which allows for an explo-wherea is the spectral parameter andk, ¢) is a solution of
ration of the structure and properties of the SPB solutionsthe NLS equation.

Section 3, the focus of this paper, provides the results of nu- For periodic boundary conditiongx+L, ) = u(x, t), the
merical investigations of stability of SPBs with respect to a spectrum of£ ™,

wide range of initial perturbationg (x). We consider (i) ran-

dom shifts in the initial phase, (i) random spatial perturba- 5 (£ .— [A eC|1LYv=0,|v| boundeddx], 3)

tions in the height of the wave, (iii) random noise, (iv) lo-

calized random Gaussian perturbations, and (v—vi) randong:an be described in terms of tHeloquet discriminant
high- and low-frequency perturbations. For each type ofSPBA(u A) = tr(M(L: 1. 1)), where M(x:u.) is the mon-
and for eachf;(x) an ensemble of 100 numerical experi- odr(;my matrix ofé, a’ts fo,llows: T

ments is carried out varying the random component in the

initial data. (x)
L ={ALeC|Am,2)eR, -2< A, ) <2}. 4
To study reproducibility/stability numerically, we first find o(LT) = eClam L)€ =Aw =2 @)

t_he “close_st" element of the SPB family to the pertgrbed solu- o particular interest are the following discrete subsets of
tion. Varying the parameters of the family and using e the periodic spectrum:

norm to measure distances, the closest element is found by

minimizing the maximum distance between the perturbed so- 1. The simple spectrum,

lution and the members of the family of SPBs. Contour plots oS={5|Au, 1) =£2, dA/dx # O}.

provide another diagnostic, since they are visually intuitive /

and show when solutions stay structurally close to each other 2 The set of double points,

in “shape”. The ensemble estimates of closeness, measured 54— (39| A(u, 1) = £+2, dA /dA =0, d2A /d)? # O}.

by A(z), indicate that the only neutrally stable SPBs are those !

for which all the instabilities of the underlying plane wave  The spectrum of® is invariant under the NLS flow, and
are saturated (e.g., the two-mode SPB over a plane wavgach periodic eigenvalue determines the structure and dy-
with two UMs). In the numerical simulations the perturbed namical stability of the corresponding nonlinear mode. In

SPBs may develop a small spatial asymmetry due to the ranparticylar, there are no instabilities associated witlor real
dom perturbations. Interestingly, when considering the fam-

ily of two-mode SPBsA(r) is smallest for the coalesced )L{e,)l/vhereas linear instabilities arise when Pﬁl’és are com-
two-mode SPB since the spatial asymmetry is minimized.p To. illustrate the relation between the comple% and
The coalesced SPB was shown (in numerical simulations anﬂ]e linear instabilities, consider the plane wave solu-
by means of perturbation analysis) to be the persistent wave- 1) ' , B
form in various perturbed NLS models on a periodic domain O #a(t) = ae . For small perturbations (x, 1) =
(Calini and Schober2002 2009. This result together with a1 +€(x. 1), le] <1, the quantity is a solution of the
the new observations presented in this article suggests thé‘fqear'zed equation

the coalesced case may be the most robust two-mode SPB in 2 .
a laboratory setting. Conversely, SPBs that are not fully sat!€ T €xx +2lal"(e +€7) =0. ®)
urated are sensitive to noisy environments and are unstable.
Finally, in Sect. 4 we outline our linear stability analysis of
the one- and two-mode SPBs, which support the results onf <4|a|2 — Mf) Then, the plane wave solution is unstable
the numerical investigation.

Thus e ocei*toi!, where p;=2rj/L and o=

if 0 < (jm/L)? < |a|?, where the number of unstable modes
(UMs) is the largest such that < M < |a|L/7. On the
other hand, one computes the discriminant of the plane wave
2 Analytical background to beA(a; 1) = 2cogv/a? + 22L), and the discrete spectrum

N2
In this section we describe some elements of Floquet sped® beAg = *ia and(A9)? = (%) —a?, j #0. Notice that
tral theory that are relevant to the stability analysis of thethe 19’s are complex if O< (jx/L)? < |a|?, which is the
SPBs. The NLS equation is equivalent to the consistency oame condition for a mode to be linearly unstable.

the Zakharov—Shabat linear system (Z-&Kharov & Sha-

bat 1972: 2.1 SPBs over an unstable plane wave

£y — % +ir —u _o Explicit representations for the SPBs can be obtained us-
v= ( u* 31 —ix )v - @ ing the Backlund-gauge transformation for the NLS equa-
9 .12 * 2 . tion (see Sect. 4). For an unstable plane wave witlMs,
L0y — ( a1 _.l(|“| —21) ) Hikx _22)‘“ 5 > v=0, a single Backlund transformation at a compﬁgenerates
—iuy + 20 g Hi(jul” =229 the one-mode SPB family corresponding to jftle unstable
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Figure 1. Amplitude of the one-mode SPB over an unstable plane )
wave with two UMs:(a) UD (x, 7; p) and(b) U@ (x, ; p). Figure 2. Amplitude plots of the two-mode SPB over a plane wave

with two UMs when the modes afa) distinct and(b) coalesced.

mode,

, s stable and reproducible only when the underlying plane wave
UYD (x,1; p) = ae' @1H9) has one UM.
x [cos2p; —sinp; sechp — o;r) cos2rjx /L + B) Finding a higher dimensionaf mode SPB (k M < N)

requiresM iterations of the Backlund-gauge transformation
Eq. (17), where each iteration introduces an additional pa-
x [1+sinp; sechp —ajt)cos(anx/LJrﬂ)]’l. (6) rameter in the resulting solution. Applying the Bé&cklund-

, . gauge transformation successively at com[affeandxg gen-
The parametep governs the time at which the mode be- 4 5tes a two-mode SPB family of the form

comes excitedg; is related to spatial shifts in the solu-
tion, u; =2nj/L, and p; = arccosrj/aL. The one-mode
SPB limits to a phase translation of the plane wave a
t — £oo with the decay rater;. For example, Figla—b
show the amplitudes of the two different one-mode SPBs,(SeeCalini and Schober2002for the exact formula.) Fig-
UD(x,1; p) andU@ (x,¢; p), over an unstable plane wave ure 2a shows the amplitude of with p = -2, T = —5,

with two UMs, fora =0.5,L =42, p=¢=p=0,and a=0.5, L =4/2r, for which the two spatial modes are
x€[—L/2,L/2],t € [—10,10]. The one-mode SPB over an distinct. This figure shows how the the two-mode SPB can
unstable plane wave with one UM has the same structure alse thought of as a nonlinear superposition of two one-mode
in Fig. 1a; L is simply adjusted to allow for only one UM. In  SPBs with spatial modes a@s x + 81) and cosuox + 82).

the next sections we show that the one-mode SPB is neutrallAs for the one-mode SPB, the two-mode SPB approaches

+i sin2p;tant(p —o;1)]

2, N(x,t;0,7)

D(x,t;p,7) @

SU(l’z)()c,t; 0.7) = a€’*

www.nat-hazards-earth-syst-sci.net/14/1431/2014/ Nat. Hazards Earth Syst. Sci., 14, 143140 2014
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For simplicity, we examine the stability of the one- and
two-mode SPB solutions with respect to perturbations in the

05 initial data. The results are generalizable to the case of an
M mode breather over an unstable plane wave with M
9% s — 9% - — unstable modes. We begin by letting
1 1 .
Ue(x,00=UY (x,0;p) +€fi(x), j=12 (8)
f f
30.5 40.5 or
S s 0 s w0 s 0 s 0 Udx, 00 =UM(x,05p,7) +efi (), )

where O< € « 1 should be chosen on the order of experi-
mental error. The parametessandr are selected so that the
difference ofU)(x, 0; p) and the plane wave i©(10~3),
and the difference ot/ 2 (x,0; p, r) and the plane wave
is O(1072), in order to avoid exciting any of the instabil-
ities of the plane wave. In all the numerical experiments,
the perturbation parameterds= 10~* and the time frame is

) ) t € [0, 30]. There is an inherent limitation to the time frame
a phase translation of the plane wave exponentially fast agqnsidered, since eventually the solution will enter a neigh-

t— Foo. _ _ . borhood of the plane wave and the associated instability be-
The parameterg andt determine the time at which the  .gmes manifested due to the numerical error.

first and second mode, respectively, become excited. Ulti- \ye consider the following cases: a one-mode SPB over
mately, p andt govern shape, amplitude, and steepness ot plane wave with (iV =1 UM or (i) N =2 UMs; and

the SPB, and can be adjusted to excite the modes at the Sami{) a two-mode SPB over the plane wave with= 2 UMs.
time. In fact, selecting = —2 a?df =-3 n Eq. ), we |t y.(x, 1) remains close (in an appropriate sense described
obtain what we refer to as the (':oalesced. tyvo—mode SPB=beIow) to an element of the respective famiiy; (x, 1; p) or
w_hose gmphtude IS Sh(?W” in Figb. Surprisingly, as we U2 (x,1; p, 1), then this indicates that the SPB is neutrally
will see in the next section, even though the coalesced twWogiape: otherwise the SPB will be classified as unstable.
mode SPB has steeper gradients, it can be more robust to ran- | each of the three cases (i—iii) and for each of the initial
dom perturbations of the initial data than a generic tWO'mOdeperturbationsﬁ(x) i =1 ... 6 described below and shown

SPB. in Fig. 3, an ensemble of 100 numerical experiments was
carried out by varying the random component in the initial
data:

-5 0 5 10 10

Figure 3. Initial periodic perturbationg;,i =1,...,6.

3 Numerical evidence of stability

To integrate the NLS Eq.1J with periodic boundary con- L. filx) =cosrk(x +¢)/L, k =1.2, wherep € [0. 1] is

ditions, we use a highly accurate and efficient exponential
integrator that uses Padé rational-function approximations to
the exponential, a Fourier-mode decomposition in space, and
a fourth-order Runge—Kutta discretization in tinkh@liq et

al., 2009. This scheme has been extensively tested with a
variety of known analytical solutions and provides, for re-
fined meshes, sufficient accuracy to simulate solutions of the
NLS equation on the time frame under investigation. Chaotic
behavior does not develop within the framework of the in-
tegrable NLS equation. On a longer time frame, chaotic be-
havior may develop due to perturbations to the NLS equa-
tion arising from the numerical scheme (or, in an experi-
mental setup, from higher order effects). For example, using
N = 256 Fourier modes in space and a time step= 103,

we find that theH#* norm of the difference between the ana-
lytical and numerical solutions is at mast10~12). On the
other hand, the error in the global invariants — the norm, the
momentum and the Hamiltonian — is at maxtL0~9).

Nat. Hazards Earth Syst. Sci., 14, 1431t44Q 2014

a random shift in the phase.

2. fo(x)=r(x)cosZrkx/L, k=1,2, wherer(x) € [0, 1]
is a spatially random perturbation in the height of the
wave.

3. fa(x) =r(x), wherer(x) € [0, 1] is random noise.

fa(x) = Y4_y re(x)e &= wherer;(x) € [0, 1] in-
dicates random fields. This represents a set of localized
Gaussian perturbations about the points

4.

Cfs) =K, n(x)€ZR/L for small K, where
re(x) €[0,1] are random fields. This gives a low-
frequency perturbation.

- fe(x) = ( ;ff,?%—ZfzK_z) rr(x)e@2Tkx/L for large

K, wherery(x) € [0, 1] are random fields. This gives a
high-frequency perturbation.

www.nat-hazards-earth-syst-sci.net/14/1431/2014/
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Figure 4. (a)H%;X(p). (b) Contours ofUc (x, 1)| (dashed line) and
the one-mode SPRUM (x,t; p*)| (solid line) over a plane wave
with one UM.(c) Evolution ofAl(l) (t) for eachf;.

RemarkFor perturbed initial data, the resulting NLS solution

To study reproducibility/stability numerically, we track the
evolution of the norm of the difference of the perturbed so-
lution and the closest element of the unperturbed family. For
example, in the case of the one-mode 3B order to de-
termine the closest element /) (x, t; p) to the perturbed
solution, we introduce the quantity

HD (15 p) = [|Ue (x, 1) — U (x, 15 p)|| 1, (10)
compute
Higau(p) = Maxepo.30HY (1: p), (11)

and then determine the parameter vadtiewhich minimizes
Hifd(p); that is

S = Min, HiZx(0) = Hiax(p®). (12)

As such,UY) (x, t; p*) is the closest element, and the evo-
lution of HU)(r; p*) provides a measurement of how close
the perturbed solution is to an element of the one-mode SPB
family. For eachf;, we estimate an ensemble measure of
“closeness” using the average &f/)(¢; p*) over all 100
simulations, denoted bylE”(r). (Note thatp* is different
for each simulation.)

We also use contour plots as a reproducibility/stability di-
agnostic tool, since they are visually intuitive and show when
solutions remain structurally close to each other in “shape”, a
feature that cannot be determined by examinatioyllg?(t)
alone. In the contour plots we superimpose the contour of
the amplitude obtained from the numerically generated solu-
tion U (x, t) onto that of the respective unperturbed analyti-
cal solutionU Y (x, t; p*) or U2 (x, 1; p*, v*). While only
sample contour plots for the different cases are presented, the
graphs otAf’ )(t) provide information obtained from the en-
tire ensemble for each perturbatign The numerical results
consistently indicate that only the SPBs whose instabilities
are saturated are neutrally stable.

Case oneWe consider the one-mode SPB over a plane
wave with one UM, in particular Eq.6f with j =1, a=
0.5, po = 5.0, andL = 2+/2. Figureda showsH s p) for
Uc(x,0) = UD (x,0; po) + € f3(x). Note thatH'sh, occurs at
p* ~ 5.04. The contours ofU. (x, )| and of[U® (x, 7; p*)|,
the nearest one-mode SPB found by minimizﬂié%x(p),
are given in Fig4b. Here, U, (x, tr) and the nearest SPB are

visually identical. Figuredlc shows the evolution aﬂfl) ()

U (x, 1) no longer possesses the simple structure of an SPBfor each f;. The small growth ind™” (1) to 103 at ~ 11

as an infinite number of modes become excited. Althoughfor all f; is due to a small spatial asymmetry that develops
over a long time its dynamics may deviate significantly from in the perturbed solution due to the random nature offthe
that of the initially close SPB, numerical investigations of the This growth is not significant, as compared, for example, to
short-to-moderate-time evolution provide information aboutthe growth inAEl) (t) or Al@ (1) in Figs.5 or 6 when the un-
the robustness of the SPB within the integrable NLS modelderlying plane wave has two UMs. These results show that
and lay the groundwork for a stability analysis of these solu-the perturbed solution stays closelté” (x, r; p*) for a sub-

tions.

www.nat-hazards-earth-syst-sci.net/14/1431/2014/

stantial period of time, an indication of the neutral stability
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Table 1. The minimum, mean, median and maximurrﬂﬁ%h%) ob- 8t
tained in the ensemble of 100 experiments for egch

—~
V)
~
s

fi Minimum Mean Median Maximum 4\

fi 1.7616x1077 6.5183x1073 2.9831x10°> 2.1138x10°1 Zy, N co

fo 6.2504x1077 2.2224x1073 1.2596x10°° 1.1811x10°1 § = / - |
fa 1.3286x10°8 3.5547x1073 3.1829x10°° 2.6490x10°1 & = | '
fa 2.1195x1077 1.2651x1073 1.2519x10°° 7.4857x10°2 2D\ . o
fs 2.8895x1077 6.1313x107% 7.2525x10°% 2.9186x10~2 ‘

fo 2.9967x1077 4.2785x10~% 2.8146x10°% 2.8567x1072 "'j

of the one-mode SPBs when the underlying plane wave has
only one unstable mode.

Case two.Next we consider the one-mode SPB over a
plane wave with two UMs, namely formuBawith j =1, 2,
a =0.5, pg = 0.0, andL = 4+/2x. The contours ofU, (x, 1)|
for Uc(x,0) = UD (x, 0; po)+€f1(x) (Wherek = 2in f1(x))

and of|[U® (x, t; p*)| are given in Fig5a. The closest one- o]
mode SPB found by minimizing{%&x(p) matches only the _wl
first mode of the perturbed solution. A second mode is ex- =

cited by the perturbation of the initial datasad= 20, which il
does not develop in any element &f @ (x, r; p)|. In fact, of
small perturbations in the initial data generate quasi-periodic Al

solutions of the NLS equation whose amplitudes resemble
a superposition ofU®| and |U®@| on this time frame. In

Fig. 5b, Afl) (1), the ensemble measure of closeness, under- o E T
goes a rapid growth t®(10) as the second mode develops.
This second mode is excited Ui (x, r) for all randomf;’s,  Figure 5. (a) Contours of U (x, 1)| (dashed line) and the one-mode

and in fact the maximum oﬂ}l)(t) is larger for the other per-  SPB|UW (x,1; p*)| (solid line) over a plane wave with two UMs.
turbations. Figuréa shows the corresponding contours when (b) Evolution ofAlfl) (¢) for eachf;.

Ue(x,0) = U@ (x,0; po) +efi(x) (fork =1in f1(x)). Sim-

ilar rapid growth inAEZ)(t) is observed (see Figb), indi-

cating that the one-mode SPBs over plane waves Mith 2 As before, the ensemble measure of C|05€Dé,§52,) (0),1s

UMs are unstable. the average o312 (¢; p*, *) over all 100 simulations for
Case threeFinally, we consider the two-mode SPB over eachf;.

a plane wave with two UMs, given by Eq7)(with i =1, Figure7a—b showHz5 (0*, 7) for initial datal (x, 0) =

j=2,a=05,p9=-20,19=—100,andL =4/2r.The UL (x,0; pp, 70) + €/ (x) with f; = f4 and f; = fs, re-
parameterp andz determine the time when the first and sec- spectively. In Fig.7a Hﬁ%ﬁf) ~0.0091 att* ~ —10.44, and
ond modes of the SPB become excited. In this case we need} Fig. 7p %2 ~ 0.2068 atr* ~ —10.06. Figure8 shows

to find the element of the family 2 (x,; p, 7) closest to  the contours of the perturbed solutiti (x, £)] for f; = f4
Ue(x,t). We find firstp* and thent* minimizing the differ- along with (a)]U %2 (x, : p*, 7)|, where the first mode has
ences between the first and second modes of the perturb&tben matched using* and « is kept at its original value
and unperturbed solutions. Namely, to determine the closesf, and ()| 12 (x, 1; p*, 7*)], the nearest two-mode SPB
element oft/ ™2 (x, #; p*, 7) to the perturbed solution, we o g by minimizingH's2 (o*, 7). Similarly, Fig.9 shows
consider the contours wherf; = fs. Here, the nearest two-mode SPB
HED (1 p* 1) = |Ue (e 1) — U2 (x, 15 0%, D)l 1, (13)  found by minimizing &2 (p*, ) produces a match only
in time. The perturbation introduces spatial asymmetry that
cannot be ameliorated by the matching procedure. Fifjore
Hﬁaff;) (p*, 1) = maxfe[o,go]H(l*z) (t; p*, 1), (14) gives the evolution of4§1’2) (1), showing a larger growth than
in Afl)(t), since there is time for the spatial asymmetry to
further develop with the second mode appearinga0.

compute

and find the unique*, which minimizeSH%a"Q(,o*, 7); that
is

HLED — min, HE2 (p*, 1) = HE2 (p*, 7). (15)

Nat. Hazards Earth Syst. Sci., 14, 1431t44Q 2014 www.nat-hazards-earth-syst-sci.net/14/1431/2014/
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SPB|U@ (x,t; p*)| (solid line) over a plane wave with two UMs. ~ 0.0091 and- 0.2068, respectively.
(b) Evolution ofAEZ) (¢) for eachy;.

of the order ofAfl)(t). In this caselU. (x, t) remains closer

o X i 1,2 ook ok ; .
(12 oxhibits a larger variance, as can be seen in Taple 10 U7 (x.1; 0, 7), since the coalesced modes appear to

displaying the minimum, mean, median and maximum 0fgether earlier in time, and as suth(x, ¢) is not as suscep-

1,2 . . tible to growth of spatial asymmetries. Vice versa, assuming
Hmm~ over the entire ensemble of experiments for egch . . A )
We find HL2 is at mostO (10_1) (obtained with the ran- initial data for an SPB with distinct modes, but wjghandzg

mm_ = N chosen close to the parameter values for the coalesced SPB,

dom phasefi), with all other f; yielding smaller asymme-

. 47 th dom highf bati iold it is possible to observe the coalesced SPB due to the shifts
tries andfs, the random high-frequency perturbation, yield- ; .o parameters.

ing the smallest. One may ask whe'ther thg opserved spatial Remarkably, the coalesced two-mode SPB appears to also
a_lsymmetry can_be captured epr|C|t_Iy_by f|_nd|ng the solu- be more robust under certain types of perturbations of the
tions of Eq. b) since, for random variations in the data, the NLS equation Calini and Schobe2002). These two obser-
Sations indicate that the coalesced case may be the most ro-

o 1.2)
origin. SinceA;™“ (1) grows to at mos® (10°%), Ue(x.1)  pyst two-mode SPBin a laboratory setting.

stays neat/ -2 (x, r; p*, t*) for a substantial period of time;
that is, the two-mode SPB over a plane wave with two UMs
is neutrally stable. 4 Squared eigenfunctions and linear stability

Finally, we consider the special case of the coalesced
two-mode SPB over a plane wave with two UMs (recall To support the results of the numerical investigation, we out-
Fig. 2b). Here Uc(x,0) = UL (x,1; po, 10) + €f5(x) With  line the linear stability analysis of the one- and two-mode
a=05, pg=—20,79=—30, andL = 4/2r. Figurella  SPB solutions carried out i8alini and Schobef2013. The
shows the contours dUU.(x, )| and of the two-mode SPB  key observation is that, for a given solutiaitx, r) of the
(U2 (x,1; p*, 7%)|. The ensemble closeness measuremenNLS equation (e.g., one of the SPBs), its associated “squared
A,?l*Z)(t) (see Fig.11b) is significantly smaller than in the eigenfunctions” satisfy the linearized equation abo(jte.,
generic two-mode SPB case (compare with Big), and is  Eq. (6) with u, replaced by:). In particular, for a one-mode
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Tiﬁ%e *

Figure 8. Contours of|U¢ (x,1)] for fa(x) (dashed line) and the

two-mode SPB (solid line) given bga) |[U -2 (x, r; p*, 1p)| and
) (U2 (x,1; 0%, 7).

SPB, if¢ andy satisfy the Z-S systeat U/ (x, t), then
fx, 1) = ¢1yr1 + ¢z andg(x, 1) = i(p1y1 — ¢2v2) solve

the linearized NLS equation. Thus, determining stability be-
comes simply a question of examining the behavior in time
of f(x,7) andg(x,1).

The Baéacklund-gauge transformationSattinger and
Zurkowski 1987 allows one to transform both the “seed"
solutionu(x, r) and its eigenfunctions while preserving spa-
tial periodicity, as follows: letp := o, ¢p™ +a_¢~, ax € C,
where ¢ and ¢~ are linearly independent solutions of
the Z-S system au, 1 ), with A; one of the complex&?.
Construct the following gauge matrix:

Y 12 —16al” ; 29102
A — [p1]°+]¢2] [p112+1d2]
GO =1 s A A 01210212

71917 +1g212 7 1¢17+1g212
Then,

¢V (x, 1,2 0)) =G(hi Aj, p)(x,1, 1) (16)
solves the Z-S systetat (U (x, 1), 1), where
; - P192
UV, t)y=u+20j —Aj)——a—s 17
T al? + 1422 80

Nat. Hazards Earth Syst. Sci., 14, 1431t44Q 2014
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Time *

Figure 9. Contours of|U¢(x,1)| for f5(x) (dashed line) and the
two-mode SPB (solid line) given ba) U2 (x,1; p*, 10)| and
(0) U2 (x, 1: p*, %))

A2

-
10

5

Tiﬁ]e
. . 1,2

Figure 10. Evolution of A, (¢) for eachf;.

is the new NLS solution. We use the following notation: the

value of superscripy indicates the.; used in Eq. (7)),

while the number of superscripts is the number of iterations
of the Backlund-gauge formula.
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T (a) ] .
o ] 11?2 — |p2l? cospsin(2kx + B) 18
4 — ] (6117 +1¢21% ~ costip —o1) +sinpcos2kx +5)’
N | 20152 _

[0] o \ 2 7 =

8o O (o) O | |11+ |2l _ N

@ | - /q | x [cospsinh(p —ot) +isinpcoshp — o)
I , +i cos2kx + §)]
J ] x [cosh(p — o) + sinp cos2kx + ,8)]_1,
T S whereu, = 2k(r1) = 27/ L . It follows that the only possible

source of exponential-in-time growth ¢f(x, ) andg(x, 1)
comes from the eigenfunctions

T, 01) = G AL, @)L (x, 13 A) [rmiy -

Sincex* becomes linearly dependentat it suffices to ex-
amine x *(x,t; A1), which turns out to have no exponential
time dependence. In fact,

¢2
+ . ~ [¢12+¢2
X (X,l‘,)nl) ( 1_¢12 s
[$112+I¢212

with, for example,

1 [ (Fr+5+5) mor-n1r2
p112 + |p2]?
Figure 11. (a)Contours of Uc (x, r)| in the coalesced case fgg(x) i(Txrfar

; - . —0)/2
(dashed line) and of the two-mode SRBL-2) (x, 1; p*, )| (solid +ie (L : Z)e(at o)/ :|
line). (b) Evolution of 4> (1) for eachy;.

o -1
X [cosr(p —ot)+sinp cos(fx + ,8)} .

When the seed solution is an unstable plane wave with e finds that the i is also bounded
N unstable modes, for each comple, the new solution Likewise, one finds that the first component is also bounde

) ) / ) in time. Therefore ,) and ,1), the solutions of the
UYW(x,t) is the one-mode SPB associated with jiie UM. S 1) g(x. 1)

One iterati f the Backlund ¢ ¢ p linearized NLS equation, are bounded in time; in other
ne teration of the Bac unl—zgauge ranstormation pro-,,qrqs, Backlund-gauge transformatioriassaturates the as-
duces a two-mode SPB (e.g/(? (x,1)) as well as its as-

sociated UM of the plane wave. We conclude that, when the

sociated eigenfunctions. Since we are interested in the Sta[]nderlying plane wave solution has only one unstable mode,
bility of the SPBs, we need the explicit time dependence ofthe one-mode SPB is neutrally stable

the transformed eigenfunctions. A pair of linear independent Similarly, if the plane wave solution has two unstable

eigenfunctions of the plane wave is given by modes, then applying the Backlund transformation succes-
in/4 a2 sively atA; andi; saturates the associated UMs. Therefore,
e Vak@) £1)e 5 the two-mode SPBs over a plane wave with two UMs are
2k() \ £ak@) Fr)e ! neutrally stable.
o @t kG)x+20k(2)1) On the other hand, a one-mode SPB over the plane wave
' with two unstable modes is linearly unstable. In this case, the
; ; +(y o 1 . ; ;
wherek(1) = VA2 + a2. If the plane wave has only one UM &igenfunctionsy™(x, 7; 1) of U®(x,1: p), obtained by im-

associated with complexd, the entries ofG(1: 1, $) are plementing the Backlund-gauge formulaxat can be shown
1 LAY R . . o
bounded in time, since to be linearly independent at= A, and to exhibit exponen-

tial growth in time. In particular, their first component is of
the form

pE(x,1;0) =

X3 (et k) ~ exp( £ ) - Ba(x.),
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whereB4 (x,t) are bounded and = —4ilok(1p) isreal. In  AcknowledgementdVe thank the referees, whose valuable sug-
this casef (x,t) andg(x, t) grow exponentially in time; thus gestions have helped improve this article. Both authors gratefully
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In this article we present the results of extensive humerical
investigations of stability of spatially periodic NLS breathers
for avariety of fa”dc?m pertqrbations commonly encountergdAkhmediev’ N., Ankiewicz, A., and Taki, M.: Waves that appear
in experimental settings. It is our hope that such results will  f,5m nowhere and disappear without a trace, Phys. Lett. A, 373,
provide insight on how to generate reproducible rogue waves 75678, 2009a.

in the laboratory. In fact, for a waveform to be reproducible, it Akhmediev, N., Soto-Crespo, J. M., and Ankiewicz, A.: Extreme
should in particular be robust with respect to small perturba- waves that appear from nowhere: On the nature of rogue waves,
tions of the initial condition. For the specific case of an SPB  Phys. Lett. A, 373, 2137-2145, 2009b.

over an unstable background withunstable modesy we ob- Ankiewicz, A., Clarkson, P. A., and Akhmediev, N.: Rogue waves,
serve that only the maximal breathers are stable, in the sense rgtional solutions, the patterns of their zeros and integrable rela-
that a small initial perturbation will not grow exponentiallyin _ tions, J. Phys., 43, 122002-122010, 2010. _
time. This kind of stability should in practice ensure that ex- Calini, A. and Schober, C. M.: Homoclinic chaos increases the like-

erimental noise introduced when initializing the wave stays lihood of rogue waves, Phys. Lett. A, 298, 335-349, 2002,
P 9 y Calini, A. and Schober, C. M.: Rogue Waves in Higher Order Non-

contr.olled and_that the given SPE’ (or rogue Wa\{e) IS Fh.us linear Schrédinger Models, in: Extreme Ocean Waves, edited by:
physically realizable or reproducible. More precisely, ini-  pejingysky, E. and Kharif, C., vol. 31, Springer, 31-51, 2009.
tializing an experiment with eithet/ (x,0) = U® (x,0; p) Calini, A. and Schober, C. M. Observable and reproducible
or U(x,00 = UL (x,0; p, 7) (for an unstable background  rogue waves, J. Optics, 15, 105201, @6i1088/2040-
with either one or two unstable modes, respectively), and al- 8978/15/10/1052012013.
lowing for noise, the generated wave will remain close to anDysthe, K. and Trulsen, K.: Note on breather type solutions of the
element of the unperturbed fam||y NLS as model for freak waves, Phys. Scripta, T82, 48-52, 1999.
A particularly interesting outcome of the numerics is that, Khalig, A. Q. M., Martin-Vaquero, J., Wada, B. A., and Yousuf, M.:
among the maximal (and thus stable) two-mode SPBs, the Smoothing Schemes for Reaction-Diffusion Systems with Nons-
one whose spatial modes have coalesced appears to be t mooth Data, J. Comp. App. Math., 223, 374-386, 2009. .
. . ta, Y. and Yang, J.: General high-order rogue waves and their
most robust, and therefore it may be the most appropriate

. . . dynamics in the nonlinear Schrédinger equationm Proc. Royal
candidate for laboratory experiments. Furthermore, in order o A, 468, 1716-1740, 2012.

to facilitate post-processing of the data in a lab setting, ourgghorne, A., Onorato, M., and Serio, M.: The nonlinear dynamics

results suggest that an a priori estimate of the shifts in pa- of rogue waves and holes in deep-water gravity wave trains, hys.
rameters for a given SPB and a prescribed level of noise Lett. A, 275, 386—393, 2000.

should be useful in identifying the nearest SPB to the gen-Sattinger, D. H. and Zurkowski, V. D.: Gauge theory of Backlund
erated wave (i.e., the perturbed solution). Concretely, in ev- transformations, Physica D, 26, 225-250, 1987.

ery numerical simulation initialized with an ordé}(lcr‘l) Zakharov, V. E. and Shabat, A. B.: Exact theory of two-dimensional
random perturbation of an SPB, the following shifts in pa- self-focusing arnd one-dimensional self-modulation of waves in
rameters were obtained: for one-mode neutrally stable SPBs, Nonlinear media, J. Experiment. Theor. Phys., 34, 62-69, 1972.
the parameter shift i8 = p* — pg ~ ©(10~2); and for two-

mode SPBs, the shifts in the parameters/ate p* — pg ~

0(1072) andk = t* — 19 ~ O(10°1). (These orders of mag-

nitude are consistent with computifgand k by equating

a Taylor expansion ot/ @ (x, r; po + k) with U® (x, 1) and

UL (x,t; po+ h, 1o+ k) with UL (x, 1).) While we uti-

lized the H® norm as a measure of closeness, it may be

more feasible to compare the maximum amplitudes of the

physical and analytical solutions.
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