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Abstract. In this article we conduct a broad numerical in-
vestigation of stability of breather-type solutions of the non-
linear Schrödinger (NLS) equation, a widely used model of
rogue wave generation and dynamics in deep water. NLS
breathers rising over an unstable background state are fre-
quently used to model rogue waves. However, the issue of
whether these solutions are robust with respect to the kind of
random perturbations occurring in physical settings and lab-
oratory experiments has just recently begun to be addressed.
Numerical experiments for spatially periodic breathers with
one or two modes involving large ensembles of perturbed ini-
tial data for six typical random perturbations suggest interest-
ing conclusions. Breathers over an unstable background with
N unstable modes are generally unstable to small perturba-
tions in the initial data unless they are “maximal breathers”
(i.e., they haveN spatial modes). Additionally, among the
maximal breathers with two spatial modes, the one of highest
amplitude due to coalescence of the modes appears to be the
most robust. The numerical observations support and extend
to more realistic settings the results of our previous stability
analysis, which we hope will provide a useful tool for iden-
tifying physically realizable wave forms in experimental and
observational studies of rogue waves.

1 Introduction

Interest in understanding rogue wave phenomena has been
steadily growing for the past decade, especially with current
concerns over potential climate changes and their effect on
the likelihood and height of rogue waves. The focusing non-
linear Schrödinger (NLS) equation

iut + uxx + 2|u|2u= 0 (1)

often appears in studies of rogue wave formation in deep
water when wave amplification is assumed to be primarily
due to nonlinear focusing and modulational instability. As a
result, several classes of solutions of the NLS equation are
considered to be prototypes of rogue waves. For periodic
boundary conditions,u(x+L,t)= u(x, t), one such class
is the family of homoclinic orbits of unstable plane waves
with N unstable modes (Dysthe and Trulsen, 1999; Osborne
et al., 2000; Calini and Schober, 2002; Akhmediev et al.,
2009a). We will refer to these homoclinic orbits, which can
haveM ≤N modes excited, asM mode spatially periodic
breather (SPB) solutions (see Figs. 1 and 2). Time-periodic
breather-type solutions as well as rational solutions, which
arise as singular limits of breather-type solutions and which
decay polynomially in space and time, have also been stud-
ied (Ankiewicz et al., 2010; Akhmediev et al., 2009b; Ohta
and Yang, 2012).

For modeling purposes, the issue of robustness of these
families of solutions is important. To successfully observe
or reproduce rogue waves in a setting where noise and small
higher order nonlinear effects are inherent requires solutions:
(i) to remain close to unperturbed ones in the presence of
small random variations of initial conditions and (ii) to per-
sist in perturbations of the NLS equation.

In this article we examine the first requirement by investi-
gating the stability with respect to perturbation of initial data
of the one-mode SPBs over a plane wave with one or two
unstable modes (UMs) and the two-mode SPBs over a plane
wave with two UMs. In Sect. 2 we recall the basic elements
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of the associated Floquet theory, which allows for an explo-
ration of the structure and properties of the SPB solutions.
Section 3, the focus of this paper, provides the results of nu-
merical investigations of stability of SPBs with respect to a
wide range of initial perturbationsfi(x). We consider (i) ran-
dom shifts in the initial phase, (ii) random spatial perturba-
tions in the height of the wave, (iii) random noise, (iv) lo-
calized random Gaussian perturbations, and (v–vi) random
high- and low-frequency perturbations. For each type of SPB
and for eachfi(x) an ensemble of 100 numerical experi-
ments is carried out varying the random component in the
initial data.

To study reproducibility/stability numerically, we first find
the “closest” element of the SPB family to the perturbed solu-
tion. Varying the parameters of the family and using theH1
norm to measure distances, the closest element is found by
minimizing the maximum distance between the perturbed so-
lution and the members of the family of SPBs. Contour plots
provide another diagnostic, since they are visually intuitive
and show when solutions stay structurally close to each other
in “shape”. The ensemble estimates of closeness, measured
byA(t), indicate that the only neutrally stable SPBs are those
for which all the instabilities of the underlying plane wave
are saturated (e.g., the two-mode SPB over a plane wave
with two UMs). In the numerical simulations the perturbed
SPBs may develop a small spatial asymmetry due to the ran-
dom perturbations. Interestingly, when considering the fam-
ily of two-mode SPBs,A(t) is smallest for the coalesced
two-mode SPB since the spatial asymmetry is minimized.
The coalesced SPB was shown (in numerical simulations and
by means of perturbation analysis) to be the persistent wave-
form in various perturbed NLS models on a periodic domain
(Calini and Schober, 2002, 2009). This result together with
the new observations presented in this article suggests that
the coalesced case may be the most robust two-mode SPB in
a laboratory setting. Conversely, SPBs that are not fully sat-
urated are sensitive to noisy environments and are unstable.
Finally, in Sect. 4 we outline our linear stability analysis of
the one- and two-mode SPBs, which support the results of
the numerical investigation.

2 Analytical background

In this section we describe some elements of Floquet spec-
tral theory that are relevant to the stability analysis of the
SPBs. The NLS equation is equivalent to the consistency of
the Zakharov–Shabat linear system (Z–S) (Zakharov & Sha-
bat, 1972):

L(x)v =

(
∂
∂x

+ iλ −u

u∗ ∂
∂x

− iλ

)
v = 0 (2)

L(t)v =

(
∂
∂t

− i(|u|2 − 2λ2) −iux − 2λu
−iu∗

x + 2λu∗ ∂
∂t

+ i(|u|2 − 2λ2)

)
v = 0,

whereλ is the spectral parameter andu(x, t) is a solution of
the NLS equation.

For periodic boundary conditionsu(x+L,t)= u(x, t), the
spectrum ofL(x),

σ(L(x)) :=

{
λ ∈ C |L(x)v = 0, |v| bounded∀x

}
, (3)

can be described in terms of theFloquet discriminant
1(u,λ) := tr(M(L;u,λ)), where M(x;u,λ) is the mon-
odromy matrix of2, as follows:

σ(L(x))= {λ ∈ C |1(u,λ) ∈ R,−2 ≤1(u,λ)≤ 2} . (4)

Of particular interest are the following discrete subsets of
the periodic spectrum:

1. The simple spectrum,
σ s

= {λs
j |1(u,λ)= ±2, d1/dλ 6= 0}.

2. The set of double points,
σ d

= {λd
j |1(u,λ)= ±2, d1/dλ= 0, d21/dλ2

6= 0}.

The spectrum ofL(x) is invariant under the NLS flow, and
each periodic eigenvalue determines the structure and dy-
namical stability of the corresponding nonlinear mode. In
particular, there are no instabilities associated withλs

j or real

λd
j , whereas linear instabilities arise when theλd

j ’s are com-
plex.

To illustrate the relation between the complexλd
j and

the linear instabilities, consider the plane wave solu-
tion ua(t)= aei(2a

2t+φ). For small perturbationsu(x, t)=

ua(t)(1+ ε(x, t)), |ε| � 1, the quantityε is a solution of the
linearized equation

iεt + εxx + 2|a|2(ε+ ε∗)= 0. (5)

Thus ε ∝ eiµj x+σj t , where µj = 2πj/L and σ 2
j =

µ2
j

(
4|a|2 −µ2

j

)
. Then, the plane wave solution is unstable

if 0 < (jπ/L)2 < |a|2, where the number of unstable modes
(UMs) is the largestM such that 0<M < |a|L/π . On the
other hand, one computes the discriminant of the plane wave
to be1(a;λ)= 2cos(

√
a2 + λ2L), and the discrete spectrum

to beλs
0 = ±ia and(λd

j )
2
=

(
jπ
L

)2
− a2, j 6= 0. Notice that

the λd
j ’s are complex if 0< (jπ/L)2 < |a|2, which is the

same condition for a mode to be linearly unstable.

2.1 SPBs over an unstable plane wave

Explicit representations for the SPBs can be obtained us-
ing the Bäcklund-gauge transformation for the NLS equa-
tion (see Sect. 4). For an unstable plane wave withN UMs,
a single Bäcklund transformation at a complexλd

j generates
the one-mode SPB family corresponding to thej th unstable
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Figure 1. Amplitude of the one-mode SPB over an unstable plane
wave with two UMs:(a)U (1)(x, t;ρ) and(b) U (2)(x, t;ρ).

mode,

U (j)(x, t;ρ)= aei(2a
2t+φ)

×
[
cos2pj − sinpj sech(ρ− σj t)cos(2πjx/L+β)

+i sin2pj tanh(ρ− σj t)
]

×
[
1+ sinpj sech(ρ− σj t)cos(2πjx/L+β)

]−1
. (6)

The parameterρ governs the time at which the mode be-
comes excited,βj is related to spatial shifts in the solu-
tion, µj = 2πj/L, andpj = arccosπj/aL. The one-mode
SPB limits to a phase translation of the plane wave as
t → ±∞ with the decay rateσj . For example, Fig.1a–b
show the amplitudes of the two different one-mode SPBs,
U (1)(x, t;ρ) andU (2)(x, t;ρ), over an unstable plane wave
with two UMs, fora = 0.5,L= 4

√
2π , ρ = φ = β = 0, and

x ∈ [−L/2,L/2], t ∈ [−10,10]. The one-mode SPB over an
unstable plane wave with one UM has the same structure as
in Fig. 1a;L is simply adjusted to allow for only one UM. In
the next sections we show that the one-mode SPB is neutrally

Figure 2. Amplitude plots of the two-mode SPB over a plane wave
with two UMs when the modes are(a) distinct and(b) coalesced.

stable and reproducible only when the underlying plane wave
has one UM.

Finding a higher dimensionalM mode SPB (1<M ≤N )
requiresM iterations of the Bäcklund-gauge transformation
Eq. (17), where each iteration introduces an additional pa-
rameter in the resulting solution. Applying the Bäcklund-
gauge transformation successively at complexλd

1 andλd
2 gen-

erates a two-mode SPB family of the form

U (1,2)(x, t;ρ,τ)= ae2ia2t N(x, t;ρ,τ)

D(x, t;ρ,τ)
. (7)

(SeeCalini and Schober, 2002for the exact formula.) Fig-
ure 2a shows the amplitude of7 with ρ = −2, τ = −5,
a = 0.5, L= 4

√
2π , for which the two spatial modes are

distinct. This figure shows how the the two-mode SPB can
be thought of as a nonlinear superposition of two one-mode
SPBs with spatial modes cos(µ1x+β1) and cos(µ2x+β2).
As for the one-mode SPB, the two-mode SPB approaches
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Figure 3. Initial periodic perturbationsfi , i = 1, . . . ,6.

a phase translation of the plane wave exponentially fast as
t → ±∞ .

The parametersρ andτ determine the time at which the
first and second mode, respectively, become excited. Ulti-
mately,ρ andτ govern shape, amplitude, and steepness of
the SPB, and can be adjusted to excite the modes at the same
time. In fact, selectingρ = −2 andτ = −3 in Eq. (7), we
obtain what we refer to as the “coalesced” two-mode SPB,
whose amplitude is shown in Fig.2b. Surprisingly, as we
will see in the next section, even though the coalesced two-
mode SPB has steeper gradients, it can be more robust to ran-
dom perturbations of the initial data than a generic two-mode
SPB.

3 Numerical evidence of stability

To integrate the NLS Eq. (1) with periodic boundary con-
ditions, we use a highly accurate and efficient exponential
integrator that uses Padé rational-function approximations to
the exponential, a Fourier-mode decomposition in space, and
a fourth-order Runge–Kutta discretization in time (Khaliq et
al., 2009). This scheme has been extensively tested with a
variety of known analytical solutions and provides, for re-
fined meshes, sufficient accuracy to simulate solutions of the
NLS equation on the time frame under investigation. Chaotic
behavior does not develop within the framework of the in-
tegrable NLS equation. On a longer time frame, chaotic be-
havior may develop due to perturbations to the NLS equa-
tion arising from the numerical scheme (or, in an experi-
mental setup, from higher order effects). For example, using
N = 256 Fourier modes in space and a time step1t = 10−3,
we find that theH 1 norm of the difference between the ana-
lytical and numerical solutions is at mostO(10−12). On the
other hand, the error in the global invariants – the norm, the
momentum and the Hamiltonian – is at mostO(10−9).

For simplicity, we examine the stability of the one- and
two-mode SPB solutions with respect to perturbations in the
initial data. The results are generalizable to the case of an
M mode breather over an unstable plane wave withN ≥M

unstable modes. We begin by letting

Uε(x,0)= U (j)(x,0;ρ)+ εfi(x), j = 1,2 (8)

or

Uε(x,0)= U (1,2)(x,0;ρ,τ)+ εfi(x), (9)

where 0< ε � 1 should be chosen on the order of experi-
mental error. The parametersρ andτ are selected so that the
difference ofU (j)(x,0;ρ) and the plane wave isO(10−3),
and the difference ofU (1,2)(x,0;ρ,τ) and the plane wave
is O(10−2), in order to avoid exciting any of the instabil-
ities of the plane wave. In all the numerical experiments,
the perturbation parameter isε = 10−4 and the time frame is
t ∈ [0,30]. There is an inherent limitation to the time frame
considered, since eventually the solution will enter a neigh-
borhood of the plane wave and the associated instability be-
comes manifested due to the numerical error.

We consider the following cases: a one-mode SPB over
the plane wave with (i)N = 1 UM or (ii) N = 2 UMs; and
(iii) a two-mode SPB over the plane wave withN = 2 UMs.
If Uε(x, t) remains close (in an appropriate sense described
below) to an element of the respective family,U (j)(x, t;ρ) or
U (1,2)(x, t;ρ,τ), then this indicates that the SPB is neutrally
stable; otherwise the SPB will be classified as unstable.

In each of the three cases (i–iii) and for each of the initial
perturbationsfi(x), i = 1, . . . ,6, described below and shown
in Fig. 3, an ensemble of 100 numerical experiments was
carried out by varying the random component in the initial
data:

1. f1(x)= cos2πk(x+φ)/L, k = 1,2, whereφ ∈ [0,1] is
a random shift in the phase.

2. f2(x)= r(x)cos2πkx/L, k = 1,2, wherer(x) ∈ [0,1]

is a spatially random perturbation in the height of the
wave.

3. f3(x)= r(x), wherer(x) ∈ [0,1] is random noise.

4. f4(x)=
∑J
k=1 rk(x)e

−(x−xj )
2
, whererj (x) ∈ [0,1] in-

dicates random fields. This represents a set of localized
Gaussian perturbations about the pointsxj .

5. f5(x)=
∑K
k=−K rk(x)e

i2πkx/L for small K, where
rk(x) ∈ [0,1] are random fields. This gives a low-
frequency perturbation.

6. f6(x)=

(∑
−K+2
k=−K +

∑K
k=K−2

)
rk(x)ei2πkx/L for large

K, whererk(x) ∈ [0,1] are random fields. This gives a
high-frequency perturbation.
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Figure 4. (a)H(1)max(ρ). (b) Contours of|Uε(x, t)| (dashed line) and
the one-mode SPB|U (1)(x, t;ρ∗)| (solid line) over a plane wave

with one UM.(c) Evolution ofA(1)
i
(t) for eachfi .

Remark.For perturbed initial data, the resulting NLS solution
Uε(x, t) no longer possesses the simple structure of an SPB,
as an infinite number of modes become excited. Although
over a long time its dynamics may deviate significantly from
that of the initially close SPB, numerical investigations of the
short-to-moderate-time evolution provide information about
the robustness of the SPB within the integrable NLS model,
and lay the groundwork for a stability analysis of these solu-
tions.

To study reproducibility/stability numerically, we track the
evolution of the norm of the difference of the perturbed so-
lution and the closest element of the unperturbed family. For
example, in the case of the one-mode SPB6, in order to de-
termine the closest element ofU (j)(x, t;ρ) to the perturbed
solution, we introduce the quantity

H(j)(t;ρ)= ||Uε(x, t)−U
(j)(x, t;ρ)||H1, (10)

compute

H(j)max(ρ)= maxt∈[0,30]H(j)(t;ρ), (11)

and then determine the parameter valueρ∗, which minimizes
H(j)max(ρ); that is

H(j)mm = minρH(j)max(ρ)=H(j)max(ρ
∗). (12)

As such,U (j)(x, t;ρ∗) is the closest element, and the evo-
lution of H(j)(t;ρ∗) provides a measurement of how close
the perturbed solution is to an element of the one-mode SPB
family. For eachfi , we estimate an ensemble measure of
“closeness” using the average ofH(j)(t;ρ∗) over all 100
simulations, denoted byA(j)i (t). (Note thatρ∗ is different
for each simulation.)

We also use contour plots as a reproducibility/stability di-
agnostic tool, since they are visually intuitive and show when
solutions remain structurally close to each other in “shape”, a
feature that cannot be determined by examination ofA(j)i (t)

alone. In the contour plots we superimpose the contour of
the amplitude obtained from the numerically generated solu-
tionUε(x, t) onto that of the respective unperturbed analyti-
cal solution,U (j)(x, t;ρ∗) orU (1,2)(x, t;ρ∗,τ ∗). While only
sample contour plots for the different cases are presented, the
graphs ofA(j)i (t) provide information obtained from the en-
tire ensemble for each perturbationfi . The numerical results
consistently indicate that only the SPBs whose instabilities
are saturated are neutrally stable.

Case one.We consider the one-mode SPB over a plane
wave with one UM, in particular Eq. (6) with j = 1, a =

0.5, ρ0 = 5.0, andL= 2
√

2π . Figure4a showsH(1)max(ρ) for
Uε(x,0)= U (1)(x,0;ρ0)+ εf3(x). Note thatH(1)mm occurs at
ρ∗

∼ 5.04. The contours of|Uε(x, t)| and of|U (1)(x, t;ρ∗)|,
the nearest one-mode SPB found by minimizingH(1)max(ρ),
are given in Fig.4b. Here,Uε(x, t) and the nearest SPB are
visually identical. Figure4c shows the evolution ofA(1)i (t)
for eachfi . The small growth inA(1)i (t) to 10−3 at t ≈ 11
for all fi is due to a small spatial asymmetry that develops
in the perturbed solution due to the random nature of thefi .
This growth is not significant, as compared, for example, to
the growth inA(1)i (t) orA(2)i (t) in Figs.5 or 6 when the un-
derlying plane wave has two UMs. These results show that
the perturbed solution stays close toU (1)(x, t;ρ∗) for a sub-
stantial period of time, an indication of the neutral stability
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Table 1.The minimum, mean, median and maximum ofH(1,2)mm ob-
tained in the ensemble of 100 experiments for eachfi .

fi Minimum Mean Median Maximum

f1 1.7616×10−7 6.5183×10−3 2.9831×10−5 2.1138×10−1

f2 6.2504×10−7 2.2224×10−3 1.2596×10−5 1.1811×10−1

f3 1.3286×10−6 3.5547×10−3 3.1829×10−5 2.6490×10−1

f4 2.1195×10−7 1.2651×10−3 1.2519×10−5 7.4857×10−2

f5 2.8895×10−7 6.1313×10−4 7.2525×10−6 2.9186×10−2

f6 2.9967×10−7 4.2785×10−4 2.8146×10−6 2.8567×10−2

of the one-mode SPBs when the underlying plane wave has
only one unstable mode.

Case two.Next we consider the one-mode SPB over a
plane wave with two UMs, namely formula6 with j = 1,2,
a = 0.5,ρ0 = 0.0, andL= 4

√
2π . The contours of|Uε(x, t)|

forUε(x,0)= U (1)(x,0;ρ0)+εf1(x) (wherek = 2 inf1(x))
and of|U (1)(x, t;ρ∗)| are given in Fig.5a. The closest one-
mode SPB found by minimizingH(1)max(ρ) matches only the
first mode of the perturbed solution. A second mode is ex-
cited by the perturbation of the initial data att ≈ 20, which
does not develop in any element of|U (1)(x, t;ρ)|. In fact,
small perturbations in the initial data generate quasi-periodic
solutions of the NLS equation whose amplitudes resemble
a superposition of|U (1)| and |U (2)| on this time frame. In
Fig. 5b,A(1)i (t), the ensemble measure of closeness, under-
goes a rapid growth toO(10) as the second mode develops.
This second mode is excited inUε(x, t) for all randomfi ’s,
and in fact the maximum ofA(1)i (t) is larger for the other per-
turbations. Figure6a shows the corresponding contours when
Uε(x,0)= U (2)(x,0;ρ0)+εf1(x) (for k = 1 in f1(x)). Sim-
ilar rapid growth inA(2)i (t) is observed (see Fig.6b), indi-
cating that the one-mode SPBs over plane waves withN ≥ 2
UMs are unstable.

Case three.Finally, we consider the two-mode SPB over
a plane wave with two UMs, given by Eq. (7) with i = 1,
j = 2,a = 0.5,ρ0 = −2.0,τ0 = −10.0, andL= 4

√
2π . The

parametersρ andτ determine the time when the first and sec-
ond modes of the SPB become excited. In this case we need
to find the element of the familyU (1,2)(x, t;ρ,τ) closest to
Uε(x, t). We find firstρ∗ and thenτ ∗ minimizing the differ-
ences between the first and second modes of the perturbed
and unperturbed solutions. Namely, to determine the closest
element ofU (1,2)(x, t;ρ∗,τ ) to the perturbed solution, we
consider

H(1,2)(t;ρ∗,τ )= ||Uε(x, t)−U
(1,2)(x, t;ρ∗,τ )||H1, (13)

compute

H(1,2)max (ρ
∗,τ )= maxt∈[0,30]H(1,2)(t;ρ∗,τ ), (14)

and find the uniqueτ ∗, which minimizesH(1,2)max (ρ
∗,τ ); that

is

H(1,2)mm = minτH(1,2)max (ρ
∗,τ )=H(1,2)max (ρ

∗,τ ∗). (15)
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Figure 5. (a)Contours of|Uε(x, t)| (dashed line) and the one-mode
SPB|U (1)(x, t;ρ∗)| (solid line) over a plane wave with two UMs.

(b) Evolution ofA(1)
i
(t) for eachfi .

As before, the ensemble measure of closeness,A(1,2)i (t), is
the average ofH(1,2)(t;ρ∗,τ ∗) over all 100 simulations for
eachfi .

Figure7a–b showH(1,2)max (ρ
∗,τ ) for initial dataUε(x,0)=

U (1,2)(x,0;ρ0,τ0)+ εfi(x) with fi = f4 and fi = f5, re-
spectively. In Fig.7aH(1,2)mm ∼ 0.0091 atτ ∗

∼ −10.44, and
in Fig. 7b H(1,2)mm ∼ 0.2068 atτ ∗

∼ −10.06. Figure8 shows
the contours of the perturbed solution|Uε(x, t)| for fi = f4
along with (a)|U (1,2)(x, t;ρ∗,τ0)|, where the first mode has
been matched usingρ∗ and τ is kept at its original value
τ0, and (b)|U (1,2)(x, t;ρ∗,τ ∗)|, the nearest two-mode SPB
found by minimizingH(1,2)max (ρ

∗,τ ). Similarly, Fig.9 shows
the contours whenfi = f5. Here, the nearest two-mode SPB
found by minimizingH(1,2)max (ρ

∗,τ ) produces a match only
in time. The perturbation introduces spatial asymmetry that
cannot be ameliorated by the matching procedure. Figure10
gives the evolution ofA(1,2)i (t), showing a larger growth than

in A(1)i (t), since there is time for the spatial asymmetry to
further develop with the second mode appearing att ≈ 20.
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Figure 6. (a)Contours of|Uε(x, t)| (dashed line) and the one-mode
SPB|U (2)(x, t;ρ∗)| (solid line) over a plane wave with two UMs.

(b) Evolution ofA(2)
i
(t) for eachfi .

H(1,2)mm exhibits a larger variance, as can be seen in Table1,
displaying the minimum, mean, median and maximum of
H(1,2)mm over the entire ensemble of experiments for eachfi .
We findH(1,2)mm is at mostO

(
10−1

)
(obtained with the ran-

dom phasef1), with all otherfi yielding smaller asymme-
tries andf6, the random high-frequency perturbation, yield-
ing the smallest. One may ask whether the observed spatial
asymmetry can be captured explicitly by finding the solu-
tions of Eq. (5) since, for random variations in the data, the
squared eigenfunctions will no longer be centered around the
origin. SinceA(1,2)i (t) grows to at mostO

(
10−1

)
, Uε(x, t)

stays nearU (1,2)(x, t;ρ∗,τ ∗) for a substantial period of time;
that is, the two-mode SPB over a plane wave with two UMs
is neutrally stable.

Finally, we consider the special case of the coalesced
two-mode SPB over a plane wave with two UMs (recall
Fig. 2b). HereUε(x,0)= U (1,2)(x, t;ρ0,τ0)+ εf5(x) with
a = 0.5, ρ0 = −2.0, τ0 = −3.0, andL= 4

√
2π . Figure11a

shows the contours of|Uε(x, t)| and of the two-mode SPB
|U (1,2)(x, t;ρ∗,τ ∗)|. The ensemble closeness measurement
A(1,2)i (t) (see Fig.11b) is significantly smaller than in the
generic two-mode SPB case (compare with Fig.10), and is
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Figure 7. H(1,2)max (ρ
∗,τ ) for (a) f4(x) and (b) f5(x). H

(1,2)
mm is

∼ 0.0091 and∼ 0.2068, respectively.

of the order ofA(1)i (t). In this caseUε(x, t) remains closer
to U (1,2)(x, t;ρ∗,τ ∗), since the coalesced modes appear to-
gether earlier in time, and as suchUε(x, t) is not as suscep-
tible to growth of spatial asymmetries. Vice versa, assuming
initial data for an SPB with distinct modes, but withρ0 andτ0
chosen close to the parameter values for the coalesced SPB,
it is possible to observe the coalesced SPB due to the shifts
in the parameters.

Remarkably, the coalesced two-mode SPB appears to also
be more robust under certain types of perturbations of the
NLS equation (Calini and Schober, 2002). These two obser-
vations indicate that the coalesced case may be the most ro-
bust two-mode SPB in a laboratory setting.

4 Squared eigenfunctions and linear stability

To support the results of the numerical investigation, we out-
line the linear stability analysis of the one- and two-mode
SPB solutions carried out inCalini and Schober(2013). The
key observation is that, for a given solutionu(x, t) of the
NLS equation (e.g., one of the SPBs), its associated “squared
eigenfunctions” satisfy the linearized equation aboutu (i.e.,
Eq. (5) with ua replaced byu). In particular, for a one-mode

www.nat-hazards-earth-syst-sci.net/14/1431/2014/ Nat. Hazards Earth Syst. Sci., 14, 1431–1440, 2014
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Figure 8. Contours of|Uε(x, t)| for f4(x) (dashed line) and the
two-mode SPB (solid line) given by(a) |U (1,2)(x, t;ρ∗,τ0)| and
(b) |U (1,2)(x, t;ρ∗,τ∗)|.

SPB, ifφ andψ satisfy the Z–S system2 atU (j)(x, t), then
f (x, t)= φ1ψ1 + φ̄2ψ̄2 andg(x, t)= i(φ1ψ1 − φ̄2ψ̄2) solve
the linearized NLS equation. Thus, determining stability be-
comes simply a question of examining the behavior in time
of f (x, t) andg(x, t).

The Bäcklund-gauge transformation (Sattinger and
Zurkowski, 1987) allows one to transform both the “seed"
solutionu(x, t) and its eigenfunctions while preserving spa-
tial periodicity, as follows: letφ := α+φ

+
+α−φ

−, α± ∈ C,
where φ+ and φ− are linearly independent solutions of
the Z–S system at(u,λj ), with λj one of the complexλd

j .
Construct the following gauge matrix:

G(λ;λj ,φ)=

 λ− λj
|φ1|

2
−|φ2|

2

|φ1|
2+|φ2|

2 −λj
2φ1φ̄2

|φ1|
2+|φ2|

2

−λj
2φ̄1φ2

|φ1|
2+|φ2|

2 λ+ λj
|φ1|

2
−|φ2|

2

|φ1|
2+|φ2|

2

 .
Then,

φ(j)(x, t,λ;λj )= G(λ;λj ,φ)φ(x, t,λ) (16)

solves the Z–S system2 at (U (j)(x, t),λ), where

U (j)(x, t)= u+ 2(λj − λ̄j )
φ1φ̄2

|φ1|
2 + |φ2|

2
(17)
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Figure 9. Contours of|Uε(x, t)| for f5(x) (dashed line) and the
two-mode SPB (solid line) given by(a) |U (1,2)(x, t;ρ∗,τ0)| and
(b) |U (1,2)(x, t;ρ∗,τ∗)|.

0 5 10 15 20 25 30
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Time

A
(1

,2
)

f
1
f
2
f
3
f
4
f
5
f
6

Figure 10.Evolution ofA(1,2)
i

(t) for eachfi .

is the new NLS solution. We use the following notation: the
value of superscriptj indicates theλj used in Eq. ((17)),
while the number of superscripts is the number of iterations
of the Bäcklund-gauge formula.
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Figure 11. (a)Contours of|Uε(x, t)| in the coalesced case forf5(x)

(dashed line) and of the two-mode SPB|U (1,2)(x, t;ρ∗,τ∗)| (solid

line). (b) Evolution ofA(1,2)
i

(t) for eachfi .

When the seed solution is an unstable plane wave with
N unstable modes, for each complexλd

j , the new solution

U (j)(x, t) is the one-mode SPB associated with thej th UM.
One iteration of the Bäcklund-gauge transformation pro-
duces a two-mode SPB (e.g.,U (1,2)(x, t)) as well as its as-
sociated eigenfunctions. Since we are interested in the sta-
bility of the SPBs, we need the explicit time dependence of
the transformed eigenfunctions. A pair of linear independent
eigenfunctions of the plane wave is given by

φ±(x, t;λ)=
e∓iπ/4

2k(λ)

( √
a(k(λ)± λ)eia

2t

±
√
a(k(λ)∓ λ)e−ia2t

)
× e±i(k(λ)x+2λk(λ)t),

wherek(λ)=
√
λ2 + a2. If the plane wave has only one UM

associated with complexλd
1, the entries ofG(λ;λj ,φ) are

bounded in time, since

|φ1|
2
− |φ2|

2

|φ1|
2 + |φ2|

2
=

cospsin(2kx+β)

cosh(ρ− σ t)+ sinpcos(2kx+β)
, (18)

2φ1φ̄2

|φ1|
2 + |φ2|

2
=aeia

2t

×
[
cospsinh(ρ− σ t)+ i sinpcosh(ρ− σ t)

+ i cos(2kx+β)]

×
[
cosh(ρ− σ t)+ sinpcos(2kx+β)

]−1
,

whereµ1 = 2k(λ1)= 2π/L . It follows that the only possible
source of exponential-in-time growth off (x, t) andg(x, t)
comes from the eigenfunctions

χ±(x, t;λ1)= G(λ;λ1,φ)φ
±(x, t;λ)|λ=λ1.

Sinceχ± becomes linearly dependent atλ1, it suffices to ex-
amineχ+(x, t;λ1), which turns out to have no exponential
time dependence. In fact,

χ+(x, t;λ1)∼

(
φ̄2

|φ1|
2+|φ2|

2

−φ1
|φ1|

2+|φ2|
2

)
,

with, for example,

φ1

|φ1|
2 + |φ2|

2
∼

[
e
i
(
π
L
x+

β
2 +

p
2

)
e−(σ t−ρ)/2

+ i e
−i
(
π
L
x+

β
2 +

p
2

)
e(σ t−ρ)/2

]
×

[
cosh(ρ− σ t)+ sinpcos(

2π

L
x+β)

]−1

.

Likewise, one finds that the first component is also bounded
in time. Therefore,f (x, t) andg(x, t), the solutions of the
linearized NLS equation, are bounded in time; in other
words, Bäcklund-gauge transformation atλ1 saturates the as-
sociated UM of the plane wave. We conclude that, when the
underlying plane wave solution has only one unstable mode,
the one-mode SPB is neutrally stable.

Similarly, if the plane wave solution has two unstable
modes, then applying the Bäcklund transformation succes-
sively atλ1 andλ2 saturates the associated UMs. Therefore,
the two-mode SPBs over a plane wave with two UMs are
neutrally stable.

On the other hand, a one-mode SPB over the plane wave
with two unstable modes is linearly unstable. In this case, the
eigenfunctionsχ±(x, t;λ) of U (1)(x, t;ρ), obtained by im-
plementing the Bäcklund-gauge formula atλ1, can be shown
to be linearly independent atλ= λ2 and to exhibit exponen-
tial growth in time. In particular, their first component is of
the form

χ±

1 (x, t;λ2)∼ exp

(
±
σ t

2

)
·B±(x, t),
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whereB±(x, t) are bounded andσ = −4iλ2k(λ2) is real. In
this casef (x, t) andg(x, t) grow exponentially in time; thus
U (1)(x, t;ρ) is linearly unstable. These results suggest that
only those SPBs for which all UMs are saturated are neutrally
stable.

5 Conclusions

In this article we present the results of extensive numerical
investigations of stability of spatially periodic NLS breathers
for a variety of random perturbations commonly encountered
in experimental settings. It is our hope that such results will
provide insight on how to generate reproducible rogue waves
in the laboratory. In fact, for a waveform to be reproducible, it
should in particular be robust with respect to small perturba-
tions of the initial condition. For the specific case of an SPB
over an unstable background withN unstable modes, we ob-
serve that only the maximal breathers are stable, in the sense
that a small initial perturbation will not grow exponentially in
time. This kind of stability should in practice ensure that ex-
perimental noise introduced when initializing the wave stays
controlled and that the given SPB (or rogue wave) is thus
physically realizable or reproducible. More precisely, ini-
tializing an experiment with eitherU(x,0)= U (1)(x,0;ρ)

or U(x,0)= U (1,2)(x,0;ρ,τ) (for an unstable background
with either one or two unstable modes, respectively), and al-
lowing for noise, the generated wave will remain close to an
element of the unperturbed family.

A particularly interesting outcome of the numerics is that,
among the maximal (and thus stable) two-mode SPBs, the
one whose spatial modes have coalesced appears to be the
most robust, and therefore it may be the most appropriate
candidate for laboratory experiments. Furthermore, in order
to facilitate post-processing of the data in a lab setting, our
results suggest that an a priori estimate of the shifts in pa-
rameters for a given SPB and a prescribed level of noise
should be useful in identifying the nearest SPB to the gen-
erated wave (i.e., the perturbed solution). Concretely, in ev-
ery numerical simulation initialized with an orderO(10−4)

random perturbation of an SPB, the following shifts in pa-
rameters were obtained: for one-mode neutrally stable SPBs,
the parameter shift ish= ρ∗

− ρ0 ≈O(10−2); and for two-
mode SPBs, the shifts in the parameters areh= ρ∗

− ρ0 ≈

O(10−2) andk = τ ∗
−τ0 ≈O(10−1). (These orders of mag-

nitude are consistent with computingh and k by equating
a Taylor expansion ofU (1)(x, t;ρ0 +h) with U (1)ε (x, t) and
U (1,2)(x, t;ρ0 +h,τ0 + k) with U (1,2)ε (x, t).) While we uti-
lized theH(1) norm as a measure of closeness, it may be
more feasible to compare the maximum amplitudes of the
physical and analytical solutions.
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