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Abstract: The gastrointestinal absorption of bisphosphonates is in general only about 1%. 
To address this problem mixtures of risedronate monosodium salt with twelve varied sugar 
alcohols, furanoses, pyranoses and eight gluco-, manno- and galactopyranoside derivatives 
as counterions were designed in an effort to prepare co-crystals/new entities with improved 
intestinal absorption. Crystalline forms were generated by means of kinetically and/or 
thermodynamically controlled crystallization processes. One hundred and fifty-two 
prepared samples were screened by means of FT-NIR and FT-Raman spectroscopy. No  
co-crystal was prepared, but noteworthy results were obtained. A new solid phase of 
risedronate monosodium salt generated in the presence of phenyl-β-D-galactopyranoside 
under thermodynamically controlled crystallization conditions was found and also 
characterized using solid state NMR spectroscopy, X-ray powder diffraction and 
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differential scanning calorimetry. This new polymorph was named as form P. Interactions 
between risedronate monosodium salt and both carbohydrates were confirmed by means of 
molecular dynamics simulation. In the present study the relationships between the 
chemical structures of the studied compounds required for crystalline form change  
are discussed. 

Keywords: risedronate; phenyl-β-D-galactopyranoside; polymorph P; FT-NIR; FT-Raman; 
CP/MAS NMR; XRPD; DSC 

 

1. Introduction 

Polymorphism of active pharmaceutical ingredients (APIs) is receiving increasing attention as an 
important physico-chemical parameter influencing bioavailability and stability of APIs and 
pharmaceuticals. Co-crystals of an API with common pharmaceutical excipients become very 
important as a tool to tune solubility and absorption. The application of co-crystal technologies has 
only recently been recognised as a way to enhance solubility, stability and the intellectual property (IP) 
position with respect to the development of active pharmaceutical ingredients. Unlike salt formation,  
co-crystallisation does not rely on ionisation of the API and the counterion to make a solid. Instead, 
both components utilise prominent intermolecular interactions, such as hydrogen bonding, to combine 
and yield a uniform crystalline material. Combining an API with a pharmaceutically acceptable agent 
in this guest/host manner has become an increasingly attractive route for developing pharmaceutical 
products. For example, co-crystallisation offers an alternative when salt screening is either 
unsuccessful or impossible (due to lack of ionisation sites) to improve the physical properties of a 
drug. Furthermore, exploring the co-crystallisation potential around an API increases the intellectual 
property protection over a particular drug product, thus reducing the risk of costly litigation and 
market erosion. A recent development in the field has not only shown co-crystallisation as an 
alternative to salt studies, but has also shown its combination with salts to yield co-crystals of salts [1]. 
Co-crystals of APIs with common pharmaceutical excipients are thus becoming very important [2,3]. 

Bisphosphonates (BPs) are the most widely used and the most effective bone resorption inhibitors 
currently available for treatment of Paget’s disease, tumour-associated bone disease and osteoporosis. 
All BPs have high affinity for bone mineral as a consequence of their P-C-P backbone structure, which 
allows chelation of calcium ions [4]. Following release from bone mineral during acidification by 
osteoclasts, BPs appear to be internalized specifically by osteoclasts, but not other bone cells [5]. The 
intracellular accumulation of BP leads to inhibition of osteoclast function due to changes in the 
cytoskeleton, loss of the ruffled border [5,6] and apoptosis [7-10]. The ability of BPs to inhibit bone 
resorption depends on the presence of two phosphonate groups in the P-C-P structure, which appears 
to be required for interaction with a molecular target in the osteoclast as well as for binding bone 
mineral [11-13]. 

Bisphosphonates such as the pyrophosphate analogues (see a general structure in Figure 1) are a 
group of drugs that are widely used in practice. There are several injectable bisphosphonates: 
etidronate (Didronel®), pamidronate (Aredia®) and zoledronate (Zometa®), which may be administered 
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every three months or yearly. Peroral bisphosphonates alendronate (Fosamax®) and risedronate 
(Actonel®, Risendros®) are taken daily, weekly or monthly, and ibandronate (Boniva®) is approved to 
be taken monthly. Risedronate has a chemically unique component as compared with other 
bisphosphonates, which is believed to reduce the likelihood of gastro-intestinal side effects. 
Risedronate is more potent in blocking the dissolution of bone than etidronate and alendronate. [14,15]. 
Oral bioavailability of these bisphosphonates is very low (their gastrointestinal absorption is about 
1%) due to their high hydrophilicity [16]. 

Figure 1. Structures of bisphosphonates used in practice. 
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In general, the following structural modifications are the best way to improve permeability:  
(i) replacement of ionisable groups by non-ionizable groups; (ii) increase of lipophilicity; (iii) isosteric 
replacement of polar groups; (iv) esterification of carboxylic acid; (v) reduction of hydrogen bonding 
and polarity; (vi) reduction of size; (vii) addition of a nonpolar side chain; (viii) preparation of 
prodrugs. Generally these strategies are based on a few fundamental concepts: reduction of 
ionizability, increase of lipophilicity, reduction of polarity or reduction of hydrogen bond donors or 
acceptors. Thus, it is important to assess permeability early and to build permeability improvement 
into the synthetic plan from the beginning. This could rescue a chemical series that has great potential 
and improve drug exposure in animal pharmacology and pharmacokinetic studies. Formulation is other 
strategy for improving permeability and bioavailability. For example, permeability enhancers, 
surfactants or pharmaceutical complexing agents can be used in the oral dosage form [17]. 

Due to the above mentioned facts, the aim of this investigation was to design various mixtures of a 
bisphosphonate and carbohydrates in an effort to prepare co-crystals/new entities of risedronate with 
higher bioavailability. In the present study various mixtures of risedronate and carbohydrates  
(as excipients) in different ratios and under various conditions were prepared. All the prepared 
mixtures (solid compounds) were characterized by means of the Fourier Transform Near-Infrared  
(FT-NIR) spectroscopy [18]. Potential new entities were also characterized by means of FT-Raman 
spectroscopy, solid-state NMR spectroscopy, X-Ray Powder Diffraction (XRPD) and Differential 
Scanning Calorimetry (DSC). The confirmed potential co-crystals would be investigated for their 
absorption by means of experiments using the Parallel Artificial Membrane Permeation Assay 
(PAMPA, http://www.bdbeurope.com) [17]. This is a follow-up paper to our previous works [19-22] 
dealing with preparation and characterization of new crystalline forms and/or potential co-crystals of 
APIs with excipients. 
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2. Results and Discussion 

2.1. Chemistry 

Semi-crystalline risedronate monosodium salt [sodium 1-hydroxy-1-phosphono-2-(pyridin-3-yl-
ethyl)phosphonate, RSN] was used as a starting material [23]. It is a white powder, freely soluble  
in water, and practically insoluble in organic solvents. Nine different polymorphic and  
pseudo-polymorphic forms of sodium risedronate identified as A, B, B1, BB, D, E, F, G and H were 
described [24-26]. The crystal structures of four different hydrates (monohydrate, dihydrate, 
hemipentahydrate and variable hydrate) and an anhydrate of sodium risedronate have been elucidated 
and discussed by Redman-Furey et al. [27] and Gossman et al. [28]. The sodium hemipentahydrate, 
which is the marketed form A, is the most stable of all these forms at ambient conditions (298 K, 50% 
room humidity) [24]. Recently three new phases were found and named J, K and M [29]. NIR spectra 
of polymorphs A, H and semi-crystalline risedronate mono-sodium salt are shown in Figure 2. 

Figure 2. NIR spectra of risedronate mono-sodium salt polymorph A, polymorph H and 
starting semi-crystalline risedronate monosodium salt. 
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Various sugar derivatives were evaluated as potential counterions: D-arabitol, D-sorbitol, D-manitol 
and myo-inositol (Figure 3 and Figure 4), D-ribofuranose, D-arabinofuranose, D-xylofuranose and  
D-lyxofuranose (Figure 3 and Figure 5), α-D-glucopyranose, α-D-mannopyranose, α-D-galactopyranose 
and β-D-allopyranose (Figure 3 and Figure 6) and methyl-α-D-glucopyranoside, 3-O-methyl-α-D-gluco-
pyranoside, octyl-β-D-glucopyranoside, phenyl-β-D-glucopyranoside, methyl-α-D-mannopyranoside, 
methyl-β-D-galactopyranoside, phenyl-β-D-galactopyranoside and 2-nyphthyl-β-D-galactopyranoside 
(Figure 3, Figure 7 and Figure 8). 
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Figure 3. Structure of starting sugar alcohols, furanoses, pyranoses as well as gluco-, 
manno- and galactopyranoside derivatives used as potential counterions. 
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The evaluated samples were prepared by means of dissolution of risedronate mono-sodium salt and 
carbohydrates and subsequent reverse obtaining of solid compounds that were primarily characterized 
using the FT-NIR spectroscopy (diffuse reflectance method, DRIFT). 

From all tested agents only phenyl-β-D-galactopyranoside (Ph-gal) yielded interesting products with 
RSN. Other tested carbohydrates yielded either risedronate form A (in most cases), form H (in the case 
of the samples with myo-inositol, D-lyxofuranose, phenyl-β-D-glucopyranoside and naphthyl-β-D-
galactopyranoside prepared by addition of MeOH and evaporation of liquid part at ambient 
temperature) or impure form B in the case of the sample with β-D-allopyranose (allose) precipitated by 
methanol, see Figure 9. 

Samples of RSN+Ph-gal in ratios 1:1 (1), 1:2 (2) and 1:3 (3) were prepared by mixing saturated 
aqueous solutions and subsequent evaporation of water at ambient temperature. The spectra are 
illustrated in Figure 10. All three samples 1-3 contained risedronate polymorph A (the most 
thermodynamically stable risedronate form), see characteristic bands ranged 5,400–4,800 cm−1. 

Samples of RSN+Ph-gal in ratios 1:2 (4) and 1:3 (5) precipitated by methanol and filtered yielded 
again risedronate polymorph A (Figure 11), see characteristic bands ranged 5,400–4,800 cm−1. The 
NIR spectra of samples 1-5 seem to be very similar, see Figure 10 and 11. 
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Figure 4. NIR spectra of discussed sugar alcohols. 

arabitol

 0.1

 0.2

 0.3

 0.4

A
bs

sorbitol

 0.2

 0.4

 0.6

A
bs

manitol

-0.0

 0.2

 0.4

A
bs

my oinositol

 0.2

 0.4

 0.6

A
bs

 5000   6000   7000   8000   9000   10000 
Wavenumbers (cm-1)  

Figure 5. NIR spectra of discussed furanoses. 
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Figure 6. NIR spectra of discussed pyranoses. 
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Figure 7. NIR spectra of D-glucopyranose derivatives. (methyl-α-D-glucopyranoside:  
Me-glu, 3-O-methyl-α-D-glucopyranoside: 3-O-Me-glu, octyl-β-D-glucopyranoside:  
Octyl-glu, phenyl-β-D-glucopyranoside: Ph-glu) 

Me-glu

 0.2

 0.4

 0.6

A
bs

3-O-Me-glu

-0.0

 0.1

 0.2

 0.3

A
bs

Oc tyl-glu

 0.2

 0.4

 0.6

A
bs

Ph-glu

 0.0

 0.1

 0.2

 0.3

 0.4

A
bs

 5000   6000   7000   8000   9000   10000 
Wavenumbers (cm-1)  

 

 



Molecules 2011, 16                            
 

 

3747

Figure 8. NIR spectra of D-manno- and D-galacopyranose derivatives. (methyl-α-D-
mannopyranoside: Me-man, methyl-β-D-galactopyranoside: Me-gal, phenyl-β-D-
galactopyranoside: Ph-gal, 2-naphthyl-β-D-galactopyranoside: Naph-gal) 
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Figure 9. XRPD patterns of allose, sample RSN+allose in ratio 1:2 and risedronate  
mono-sodium salt form B. 
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Figure 10. NIR spectra of semi-crystalline risedronate monosodium salt (RSN), forms A 
and H and phenyl-β-D-galactopyranoside (Ph-gal) and spectra of their mixtures in ratios 
1:1, 1:2 and 1:3 prepared by evaporation at ambient temperature (samples 1-3). 
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Figure 11. NIR spectra of semi-crystalline risedronate monosodium salt (RSN), forms A 
and H and phenyl-β-D-galactopyranoside (Ph-gal) and spectra of their mixtures in ratios 
1:2 and 1:3 prepared by methanol precipitation (samples 4, 5). 
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Figure 12 illustrates samples RSN+Ph-gal in ratios 1:2 (6) and 1:3 (7). The samples were generated 
by addition of MeOH and filtration of the obtained precipitate with following evaporation at ambient 
temperature. It is evident from this figure that sample 6 is absolutely different from all the above 
mentioned samples, the discussed risedronate sodium polymorphs and from sample 7. Sample 7 seems 
to be a mixture of polymorphs. These facts were also confirmed by FT-Raman spectrometry and solid 
state NMR spectroscopy (see below). A change in the spectra of samples 6 and 7 can be observed in 
the range 7,100–4,900 cm−1. It can be concluded that the presence of phenyl-β-D-galactopyranoside 
and slow evaporation, i.e., thermodynamically controlled crystallization process, with a small amount 
of methanol as anti-solvent provided risedronate in unknown forms. 

Figure 12. NIR spectra of semi-crystalline risedronate mono-sodium salt (RSN), forms A 
and H and phenyl-β-D-galactopyranoside (Ph-gal) and spectra of mixtures of RSN+Ph-gal 
in ratios 1:2 and 1:3 prepared by addition of MeOH and evaporation of liquid part at 
ambient temperature (samples 6, 7). 
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The spectrum of phenyl-β-D-galactopyranoside was subtracted from the spectra of samples 6 and 7, 
and the subtraction results are shown in Figure 13. On the basis of these subtracted spectra it can be 
concluded that the prepared sample 6 could be a new entity, because this subtracted result is different 
from the spectrum of the starting material, semi-crystalline risedronate monosodium salt and the stable 
risedronate forms A and H, i.e., the final product is not a simple mixture of risedronate monosodium 
salt with phenyl-β-D-galactopyranoside. 

Samples 6 and 7 were also characterized by means of the Raman spectroscopy (see Figure 14) and 
31P CP/MAS NMR spectroscopy (see Figure 15) for verification of the above mentioned hypothesis. 
Both methods confirmed the presence of a new entity in sample 6. 
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Figure 13. NIR spectra of semi-crystalline risedronate monosodium salt (RSN) and forms 
A and H and subtracted spectra of samples 6 and 7 (RSN+Ph-gal in ratios 1:2 and 1:3 
prepared by addition of MeOH and evaporation of liquid part at ambient temperature). 
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Figure 14. FT-Raman spectra of semi-crystalline risedronate monosodium salt (RSN), 
forms A and H, phenyl-β-D-galactopyranoside (Ph-gal) and samples 6 and 7. 
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Raman spectroscopy is more advantageous than middle IR spectroscopy due to lower wavenumbers 
observed – up to about 150 cm−1. Bands occurring at such low wavenumbers correspond to skeleton 
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and lattice vibrations. Therefore non-covalent interactions are easier observable than in case of mid-IR 
(usually not lower than 400 cm−1). 

The 31P CP/MAS NMR method is much more sensitive and selective and this technique detected an 
interesting fact. Sample 7 (rate 1:3) seems to be a mixture of polymorph A and amorphous form of 
risedronate, while sample 6 (rate 1:2) seems to be absolutely different and it can be a potentially new 
crystalline form. This fact was also confirmed by means of the 13C CP/MAS NMR spectroscopy. 
Figure 16 presenting the respective results shows that sample 6 is not any mere simple mixture. 

Figure 15. Comparison of 31P CP/MAS NMR spectra of semi-crystalline risedronate 
monosodium salt (RSN), forms A and H and samples 6 and 7. 

 

Based on the above discussed results, sample 6 (RSN+Ph-gal in ratio 1:2) was additionally 
characterized by means of XRPD (see Figure 17) and also by DSC. An XRPD pattern corresponds to a 
crystalline sample. Visual comparison of the measured pattern with those published previously 
(namely forms A, B, BB, B1, C, D, E, F, G in WO 03/086355 [26] and forms J, K, M in  
Bruning et al. [29]) revealed that a new solid phase was formed. It is also supported by the absence of 
peaks of a co-crystal former (phenyl-β-D-galactopyranoside). 
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Figure 16. Comparison of 13C CP/MAS NMR spectra of semi-crystalline risedronate 
monosodium salt (RSN), forms A and H and phenyl-β-D-galactopyranoside (Ph-gal) and 
spectrum of potentially new crystalline form (sample 6). 

 

Figure 17. XRPD patterns of sample 6 (RSN+phenyl-D-galactopyranoside in ratio 1:2) and 
phenyl-β-D-galactopyranoside (Ph-gal). 
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The DSC result confirmed the fact that phenylgalactopyranoside is not detectable in sample 6.  
The DSC curve of phenyl-β-D-galactopyranoside showed an endotherm Tonset = 154.996 °C and 
Tpeak = 155.897 °C. The DSC curve of the starting semi-crystalline risedronate monosodium salt 
showed an endotherm Tonset = 185.817 °C and Tpeak = 236.968 °C. In the DSC curve of sample 6 the 
following endotherms can be observed: Tonset1 = 84.560 °C and Tpeak1 = 86.181 °C; Tonset2 = 115.535 °C 
and Tpeak2 = 121.260 °C; Tonset3 = 144.944 °C and Tpeak3 = 149.444 °C. 

All products of risedronate and β-D-allose in ratios 1:1, 1:2 and 1:3 generated by slow evaporation 
of water or water-MeOH mixture at ambient temperature contained the risedronate polymorphs A or 
H, thermodynamically stable risedronate forms. Based on this fact it can be concluded that the addition 
of MeOH as an anti-solvent is crucial for generation of a different entity. Rapid change of solubility 
equilibrium and fast precipitation (kinetically controlled crystallization process) of risedronate under 
the presence of β-D-allopyranose in excessive quantity caused generation of different form B, while 
slow evaporation, i.e., thermodynamically controlled crystallization, led to preparation of stable 
polymorphs. β-D-Allose modifies the environment from which risedronate is crystallized, but it is not 
detectable in the final crystalline form (probably it is not present). 

Different interactions of risedronate monosodium salt with β-D-allopyranose are probably caused by 
the opposite orientation of hydroxyl moiety in C(3) in position 4 of the tetrahydropyran ring in 
comparison with α-D-gluco-, α-D-manno- and α-D-galactopyranose. The β-position of the hydroxyl 
moiety in C(1) of β-D-allopyranose possesses also a cis-orientation with respect to the pyran oxygen in 
position 1 of the tetrahydropyran ring. As bonds influencing generating crystalline forms are formed 
by non-binding interactions (e.g., by H-bonds, ionic bonds, van der Waals forces (dispersion 
attractions, dipole-dipole, dipole-induced dipole interactions) and hydrophobic interactions), the steric 
arrangement of hydroxyl moieties on pyranose skeletons seems to be important for co-crystal generation. 

Sugar alcohols did not provide any different forms or co-crystals with risedronate. The polyols used 
are acyclic compounds, or probably important heterocyclic oxygen is not present in the ring. In the 
case of myo-inositol, where only the different risedronate polymorph H was detected, cis-oriented 
hydroxyl moieties are in C(1), C(2), C(3), and C(5) or conversaly oriented hydroxyl moieties are in C(4) and C(6). 

Contrary to the rest of the tested unsubstituted carbohydrates, only β-D-allopyranose shows  
a cis-orientation of hydroxyl moieties in C(1) and C(5/6) in positions 2 and 6 of the tetrahydropyran ring 
together with the pyran oxygen in position 1 and cis-orientation of hydroxyl moieties in C(2), C(3) and 
C(4) in positions 3, 4 and 5 of the tetrahydropyran ring, i.e., cis-orientation of three sequential hydroxyl 
moieties. These facts are probably essential for interactions between risedronate monosodium salt and 
β-D-allopyranose. For example, α-D-galactopyranose possesses 1, 4, 5, 6 cis-oriented pyran oxygen 
together with hydroxyl moieties, α-D-glucopyranose possesses 1, 4, 6 cis-oriented pyran oxygen 
together with hydroxyl moiety, and α-D-mannopyranose possesses 3, 4, 6 cis-oriented hydroxyl 
moieties together with pyran oxygen in position 1. 

According to the above mentioned hypothesis, interactions with risedronate should be predicted 
only for D-lyxofuranose from the furanose family. D-Lyxofuranose shows cis-orientation of hydroxyl 
moieties in C(2) and C(3) in positions 3 and 4 of the tetrahydrofuran ring together with furan oxygen in 
position 1. Nevertheless, this three-point interaction of D-lyxofuranose with risedronate is not 
sufficient for generation of a different form or co-crystal of risedronate. Only risedronate form H was 
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generated using D-lyxofuranose. Probably the conformation of the tetrahydrofuran ring different from 
the pyranose chair conformation is also important. 

Based on the screening of these unsubstituted carbohydrates and the above discussed hypothesis, it 
can be predicted that e.g., β-D-galactopyranose could be a successful candidate for modification of a 
crystalline form of risedronate.  

Different interactions of risedronate monosodium salt with phenyl-β-D-galactopyranoside compared 
to other evaluated O-substituted pyranosides are probably caused by the opposite orientation of 
hydroxyl moiety in C(4) in position 5 of the tetrahydropyran ring. β-Position of the hydroxyl moiety in 
C(1) of β-D-gluco- and β-D-galactopyranoside (as well as in β-D-allopyranose) possessing also  
cis-orientation to the pyran oxygen together with phenyl substitution of this hydroxyl moiety seem  
also to be important assumptions for interactions. For example, methyl-β-D-galactopyranoside did  
not show any interactions with risedronate, whereas phenyl-β-D-glucopyranoside and naphtyl-β-D-
galactopyranoside generated H polymorph of risedronate, and phenyl-β-D-galactopyranoside provided 
a new form. Aliphatic alkoxy moieties (methoxy, octyloxy) show absolutely different physico-
chemical properties, i.e., non-binding interactions compared with the aromatic phenyl nucleus. On the 
other hand, a naphthyl moiety, which is comparable with a phenyl ring, does not meet steric 
requirements to generate a new form or entity with risedronate. 

Contrary to the rest of the tested O-substituted pyranosides, phenyl-β-D-galactopyranoside shows 
cis-orientation of hydroxyl moieties in C(3), C(4) and C(5/6) in positions 4, 5 and 6 of the tetrahydropyran 
ring, i.e., three sequential hydroxyl moieties that possess trans-orientation with the phenoxy moiety in 
C(1) in position 2 of the tetrahydropyran ring together with pyran oxygen in position 1. The hydroxyl 
moiety in C(2) in position 3 of the tetrahydropyran ring possesses cis-orientation with the phenoxy 
moiety in C(1) in position 2 of the tetrahydropyran ring and pyran oxygen in position 1. This 
configuration of all the hydroxyl moieties is probably essential for interactions between risedronate 
mono-sodium salt and phenyl-β-D-galactopyranoside. 

Based on the screening of these carbohydrates, it was confirmed that the structure derived from  
β-D-galactopyranose could be a successful candidate for modification of a crystalline form of 
risedronate. It is also important to note that all the used carbohydrates can chelate the sodium cation in 
mono-sodium salt of risedronate, as discussed below. 

2.2. Molecular Modelling 

For better understanding of risedronate binding with β-D-allopyranose and phenyl-β-D-galacto-
pyranoside, a molecular modelling of both complexes was carried out. Molecular Dynamics (MD) 
simulates the behaviour of studied molecules in a given force field using Newton's equation of motion. 
In this way an ensemble of successive states is generated, and molecule properties are predicted by 
system calculations. So, in this particular case, the behaviour of the complexes and interaction between 
risedronate and β-D-allopyranose or risedronate and phenyl-β-D-galactopyranoside were described by 
molecular dynamic simulation. 

The structures illustrated in Figure 18 and Figure 19 can be understood as two possible extremes of 
a risedronate-allose (Figure 18) and risedronate-phenylgalactopyranoside (Figure 19) complex 
formation. The MD showed that the structure of risedronate allowed forming a complex  
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with β-D-allopyranose (Figure 18a) or phenyl-β-D-galactopyranoside (Figure 19a). Interactions 
between the sodium cation and β-D-allopyranose are illustrated in Figure 18b, and interactions between 
the sodium cation and phenyl-β-D-galactopyranoside, in Figure 19b. As both β-D-allose and phenyl-β-
D-galactopyranoside are not detectable in the prepared crystalline forms (all figures probably show 
only intermediates), both carbohydrates modify the environment from which risedronate crystallizes 
under kinetically (in case of allose) and thermodynamically (in case of phenylgalactopyranoside) 
controlled conditions of crystallization, when methanol is used as anti-solvent by binding allose or 
phenylgalactopyranoside hydroxyl moieties to risedronate phosphonate groups and/or chelation of the 
sodium cation. All illustrated complexes probably disintegrate, and risedronate mono-sodium salt 
crystallizes alone without counterions in a different crystalline form. 

Figure 18. Illustration of supposed interactions of risedronate mono-sodium salt with  
β-D-allopyranose: (a) suggested interaction between molecule of risedronate and allose;  
(b) suggested interaction between sodium cation and allose. 

 a           b

 

Figure 19. Illustration of supposed interactions of risedronate mono-sodium salt with  
phenyl-β-D-galactopyranoside: (a) suggested interaction between molecule of risedronate 
and phenyl-β-D-galactopyranoside; (b) suggested interaction between sodium cation and 
phenyl-β-D-galactopyranoside. 

 a     b
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2.3. In vitro Screening of Absorption (PAMPA experiments) 

Many low-molecular-weight drugs are absorbed through passive (or partially passive) transport. 
The Parallel Artificial Membrane Permeability Assays (PAMPA) have become a very useful and quite 
cheap tool for predicting in vivo drug permeability and are well-suited as a ranking tool for the 
assessment of compounds with passive transport mechanisms. An absorption study of binary mixtures 
or final formulations is also possible on PAMPA plates. PAMPA can be used as an alternative 
approach to assess in vitro transcellular passive permeation [17]. As sample 6 was not detected as 
potential co-crystals, penetration experiments were not performed. 

3. Experimental 

3.1. General 

All reagents, excipients and solvents of analytical grade were purchased from Sigma-Aldrich.  
Semi-crystalline risedronate monosodium salt used as a starting material is a product of Zentiva k.s. [22]. 
Near infrared spectra were recorded using a Smart Near-IR UpDrift™, Nicolet™ 6700 FT-IR 
Spectrometer (Thermo Scientific, USA). The spectra were obtained by accumulation of 128 scans with 
4 cm–1 resolution in the region of 12,800–4,000 cm−1. FT-Raman spectra were accumulated by  
an FT-Raman spectrometer RFS 100/S (Karlsruhe, Bruker, Germany). The spectra were obtained by 
accumulation of 256 scans with 4 cm−1 resolution in the back scattering geometry with the laser 
wavelength of 1064 nm. 31P CP/MAS NMR Spectra were recorded on a Bruker AVANCE 500 MHz 
spectrometer (Karlsruhe, Bruker, Germany). The 31P CP/MAS spectra were measured in 4 mm rotor at 
10 kHz with 2 ms contact time. 31P chemical shift of NH4H2PO4 (0 ppm) was used as an external 
reference for 31P chemical shift. The 13C CP/MAS spectra were measured in 4 mm rotor at 13 kHz with 
2 ms contact time. Carbon chemical shifts were referenced to the signal for TMS via a replacement 
sample of glycine (176 ppm for the carbonyl group signal). The XRPD patterns were obtained on a 
PANalytical X’PERT PRO MPD diffractometer with Cu Kα radiation (45 kV, 40 mA). The powder 
samples were measured on Silica plate holder. Data were recorded in the range 2-40° 2θ, with 0.01° 2θ 
step size and 50s/step scan speed. For the measurement of differential scanning calorimetry (DSC) 
curve an instrument DSC Pyris 1 (PerkinElmer, USA) was used. Maximum sample weight was 3.5 mg, 
and the standard Al sample pan was used. The record of the DSC curve was in the range of 50–300 °C 
at the rate of 10.0 °C/min under a nitrogen atmosphere. 

3.2. Generation of Sampless 

All the evaluated samples with ratios 1:1, 1:2 and 1:3 were prepared by means of dissolution of 
semi-crystalline risedronate monosodium salt and the excipient in water, subsequently mixed (1 h) and 
slowly evaporated at ambient temperature. To some samples with ratios 1:2 and 1:3 methanol (5 mL) 
was slowly added dropwise as an anti-solvent. The solid precipitated compound was filtered and dried 
at ambient temperature and the remaining liquid part was slowly evaporated at ambient temperature. 
All generated solid compounds were subsequently screened by means of FT-NIR and FT-Raman 
spectroscopy. If a sample differing from the starting materials was found, it was additionally 
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characterized using the above mentioned solid state analytical techniques. Particular preparations of 
the risedronate and phenyl-β-D-galactopyranoside samples in various ratios are described in Table 1 
and Table 2. 

Table 1. Risedronate (RSN) and phenyl-β-D-galactopyranoside (Ph-gal) in ratios 1:1, 1:2 
and 1:3 (samples 1-3). 

Comp. 1:1 1:2 1:3 
 Amount [g] Water [mL] Amount [g] Water [mL] Amount [g] Water [mL] 

RSN 0.6017 10 0.6010 10 0.6007 10 
Phe-gal 0.5054 2.0 1.0095 3.0 1.5136 3.5 

Table 2. Risedronate (RSN) and phenyl-β-D-galactopyranoside (Ph-gal) in ratios 1:2 and 
1:3 with addition of methanol (samples 4-7). 

Comp. 1:2 1:3 
 Amount [g] Water [mL] MeOH [mL] Amount [g] Water [mL] MeOH [mL] 

RSN 0.6015 10 5.0 0.6012 10 5.0 
Phe-gal 1.0104 3.0 5.0 1.5149 3.5 5.0 

3.3. Molecular Modelling 

Both of the starting structures, risedronate and β-D-allopyranose, were built by Avogadro  
software [30] and minimized at a MMFF94 force field level. The geometry of the systems was 
optimized by Gaussian 03 [31] using HF/6-31G*. The ESP (electrostatic potential) charges were 
calculated at the same level HF/6-31G*. The preparation of the system for molecular dynamics was 
performed using the Leap module of the Amber package, GAFF force field [32]. 

4. Conclusions 

Twelve sugar alcohols, furanoses, pyranoses and eight gluco-, manno- and galactopyranoside 
derivatives were tested as counterions for generation of co-crystals with risedronate monosodium salt. 
One hundred and fifty-two samples were prepared. All samples were screened by FT-NIR and  
FT-Raman spectroscopy. NIR spectra of the prepared samples were compared with the starting 
materials, the subtraction results of the samples and the starting carbohydrates were calculated, and a 
different form of risedronate only in the presence of phenyl-β-D-galactopyranoside was predicted and 
checked by spectroscopy and 31P CP/MAS NMR spectroscopy. Using 13C CP/MAS NMR 
spectroscopy, XRPD and DSC, it was clearly proved that it is not possible to detect phenyl-β-D-
galactopyranoside in the sample, and according to the XRPD pattern, a new solid phase was formed 
and named as polymorph P. In case of used β-D-allopyranose only the impure form B of risedronate 
was generated. No co-crystal was prepared, therefore PAMPA penetration experiments were not 
performed. It can be stated that allose and especially phenyl-β-D-galactopyranoside modifies the 
environment from which risedronate is crystallized under kinetically (in case of allose) or 
thermodynamically (in case of phenylgalactopyranoside) controlled conditions of crystallization. 
Phenyl-β-D-galactopyranoside caused new solid phase risedronate monosodium salt formation due to 
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unique orientation of hydroxyl moieties in the tetrahydropyran ring together with the phenoxy moiety 
in C(1) in positions 2 of the tetrahydropyran ring (similarly β-D-allopyranose induced formation of 
risedronate polymorph B due to specific orientation of hydroxyl moieties). The MD simulation 
revealed that the structure of risedronate allowed forming a complex with phenyl-β-D-
galactopyranoside and β-D-allopyranose. Furthermore the sodium cation can contribute to the binding 
of risedronate and β-D-allopyranose or phenyl-β-D-galactopyranoside. The sodium cation makes this 
complex energetically favourable and helps to retain the proper topology of the binding phosphates of 
risedronate and the proper orientation of the hydroxyl moieties of β-D-allopyranose or phenyl-β-D-
galactopyranoside. 
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