
Sensors 2003, 3, 101-109

sensors
ISSN 1424-8220
© 2003 by MDPI

http://www.mdpi.net/sensors

Vinegar Classification Based on Feature Extraction
and Selection From Tin Oxide Gas Sensor Array Data

Zou Xiaobo*, Zhao Jiewen, Wu Shouyi and Huang Xingyi

School of Biological and Environmental Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013,

China

* Author to whom correspondence should be addressed. E-mail: zou_xiaobo@ujs.edu.cn

Received: 3 March 2003 / Accepted: 24 March 2003 / Published: 28 March 2003

Abstract: Tin oxide gas sensor array based devices were often cited in publications dealing

with food products. However, during the process of using a tin oxide gas sensor array to

analysis and identify different gas, the most important and difficult was how to get useful

parameters from the sensors and how to optimize the parameters. Which can make the

sensor array can identify the gas rapidly and accuracy, and there was not a comfortable

method. For this reason we developed a device which satisfied the gas sensor array act with

the gas from vinegar. The parameters of the sensor act with gas were picked up after getting

the whole acting process data. In order to assure whether the feature parameter was

optimum or not, in this paper a new method called “distinguish index”(DI) has been

proposed. Thus we can assure the feature parameter was useful in the later pattern

recognition process. Principal component analysis (PCA) and artificial neural network

(ANN) were used to combine the optimum feature parameters. Good separation among the

gases with different vinegar is obtained using principal component analysis. The recognition

probability of the ANN is 98 %. The new method can also be applied to other pattern

recognition problems.

Keywords: Gas sensor array; Feature extraction; Principal component analysis; Neural

network; Vinegar; Electronic nose

Introduction

Traditionally, human sensory panels (group of people with highly trained senses of smell), gas

chromatography (GC), and mass spectrometry (MS) have been used to analyze food odors. The
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disadvantages of human sensory panels include subjectivity, poor reproducibility (i.e., results fluctuate

depending on time of day, health of the panel members, prior odors analyzed, fatigue, etc.), time

consumption, and large labor expense. Also, human panels can not be used to assess hazardous odors,

work in continuous production, or remote operation. GC and GC/MS systems can require a significant

amount of human intervention to perform the analysis and then relate the analysis to something

useable[1]. The main motivation for tin oxide gas sensor array based devices is the development of a

qualitative, low-cost, real-time, and portable method to perform reliable, objective, and reproducible

measures of volatile compounds and odors. In the past these devices (electronic noses) have been

developed for the classification and recognition of a large variety of foods, such as juices[2], coffee[9]

meats [4,7,10], fishes[12], cheese[3], spirits[1],wines[5,6,8],and fruits[11].

In many applications for chemical sensors, information can be gained not only from a steady-state

value of the sensor signal, but also from the kinetics of the response. However, using steady-state

sensor value to classify different mixture gases results in losing many information of the sensor signal.

Few articles mention the advantage of the transient signal when classifying flavors [1�15]. And there

was not a comfortable method. Therefore, the purpose of this work is to show how to extract

parameters containing information from an array of sensors (feature extraction), a good working

method to determine which of the features are the most important (feature optimization). In this paper,

a gas sensor system designed to perform vinegar analysis is introduced, and its application aiming at

the classification of two different type vinegars named as  ‘Chinkang Vinegar’ and  ‘Sanxi Vinegar’,

which are the most saleable vinegars in China.

Experiments

The electronic nose (Fig.1) can identify and quantify chemical vapors. The system is composed of a

12 bit AD/DA converter, an air filter for suppressing humidity, a suction pump, and a personal

computer. The chemical sensor array employs an array of five tin-oxide gas sensors, a humidity sensor

and a temperature sensor to examine the environment. Although each sensor is designed for a specific

chemical, each responds to a wide variety of chemical vapors. Collectively, these sensors respond with

unique signatures (patterns) to different chemicals[17].

Figure 1. Schematic diagram of the electronic nose.
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The five tin-oxide sensors are commercially available Taguchi-type gas sensors obtained from

Figaro Co. Ltd. (Sensor 1, TGS 813; Sensor 2, TGS 880; Sensor 3, TGS 822; Sensor 4, TGS 825;

Sensor 5, TGS 812). These sensors are heated to a constant temperature, holding the sensor heator

voltage at 5V. The humidity sensor (Sensor 6: HS-01) and the temperature sensor (Sensor 7: Pt100) are

used to monitor the conditions of the experiment. The head space sample is injected in the 1000ml

thermostatically controlled measurement cell in a dynamic way. In the dynamic mode, the gas sample

is conveyed to the measurement cell by a carrier gas. This gas is the atmospheric air, thermostatically

controlled, filtered on active charcoal and dehydrated with silica gel. Its flow-rate is controlled at

500ml/nim, either for cleaning the measurement cell or for the dynamic injection. Exposure of a tin-

oxide sensor to vapor produces a change in its electrical resistance [16].

The system has been trained to identify the two different type vinegars named as  ‘Chinkang

Vinegar’ and  ‘Sanxi Vinegar’, which are the most saleable vinegars in China. In order to generate one

dynamic dead space, 10ml of liquid sample is drawn form one of the vinegars and injected into a

250ml thermostatically controlled cell; The headspace is generated over 10 min. Then the carrier gas

conveyed the gas sample to the measurement cell. During operation the sensor array "smells" the gas

from the dynamic head-spaces of one vinegar, the sensor signals are digitized and fed into computer,

and the whole signal is exploited, from the absorption beginning to the stationary phase of equilibrium

between reversible adsorption and desorption, the process lasts 150s. At last, we use the carrier gas

cleaning the measurement cell 8 min until the sensors is recovered. Each vinegar measurement was

repeated several times in order to obtain accurate and reliable data. Typical response curve for the gas

sensor array reaction, the curve is smoothed and the baseline is subtracted. Here we cite the experiment

of the sensors response to ‘Chinkang Vinegar’. ( Fig.2).
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Figure 2. Typical response curve for the gas sensor array reaction.

Feature Extraction and Selection

In order to utilize all information from a time-developing system, it is possible either to use all the

data points in the analysis, or to find some features (typically much fewer than the number of data

points) that makes it possible to represent all the information in the measurements. The features can be

picked manually[1], or by making an ordinary function approximation if the expected mathematical

behavior is known[15].If too many features are used for the classification, there is a risk that the model
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gets too complex, and the generalization capability of the model (i.e. the ability to correctly classify

new data) can then be very poor. It is therefore useful to reduce the number of features in the model by

determining which of the features contain most necessary information to distinguish between the

different classes. When this is made, the problem of finding a good model for the classification is

rather easy, and what model type (e.g. partial least squares or artificial neural network) to use is easy to

determine. In this paper we introduce known concepts from statistics and control theory, and show

their applicability to measurements with a gas sensor array in order to find a rather quick and easy way

to classify different common types of vinegar.

It is well known that each sensor responds to different chemical vapors at different rate and value.

Therefore, from each curve, 4 features are extracted (fig.3). They are the slope max (kmax), maximum

(max), average of the last 20 points (st) and the average of whole points (mean) of curve. Table1 show

the represent meaning of the four extracted features. Then 20 features were extracted from 5 sensors

curve. The measure of the goodness of the parameters was then used in follow performance criteria.
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Figure 3. Sensor TGS813 smoothed curve and the features extracted are shown on the curve.

Table 1. The represent of the 4 extracted features.

Extracted feature Represent meaning

Max slope (kmax) The respond rate of sensor to different vinegar gas

Maximum (max) The maximum respond value

Average of last 20 points (st) The stationary phase of equilibrium between

 reversible adsorption and desorption

Average of whole points (mean) Sensor respond value during the whole process

Performance Criteria

Formally, in classification processing repeatability and discriminant distance between classes are

used to quantify feature or sensor performance. However, in this paper, the methodology of out put

feature selection is based on calculate the distinguish index D.I. of each feature parameter. The D.I. of

a feature parameter, which will be used to distinguish two states, such as  ‘Chinkang Vinegar’ or

‘Sanxi Vinegar’, is derived in the following way.
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For distinguishing two states (state 1 and state 2), the failure distinction ability of feature parameter

can be evaluated by the “Distinction Rate (D.R.) P0” [16] defined in the following formula:

0 ( )         1,2.
iR ip f x dx i= =∫        (1)

Here, )(xfi  is the probability density function measured in the state i, Ri is decided by the

following formula:

1 21 2( ) ( )R Rf x dx f x dx=∫ ∫        (2)

For example, when )(xfi  is the standard density function, Ri (-∞⊥x0 x0⊥∞) can  be derived as

follows:
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Here µ 1and µ 2 are the mean values of the feature parameters calculated by the signals measured in

state 1 and state 2. σ1andσ2 are their standard deviations. x0 can be worked out as follows:
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Figure 4. An example of x0 and p0.

Fig. 4 shows p0 and x0. With the substitution z= x-μ1 /σ1 or z= x-μ2 /σ2 to fo r m ulae (3), (4), the

“Distinction Rate P0” can be obtained in following way:
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Here, D.I. is called “Distinction Index” and calculated by the following formula:
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It is obvious that the larger the value of D.I., the larger the value of “Distinction Rate, P0”, and

therefore, the better the feature parameter will be. So D.I. can be used as the performance criteria of

feature parameter selection.

Results and Discussion

The new method discussed here has been used to distinguish between ‘Chinkang Vinegar’ and

‘Sanxi Vinegar’. The D.I. and D.R.(P0) of each FP defined as sensor’s value are shown in Table2.

Table 2 shows that the D.I.’s are less than 1.6 and D.R’(P0’s) are less than 92%. Consequently each FP

is not good enough to distinguish between ‘Chinkang Vinegar (CV)’ and ‘Sanxi Vinegar (SV)’. The

sensitivity levels vary from one sensor to another, the feature is quite similar, whatever the sensor.

Table2 shows that the feature maximum points (max) shows the best and the max slope (Kmax) shows

the poorest for each sensor. We selected 10 optimum feature according to their D.I.: max1, max2,

max3, st1, st2, mean2, max4, max5, mean1 and st3. Fig.5 exhibits the results of principal component

analysis (PCA) for the two vinegars with these 10 features. PCA is a simple method to project data

from several FP to a three-dimensional space. The values of 86.66% of 1-axis (Fig.3 / x-axis), 5.65%

of 2-axis (Fig.3 / y-axis) and 1.39% of 3-axis (Fig.3 / z-axis) indicate contribution rate to pattern

separation. It shows that the pattern separation is not sharp.

Table 2. D.I. and D.R. of 20 feature parameters.

TGS813 TGS880
Feature

parameter
Max
1

St1 Mean
1

Kmax
1

Max2 St2 Mean
2

Kmax
2

D�I�
1.53
1

1.416 1.217 0.791 1.501 1.384 1.373 0.816

D�R� 91.8 88.5 85.0 75.1 91.5 88.1 87.5 77.3
TGS822 TGS825

Feature
parameter

Max
3

St3 Mean
3

Kmax
3

Max4 St4 Mean
4

Kmax
4

D�I�
1.42
4

1.158 0.976 0.074 1.352 0.930 0.859 0.002

D�R� 89.3 84.9 83.7 54.6 86.9 82.6 80.5 50.5

TGS812
Feature

parameter
Max
5

St5 Mean
5

Kmax
5

D�I�
1.32
1

1.110 0.622 0.005

D�R� 86.1 84.5 73.2 52.0
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The ten optimum features that were selected by the D.I. were also used in an artificial neural net

network.. But before the ten features were transmitted into the input layer, they need to be normalized.

Because the ten features were coming from the same example, we can use the method that can change

general normal distribution into standardized normal distribution [18,19,20]. Such as two different

feature distributions, we separately noted them as follows:

1 1 1( , )T N µ σ⊂            1 2 2( , )T N µ σ⊂        (8)
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Figure 5. Results of the PCA of the gas sensor array for 40 vinegar gas samples.

Then '
1T and '

2T both are stochastic variable with )1,0(N distribution. Then we can use formula (9) to

make unified normalization for the ten different features. Therefore, we got max1’, max2’, max3’, st1’,

st2’, mean2’, max4’, max5’, mean1’ and st3’ substitute for the ten optimum features transmitted into

the input layer. The structure and parameters of neural network have been described in Fig.6 and Table

3. Two different vinegars were used as the output layer. The network was trained using data so that the

desired outputs could be obtained. The connections between hidden and both input and output layers

were optimized after 15,000 times training for the two vinegar samples. Fig.6 illustrates both the ten

normalized optimum features and the ANN classification of the system for the two of test vinegars

presented to the system. The recognition probability of the neural network analysis, defined as the ratio

of the number of right answers to that of total trials was 98%.

Table 3. ANN training parameters.

Type: Backpropagation in batch mode

Architecture: 10-8-2 feedforward

Activation: Logistic

Learning Rate: 0.01

Momentum: 0.2

No. of Epochs: 15000
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As a comparison, a neural network was also trained using all the 20 features extracted from 5

sensors curve. The recognition probability, using the same validation method as for the network above,

was then 90%, which is significantly lower than for the network with only the parameters chosen by

the D.I. method. This is probably due to the fact that a network with many parameters requires a much

larger sample data set to be able to fit the network parameters without over-training.

max1’

max2’

max3’

st1’

st2’

mean2’

max4’
max5’

mean1’

st3’

CV

SV

Figure 6. Vinegar classification with ANN.

Conclusions

This stud presents a methodology of feature extraction and selection from the out puts of a tin oxide

gas multi-sensor array. Transient signals were acquired in dynamic experimental conditions. From

these curves, 20 features were extracted and sorted by D.I. 10 better features were selected in the later

pattern recognition process. Principal component analysis (PCA) and artificial neural network (ANN)

were used to combine the optimum feature parameters. Good separation among the gases with

different vinegar is obtained using principal component analysis. The recognition probability of the

ANN is 98%. The new method can also be applied to other pattern recognition problems.
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