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Abstract: Ten 1,4-disubstituted 1,2,3-triazoles were synthesized from one of 1-(azido-

methyl)benzene, 1-(azidomethyl)-4-fluorobenzene, 1-(azidomethyl)-4-chlorobenzene, 1-

(azidomethyl)-4-bromobenzene or 1-(azidomethyl)-4-iodobenzene, generated in situ from 

sodium azide and the corresponding benzyl halide, and dipropargyl uracil or dipropargyl 

thymine. Optimal experimental conditions were established for the conventional click 

chemistry. The corrosion inhibiting properties of some of these compounds, which were 

determined by means of an electrochemical technique, are also presented. 
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1. Introduction 

Corrosion problems have received considerable attention due to their detrimental effects on 

materials that contribute to substantial economic losses and environmental pollution. The use of 

organic inhibitors is one of the most practical and environmentally-friendly methods to protect metals 

and alloys against corrosion, particularly at acid pHs that certainly damage the steel industrial 

infrastructure, relevant to overall economic behaviour as one determinant factor of the GNP. A number 

of heterocyclic organic compounds having either a delocalized set of electrons or just an electron pair 

on nitrogen, oxygen or sulfur heteroatoms, through which they adsorb on metallic surfaces, can block 

the active sites to decrease the rate of corrosion of steel, for example. Pyrimidines have various 

pharmaceutical applications as analgesic, antipyretic, antihypertensive and anti-inflammatory drugs, in 

pesticides, herbicides, plant growth regulators, and as organic calcium channel modulators [1–4]. A perusal 

of the literature revealed that pyrimidine derivatives and the uracil and thymine nitrogen bases [5–16] 

are efficient inhibitors to protect steel in acidic solutions [15,17]. 1,2,3-Triazoles have been the subject 

of considerable research, mainly due to their usefulness in synthetic organic chemistry and also due to 

their variety of interesting biological activities, forming part of the scaffolds of antibacterial and 

antituberculosis agents [18,19], neuraminidase inhibitors [20], anticancer compounds [21–24], antiviral 

agents [25–27], analgesic compounds [28], fungicidal activity [29–31], protein tyrosine phosphatase 

inhibitors [32,33], and assorted biomolecules (nucleosides and nucleotides) [34,35]. On the other hand, 

1,2,3-triazoles have other applications, like in chemosensors [36] and organocatalysts [37]. Just as 

relevant to applications of 1,2,3-triazoles in the biological and pharmaceutical fields, these molecules 

belong to the heterocyclic compounds class, constituting an important category of organic inhibitors 

for corrosion protection of industrial alloys in different acidic solutions. Many substituted triazole 

compounds continue to be of scientific and engineering interest, and thus they have been studied in 

considerable detail as effective corrosion inhibitors for steel in acidic media [38–57]. In this context, 

we decided to explore the synthesis of some new 1,2,3-triazoleuracils and 1,2,3-triazolethymines and 

their anti-corrosion properties. 

2. Results and Discussion 

2.1. Synthesis  

The dipropargyl uracil 3 was prepared from uracil (1) and propargyl bromide in the presence of 

DBU by refluxing the mixture in acetonitrile for 18 h. The TLC (CH2Cl2/MeOH 95:5 v/v) for the crude 

reaction mixture showed the formation of 3 (major product) and N-1-propargyluracil (minor product).  

Scheme 1. Dialkylation of pyrimidine nucleobases 1–2 with propargyl bromide. 
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The desired product 3 was obtained in 79% yield before purification by column chromatography 

(Scheme 1). These same conditions were used for the preparation of 4, which was obtained in 70% 

yield from thymine (Scheme 1). The second step of the synthesis was the preparation of 1,2,3-triazole 

nucleobases 5–14 through a Huisgen cycloaddition reaction between azides and the terminal alkynes. 

Based on the Fokin and Van der Eychen methodology [58], it was decided to carry out a 

multicomponent Cu(I)-catalyzed click reaction for the preparation of the compounds [59–66]. Initially, 

the reaction was tested by mixing dipropargyl uracil 3, benzyl chloride and sodium azide in the 

presence of triethylamine and a catalytic amount of Cu(I) iodide [67–71], and stirring at room 

temperature for 36 h, whereby compound 5 was obtained in 44% yield (Table 1, entry 1). When the 

reaction was repeated using Cu(OAc)2•H2O as precatalyst [72–74], sodium ascorbate as reducing 

agent, and 1,10-phenanthroline•H2O as ligand [67,75] in EtOH-H2O at room temperature, compound 5 

was obtained in 74% yield (Table 1, entry 2). With these reaction conditions established, the remaining 

compounds 6–14 were prepared and obtained in good yields (Table 1, entries 3–11). 

Table 1. Multicomponent click reaction catalyzed by Cu(OAc)2•H2O. 
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Entry Compound R1 R2 X Yield a (%) 

  1 b 5 H H Cl 44 
2 5 H H Cl 74 
3 6 H F Cl 78 
4 7 H Cl Cl 71 
5 8 H Br Br 87 
6 9 H I Br 84 
7 10 CH3 H Cl 64 
8 11 CH3 F Cl 87 
9 12 CH3 Cl Cl 74 
10 13 CH3 Br Br 73 
11 14 CH3 I Br 86 

a Isolated yields after purification; b The reaction was carried out employing 0.53 mmol of 3, Cu(I) iodide (5 mol%), 

and NEt3 (3 eq.), stirring at room temperature for 36 h. 

The structure of all compounds was confirmed by examination of their 1H- and 13C-NMR spectra, 

IR and mass spectra. The presence of the 1,4-disubstituted 1,2,3-triazole nucleobases was 

unequivocally established by means of the characteristic chemical shift values of the triazolyl 

hydrogens at 7.49–8.14 ppm and the chemical shift values for the carbon atoms of the triazole ring at 

123.4–124.5 ppm for CH and 142.3–143.7 ppm for the quaternary carbon (Table 2). These chemical shift 

values are completely consistent with those reported by Creary for 1,4-disubstituted 1,2,3-triazoles [76]. 
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Table 2. 1H- and 13C-NMR chemical shifts (ppm) of the triazole ring in compounds 5–14. 

 
Compound R1 R2 H-5 C-5 C-4 

5 H H 7.49/7.62 123.4/123.7 142.3/143.4 
6 H F 7.96/8.12 124.0/124.3 143.0/143.4 
7 H Cl 7.98/8.14 124.2/124.5 143.0/143.4 
8 H Br 7.98/8.13 124.2/124.5 143.0/143.4 
9 H I 7.95/8.12 124.1/124.5 143.0/143.4 

10 CH3 H 7.49/7.62 123.5/123.7 142.6/143.5 
11 CH3 F 7.96/8.12 124.0/124.3 143.1/143.5 
12 CH3 Cl 7.50/7.64 123.5/123.7 142.8/143.7 
13 CH3 Br 7.50/7.65 123.5/123.7 142.8/143.7 
14 CH3 I 7.95/8.11 124.1/124.4 143.1/143.5 

2.2. Corrosion Inhibition Efficiencies 

We evaluated, using electrochemical means, the corrosion inhibition efficiencies of the first four 

compounds considered in this work. Figure 1 depicts, as an example, the impedance measurements for 

both bare steel surfaces immersed in 1 M HCl (see Figure 1a), and the same system after adding  

25 ppm of compound 3 to the acid media (see Figure 1b). The results of the analysis of the impedance 

data are shown in Table 3. It is important to remark that all these compounds have corrosion inhibition 

efficiencies, IE, close to 90% at a rather low concentration value. 

Figure 1. Experimental impedance data, Nyquist plots, recorded in the systems a) API 5L 

X52/1 M HCl and b) API 5L X52/1 M HCl + 25 ppm of compound 3. 
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Table 3. Electrochemical parameters obtained from experimental impedance data, see 

Figure 1, including the corrosion inhibition efficiencies, IE. 

Compound Rs/Ω cm2 Rp/Ω cm2 C/µF IE/% 

Blank 2.4 30 310 - 
1 2.5 242 94 88 
2 7.1 304 97 90 
3 2.0 163 167 82 
4 1.8 233 100 87 

3. Experimental  

3.1. General 

Commercially available reagents and solvents were used as received. Flash column chromatography 

was performed on Kieselgel silica gel 60 (230–400 mesh). Melting points were determined on a 

Fisher-Johns apparatus and are uncorrected. IR spectra were recorded on a Bruker Alpha FT-IR/ATR 

spectrometer (Leipzig, Germany). NMR spectra (1H at 500 MHz, 13C at 125.76 MHz) were obtained 

with a JEOL ECA-500 (500 MHz) spectrometer (Tokyo, Japan). Chemical shifts (δ) are given in ppm 

downfield from Me4Si used as an internal reference; coupling constants are given in J (Hertz). High-

resolution mass spectra (HRMS) were recorded on a JEOL JMS-SX 102a and Agilent-MSD-TOF-

1069A spectrometers (Tokyo, Japan). The electrochemical impedance study was performed at room 

temperature using the IM6-ZAHNER electrochemical workstation (ZAHNER-Elektrik GmbH & 

Co.KG, Kronach, Germany), applying a sinusoidal ± 10 mV perturbation, within the frequency range 

of 100 KHz to 0.1 Hz to an electrochemical cell with three-electrode setup. A saturated Ag/AgCl mini-

electrode was used as reference, with a graphite bar as counter electrode, while the working electrode 

was a steel sample of API 5L X52 with an exposed area of approximately 1 cm2, which was prepared 

using standard metallographic procedures. The corrosion inhibition efficiency (IE) was evaluated by 

means of Electrochemical Impedance Spectroscopy (EIS) in the API 5L X52/1 M HCl system 

containing 0 (blank) or 25 ppm of the inhibitor molecule. Simulation of the impedance data recorded 

was conducted by means of electrical equivalent circuits [17] and the electrical parameters: Rs, 

solution resistance, Rtc, charge transfer resistance and C, the capacitance, were obtained in this way. 

3.2. Product Synthesis and Characterization 

1,3-Di(prop-2-ynyl)pyrimidine-2,4(1H,3H)-dione (3). In a 100 mL round-bottom flask containing a 

magnetic stirrer and equipped with a reflux condenser, uracil (1, 1.12 g, 10 mmol) was suspended in 

dry acetonitrile (15 mL), 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU, 3.3 mL, 3.35 g, 22 mmol) was 

added and the mixture stirred for a few minutes until a clear solution was obtained. Subsequently, 

propargyl bromide (80 wt. % in toluene, 2.22 mL, 2.97 g, 25 mmol) was added and the whole reaction 

mixture was heated at reflux for 18 h. The acetonitrile was evaporated under vacuum and CH2Cl2 (20 mL) 

was added. The organic phase was washed with aqueous NH4Cl solution (5%, 20 mL), dried with 

anhydrous Na2SO4 and concentrated under vacuum. The residue was purified by column 

chromatography (CH2Cl2) and recrystallized from CH2Cl2/hexane (1:1 v/v) to obtain 1.48 g (79% 
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yield) of 3 as a white solid, m.p. 102–104 °C [Lit. [77] m.p. 105 °C]. 1H-NMR (CDCl3): δ = 2.17 (t,  

J = 2.5 Hz, 1H, ≡C-H), 2.50 (t, J = 2.6 Hz, 1H, ≡C-H), 4.59 (d, J = 2.6 Hz, 2H, CH2), 4.68 (d, J = 2.5 Hz, 

2H, CH2), 5.83 (d, J = 8.0 Hz, 1H, CH), 7.46 (d, J = 8.0 Hz, 1H, NCH). 13C-NMR (CDCl3): δ = 30.5 

(CH2), 38.0 (CH2), 70.9 (≡C-H), 75.9 (C), 76.0 (≡C-H), 77.9 (C), 102.4 (CH), 140.8 (NCH), 150.5 

(N2C=O), 161.7 (NC=O). FT-IR/ATR νmax cm−1: 3,289, 3,259 (≡C-H), 3,117, 3,090, 3,006, 2,983, 

2,949, 2,124 (C≡C), 1,708 (C=C), 1,648 (NC=O, N2C=O), 1,540, 1,432. HRMS (ESI-TOF) calculated 

for C10H8N2O2+H+: 189.0658; Found: 189.0661. 

5-Methyl-1,3-di(prop-2-ynyl)pyrimidine-2,4-(1H,3H)-dione (4). The procedure described above was 

followed to obtain compound 4, employing thymine (2, 1.26 g, 10 mmol), DBU (3.3 mL, 22 mmol) 

and propargyl bromide (80 wt. % in toluene, 2.22 mL, 25 mmol). The crude product was purified by 

column chromatography (CH2Cl2) and recrystallized from CH2Cl2/hexane (1:1 v/v) to afford 1.41 g 

(70% yield) of 4 as a white solid, m.p. 96–100 °C [Lit. [77] m.p. 101 °C]. 1H-NMR (CDCl3): δ = 1.97 

(d, J = 1.3 Hz, 3H, CH3), 2.17 (t, J = 2.5 Hz, 1H, ≡C-H), 2.47 (t, J = 2.6 Hz, 1H, ≡C-H), 4.57 (d,  

J = 2.6 Hz, 2H, CH2), 4.72 (d, J = 2.5 Hz, 2H, CH2), 7.26 (q, J = 1.2 Hz, 1H, NCH). 13C-NMR 

(CDCl3): δ = 13.2 (CH3), 30.7 (CH2), 37.6 (CH2), 70.8 (≡C-H), 75.4 (≡C-H), 76.4 (C), 78.1 (C), 110.9 

(CCH3), 136.8 (NCH), 150.4 (N2C=O), 162.6 (NC=O). FT-IR/ATR νmax cm−1: 3,274, 3,260 (≡C-H), 

3,072, 2,985, 2,931, 2,128 (C≡C), 1,700 (C=C), 1,657 (NC=O), 1,628 (N2C=O), 1,463. HRMS (ESI-

TOF) calculated for C11H10N2O2+H+: 203.0815; Found: 203.0817. 

1,3-Bis((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)pyrimidine-2,4-(1H,3H)-dione (5). In a 50 mL round-

bottomed flask equipped with a magnetic stirrer, were added Cu(OAc)2•H2O (5 mg, 0.027 mmol, 5 mol%), 

1,10-phenanthroline monohydrate (5 mg, 0.027 mmol, 5 mol%) and sodium L-ascorbate (107 mg,  

0.54 mmol) in EtOH-H2O (6:4 v/v, 5 mL), followed by stirring for five minutes at room temperature. 

Subsequently, 3 (100 mg, 0.53 mmol), sodium azide (76 mg, 1.17 mmol) and benzyl chloride (0.13 mL, 

1.17 mmol) were added to the reaction mixture, which was stirred during 36 h at room temperature 

(the product starts to precipitate after a few hours). Afterwards, H2O (15 mL) was added to the reaction 

mixture to complete precipitation of the product, which was filtered off, washed with H2O, then with 

hexane and dried under vacuum. The crude product was purified by column chromatography 

(CH2Cl2/EtOH 98:2 v/v) and recrystallized from CH2Cl2/hexane (1:1 v/v) to afford 180 mg (74% yield) 

of 5 as a white solid, m.p. 171–172 °C. 1H-NMR (CDCl3): δ = 4.93 (s, 2H, CH2NC=O), 5.15 (s, 2H, 

CH2NC=O), 5.43 (s, 2H, NCH2Ph), 5.47 (s, 2H, NCH2Ph), 5.69 (d, J = 7.9 Hz, 1H, CH), 7.20–7.28 (m, 

4H, ArH), 7.32–7.42 (m, 6H, ArH), 7.44 (d, J = 8.0 Hz, 1H, NCH), 7.49 (s, 1H, ArH, triazole), 7.62 (s, 

1H, ArH, triazole). 13C-NMR (CDCl3): δ = 36.2 (CH2NC=O), 44.2 (CH2NC=O), 54.2 (NCH2Ph), 54.4 

(NCH2Ph), 102.0 (CH), 123.4 (ArCH, triazole), 123.7 (ArCH, triazole), 128.2 (2×ArCH), 128.4 

(2×ArCH), 128.8 (ArCH), 129.0 (ArCH), 129.1 (2×ArCH), 129.3 (2×ArCH), 134.2 (Cipso), 134.6 

(Cipso), 142.3 (Cipso, triazole), 142.6 (NCH), 143.4 (Cipso, triazole), 151.2 (N2C=O), 162.6 (NC=O).  

FT-IR/ATR νmax cm1: 3,133, 3,067, 3,012, 2,954, 1,700 (C=C), 1,650 (NC=O, N2C=O), 1,555, 1,496, 

1,452, 1,434. HRMS (ESI-TOF) calculated for C24H22N8O2+H+: 455.1938; Found: 455.1939. 

1,3-Bis((1-(4-fluorobenzyl)-1H-1,2,3-triazol-4-yl)methyl)pyrimidine-2,4(1H,3H)-dione (6). The 

procedure described above (using the same quantities of Cu(OAc)2•H2O, 1,10-phenanthroline 
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monohydrate, and sodium L-ascorbate) was followed to obtain the compound 6, employing 3 (100 mg, 

0.53 mmol), sodium azide (76 mg, 1.17 mmol) and 4-fluorobenzyl chloride (0.14 mL, 1.17 mmol). The 

crude product was purified by column chromatography (CH2Cl2/MeOH 90:10 v/v) and recrystallized 

from CH2Cl2/hexane (1:1 v/v) to afford 203 mg (78% yield) of 6 as a white solid, m.p. 186–188 °C. 
1H-NMR (DMSO-d6): δ = 4.95 (s, 2H, CH2NC=O), 4.97 (s, 2H, CH2NC=O), 5.48 (s, 2H, NCH2Ph), 

5.53 (s, 2H, NCH2Ph), 5.73 (d, J = 7.9 Hz, 1H, CH), 7.13–7.19 (m, 4H, ArH), 7.31–7.37 (m, 4H, 

ArH), 7.80 (d, J = 7.9 Hz, 1H, NCH), 7.96 (s, 1H, ArH, triazole), 8.12 (s, 1H, ArH, triazole). 13C-NMR 

(DMSO-d6): δ = 36.3 (CH2NC=O), 44.1 (CH2NC=O), 52.4 (NCH2Ph), 52.5 (NCH2Ph), 101.0 (CH), 

116.0 (d, J2
CF = 21.4 Hz, 2×ArCH), 116.2 (d, J2

CF = 21.4 Hz, 2×ArCH), 124.0 (ArCH, triazole), 124.3 

(ArCH, triazole), 130.8 (d, J3
CF = 8.8 Hz, 2×ArCH), 130.9 (d, J3

CF = 8.8 Hz, 2×ArCH), 132.6 (d,  

J4
CF = 2.5 Hz, Cipso), 132.8 (d, J4

CF = 2.5 Hz, Cipso), 143.0 (Cipso, triazole), 143.4 (Cipso, triazole), 144.9 

(NCH), 151.3 (N2C=O), 161.4 (d, JCF = 243.8 Hz, Cipso), 162.5 (NC=O), 163.4 (d, JCF = 243.8 Hz, 

Cipso). FT-IR/ATR νmax cm1: 3,126, 3,066, 3,012, 2,969, 1,705 (C=C), 1,657 (NC=O, N2C=O), 1,604, 

1,544, 1,508, 1,453. HRMS (ESI-TOF) calculated for C24H20F2N8O2+H+: 491.1750; Found: 491.1751. 

1,3-Bis((1-(4-chlorobenzyl)-1H-1,2,3-triazol-4-yl)methyl)pyrimidine-2,4(1H,3H)-dione (7). The 

procedure described above (using the same quantities of Cu(OAc)2•H2O, 1,10-phenanthroline 

monohydrate, and sodium L-ascorbate) was followed to obtain compound 7, employing 3 (100 mg, 

0.53 mmol), NaN3 (76 mg, 1.17 mmol) and 4-chlorobenzyl chloride (198 mg, 1.23 mmol). The crude 

product was purified by column chromatography (CH2Cl2/EtOH 97:3 v/v) and recrystallized from 

CH2Cl2/hexane (1:1 v/v) to afford 197 mg (71% yield) of the desired product 7 as a white solid, m.p. 

185–187 °C. 1H-NMR (DMSO-d6): δ = 4.96 (s, 2H, CH2NC=O), 4.98 (s, 2H, CH2NC=O), 5.51 (s, 2H, 

NCH2Ph), 5.55 (s, 2H, NCH2Ph), 5.73 (d, J = 7.9 Hz, 1H, CH), 7.28 (d, J = 8.4 Hz, 2H, ArH), 7.30 (d, 

J = 8.3 Hz, 2H, ArH), 7.39 (d, J = 8.4 Hz, 2H, ArH), 7.40 (d, J = 8.4 Hz, 2H, ArH), 7.80 (d, J = 7.9 Hz, 

1H, NCH), 7.98 (s, 1H, ArH, triazole), 8.14 (s, 1H, ArH, triazole). 13C-NMR (DMSO-d6): δ = 36.3 

(CH2NC=O), 44.1 (CH2NC=O), 52.4 (NCH2Ph), 52.6 (NCH2Ph), 101.0 (CH), 124.2 (ArCH, triazole), 

124.5 (ArCH, triazole), 129.27 (2×ArCH), 129.30 (2×ArCH), 130.46 (2×ArCH), 130.49 (2×ArCH), 

133.38 (Cipso), 133.44 (Cipso), 135.4 (Cipso), 135.5 (Cipso), 143.0 (Cipso, triazole), 143.4 (Cipso, triazole), 

144.9 (NCH), 151.3 (N2C=O), 162.6 (NC=O). FT-IR/ATR νmax cm1: 3,128, 3,064, 3,013, 2,970, 

2,951, 1,702 (C=C), 1,655 (NC=O, N2C=O), 1,542, 1,491, 1,453. HRMS (ESI-TOF) calculated for 

C24H20Cl2N8O2+H+: 523.1159; Found: 523.1158. 

1,3-Bis((1-(4-bromobenzyl)-1H-1,2,3-triazol-4-yl)methyl)pyrimidine-2,4(1H,3H)-dione (8). The 

procedure described above (using the same quantities of Cu(OAc)2•H2O, 1,10-phenanthroline 

monohydrate, sodium L-ascorbate) was followed to obtain compound 8, employing 3 (100 mg, 0.53 mmol), 

NaN3 (76 mg, 1.17 mmol) and 4-bromobenzyl bromide (292 mg, 1.17 mmol). The crude product was 

purified by column chromatography (CH2Cl2/EtOH 97:3 v/v) and recrystallized from CH2Cl2/hexane 

(1:1 v/v) to afford 288 mg (87% yield) of the desired product 8 as a white solid, m.p. 196–198 °C.  
1H-NMR (DMSO-d6): δ = 4.96 (s, 2H, CH2NC=O), 4.98 (s, 2H, CH2NC=O), 5.49 (s, 2H, NCH2Ph), 

5.53 (s, 2H, NCH2Ph), 5.73 (d, J = 7.9 Hz, 1H, CH), 7.21 (d, J = 8.4 Hz, 2H, ArH), 7.23 (d, J = 8.3 Hz, 

2H, ArH), 7.53 (d, J = 8.3 Hz, 2H, ArH), 7.54 (d, J = 8.4 Hz, 2H, ArH), 7.80 (d, J = 7.9 Hz, 1H, 

NCH), 7.98 (s, 1H, ArH, triazole), 8.13 (s, 1H, ArH, triazole). 13C-NMR (DMSO-d6): δ = 36.3 
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(CH2NC=O), 44.1 (CH2NC=O), 52.5 (NCH2Ph), 52.6 (NCH2Ph), 101.0 (CH), 121.9 (Cipso), 122.0 

(Cipso), 124.2 (ArCH, triazole), 124.5 (ArCH, triazole), 130.76 (2×ArCH), 130.79 (2×ArCH), 132.21 

(2×ArCH), 132.23 (2×ArCH), 135.8 (Cipso), 135.9 (Cipso), 143.0 (Cipso, triazole), 143.4 (Cipso, triazole), 

144.9 (NCH), 151.2 (N2C=O), 162.5 (NC=O). FT-IR/ATR νmax cm1: 3,141, 3,128, 3,073, 1,703 

(C=C), 1,656 (NC=O, N2C=O), 1,593, 1,543, 1,488, 1,455. HRMS (ESI-TOF) calculated for 

C24H20Br2N8O2+H+: 611.0148; Found: 611.0150. 

1,3-Bis((1-(4-iodobenzyl)-1H-1,2,3-triazol-4-yl)methyl)pyrimidine-2,4(1H,3H)-dione (9). The 

procedure described above (using the same quantities of Cu(OAc)2•H2O, 1,10-phenanthroline mono-

hydrate, sodium L-ascorbate) was followed to obtain compound 9, employing 3 (100 mg, 0.53 mmol), 

NaN3 (76 mg, 1.17 mmol) and 4-iodobenzyl bromide (365 mg, 1.23 mmol). The crude product was 

purified by column chromatography (CH2Cl2/MeOH 90:10 v/v) and recrystallized from CH2Cl2/hexane 

(1:1 v/v) to afford 315 mg (84% yield) of the desired product 9 as a white solid, m.p. 202–204 °C.  
1H-NMR (DMSO-d6): δ = 4.95 (s, 2H, CH2NC=O), 4.97 (s, 2H, CH2NC=O), 5.46 (s, 2H, NCH2Ph), 

5.50 (s, 2H, NCH2Ph), 5.73 (d, J = 7.9 Hz, 1H, CH), 7.06 (d, J = 8.2 Hz, 2H, ArH), 7.07 (d, J = 8.2 Hz, 

2H, ArH), 7.69 (d, J = 8.2 Hz, 2H, ArH), 7.70 (d, J = 8.3 Hz, 2H, ArH), 7.79 (d, J = 7.9 Hz, 1H, 

NCH), 7.95 (s, 1H, ArH, triazole), 8.12 (s, 1H, ArH, triazole). 13C-NMR (DMSO-d6): δ = 36.3 

(CH2NC=O), 44.1 (CH2NC=O), 52.6 (NCH2Ph), 52.8 (NCH2Ph), 95.02 (Cipso), 95.08 (Cipso), 101.0 

(CH), 124.1 (ArCH, triazole), 124.5 (ArCH, triazole), 130.81 (2×ArCH), 130.83 (2×ArCH), 136.2 

(Cipso), 136.3 (Cipso), 138.06 (2×ArCH), 138.08 (2×ArCH), 143.0 (Cipso, triazole), 143.4 (Cipso, 

triazole), 144.9 (NCH), 151.2 (N2C=O), 162.5 (NC=O). FT-IR/ATR νmax cm1: 3,127, 3,074, 3,011, 

2,944, 1,703 (C=C), 1,654 (NC=O, N2C=O), 1,588, 1,544, 1,484, 1,453. HRMS (ESI-TOF) calculated 

for C24H20I2N8O2+H+: 706.9871; Found: 706.9851.  

1,3-Bis((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)-5-methylpyrimidine-2,4(1H,3H)-dione (10). The 

procedure described above was followed to obtain compound 10, employing Cu(OAc)2•H2O (4.5 mg, 

0.025 mmol), 1,10-phenanthroline monohydrate (5 mg, 0.025 mmol), sodium L-ascorbate (99 mg,  

0.5 mmol), 4 (100 mg, 0.49 mmol), NaN3 (70 mg, 1.08 mmol) and benzyl chloride (0.12 mL, 1.08 mmol). 

The crude product was purified by column chromatography (CH2Cl2/EtOH 98:2 v/v) and recrystallized 

from CH2Cl2/hexane (1:1 v/v) to afford 148 mg (64% yield) of the desired product 10 as a white solid, 

m.p. 187–189 °C. 1H-NMR (CDCl3): δ = 1.86 (d, J = 1.0 Hz, 3H, CH3), 4.91 (s, 2H, CH2NC=O), 5.16 

(s, 2H, CH2NC=O), 5.43 (s, 2H, NCH2Ph), 5.46 (s, 2H, NCH2Ph), 7.21–7.28 (m, 4H, ArH), 7.29 (d,  

J = 1.1 Hz, 1H, NCH), 7.30–7.37 (m, 6H, ArH), 7.49 (s, 1H, ArH, triazole), 7.62 (s, 1H, ArH, 

triazole). 13C-NMR (CDCl3): δ = 13.0 (CH3), 36.4 (CH2NC=O), 43.9 (CH2NC=O), 54.2 (NCH2Ph), 

54.4 (NCH2Ph), 110.3 (CCH3), 123.5 (ArCH, triazole), 123.7 (ArCH, triazole), 128.2 (2×ArCH), 128.4 

(2×ArCH), 128.8 (ArCH), 129.0 (ArCH), 129.1 (2×ArCH), 129.3 (2×ArCH), 134.3 (Cipso), 134.7 (Cipso), 

138.7 (NCH), 142.6 (Cipso, triazole), 143.5 (Cipso, triazole), 151.2 (N2C=O), 163.5 (NC=O).  

FT-IR/ATR νmax cm1: 3,133, 3,115, 3,068, 2,956, 1,697 (C=C), 1,672 (NC=O), 1,646 (N2C=O), 1,550, 

1,496, 1,453, 1,432. HRMS (ESI-TOF) calculated for C25H24N8O2+H+: 469.2094; Found: 469.2096. 

1,3-Bis((1-(4-fluorobenzyl)-1H-1,2,3-triazol-4-yl)methyl)-5-methylpyrimidine-2,4(1H,3H)-dione (11). 

The procedure described above was followed to obtain compound 11, employing Cu(OAc)2•H2O (4.5 mg, 
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0.025 mmol), 1,10-phenanthroline monohydrate (5 mg, 0.025 mmol), sodium L-ascorbate (99 mg,  

0.5 mmol), 4 (100 mg, 0.49 mmol), NaN3 (70 mg, 1.08 mmol) and 4-fluorobenzyl chloride (0.13 mL, 

1.08 mmol). The crude product was purified by column chromatography (CH2Cl2/MeOH 90:10 v/v) 

and recrystallized from CH2Cl2/hexane (1:1 v/v) to afford 216 mg (87% yield) of the desired product 

11 as a white solid, m.p. 170–172 °C. 1H-NMR (DMSO-d6): δ = 1.77 (d, J = 1.0 Hz, 3H, CH3), 4.92  

(s, 2H, CH2NC=O), 4.99 (s, 2H, CH2NC=O), 5.49 (s, 2H, NCH2Ph), 5.53 (s, 2H, NCH2Ph), 7.13–7.19 

(m, 4H, ArH), 7.31–7.37 (m, 4H, ArH), 7.69 (d, J = 1.1 Hz, 1H, NCH), 7.96 (s, 1H, ArH, triazole), 

8.12 (s, 1H, ArH, triazole). 13C-NMR (DMSO-d6): δ = 13.1 (CH3), 36.6 (CH2NC=O), 44.0 

(CH2NC=O), 52.4 (NCH2Ph), 52.5 (NCH2Ph), 108.6 (CCH3), 116.0 (d, J2
CF = 21.4 Hz, 2×ArCH), 116.2 

(d, J2
CF = 21.4 Hz, 2×ArCH), 124.0 (ArCH, triazole), 124.3 (ArCH, triazole), 130.8 (d, J3

CF = 8.8 Hz, 

2×ArCH), 130.9 (d, J3
CF = 8.8 Hz, 2×ArCH), 132.7 (d, J4

CF = 2.5 Hz, Cipso), 132.8 (d, J4
CF = 2.5 Hz, 

Cipso), 140.7 (NCH), 143.1 (Cipso, triazole), 143.5 (Cipso, triazole), 151.1 (N2C=O), 161.4 (d, JCF = 245.1 Hz, 

Cipso), 163.3 (NC=O), 163.4 (d, JCF = 245.1 Hz, Cipso). FT-IR/ATR νmax cm1: 3,133, 3,073,  

3,012, 2,954, 1,694, 1,664, 1,641, 1,605, 1,510, 1,463, 1,435. HRMS (ESI-TOF) calculated for 

C25H22F2N8O2+H+: 505.1906; Found: 505.1916. 

1,3-Bis((1-(4-chlorobenzyl)-1H-1,2,3-triazol-4-yl)methyl)-5-methylpyrimidine-2,4-(1H,3H)-dione (12). 

The procedure described above was followed to obtain compound 12, employing 4.5 mg (0.025 mmol) 

of Cu(OAc)2•H2O, 1,10-phenanthroline monohydrate (5 mg, 0.025 mmol), sodium L-ascorbate (99 mg, 

0.5 mmol), 4 (100 mg, 0.49 mmol), NaN3, (70 mg, 1.08 mmol) and 4-chlorobenzyl chloride (184 mg, 

1.14 mmol). The crude product was purified by column chromatography (CH2Cl2/EtOH 97:3 v/v) and 

recrystallized from CH2Cl2/hexane (1:1 v/v) to afford 198 mg (74% yield) of the desired product 12 as 

a white solid, m.p. 154–156 °C. 1H-NMR (CDCl3): δ = 1.87 (d, J = 1.1 Hz, 3H, CH3), 4.91 (s, 2H, 

CH2NC=O), 5.17 (s, 2H, CH2NC=O), 5.41 (s, 2H, NCH2Ph), 5.44 (s, 2H, NCH2Ph), 7.17 (d, J = 8.5 Hz, 

2H, ArH), 7.21 (d, J = 8.5 Hz, 2H, ArH), 7.29 (d, J = 1.1 Hz, 1H, NCH), 7.30 (d, J = 8.5 Hz, 2H, 

ArH), 7.33 (d, J = 8.5 Hz, 2H, ArH), 7.50 (s, 1H, ArH, triazole), 7.64 (s, 1H, ArH, triazole). 13C-NMR 

(CDCl3): δ = 13.0 (CH3), 36.3 (CH2NC=O), 44.1 (CH2NC=O), 53.4 (NCH2Ph), 53.6 (NCH2Ph), 110.3 

(CCH3), 123.5 (ArCH, triazole), 123.7 (ArCH, triazole), 129.3 (2×ArCH), 129.5 (2×ArCH), 129.6 

(2×ArCH), 129.7 (2×ArCH), 132.8 (Cipso), 133.1 (Cipso), 134.8 (Cipso), 135.1 (Cipso), 138.7 (NCH), 

142.8 (Cipso, triazole), 143.7 (Cipso, triazole), 151.2 (N2C=O), 163.5 (NC=O). FT-IR/ATR νmax cm1: 

3,142, 3,121, 3,068, 3,012, 2,955, 2,925, 1,693 (C=C), 1,662 (NC=O), 1,637 (N2C=O), 1,491, 1,462, 

1,433. HRMS (ESI-TOF) calculated for C25H22Cl2N8O2+H+: 537.1315; Found: 537.1323. 

1,3-Bis((1-(4-bromobenzyl)-1H-1,2,3-triazol-4-yl)methyl)-5-methylpyrimidine-2,4-(1H,3H)-dione (13). 

The procedure described above was followed to obtain compound 13, employing Cu(OAc)2•H2O (4.5 mg, 

0.025 mmol), 1,10-phenanthroline monohydrate (5 mg, 0.025 mmol), sodium L-ascorbate (99 mg,  

0.5 mmol), 4 (100 mg, 0.49 mmol), NaN3 (70 mg, 1.08 mmol) and 4-bromobenzyl bromide (270 mg, 

1.08 mmol). The crude product was purified by column chromatography (CH2Cl2/EtOH 97:3 v/v) and 

recrystallized from CH2Cl2/hexane (1:1 v/v) to afford 225 mg (73% yield) of the desired product 13 as 

a white solid, m.p. 148–150 °C. 1H-NMR (CDCl3): δ = 1.87 (d, J = 1.2 Hz, 3H, CH3), 4.91 (s, 2H, 

CH2NC=O), 5.16 (s, 2H, CH2NC=O), 5.39 (s, 2H, NCH2Ph), 5.42 (s, 2H, NCH2Ph), 7.10 (d, J = 8.6 Hz, 

2H, ArH), 7.15 (d, J = 8.6 Hz, 2H, ArH), 7.29 (d, J = 1.2 Hz, 1H, NCH), 7.46 (d, J = 8.5 Hz, 2H, 
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ArH), 7.49 (d, J = 8.5 Hz, 2H, ArH), 7.50 (s, 1H, ArH, triazole), 7.65 (s, 1H, ArH, triazole). 13C-NMR 

(CDCl3): δ = 13.0 (CH3), 36.3 (CH2NC=O), 44.1 (CH2NC=O), 53.5 (NCH2Ph), 53.7 (NCH2Ph), 110.3 

(CCH3), 122.9 (Cipso), 123.2 (Cipso), 123.5 (ArCH, triazole), 123.7 (ArCH, triazole), 129.9 (2×ArCH), 

130.0 (2×ArCH), 132.3 (2×ArCH), 132.4 (2×ArCH), 133.3 (Cipso), 133.7 (Cipso), 138.7 (NCH), 142.8 

(Cipso, triazole), 143.7 (Cipso, triazole), 151.2 (N2C=O), 163.4 (NC=O). FT-IR/ATR νmax cm1: 3,139, 

3,101, 3,069, 2,998, 2,953, 2,922, 1,693 (C=C), 1,661 (NC=O), 1,637 (N2C=O), 1,488, 1,462, 1,432. 

HRMS (ESI-TOF) calculated for C25H22Br2N8O2+H+: 625.0305; Found: 625.0311. 

1,3-Bis((1-(4-iodobenzyl)-1H-1,2,3-triazol-4-yl)methyl)-5-methylpyrimidine-2,4-(1H,3H)-dione (14). 

The procedure described above was followed to obtain compound 14, employing Cu(OAc)2•H2O (4.5 mg, 

0.025 mmol), 1,10-phenanthroline monohydrate (5 mg (0.025 mmol), sodium L-ascorbate (99 mg,  

0.5 mmol), 4 (100 mg, 0.49 mmol), NaN3 (70 mg, 1.08 mmol) and 4-iodobenzyl bromide (339 mg, 

1.14 mmol). The crude product was purified by column chromatography (CH2Cl2/MeOH 90:10 v/v) 

and recrystallized from CH2Cl2/hexane (1:1 v/v) to afford 305 mg (86% yield) of the desired product 

14 as a white solid, m.p. 229–231 °C. 1H-NMR (DMSO-d6): δ = 1.77 (s, 3H, CH3), 4.92 (s, 2H, 

CH2NC=O), 4.99 (s, 2H, CH2NC=O), 5.46 (s, 2H, NCH2Ph), 5.50 (s, 2H, NCH2Ph), 7.06 (d, J = 7.7 Hz, 

2H, ArH), 7.07 (d, J = 7.7 Hz, 2H, ArH), 7.68–7.71 (m, 5H, NCH, ArH), 7.95 (s, 1H, ArH, triazole), 

8.11 (s, 1H, ArH, triazole). 13C-NMR (DMSO-d6): δ = 13.1 (CH3), 36.6 (CH2NC=O), 44.0 

(CH2NC=O), 52.6 (NCH2Ph), 52.8 (NCH2Ph), 95.01 (Cipso), 95.07 (Cipso), 108.6 (CCH3), 124.1(ArCH, 

triazole), 124.4 (ArCH, triazole), 130.81 (2×ArCH), 130.82 (2×ArCH), 136.2 (Cipso), 136.3 (Cipso), 

138.05 (2×ArCH), 138.08 (2×ArCH), 140.7 (NCH), 143.1 (Cipso, triazole), 143.5 (Cipso, triazole), 151.1 

(N2C=O), 163.3 (NC=O). FT-IR/ATR νmax cm1: 3,138, 3,119, 3,072, 2,957, 1,696, 1,640, 1,590, 

1,555, 1,464. HRMS (ESI-TOF) calculated for C25H22I2N8O2+H+: 721.0028; Found: 721.0019. 

4. Conclusions  

Ten new triazole derivatives of the pyrimidine bases uracil and thymine which are potential 

corrosion inhibitors of steel in acidic media were synthesized in good yields, employing a “click” 

multicomponent reaction.  
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