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Abstract. This paper presents an automated technique which
ingests orbital synthetic- aperture radar (SAR) imagery and
outputs surface water maps in near real time and on a global
scale. The service anticipates future open data dissemina-
tion of water extent information using the European Space
Agency’s Sentinel-1 data. The classification methods used
are innovative and practical and automatically calibrated to
local conditions per 1× 1◦ tile. For each tile, a probabil-
ity distribution function in the range between being covered
with water or being dry is established based on a long-term
SAR training dataset. These probability distributions are con-
ditional on the backscatter and the incidence angle. In clas-
sification mode, the probability of water coverage per pixel
of 1 km× 1 km is calculated with the input of the current
backscatter – incidence angle combination. The overlap be-
tween the probability distributions of a pixel being wet or dry
is used as a proxy for the quality of our classification. The
service has multiple uses, e.g. for water body dynamics in
times of drought or for urgent inundation extent determina-
tion during floods. The service generates data systematically:
it is not an on-demand service activated only for emergency
response, but instead is always up-to-date and available. We
validate its use in flood situations using Envisat ASAR in-
formation during the 2011 Thailand floods and the Pakistan
2010 floods and perform a first merge with a NASA near
real time water product based on MODIS optical satellite
imagery. This merge shows good agreement between these
independent satellite-based water products.

1 Introduction

The consequences of inland and coastal flooding can be dev-
astating and flooding needs to be detected and mapped as
accurately and quickly as possible, so that appropriate mea-
sures can be taken by governments or disaster management
agencies, pre-warnings may be issued, and downstream fore-
casts may be initiated (Carsell et al., 2004; Werner et al.,
2005). In situ networks of hydrological gauges are increas-
ingly being complemented by satellite imagery, which plays
an important role in the European Global Monitoring of En-
vironment and Security (GMES; Brachet, 2004) Emergency
Response Core Service. That service is meant to provide
“Rapid Mapping”: fast retrieval of information from satel-
lite imagery in order to map consequences related to hazards
and civil protection.

Fast retrieval and systematic retrieval are different terms.
Thus, a number of commercial and non-commercial agencies
can respond to flood disasters within a short amount of time
(fast retrieval). However, these agencies react on demand,
when an emergency response has already begun. Also, due to
the required manual expertise and labour requirements, such
response cannot be accomplished on a daily basis and, com-
monly, not within a processing time comparable to the cap-
ture time of satellite images (Hostache et al., 2012). “Sys-
tematic” water mapping can instead be developed; wherein
water extent information is routinely provided through the
consistent and automated generation of maps and associated
GIS (geographic information system) data. In surface water
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mapping, these maps can then be used within a GMES Ser-
vice for different purposes such as flood status, environmen-
tal monitoring of lake and reservoir extents or initializing hy-
drodynamic models. In this article we focus on the develop-
ment and use of such an automated system specifically for
use in flood response.

2 Relative advantages of SAR and optical imaging

The quality of C-band (e.g. Envisat) synthetic-aperture radar
(SAR) images is independent of the time of the day and
cloud cover. Water can often be visually distinguished due
to the low backscattering exhibited by relatively flat water
surfaces (with very low return to the side-looking sensor due
to specular reflection, as compared to brighter “backscatter”
from rougher surfaces). In contrast, and although not capa-
ble of observing through clouds, the MODIS optical sensor
on NASA’s Terra and Aqua satellites has some important ad-
vantages: MODIS visible and near IR (NIR) bands 1 and 2
provide global, twice daily coverage at 250 m spatial reso-
lution, and optical multispectral classification methods may
better distinguish land and water in some areas, including in
deserts where SAR backscatter may be very low and highly
variable (a.o. Ridley et al., 1996; Raghavswamy et al., 2008).
The utility of MODIS for flood-related work has been re-
peatedly demonstrated by maps disseminated from the Dart-
mouth Flood Observatory (http://floodobservatory.colorado.
edu/). These water area products are usefully compared to
numerical 2-D model output in the case of catastrophic storm
surges (Brakenridge et al., 2012). Improvements in wide-
swath SAR data processing can be undertaken to the same
end as the addition of all-weather, day-night imaging ca-
pability to hydraulic models provides a powerful approach
(Schumann et al., 2009).

The anticipated data output from ESA’s Sentinel-1 satel-
lites (Attema et al., 2009) will further open opportunities.
However, at present, semi-automatic classical water extrac-
tion techniques, such as thresholding or change detection ap-
plied on SAR images, may fail due to windy conditions, or
partially submerged vegetation, resulting in higher backscat-
tering values (Yesou et al., 2007; Prathumchai and Sama-
rakoon, 2005). According to Silander et al. (2006) misclassi-
fications may also be caused by the dependency of backscat-
tering on detection angle. Mason et al. (2010) mention the
problem of misclassification due to topography, vegetation
or canopy. O’Grady et al. (2011) conclude that misclassifi-
cation due to low backscatter values from non-flooded areas
can be reduced via image differencing approaches. Matgen et
al. (2011) and Giustarini et al. (2012) present a method rely-
ing on the calibration of a statistical distribution of “open wa-
ter” backscatter values inferred from SAR images of floods.
Given the many circumstances that can affect classification
results, it is difficult to derive a consistent classification tech-
nique that, ideally, also includes an error or accuracy assess-

ment, and for all incidence angles. Up to the present, for ex-
ample, some manual interpretation is still normally required
to translate SAR data into water maps. However, Hostache
et al. (2012) research an automated way of selecting the best
reference image for change detection.

3 Need for automated data processing and map
generation

Automation is required for any systematic mapping approach
to avoid subjective, time-consuming and expensive manual
interpretation for each flood. Consider the case of a single
ESA Sentinel-1 satellite: (1) the expected amount of data for
only Level 0 data across all acquisition regions will reach
320 TB per annum, amounting to 2.3 PB (petabytes) in the
course of 7.5 yr (Snoeij et al., 2009; Attema et al., 2008); and
(2) when processed further, Hornacek et al. (2012) expects
the matching Level 1 data volumes for baseline soil moisture
products to be 4 to 5 times larger than those for Level 0. In or-
der to cope with these amounts of data, the need for automa-
tion, and to fully utilise the very high information content of
these new sensor data streams, new techniques are needed.

4 Methodology

We present a prototype automated technique, embedded in
an online service, which classifies SAR imagery to probabil-
ity of water for each image pixel, in near real time (NRT)
and at global scale, which we call “Global Flood Observa-
tory” (GFO). The service used Envisat ASAR data while that
sensor was operating (it failed 8 April 2012, after 10 yr),
which was made available in Level 1 format by the Euro-
pean Space Agency (ESA) in near real time from a 15-day
rolling archive. The data were processed in near real time,
i.e. within 3 h (but usually faster), after the data had been put
on the ESA NRT Rolling Archive. Output results were sub-
sequently placed on an open data server in widely-used data
formats (i.e. NetCDF and Google Earth KML files).

Previous employment of relatively high resolution (nar-
row swath) SAR for flood classification includes Kasischke
et al. (1997) and McCandless and Jackson (2004). Three at-
tributes of SAR that are of importance for the present al-
gorithm are total backscatter, incidence angle, and signal
polarisation.

In this paper we have chosen the axes in some of our plots
as the amplitude of the backscatter measured by the Envisat-
ASAR sensor, being the direct output of the ESA NEST
(Next ESA SAR Toolbox) software used. Backscatter is
the portion of the outgoing satellite radar signal – usually
looking sideways in different incidence angles (as shown in
Fig. 1) – that the target redirects back towards the radar re-
ceiver antenna. If the target is horizontal, the backscatter is
a measure of the electromagnetic roughness of the first very
thin layer of the subsurface (a.o. Verhoest et al., 2008). As
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Fig. 1.The backscatter is the portion of the outgoing satellite radar signal, usually looking sideways (left panel) in different incidence angles
α (right panel) is highly depending on the backscatter characteristics of the subsurface (middle panel). Adapted from ESA (2012).

already widely known from ground penetrating radar and
other microwave techniques, the electromagnetic roughness,
creating a “subsurface microtopography” is depending on the
physical contrasts between the conductivity and permittivity
within this layer, causing a reflection coefficient: a measure
of the reflective strength of a radar target. Usually for the
solid Earth, this contrast is caused by differences in soil mois-
ture, whereas differences in soil type within this thin layer
play a minor role (Beres and Haeni, 1991).

Because the beamed radar is to the side of the sensor, an
incidence angle applies, and a lesser amount of total energy
returns to be recorded by the sensor. Such radar backscatter
is dependent on both the incidence angleα and on land cover,
land topography, and soil moisture. Incidence angles in op-
erating SAR sensors commonly range between between 15◦

(closest to the satellite) and 45◦ (furthest from the satellite),
as shown in Fig. 1.

Our algorithm calculates the probability of a pixel within
a satellite imaging swath being water, by matching its
backscatter signal to a probability distribution of the pixel
being dry, or being wet. These probability distributions are
conditioned on geographic location, incidence angle and po-
larisation of the signal and were established using a train-
ing dataset of three years of Envisat ASAR data (Global
Mode – GM, Wide Swath Mode – WSM, Image Mode –
IMM, and Alternating Polarisation Mode – APM). The prob-
ability distribution is distributed over each 1× 1◦ latitude–
longitude tiled dataset of the land covered globe. In general,
for most incidence angles, the backscatter-incidence angle
(σ − α) pair for land targets is different than that for water.
In practice, an empirical distribution function is estimated
per geographical area by building 2-D histograms ofσ − α

pairs for (a) pixels across the entire globe, which are per-
manently wet; and (b) pixels within a 1× 1◦ tile which are
dry under average climatological circumstances. An exam-
ple of a trained histogram is shown in Fig. 2, where for the
Netherlands thousands ofσ − α WSM pairs have been gath-
ered, gaussian-smoothed and plotted for land and water in

Fig. 2. Trained and gaussian smoothed 2-D histograms for land
and water (left panel) as derived from two years of ASAR WSM
backscatter data in the Netherlands (right panel).

a land 2-D histogram (bottom panel) and a water 2-D his-
togram (top panel). The figure shows that backscatter char-
acteristics for most incidence angles on land differ from the
ones over water. Theseσ − α pair 2-D histograms can be
used for classification.

5 Training method details

As noted, a training period is first used to derive a spatially
distributed probabilistic model for distinguishing land and
water. Then the application of this model in near real-time
is accomplished.

First it should be noted that the local incidence angleα as
used here does not take into account local topographic fea-
tures. Next, for building the histogram training set, an an-
cillary dataset is used, called the “water mask”. The water
mask is derived from the NASA SRTM Water Body map
(SWBD), documented by USGS (2005) to provide water and
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Fig. 3.Explanation of the ability to distinguish between water and land for different incidence angles.

land boundaries at the time of the Shuttle mission in February
2000. The SWBD divides the Earth in three types of classes:

– land (defined as−1);

– sea (defined as 1), which is not used in the training set;

– freshwater, consisting of large rivers and lakes (defined
as 2).

During the training, each combination of latitude, longitude,
α, polarisation and backscatter in the SAR file is added to two
possible training histograms, being either a land or a fresh-
water histogram. These histograms in turn consist of the fol-
lowing information:

– logarithm of the backscatterσ , in 28 discrete evenly dis-
tributed values between 1.55 and 4.25;

– α, in 29 discrete evenly distributed values in between
15.5 and 43.5◦;

– polarisation of the SAR signal, being either 0 = HH,
1 = HV, 2 = VH, 3 = VV;

– latitude information, in discrete evenly distributed val-
ues between−54.5 and 68.5◦;

– longitude information, in discrete evenly distributed
values between−179.5 and 179.5◦.

For each 1× 1◦ tile (in latitude–longitude), a histogram is
made for land for discrete values of the backscatter andα, for
each polarisation. For the freshwater dataset, one global his-
togram file is made. The resulting multidimensional trained
histograms consist of one or more hydrological years of SAR
data. The trained land and water histograms are used as the
reference set for classifying newly downloaded SAR data to
land or water pixels. The training sets are built as separate
entities for each SAR mode (e.g. ASAR-GM, ASAR-WSM,
ASAR-IMM, ASAR-APM). It should be mentioned that by
doing this, some “noise” is created, since flood events that
occur while building the training set are not filtered out.

6 Classification and quality assessment details

Because of the difference found in theσ − α pair 2-D his-
tograms (for dry land and water), a distinction can be made
between dry land and water. This is shown in a visual
example in Fig. 3.

The probability that a pixel in a SAR dataset is wet or dry
is established using Bayes’ law, also used by e.g. Frigessi and
Stande (1994) for satellite image classification. We consider
two empirical distribution functions for wet and dry pixels
as posterior distributions. The procedure to establish a single
probability of a pixel being wet is given below. All equations
are written as if continuous probability distributions are used
and are applicable on a limited area within the earth’s surface
for which the set of empirical distributions for land/water
apply.

Bayes’ law in its general form can be written as

P [M|D] =
P [D|M]P [M]

P [D]
, (1)

where P [M|D] represents the probability of a modelM

given demonstrative dataD. P [D|M] is the probability of
dataD occurring when modelM applies andP [M] is the
prior distribution. In our case, we may write this as

P [s = w|b] =
P [b|s = w]P [s = w]

P [b]
, (2)

wheres =w means that a pixel s is classified as water (w)
andb represents a certainσ − α pair.P [b|s =w] is the prob-
ability that a certainσ − α combination is experienced when
a pixel is classified as water. This probability distribution
is approximated empirically based on discrete slices of the
trained 2-D histograms per discrete incidence angle value as
described in Sects. 4 and 5.P [s =w] represents prior knowl-
edge that the pixel within the SAR scene is water. Since we
have no prior knowledge about this, and a pixel can only have
two states (land or water), this probability is set on 0.5. One
may argue that the prior knowledge of a pixel being wet or
dry should be equal to the amount of permanent water pixels
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within a limited area for which the training is established, di-
vided by the total number of pixels within the area. However,
during the recording of the analysed scene, we should not
skew the probability towards such a prior, since the goal of
this exercise is to distinguish wet events over pixels that are
in fact normally dry. For example, let us assume that we have
established a training probability distribution for a desert area
that has no permanent wet pixels. If we would now analyse a
scene during a catastrophic flash flood event, we would esti-
mate the probability of a pixel being wet zero everywhere.

Finally, P [b] is the normalisation constant. The same
equation can be established for the probability that a pixel
should be classified as dry land, being

P [s = d|b] =
P [b|s = d]P [s = d]

P [b]
, (3)

wheres =d means that a pixels is classified as dry/land.
Equations (2) and (3) both share the same denominator.

Furthermore, both priors have the same value being 0.5.
Therefore, the following applies:

P [s = w|b] = cP [b|s = w] (4)

and

P [s = d|b] = cP [b|s = d]. (5)

Furthermore, it is known that the sum of probabilities of a
pixel being dry land or water is equal to unity, given that dry
land or water are the only two states possible:

P [s = w|b] + P [s = d|b] = 1. (6)

Substituting Eq. (6) in Eqs. (4) and (5) gives

c =
1

P [b|s = w] + P [b|s = d]
. (7)

Substituting Eq. (7) in Eq. (4) gives

P [s = w|b] =
P [b|s = w]

P [b|s = w] + P [b|s = d]
. (8)

Equation (8) is used to determine the probability that a pixel
is water. Finally, knowing the empirical probability distribu-
tions for dry land and water, we define a quality indicatorq

at a certain latitude, longitude and polarisation, as defined in
Eq. (9):

q =

[(∫
P [b|s = w] ∪

∫
P [b|s = d]

)
− 1

]
(9)

in which the shared area of the normal distributions of the
land and water probabilitiesP(b|s =d) andP(b|s =w) are
a measure for the quality of the probability calculation. For
example, after reading in a NRT SAR pixel we already know
what the two probability distributions of the training set are
for the polarisation, angle and backscatter of the SAR data

in this pixel, knowing the 2-D histograms of the 1× 1◦ tile.
When these two probability distribitions overlap completely
– which could for example happen at some low and interme-
diate local incidence angles and in very dry areas like deserts
– q will be close to 0 %. If the two distributions are sepa-
rated completelyq will be 100 %. The indicator is depen-
dent on backscatter, incidence angle and geographical loca-
tion (latitude–longitude). It can be used as a post-processing
tool to filter out data that are already pre-defined as inferior
for calculating water probability by defining threshold values
(e.g. to only show probabilities where the quality indicator is
higher than 70 %).

7 Creating a topography mask

With proper correction for topography, SAR classification
methods can be improved in mountainous areas (e.g. van Zyl
et al., 1993). Resulting errors in this topography correction
will depend on the spatial resolution and quality of this to-
pography data. Instead of correcting for topography, how-
ever, and because our concern is surface water, we have cho-
sen to improve efficiency of the automated NRT calculation
methods by using a pre-processing filter or mask, prior to
classification to water probability. By using threshold values
of the height above nearest drainage (HAND) index (Rennó
et al., 2008), areas that are unlikely for long-term flooding
are filtered out. The HAND index is calculated by expressing
the relative height of a location to its drainage outlet in an as-
sociated channel. It has now been calculated globally based
on the HYDRO1k dataset, developed at the US Geological
Survey (2008) and based on GTOPO30, a global Digital El-
evation Model (DEM) at 30 arc second (approximately 1 km
at the equator) resolution (Gesch et al., 1999). An example
of the HAND index for Thailand is shown in Fig. 4.

8 Preliminary results

The downloaded SAR files are temporarily stored in digital
(NetCDF) grid files. The trained histograms for each 1× 1◦

(in latitude–longitude) tile have been generated for land, for
discrete values of the backscatter and the local incidence an-
gle, and for each polarisation. Figure 5 shows a global com-
pilation for ASAR GM data and three examples of discrete
histogram training sets: rainforest, desert, and freshwater.

Different areas in the world show different backscatter
characteristics. For example, deserts (as well as savannah
regions) have a low backscatter, rainforest generally has a
rather constant backscatter value, whereas ice (not shown in
the figure) exhibits a very high backscatter. This regional de-
pendency is the reason that the probability distributions of
land are stored per 1-by-1◦ latitude–longitude tile.

Water probabilities and quality indicators are calculated
and stored together in (daily) folders containing all calcu-
lated water probabilities, and designed to be made publicly

www.hydrol-earth-syst-sci.net/17/651/2013/ Hydrol. Earth Syst. Sci., 17, 651–663, 2013
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Fig. 4. The height above nearest drainage (HAND) Index for an
example location in Thailand.

available. The water probabilities are made available in grid-
ded (NetCDF) files of 10× 10◦ tiles. An example of an out-
put in a resolution of 0.009× 0.009 latitude–longitude de-
grees (equivalent to app. 1× 1 km on the equator) is shown
in Fig. 6, where areas are shown in which the water probabil-
ity is set to 0 and the quality indicator to 100, regardless of
satellite data availability. This is the result of the incorpora-
tion of the HAND filter, thereby automatically setting water
probabilities as a pre-processing step before classification.

9 Validation of the method in two case studies

9.1 Bangkok floods, Thailand, 2011

The region along the Chao Phraya River, north of Bangkok,
Thailand, suffered from severe flooding in the fall of 2011
caused by heavy rains in upstream areas of the catchment.
The flooded area is rather flat, but surrounded by hills.
The Envisat satellite covered the flood propagation over de
Chao Phraya on 13 October 2011 with the WSM mode. The
flooded area on the WSM image is covering the incidence
anglesα from 24 to 49◦. The resulting water probability map
generated by our algorithms is shown in a Google Earth flood

map in Fig. 7 (left panel). Examination of the flood map in
more detail leads to some interesting observations:

– The detected water extent on 13 October 2011 by our
algorithm, when the threshold is applied with a conser-
vative 70 % probability and 70 % quality and superim-
posed on the HAND image in Fig. 7 (right panel), shows
a strong visual correlation between flooded areas and
low HAND index values between 0 and 1.

– Elevated features, such as roads, embankments and rail-
ways can be distinguished in our image. These objects
constrain the flood water and are marked by a sharp
boundary between pixels detected as dry land, and pix-
els detected as water.

– Just East of Bangkok, there are many flooded rice pad-
dies. These paddies and their borders are visible in our
image as square like features.

When applying a conservative low-pass HAND-filter from 0
to 5, i.e. all values higher than 5 are filtered out, we continue
the validation by looking at the use of different threshold val-
ues of our probabilities and qualities for computing a binary
water extent map. Figure 8 shows the raw backscatter map
of 13 October image (top left panel). The city of Bangkok
is recognised in the white zone showing high-amplitude di-
rect reflections and double bounced backscatter and reflec-
tions. The validation map (Fig. 8, top right panel) has been
created using an algorithm that follows a similar procedure
to that of Ŕemi and Herv́e (2007) based on backscatter ra-
tios of the flooded and non-flooded image but was modified
to include an increased weighting on low backscatter areas
where the ratio was high but the backscatter low because of
surface variability. This was applied on a pixel by pixel basis
and areas in both the reference stack and the flooded image
were classified as permanent water. The GFO and validation
datasets are then compared using a simple algorithm to com-
pare a binarised version of the GFO dataset at a series of
thresholds for quality and probability (as required) based on a
pixel by pixel comparison to the validation result. The output
of this assessment is a series of statistics which identify how
much of the flood area is identified (%) on the GFO as well as
providing an agreement factor (0–1) to account for total area
in agreement of the result (flooded and non flooded area).
The ideal output would be a flood area identified at 100 %
and an agreement factor of 1. The results of our GFO prob-
abilities thresholds are applied at 60 % (Fig. 8, middle left
panel) and 75 % (Fig. 8, middle right panel). The areas with
high quality indicator values are indicated in red (Fig. 8, bot-
tom left panel: 50 % and bottom right panel: 60 %). Table 1
shows the proportion of the flood identified with the vali-
dation map and the proportion of the flooded area in agree-
ment between the GFO and the validation map. Although ar-
eas have been flooded on the eastern side of Bangkok, the
lowerq values indicate that the GFO results are less reliable
in that area.

Hydrol. Earth Syst. Sci., 17, 651–663, 2013 www.hydrol-earth-syst-sci.net/17/651/2013/
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Figure 5. Different histograms as shown on a global backscatter map. Different areas in the 3 

world show different backscatter characteristics. In this figure, the backscatter characteristics 4 

for rain forest (left), desert (middle) and freshwater (right) are shown. 5 
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Fig. 5.Different histograms as shown on a global backscatter map. Different areas in the world show different backscatter characteristics. In
this figure, the backscatter characteristics for rain forest (left panel), desert (middle panel) and freshwater (right panel) are shown.
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Figure 6. Output of a single day 10x10 lat-lon tile of water probability (left) and the 3 

corresponding quality indicator q. Places where the HAND index are higher than 15 are set to 4 

q=100, water probability=0 in a pre-processing phase. 5 

6 

Fig. 6. Output of a single day 10× 10 latitude–longitude tile of water probability (left panel) and the corresponding quality indicatorq.
Places where the HAND index are higher than 15 are set toq = 100, water probability = 0 in a pre-processing phase.

The Dartmouth flood observatory (DFO) heavily utilises
the two MODIS sensors aboard the NASA Terra and Aqua
satellites. Currently, a team at NASA is also assisting this
effort by performing the classification procedure in an auto-
mated way (their NRT Flood product, as described in Brak-
enridge et al., 2012). In this automated process, the NRT pro-
cessor collects and combines 4 images over each 10× 10◦

latitude–longitude subset, and over a forward running period
of 2 days (thus, two images/day worldwide; four images/two
days). The resulting GIS file shows surface water as bound-
ary polygons: each such “daily” file actually includes two
days of imagery, using a MODIS band 1/band 2 threshold
approach to detect water and requiring at least two detec-
tions per pixel in order to exclude cloud shadows (which have
similar spectral characteristics to water, but which change lo-
cation over time). Because the DFO approach suffers from
cloud cover and the present SAR-based approach provides
less frequent temporal coverage, it is desirable to merge the

two independent approaches for flood mapping. A first at-
tempt to merge the two products was accomplished using the
Envisat-ASAR WSM data collected on 13 October 2011, and
the DFO MODIS based data from 13 October 2011. Because
DFO provides a binary map (flooded, or non flooded) and
our GFO produces a probability map of flooding, along with
a quality indicator for this probability, it was decided to es-
tablish a binary map from the GFO product as well. This was
done by thresholding the GFO probabilities in the area north
of Bangkok, where probabilities andq values are high, to
high thresholds of 70 % probability and 70 %q to compare
the results to optical data. The results are shown in Fig. 9.
The image shows the visual correlation between the two in-
dependent mapping methods. In particular the far right im-
age shows that there are flood areas located by the SAR pro-
cessor, clearly following elevated features in the landscape
such as roads and railways, which were cloud-obscured in
the DFO product. It is hydrologically plausible that the flood
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Figure 7. Results of the GFO water probabilities over the Chao Phraya basin on 13 October 3 

2011 as shown in Google Earth (left). HAND values with flooded areas (light blue) are shown 4 

on the right. 5 
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Fig. 7.Results of the GFO water probabilities over the Chao Phraya basin on 13 October 2011 as shown in Google Earth (left panel). HAND
values with flooded areas (light blue) are shown on the right panel.

Table 1.Validation results Thailand floods, October 2011.

Threshold applied Proportion Proportion

Probability Quality of flood of area in
identified agreement

40 60 96.42 % 93 %
50 60 94.22 % 95 %
60 60 90.30 % 97 %
75 60 78.45 % 97 %
40 50 97.54 % 90 %
50 50 95.88 % 94 %
60 50 92.47 % 96 %
75 50 71.16 % 95 %

water is localised by these elevated features and we therefore
conclude also that our algorithm is useful to detect floods in
cloud-covered areas when used in tandem with MODIS.

9.2 Pakistan floods, 2010

The Pakistan floods of August 2010 affected large ar-
eas of Pakistan and India. The focus is put on the area
around Sukkur, Pakistan (27◦41′26.74′′ N, 68◦50′54.91′′ E),
also analysed in O’Grady et al. (2011) with MODIS and
SAR imagery. The area was badly affected following a levee
breach at the end of August 2010. The Envisat-ASAR GM
and the MODIS took images of the flood on 29 August 2010,
where the potential flooded area covers the incidence angles
α from 16 to 42◦ on the SAR image, and the MODIS cap-
tured an almost cloud free image. The MODIS binary flood

 29 
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Figure 8. Validation of ASAR WSM image of 13 October 2011, Thailand. Top left: 3 

backscatter values. Top right: flood classification with the validation algorithm. Middle left: 4 

GFO probabilities thresholded at 60%. Middle right: GFO probabilities thresholded at 75%. 5 

Bottom left: GFO qualities thresholded at 50%. Bottom right: GFO qualities thresholded at 6 

60%. 7 
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Fig. 8.Validation of ASAR WSM image of 13 October 2011, Thai-
land. Top left panel: backscatter values. Top right panel: flood clas-
sification with the validation algorithm. Middle left panel: GFO
probabilities thresholded at 60 %. Middle right panel: GFO prob-
abilities thresholded at 75 %. Bottom left panel: GFO qualities
thresholded at 50 %. Bottom right panel: GFO qualities thresholded
at 60 %.
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Figure 9. The Chao Phraya basin at different zoom levels. Left: largest extent. Towards right: 3 

zoomed extents. Flood classification from Envisat ASAR WSM is shown in blue and is 4 

underlying the flood classification based on MODIS in red. 5 
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Fig. 9.The Chao Phraya basin at different zoom levels. Left panel: largest extent. Towards right panels: zoomed extents. Flood classification
from Envisat ASAR WSM is shown in blue and is underlying the flood classification based on MODIS in red.

map, shown in Fig. 10 (top right panel), has been created us-
ing a probability algorithm with a subsequent thresholding.
The equation used was based on a comparison of the range
of elevation (h), NDVI and NIR band response as shown in
Eq. (10).

Flood probability= e−||NDVI ||2 e−||δh||
2
e−||NIR||

2
(10)

This algorithm can be modified for different areas based on
the most appropriate thresholds for that location. The GFO
flood probabilities that are most comparable to the validation
image are applied at a threshold as higher than 40 % (Fig. 10,
middle left panel) and higher than 50 % (Fig. 10, middle right
panel). Especially in the east, corresponding to lower inci-
dence angles, misclassifications can be seen, which are also
recognised by the lowq values. Indeed, looking at the qual-
ity values of higher than 50 (bottom left panel) and higher
than 60 (bottom right panel), almost the entire area would
have been removed if the threshold is applied above 50 %
quality. The GFO algorithm marks almost the entire flooded
area as too low quality for reliable flood classifications. Ap-
parently, the combination between the land type and the in-
cidence angles causes the large low quality zone in this area.

10 Discussion

10.1 Using a global freshwater dataset as a training
histogram

The use of a global freshwater histogram implies that local
features may be neglected. An improved algorithm could use

more local information, as some areas are more exposed to
wind than others, and some water bodies may contain more
sediment or salt. However, a separate training set per 1× 1◦

latitude–longitude tile is also not feasible, as not all of these
tiles include freshwater bodies large enough to build a sta-
tistically robust training set. Using higher resolution will re-
duce this problem, as also smaller rivers can be taken into ac-
count in the training histograms. Even then, 1× 1◦ latitude–
longitude areas in the world exist where there are no fresh-
water bodies. A recommendation after this research is that a
validation of the algorithms in different climatological zones
could improve the classification.

10.2 Misclassifications at low to intermediate incidence
angles

In the Pakistan case study, we have analysed that the GFO
algorithm marks almost the entire flooded area as too low a
quality for reliable flood classifications. Ignoring theq value,
we see that low to intermediate incidence anglesα (lower
than app. 23–24◦) are misclassified in this way. In the Thai-
land case study (Figs. 7 and 8) the flooded area is in be-
tweenα of 24 and 49◦. Figure 7 shows that for lowerα (from
30 to 24◦), the flood probability is still higher than 70 %, but
decreasing asα decreases. If we interpolate this finding on
the misclassification result of the Pakistan flood, it is recon-
firmed that the probability threshold is related to the inci-
dence angle. Depending on the 1× 1 latitude–longitude de-
gree tile on the Earth, flood classification is not reliable in an
area where our land and water training histograms overlap
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Figure 10. Top left: backscatter Envisat-ASAR GM image of Pakistan, Sukkur, on August 29, 3 

2010. Top right: MODIS validation map. Middle left and right: GFO probabilities thresholded 4 

for higher than 40% and 50%. Bottom left and right: GFO quality indicators higher than 60% 5 

and 50%. 6 
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Fig. 10.Top left: backscatter Envisat-ASAR GM image of Pakistan,
Sukkur, on 29 August 2010. Top right panel: MODIS validation
map. Middle left and right panels: GFO probabilities are applied
at a threshold for higher than 40 and 50 %. Bottom left and right
panels: GFO quality indicators higher than 60 and 50 %.

and we cannot distinguish between land and water. This typ-
ically occurs at low to intermediate incidence angles. How-
ever, as also shown in Fig. 3, for even lowerα values distinc-
tion could be possible again. Using theq value as defined
in our algorithm masks out the lower quality areas, some-
times leading to a result where it shows that the flood map
is not reliable at all. To consistently threshold the probability
and quality values into a final water/land classification, while
maintaining the automated character of the algorithm, more
research is recommended to look at the behaviour of theq

values in different climatological zones.
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Figure 11. Detail of artifact along the river in the HAND index 3 

4 Fig. 11.Detail of artifact along the river in the HAND index.

10.3 Improvements and present application of the
topographic (HAND) index

The process to reach a topologically sound and accurate
drainage network introduces occasional canyon-like artifacts
into any DEM, as a result of aberrant height differences adja-
cent to the drainage network. These artifacts are transferred
to the HAND grid during computation. An example of these
artifacts is shown in detail in Fig. 11 in the area indicated
by the ellipse. We processed the currently used HAND in-
dices from the HYDRO1k dataset, based on GTOPO30 data.
In the currently used HAND, we use the empirically based
data threshold of 15 (i.e. all data higher than 15 will not be
processed and set to 0 % water probability and 100 % qual-
ity indicator). This is mainly done to be “on the safe side”:
to prevent flood-prone areas with artifacts to be wrongly
filtered out.

Renńo et al. (2008) state that when using original SRTM
data for the HAND grid computation, these artifacts asso-
ciated with the corrected DEM can be avoided. To filter
more efficiently an improved version is recommended, us-
ing the HAND-data based on the HydroSHEDS 30 arc sec
DEM (Lehner et al., 2006), in which the data are upgraded to
streams that are “burned” less deeply in the DEM.

Also in regard to topographic effects, the simplified ex-
planation shown in Fig. 12 (left panel) shows that terrain
slopes, when assuming a small swath width and thus ne-
glecting the ellipsoid of the geoid, cause most of the dif-
ference between incidence angle and local incidence angle.
Note that a wrongly assumed incidence angle causes a dif-
ferent backscatter returned to the satellite: theσ − α pair
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Fig. 12. Left panel: the difference between incidence angleα and local incidence angleθ is mainly caused by the terrain slopeβ. Right
panel: a slice of the 2-D histogram atα = 32.5◦ (location latitude–longitude = 27.5–87.5). Corrections for the slope will shift the position of
σ − α pairs.

shifts in our 2-D histograms. Figure 12 (right panel) shows
a slice of the 2-D histogram at a certain incidence angle for
a certain place on the globe. Correcting for this slope will
shift the position ofσ − α pairs and cause a noticeable shift
in the 2-D histograms. For the present algorithm, however,
this improvement is not deemed efficient, as we already fil-
ter out non-flood prone areas. Removing all HAND values
higher than 15 in fact means that the pixels we do use are
never higher than 15 m above the nearest drainage point. The
largest shift of incidence angle is thus expected directly near
the drainage point.

Looking again at Fig. 11, and assuming a GFO pixel size
of 1× 1 km, the shift in incidence angle is

α − θ = β = arctan
z

x
, (11)

whereβ is the terrain slope,α is the incidence angle,θ the
local incidence angle,z the elevation andx the length for
which the slope is calculated. The shift is less than 1◦ when
z = 15 m andx = 1 km.

Lastly, in regard to topographic corrections: when work-
ing with 1× 1 km pixel scales, we can consider the errors in
global topography models with roughly the same resolution,
such as GTOPO30 or the newer 30-arc second global mosaic
of the Shuttle Radar Topography Mission (SRTM, USGS,
2004). According to Rodrı́guez at al. (2006), SRTM can give
average absolute height errors per continent up to almost
10 m and locally even higher. Harding et al. (1999) indicate
that GTOPO30 can reach even higher errors of 30 m. When
we consider this error inz in Eq. (11), it is clear that a global
topography model can also cause shifts in incidence angles
of the same order and higher than the maximum shift we ex-
pect in our 2-D histograms after applying the HAND-index
based filter. Furthermore, when taking into account computer
processing efficiency, it is practical to avoid the correction
to local incidence angle, at least until higher quality global
digital elevation models are available.

11 Conclusions

In preparation for the Sentinel-1 SAR satellite, and in or-
der to address the urgent need for fast flood water detec-
tion and mapping, systematic and automated processing al-
gorithms are needed. A binary product (e.g. water/not water
or flooded/not flooded) is not optimum, as SAR-based clas-
sification products include noise and therefore an uncertainty
indication is desirable. In this article an automated method to
calculate probability of water, including a quality indicator,
from Level 1 Envisat ASAR data is presented. The method
is a new contribution, primarily because, in our approach,
(a) data over a certain time span are stored in 2-D histogram
training sets in the incidence angle – backscatter domain and
(b) because the algorithms automatically calculate a water
probability and a quality indicator for each image pixel. Also,
the application of the HAND index as a pre-processing fil-
ter improves the final result. The results of our algorithm
are evaluated using two different algorithms, using ASAR
and MODIS data. A first merge with MODIS imagery in a
case study in Thailand shows strong resemblance between
the ASAR and MODIS derived results. At locations where
MODIS suffers from clouds, ASAR shows hydrologically
correct results, as observed through the clouds and as verified
by other knowledge. We recommend more research in merg-
ing SAR and MODIS derived water imagery, to combine the
strengths of both methods and improve the desired opera-
tional global surface water product. A second case study in
Pakistan shows the added value of the quality indicatorq to
remove unreliable classifications, unfortunately also remov-
ing most of the data in the flooded area. In order to com-
bine the product, one should be able to consistently apply a
threshold with the probability from our algorithm into a final
water/land classification. By looking at our two case studies,
we see that the threshold values to make binary flood maps
of our water probabilities varies, depending on the area in the
world and the incidence angle. More research on the depen-
dency of our algorithm to different climatological zones is
recommended.
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