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Abstract. Nonlinear transformation and runup of long waves
of finite amplitude in a basin of variable depth is analyzed in
the framework of 1-D nonlinear shallow-water theory. The
basin depth is slowly varied far offshore and joins a plane
beach near the shore. A small-amplitude linear sinusoidal
incident wave is assumed. The wave dynamics far offshore
can be described with the use of asymptotic methods based
on two parameters: bottom slope and wave amplitude. An
analytical solution allows the calculation of increasing wave
height, steepness and spectral amplitudes during wave prop-
agation from the initial wave characteristics and bottom pro-
file. Three special types of bottom profile (beach of con-
stant slope, and convex and concave beach profiles) are con-
sidered in detail within this approach. The wave runup on
a plane beach is described in the framework of the Carrier-
Greenspan approach with initial data, which come from wave
deformation in a basin of slowly varying depth. The depen-
dence of the maximum runup height and the condition of a
wave breaking are analyzed in relation to wave parameters in
deep water.

1 Introduction

Giant sea waves (storm waves, tsunamis) approaching the
coast often lead to the destruction of coastal infrastructure
and the loss of life. These waves have various origins:
strong storms and cyclones, underwater earthquakes, and
sub-aerial and sub-marine landslides. Recent such events
are the catastrophic tsunami in the Indian Ocean on 26 De-
cember 2004 (Lay et al., 2005; Glimsdal et al., 2006), hurri-
cane Katrina (28 August 2005) in the Atlantic Ocean (Kim et
al., 2008), and typhoon “Nargis” which occurred on 3 May
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2008 in the Indian Ocean. Volcanic eruptions, such as the
1883 Krakatau event (Simkin and Fiske, 1983; Choi et al.,
2003; Pelinovsky et al., 2005), or the collapse of the Cum-
bre Vieja volcano at La Palma, Canary Islands (Ward and
Day, 2001; Mader, 2001; Pararas-Carayannis, 2002), huge
landslides such as the Storegga slide which occurred in Nor-
way 8000 BP (Bugge et al., 1988), and asteroids entering the
sea (Hills and Gods, 1998; Ward and Asphaug, 2000; Kharif
and Pelinovsky, 2005) can also generate huge waves which
are recorded world-wide. Unusual and short-lived freak or
rogue waves occur on the coast and result in the loss of lives
every year (Kharif and Pelinovsky, 2003; Didenkulova et al.,
2006a; Kharif et al., 2009). High-speed ferries operating
in the coastal zone induce large waves, which can lead to
a beach erosion and seabed change (Soomere, 2007; Parnell
et al., 2008).

The prediction of the possible flooding of the adjacent land
and the properties of the water flow at the coast is an impor-
tant practical task for coastal engineering. That is why there
are numerous empirical formulas describing runup charac-
teristics in the engineering literature (see, for example, Le
Mehaute et al., 1968; Stockdon et al., 2006). It is difficult
to obtain solutions of the basic 3-D hydrodynamic equations
with arbitrary nonlinearity and dispersion. Thus, nonlinear
shallow water theory based on hydrodynamic Euler equa-
tions for long-wave approach in an ideal fluid is an appro-
priate model for examining long wave propagation and runup
on a beach. The runup problem within this theory has a rigor-
ous solution only for the case of a constant slope beach pro-
file (Carrier and Greenspan, 1958). An important outcome
of this solution is that linear theory can be used to describe
extreme characteristics of the wave runup on a beach (Syno-
lakis, 1991; Didenkulova et al., 2007).

Real bottom bathymetry is much more complicated than
a plane beach, and rigorous solutions of runup stage should
be matched with characteristics of an incident wave, which
pass long distances from the open ocean to the beach. In the
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parameters of the bottom profile is studied in section 3 where detailed analysis is carried out for 

four different types of the bottom profile: beach of constant depth, a plane beach, a convex and 

concave beach profiles. It is shown that a wave propagating along a concave beach profile 

becomes steeper and breaks sooner than for other profiles. The runup problem of these 

transformed waves on a plane beach is studied in section 4. All results are summarized in the 

conclusion.  
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Fig. 1. Amplification ratio for nonlinear shallow water theory above a beach of constant slope 

(dashed line) and linear shallow water theory for a basin of constant depth, joining a plane beach 

(solid line) 
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Fig. 1. Amplification ratio for nonlinear shallow water theory above a beach of constant slope (dashed line) and linear shallow water theory
for a basin of constant depth, joining a plane beach (solid line).
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Fig. 2. Sketch of bottom geometry.

simplified geometry of a flat bottom joining a plane beach (a
popular geometry of the wave tank in laboratory), this pro-
cess has been investigated in details (Pelinovsky, 2006; Mad-
sen and Furhman, 2008). In particular, an amplification ratio
(a ratio of maximum runup height to initial wave height) ver-
sus beach width for a sine wave within such geometry is pre-
sented in Fig. 1. The dashed line corresponds to the solution
of nonlinear shallow water theory above a beach of constant
slope (if the initial wave is linear) and solid line corresponds
to the solution of the linear shallow water theory for a basin
of constant depth, joining a plane beach. It follows from
Fig. 1 that the difference between these solutions, which is
determined by reflection from the joining point, is not signif-
icant and it allows us to conduct the analysis of the offshore
wave transformation process independently of the analysis of
wave runup on a coast.

This important conclusion has been used by Didenkulova
et al. (2007), who considered independently the nonlinear
wave evolution and runup in a basin of constant depth join-
ing a plane beach. Parameters of nonlinear deformed waves
above a flat bottom are used as input in the Carrier-Greenspan
solution of the runup problem. It has been shown that a
nonlinear deformed asymmetric wave penetrates inland over

larger distances and with greater velocities than a symmetric
one.

The same approach is applied in this study for a more re-
alistic bottom profile, when a slowly varying bottom joins a
plane beach near shore (Fig. 2). The paper is organized as
follows. Wave propagation and transformation in a basin of
slowly varying depth is studied in Sect. 2. An approximate
solution of the nonlinear shallow water theory, which allows
one describing wave characteristics, is obtained. An increase
in wave steepness during the nonlinear wave propagation in
a basin of a slowly varying bottom using initial wave char-
acteristics and parameters of the bottom profile is studied in
Sect. 3 where detailed analysis is carried out for four different
types of the bottom profile: beach of constant depth, a plane
beach, a convex and concave beach profiles. It is shown that
a wave propagating along a concave beach profile becomes
steeper and breaks sooner than for other profiles. The runup
problem of these transformed waves on a plane beach is stud-
ied in Sect. 4. All results are summarized in the conclusion.

2 Nonlinear wave transformation in a basin of slowly
varying depth

Basic equations describing nonlinear long wave dynamics in
shallow water are

∂η

∂t
+

∂

∂x
[(h + η) u] = 0

∂u

∂t
+ u

∂u

∂x
+ g

∂η

∂x
= 0, (1)

where η (x, t) is water displacement,u (x, t) is depth-
averaged velocity,h (x) is water depth,g is gravity accel-
eration,x is a coordinate, andt is time. It is convenient to
introduce the Riemann invariants (Stoker, 1957)

I± = u ± 2
(√

g(h + η) −
√

gh
)

. (2)
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From Eq. (2) it follows that

u =
I+ + I−

2
,

√
g(h + η) =

I+ − I−

4
+
√

gh. (3)

Using Eqs. (2) and (3), the system (1) can be re-written as

∂I±

∂t
+

(
3I±

4
+

I∓

4
±
√

gh

)
∂I±

∂x
=∓

(
3I±

4
+

I∓

4

)√
g

h

dh

dx
. (4)

Note that the system (4) is exact for basins of arbitrary vari-
able depth.

Let us consider the transformation of a nonlinear wave
(for example, “right-going” wave, which corresponds to the
function I+), in a basin of a slowly varying depth, when
dh/dx∼α�1. In this case the water depthh should be con-
sidered as a function ofX=αx and Eqs. (4) can be re-written
in the following form

∂I+

∂t
+

(
3I+

4
+

I−

4
+
√

gh

)
∂I+

∂x
=−α

(
3I+

4
+

I−

4

)√
g

h

dh

dX
, (5)

∂I−

∂t
+

(
3I−

4
+

I+

4
−
√

gh

)
∂I−

∂x
=α

(
3I−

4
+

I+

4

)√
g

h

dh

dX
. (6)

The “left-going” wave (I−) is generated due to reflection in a
basin with a smooth bathymetry and it is proportional to the
parameterα�1: I−=αR, whereR (x, t) in the lowest order
of the perturbation theory satisfies

∂R

∂t
+

(
I+

4
−
√

gh

)
∂R

∂x
=

I+

4

√
g

h

dh

dX
. (7)

Taking into account the smallness of the reflected waveI−

Eq. (5) transforms to

∂I+

∂t
+

(√
gh +

3I+

4
+

αR

4

)
∂I+

∂x
= −α

3I+

4

√
g

h

dh

dX
, (8)

with the same accuracy on the parameterα.
Equation (8) still contains the reflected wave and is not

independent from Eq. (7). The next approximation is the
weakness of the wave field:η=εη′, u=εu′, whereε�1 char-
acterizes the ratio of wave height to the water depth. Thus,
I+=εI ′

+. From Eq. (7) it follows thatR=εR′. Here we ana-
lyze the case when small parametersε andα are of the same
orderε∼α and use only one of them. In this case Eq. (8)
transforms to (primes are omitted)

∂I+

∂t
+

(√
gh +

3εI+

4

)
∂I+

∂x
= −ε

3I+

4

√
g

h

dh

dX
, (9)

with an accuracy of the first order of the perturbation theory.
Equation (9) contains only one functionI+ and describes the
transformed wave only. In the lowest order of the perturba-
tion method this functionI+ can be expressed through the
wave flow or water displacement

u = I+/2, εu = 2
(√

g(h + εη) −
√

gh
)

, (10)

and Eq. (9) can be re-written for the velocity

∂u

∂t
+

(√
gh +

3εu

2

)
∂u

∂x
+

3εu

4

√
g

h

dh

dX
= 0. (11)

After introducing new variables

t ′ = t − τ (x) , X = εx, τ (x) =

∫
dx

√
gh

, (12)

and a new velocity function

U (t, X) = u (t, X)
h3/4 (X)

h
3/4
0

, (13)

whereh0 is a depth at the pointx=0, Eq. (11) transforms into
(primes are omitted)(

h

h0

)7/4
∂U

∂X
+

3

2

U

gh0

∂U

∂t
= 0. (14)

If we again change the variable

y =

∫ (
h0

h

)7/4

dX, (15)

Eq. (14) can be re-written in its final form

∂U

∂y
+ V (U)

∂U

∂t
= 0, V (U) =

3

2

U

gh0
. (16)

The solution of Eq. (16) satisfying the initial condition
U (t, y=0) =U0 (t) is

U(t, y) = U0 [t − V (U)y] . (17)

The implicit Eq. (17) describes a simple or Riemann wave,
which is well known in nonlinear acoustics (Rudenko and
Soluyan, 1977; Engelbrecht et al., 1988; Gurbatov et al.,
1991). The same solution with different modifications has
been obtained for water waves (Burger, 1967; Varley et al.,
1971; Gurtin, 1975; Pelinovsky, 1982; Caputo and Stepa-
nyants, 2003). Equation (17) allows the description of the
deformation of weakly nonlinear wave “velocity” or wave of
water displacement (with the use of Eq. 10). The wave shape
varies with distance and its steepness increases due to the
difference in speed of the crest and trough.

The time derivative ofU(t, y) can be calculated in the ex-
plicit form

∂U

∂t
=

U ′

0

1 + yV ′

0
, (18)

where the prime means derivative with respect tot−V (U)y,
andV0 (t) is determined through the initial functionU0 (t)

using Eq. (16).
In the case of a wave of elevation approaching the coast

at the face slope of the incident wave∂u
/
∂t<0, the time

derivative of∂V0
/
∂t<0 is also negative, and the denomi-

nator in Eq. (18) decreases with distance. As a result, the
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The steepness of the wave increases with , which is proportional to the bottom slope 1Q β , and 

the wave above a steep bottom profile breaks earlier. The breaking distance  for a beach of 

constant slope can be found from Eq. (25) 
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(this function is displayed on Fig. 4). For 01 =Q  ( 0=β ), it coincides with the distance of the 

first breaking in a basin of constant depth, and decreases with an increase in bottom slope. 
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Fig. 3. Wave steepness plotted against distance, in a basin of con-
stant slope, for different values ofQ1 (solid lines) and a basin of
constant depth (dashed line).

time derivative∂U/∂t increases and tends to infinity with
distance, that allows us finding the distance of the first wave
breaking

YBr =
1

max(−dV0/dt)
=

2gh0

3ωa
. (19)

In the case of a wave of depression the distance of the first
wave breaking is described by the same Eq. (19). The differ-
ence is in the location of the steep slope of the wave shape
only.

As an example, here we analyze the nonlinear deformation
of the initial sine wave with “velocity” amplitudea and fre-
quencyω. Due to a weak nonlinearity, using Eq. (10), Eq.
(17) can be converted into the expression for water surface
displacement

η (t, x) =

√
h (x)

g
u (t, x) , (20)

and the final expression for the water displacement can be
expressed as

η (t, x) =

(
h0

h (x)

)1/4

η0

(
t−τ (x) +

3ηy (x)

2h0
√

gh0

(
h (x)

h0

)1/4
)

,

y (x) =

∫ (
h0

h (x)

)7/4

dx, (21)

whereη0 is an initial shape of water displacement.
Using Eqs. (21) the “face-slope” steepness of the wave can

be calculated explicitly

s = max(∂η/∂x) =

(
h0

h

)3/4
s0

1 − y/YBr

. (22)

Equations (17), (21) and (22) can be used for computing
wave characteristics in the process of wave propagation as
it approaches the coast.

3 Examples of wave deformation for various bottom
profiles

Let us consider several examples of the wave transformation
over a distanceL in a basin of variable depth, varied from an
initial depthh0 to a final depthh1 (h1<h0)

h (x) = h0 − (h0 − h1)
( x

L

)b

. (23)

Here the shape of bottom profile is characterized by powerb.
In the general case, the integral in Eq. (21) can be ex-

pressed through the Hypergeometric function2F1 (Grad-
shtein and Ryzhik, 1965)

y (x) = (24)

x

[
(3b−4)

(
1−

h0−h1
h0

(
x
L

)b)3/4
2F1

(
1
b
, 3

4, 1+
1
b
,

h0−h1
h0

(
x
L

)b)
+4

]
3b
(
1−

h0−h1
h0

(
x
L

)b)3/4

+const.

Here only some special cases, when Eq. (24) can be ex-
pressed through primitive functions, are analyzed.

For a basin of constant slopeb=1

y (x) =
4YBr

3Q1 (1 − Q1x/YBr)
3/4

−
4YBr

3Q1
, (25)

s(x) =
s0

(1 + 4/3Q1) (1 − Q1x/YBr)
3/4

− 4/3Q1
,

Q1 =
h0 − h1

h0

YBr

L
= β

YBr

h0
, (26)

whereβ is the bottom slope andYBr is the distance of the first
wave breaking in a basin of constant depthh0, see Eq. (19).
Figure 3 illustrates increase of the wave steepness with dis-
tance, for different bottom slopes (different values of param-
eterQ1).

The steepness of the wave increases withQ1, which is pro-
portional to the bottom slopeβ, and the wave above a steep
bottom profile breaks earlier. The breaking distanceX1

Br for
a beach of constant slope can be found from Eq. (25)

X1
Br

YBr

=
1

Q1

(
1 −

(
1 +

3

4
Q1

)−4/3
)

, (27)

(this function is displayed on Fig. 4). ForQ1=0 (β=0), it
coincides with the distance of the first breaking in a basin
of constant depth, and decreases with an increase in bottom
slope.

Nonlin. Processes Geophys., 16, 23–32, 2009 www.nonlin-processes-geophys.net/16/23/2009/



I. Didenkulova: Nonlinear long-wave runup in a basin of varying depth 27

The steepness of the wave increases with , which is proportional to the bottom slope 1Q β , and 

the wave above a steep bottom profile breaks earlier. The breaking distance  for a beach of 

constant slope can be found from Eq. (25) 
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Fig. 4. Breaking distance for the beach of constant slope.

For a convex beach profile,b=4/3 design formulas are

y (x) =
x(

1 − Q4/3

(
x

YBr

)4/3
)3/4

, (28)

s =
s0(

1 − Q4/3

(
x

YBr

)4/3
)3/4

−
x

YBr

,

Q4/3 =
h0 − h1

h0

(
YBr

L

)4/3

. (29)

After introducing parameterQ4/3 the functions (x) has a
similar behavior to the function in Fig. 3. Analogously, from
Eq. (28) we can find a breaking distanceX

4/3
Br for a convex

beach profile as a function of parameterQ4/3

X
4/3
Br

YBr

=
1(

1 + Q4/3
)3/4

; (30)

and the derived function looks similar to Fig. 4. The wave
steepness increases with an increase in parameterQ4/3 and
the wave breaks earlier than for a beach of constant depth.

In the case of a concave beach shape withb=1/2 design
formulas are

y (x) =

8YBr

(
4 − 3Q1/2

√
x

YBr

)
3Q2

1/2

(
1 − Q1/2

√
x

YBr

)3/4
−

32YBr

3Q2
1/2

, (31)

s=
s0(

1+
32

3Q2
1/2

)(
1−Q1/2

√
x

YBr

)3/4
−

8
3Q2

1/2

(
4−3Q1/2

√
x

YBr

) ,

Q1/2 =
h0 − h1

h0

√
YBr

L
. (32)

The behavior of function  is qualitatively the same as that shown in Fig. 3. The breaking 

distance  for a concave bottom profile as a function of parameter  can not be 

presented in an explicit form 
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Fig. 5. Breaking distance plotted against depth variationδ; plane
beach (solid line), convex (dotted) and concave (dashed) bottom
profiles;YBr/L=1.

The behavior of functions (x) is qualitatively the same as
that shown in Fig. 3. The breaking distanceX

1/2
Br for a con-

cave bottom profile as a function of parameterQ1/2 cannot
be presented in an explicit form

(
3Q2

1/2+32
)1−Q1/2

√
X

1/2
Br

YBr

3/4

=8

4−3Q1/2

√
X

1/2
Br

YBr

 , (33)

but nevertheless the behavior of this function is similar to
analogous functions for a plane beach and a convex bottom
profile.

An influence of the bottom shape on the breaking distance
is demonstrated on Fig. 5 for a fixed ratioYBr/L=1. A new
parameterδ= (h1−h0) /h0 characterizes the depth variations
with distanceL. An increase in the powerb of the bottom
profile leads to an increase in its breaking distance and it
is therefore slower developing nonlinear deformation. Thus
the wave breaks sooner, propagating along a concave bottom
profile, than for a plane or convex beach. This can be ex-
plained in terms of an average depth of the transition zone,
which is less for a concave profile.

Variations of the breaking distance for different beach pro-
files with the ratioL/YBr are shown on Fig. 6 for a depth
change of 10% (δ=0.1). The figure also demonstrates that
the wave breaks sooner in a basin of a concave bottom pro-
file than on a plane or convex beach.

Due to the nonlinearity, the wave can break in the transi-
tion zone also (Fig. 2). Mathematically, the condition of the
first wave breaking (wave steepness tends to the infinity) cor-
responds to the zero value of the denominator in Eqs. (26),
(29) and (32). It allows one finding the relation between ini-
tial wave amplitudeA0/h0 and the characteristics of the bot-
tom shape in a transition zone of variable depth; see Fig. 7.
The wave breaks if its amplitude is big or the length of the
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Fig. 6. Breaking distance and the ratioL/YBr for a plane beach
(solid line), and convex (dotted) and concave (dashed) bottom pro-
files; δ=0.1.

transition zone is large. That is why, with the same condi-
tions, a wave on a concave beach (which has greater amplifi-
cation) breaks sooner than on a convex beach, what explains
the behavior of the curves presented in Fig. 7.

4 Runup of deformed waves on a coast

The runup of the nonlinear deformed waves approaching the
coast is now considered. We assume that the bottom pro-
file in the vicinity of the shoreline can be approximated by
a linear function (beach of constant slope). This condition
is required for using the Carrier-Greenspan approach (Car-
rier and Greenspan, 1958) for the rigorous solving of nonlin-
ear shallow-water equations. We also assume that the beach
width is relatively large when considering an approaching
wave as a wave of weak (but finite) amplitude. In this case,
all formulas for initial conditions of a runup problem can be
given in explicit form (in variablesx and t instead of the
Carrier-Greenspan variablesσ andλ); see (Didenkulova et
al., 2007). The last assumption is that initial conditions in
the Carrier-Greenspan transformation give an incident wave
in the form of a nonlinear deformed wave as presented in
Sect. 3 and neglect wave reflection from the inflection point
between transmitted and runup zones. Arguments for this
assumption, based on analysis of previous results summa-
rized in Pelinovsky (2006); Madsen and Furhman (2008), are
given in the Introduction. These approximations are used in
Didenkulova et al. (2007) considering the long wave runup
on a plane beach joining a flat bottom. The principal re-
sult obtained in this study shows a strong influence of the
incident wave steepness on the runup characteristics (runup
height, maximum velocity, conditions of the wave breaking).

Here we consider a plane beach joint with a transition zone
of variable depth (Fig. 2). Characteristics of the approaching
wave are calculated in Sect. 3. Taking into account the fact
that the maximum runup characteristics can be found from
linear theory (Synolakis, 1991; Didenkulova et al., 2007),
the runup of periodic waves of an arbitrary shape can be de-
scribed by the following Fourier series (Didenkulova et al.,
2007)

Rshore(t) =2π

√
2D

λ
H0Re

∑
n=1

√
nBn exp

[
i
(
nωt+

π

4

)]
, (34)

Ushore(t) = (2π)2 H0

√
2

g

h1

(
D

λ

)3

Re
∑
n=1

n3/2

Bn exp

[
i

(
nωt +

3π

4

)]
. (35)

HereRshore(t) andUshore(t) are vertical oscillations of the
shoreline and its horizontal speed computed within the linear
theory (extremes of both functions coincides with maximum
values of runup characteristics in the nonlinear theory (Syn-
olakis, 1991; Didenkulova et al., 2007)),

λ = 2π
√

gh1/ω (36)

is a wavelength of an incident wave at the distanceD from
the shoreline with a water depthh1 (the point where plane
beach of constant slope,α joins a transition zone),H0 and
Bn are an amplitude of the first harmonic and dimensionless
spectral amplitudes of an incident wave respectively given at
the same point

η (t) = H0Re
∑
n=1

Bn exp(inωt), (37)

whereRemeans the real part of the complex sum. In general,
Eqs. (34) and (35) should include a time shift which is the
travel time to the shoreline, but this is ignored, since it does
not influence the maximum runup characteristics.

The wave breaking on a beach of constant slope occurs if
parameterBr=1, where

Br = (2π)3 H0

h1

√
2

(
D

λ

)5

maxRe
∑
n=1

n5/2

Bn exp

[
i

(
nωt +

5π

4

)]
. (38)

These formulas are valid for periodic waves of an arbitrary
shape. If an incident wave is the Riemann wave, the maxi-
mum runup height can be expressed as a function of the wave
steepness (Didenkulova et al., 2007)

Rmax = 2πH0

√
2D

λ

s

s0
. (39)
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Fig. 7. Breaking and non-breaking regimes of the wave transformation in the transition zone; plane beach (solid line), convex (dotted) and
concave (dashed) bottom profiles.

The main advantage of Eq. (39) is its universal form. It con-
tains only wave characteristics (amplitude, wavelength and
steepness) at the beginning of the runup stage, and does not
depend on the wave evolution in the transition zone if the
ratio between spectral components is the same as in local
Riemann solution. That is why we can apply Eq. (39) for the
analysis of the runup of the quasi-Riemann wave described
in Sect. 3.

In the case of a plane beach, with the use of Eq. (26),
Eq. (39) transforms to

R1
max=2πA0

(
h0

h1

)1/2
√√√√ 2D

λ0

[
1−

4πL
λ0

A0
h0

(h0/h1)
3/4

−1
1−h1/h0

] , (40)

in the case of a convex bottom, and with the use of Eq. (29),
it transforms to

R
4/3
max = 2πA0

(
h0

h1

)1/2
√√√√√ 2D

λ0

[
1 −

3πL
λ0

A0
h0

(
h0
h1

)3/4
] . (41)

For a concave bottom, with the use of Eq. (32), it changes to

R
1/2
max = 2πA0

(
h0

h1

)1/2

√√√√ 2D

λ0

[
1 −

8πL
λ0

A0
h0

(1+3h1/h0)(h0/h1)
3/4

−4
(1−h1/h0)

2

] . (42)

It follows from Eqs. (40–42), the amplification ratio (maxi-
mum runup height to initial wave amplitude) depends on four
parameters: dimensionless initial wave amplitudeA0/h0, the
depth ratioh1/h0, the widthL/λ0 of the transition zone and
the width of the runup zoneD/λ0. It should be pointed that
λ0 in Eqs. (40–42) is the length of an incident wave in the
open ocean.
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Fig. 8. Maximum runup heightRmax/R0 plotted against the am-
plitude of an initial waveA0/h0; plane beach (solid line), convex
(dotted) and concave (dashed) bottom profiles.

In real conditions if we consider a water basin with ini-
tial depth h0=1 km changing toh1=100 m over distance,
L=400 km and then with a plane beach to the coast over
the distanceD=10 km, the maximum runup height of the
wave with amplitudeA0=10 cm and wavelengthλ0=5 km
is R1

max=5.71 m for a transformation zone of constant slope,

R
4/3
max=5.24 m for a convex andR1/2

max=9.41 m for a concave
transformation zone.

The dependence of the maximum runup heightRmax/R0
on amplitudeA0/h0 for a fixed depth ratioh1/h0=0.9 and
a width of the transition zoneL/λ0=1.5 is presented in
Fig. 8. HereR0=2πA0

√
2D/λ0 corresponds to the maxi-

mum runup of a sine wave with amplitudeA0 on a sloping
beach. The wave runup on a plane beach joining a concave
profile is higher than for a plane or a convex beach. This can
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Fig. 9. Maximum runup heightRmax/R0 plotted against the width
of transmission zoneL/λ0; plane beach (solid line), convex (dotted)
and concave (dashed) bottom profiles,h1/h0=0.9, A0/h0=0.05.
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Fig. 10.Maximum runup heightRmax/R0 plotted against the depth
ratio h1/h0; plane beach (solid line), convex (dotted) and concave
(dashed) bottom profiles,A0/h0=0.05,L/λ0=1.5.

be explained by larger “average” nonlinearity and a smaller
equivalent depth, which lead to greater wave steepness on a
concave beach.

The same effect can be seen in Figs. 9 and 10, which il-
lustrate dependences of the runup height on the width of the
transition zone and on the depth ratio respectively. It appears
that wave steepness is the most significant parameter charac-
terizing the runup process.

The above theory is valid only for non-breaking waves.
The breaking parameter determined by Eq. (38) is also a
function of the dimensionless initial wave amplitudeA0/h0,
the depth ratioh1/h0, the width of the transition zoneL/λ0
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Fig. 11. Breaking parameter versus initial wave amplitude for
L/λ0=2, D/λ0=1.1, solid, dashed and dotted lines correspond to
h1/h0=0.7, 0.8 and 0.9, respectively.
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Fig. 12.Various scenarios of the wave runup on a coast (dashed line
corresponds to a plane beach and solid line to a concave beach).

and the width of the runup zoneD/λ0. The dependence of
the wave breaking parameterBr on initial wave amplitude
and the depth ratio is displayed in Fig. 11 forL/λ0=2 and
D/λ0=1.1. A significant difference in depth along a transi-
tion zone leads to an increase in parameterBr.

The conditionBr=1 separates two important scenarios of
the wave runup: surging or flooding (without breaking) for
Br<1, and plunging (breaking) forBr>1. The separation of
these regimes on a plane(h1/h0, A0/h0) for L/λ0=1.5 and
D/λ0=1.1 is displayed in Fig. 12. A concave beach is more
“nonlinear” (the averaged depth is smaller), and that is why
the wave breaking on it occurs for smaller amplitudes and
greater depth ratio(h1/h0, A0/h0), than for a plane beach.
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5 Conclusion

The problem of long wave shoaling and runup on the coast is
described in the framework of 1-D nonlinear shallow-water
theory. The bottom geometry considered in the paper con-
sists of the transition zone with a slowly varying depth (in
the scale of the wavelength) and a beach of constant slope in
the vicinity of the shoreline. An incident wave in the open
ocean has a sinusoidal shape and small amplitude. In the
transition zone, the wave shoaling is described by an asymp-
totic solution in the form of the quasi-Riemann wave with
varying amplitude. The wave steepness and spectral compo-
nents are calculated for three bottom profiles: a beach of con-
stant slope, a convex and a concave profiles. It is shown that
a concave profile is more “nonlinear” as its average depth
along the wave path is smaller than for other profiles. The
wave runup on a plane beach is studied in the framework of
the Carrier-Greenspan approach with a nonlinear deformed
wave in the transition zone as an input wave. The runup
characteristics and the condition of wave breaking are ana-
lyzed with respect to the wave parameters in the open ocean.
It is demonstrated that wave steepness is the most signifi-
cant parameter characterizing the runup process. The com-
parison between different transition zones shows that in the
general case, the concave beach gives a larger increase in the
wave steepness and greater amplification of the wave ampli-
tude. At the same time waves propagating along such a beach
break sooner.

Appendix A

Spectral presentation of the Riemann wave

In practice it is important to know the Fourier frequency
spectrum of the wave field. The spectral presentation of the
Riemann wave can be presented explicitly (Pelinovsky, 1982;
Didenkulova et al., 2006b):

U (t, y) =

∞∑
n=1

Un(y) sin(nωt),

Un(y) = 2a
YBr

ny
Jn

(
ny

YBr

)
=

4gh0

3ωyn
Jn

(
3nωya

2gh0

)
, (A1)

whereJn is the Bessel function ofn-order. After substituting
our original variables from Eq. (13) we have the final expres-
sion for the velocity field

u (t, x) =

(
h0

h (x)

)3/4 ∞∑
n=1

Un(y) sin(nωt),

y (x) =

∫ (
h0

h (x)

)7/4

dx. (A2)

Due to a weak nonlinearity, using Eq. (20), Eq. (A2) can be
converted into the expression for water surface displacement

η (t, x) =

∞∑
n=1

An (x) sin(nωt) (A3)

= 2A0

(
h0

h (x)

)1/4 ∞∑
n=1

YBr

ny
Jn

(
ny

YBr

)
sin(nωt),

whereA0=a
√

h0/g is an initial amplitude of water displace-
ment. Note thatt in Eqs. (A1–A3) is a time in a reference
system of coordinatest−τ (x). Nevertheless, a travel timeτ
does not influence the energetic characteristics of the wave
process and it is omitted.

If h (x) =h0 Eqs. (A2) and (A3) reduce to the known equa-
tions for wave transformation in the basin of constant depth
(Didenkulova et al., 2006b, 2008).

Using Eq. (22) for the “face-slope” steepness of the wave
spectral amplitudes in Eq. (A3) can be re-written as functions
of the face slope steepness

An=

2A0

(
h0
h

)1/4

n

(
1−

s0
s

(
h0
h

)3/4
)Jn

[
n

(
1−

s0

s

(
h0

h

)3/4
)]

. (A4)

If we introduce an effective amplitudeAeff and steepnessseff

Aeff=A0

(
h0

h

)1/4

, seff=s

(
h

h0

)3/4

=
s0

1−y/YBr

, (A5)

spectral amplitudes of the nonlinear deformed wave in a
basin of slowly varying depth can be presented in a univer-
sal form, which coincides with an expression for a basin of
constant depth (Didenkulova et al., 2007)

An =
2Aeff

n
(
1 −

s0
seff

)Jn

[
n

(
1 −

s0

seff

)]
. (A6)
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