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ABSTRACT

The normal human adult kidney contains between 300,000 and 1 million nephrons (the functional units of
the kidney). Nephrons develop at the tips of the branching ureteric duct, and therefore ureteric duct
branching morphogenesis is critical for normal kidney development. Current methods for analysing ureteric
branching are mostly qualitative and those quantitative methods that do exist do not account for the 3-
dimensional (3D) shape of the ureteric “tree”. We have developed a method for measuring the total length of
the ureteric tree in 3D. This method is described and preliminary data are presented. The algorithm allows
for performing a semi-automatic segmentation of a set of grey level confocal images and an automatic
skeletonisation of the resulting binary object. Measurements of length are automatically obtained, and
numbers of branch points are manually counted. The final representation can be reconstructed by means of
3D volume rendering software, providing a fully rotating 3D perspective of the skeletonised tree, making it
possible to identify and accurately measure branch lengths. Preliminary data shows the total length estimates
obtained with the technique to be highly reproducible. Repeat estimates of total tree length vary by just 1-
2%. We will now use this technique to further define the growth of the ureteric tree in vitro, under both
normal culture conditions, and in the presence of various levels of specific molecules suspected of regulating
ureteric growth. The data obtained will provide fundamental information on the development of renal
architecture, as well as the regulation of nephron number.
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INTRODUCTION

Branching morphogenesis is an important event
in the development of many organs including the
lung, salivary gland, prostate gland, mammary gland
and kidney. The pattern of branching within each of
these organs is highly organised and plays a significant
part in determining the final architecture of the organs.

The normal human adult kidney contains between
300,000 and 1 million nephrons (the functional units
of the kidney) (Nyengaard and Bendtsen, 1992).
Nephrons develop at the tips of the branching ureteric
duct. Evidence suggests that reduced nephron number
is associated with the development of essential
hypertension and chronic renal failure (Brenner et al.,
1988; Brenner and Chertow, 1994) as well as the
long-term success of renal allografts (Brenner and

Milford 1993). Branching morphogenesis of the
ureteric duct during kidney development is therefore
not only critically important to normal kidney
development, but may also underlie much subsequent
renal pathology and abnormal physiology.

Understanding the normal growth of this ureteric
“tree” and the molecules that regulate its growth is
therefore important in both basic and clinical renal
science. Current methods for analysing ureteric
branching are mostly qualitative. Those available
quantitative methods do not take into account the 3-
dimensional (3D) shape of the ureteric “tree”. We
have developed a method for measuring the total
length of the ureteric tree that takes into account the
3D structure. This method, based on the combination
of 2D skeletons, is described and preliminary data are
presented.
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METHODS

Embryonic mouse kidneys (metanephroi) were
dissected at embryonic day 12 and cultured for up to
48 hours as previously described (Clark et al., 2001).
Embryonic bodyweight was restricted to 0.060-
0.080 g to reduce variation in kidney development
prior to culture. At the end of the culture period the
epithelial ureteric trees of whole kidneys were
immunostained using an immunofluorescence technique
(Fig. 1) that employs an Alexa 488 labelled antibody
directed against Calbindin-D28K (Sigma-Aldrich Pty.
Ltd., Castle Hill, Australia). Metanephroi were then
optically sectioned with a 10× lens on a Leica TCS
NT confocal microscope. Since the lens has a measured
axial resolution (FWHM) of 10 µm, sections were
taken at intervals of 4-5 µm to satisfy the requirements
for Nyquist sampling. The 2D optical slices of the
trees were 8 bit grey level images, typically 512 × 512
pixels. Between 30 and 60 images were required to
sample each metanephros (Fig. 1A).

As the skeletonisation process works on binary
images, the algorithm first segments each confocal
image (Fig. 1B) using classical morphological tools
such as the watershed line of the gradient image
(Serra, 1982; Meyer and Beucher, 1990).

Fig. 1. A) four consecutive confocal sections through
a metanephros cultured for 24 h B) corresponding
binary images. Bar = 250 µm. Some parts of the grey
level images seem not to be segmented despite their
important grey level value. This is due to the
segmentation process which takes into account the
grey level at the same location in all images in order
to remove the overlapping information between
frames coming from the confocal acquisition: the
structures are only segmented on the frames where
their grey level is the most important.

The second and main part of the algorithm
involves construction of a 3D skeleton of the tree,
which is a representation of the original tree using
thin lines connected through the centre of each
branch. The definition of the skeleton will be here
less restrictive than the standard definition of the
skeleton as the set of centres of maximal balls
included in the object. In this paper, a skeleton will
be simply a connected set of pixels centred in the 3D
object. The definition of a centred point will appear
later in the paper, but it already appears that more
than one set of pixels can match with this definition
of a skeleton, in particular, a connected subset of a
skeleton is still a skeleton in our definition. This
problems deals with the difference between “real
biological branches” and some noise coming from
surface irregularities for example, so the relative
flexibility in the definition of the skeleton used in this
paper enables us to get finally a skeleton matching
with the biological interpretation of the images.

The method to construct this skeleton would be to
find firstly some centred points in the tree and then to
connect these points by a path that is also centred.

Because of the definition of the confocal
microscope, the scale of the pictures in the X and Y
directions is very different from the Z scale of the 3D
object, therefore the calculation of the centred points
is made according to the X and Y direction on the one
hand, and the Z direction on the other hand.

A few definitions:

I is the total 3D image,

O is the bunary object obtained after the
segmentation process,

Ō is outside of the binary object obtained,

F is used to designate one frame of 3D object.

In all the following, O is supposed to be
connected, if not, each step of the algorithm could be
applied for each connected component of O.

A path U between two voxels A and B is a finite
part of IN p0 p1… pn such as p0 = A and pn = B and

[ ] ( )10.. 1 , i ii n p V p+∀ ∈ − ∈  where ( )iV p  designates
the neighbours of pi according to a given
connectivity. Then, the length of a path is the total
number of points included in this path and is noted
l(U). The set of all paths between A and B is called
path(A, B).
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The distance function inside the tree is then defined by:

( ) ( ) ( )( ), , , , .FM O F d M min l U U path X M X O F∀ ∈ = ∈ ∈ !! (1)

If the graph used corresponds to a vertical connectivity, that means, if the only neighbours of a voxel are the
ones above and below, one obtains a Z distance function:

( ) ( ) ( ) ( )( ), , , , , , ,zM x y z O d M min l U U path X M X O∀ ∈ = ∈ ∈ ∆ ! (2)

where ∆  is the line which has the equation {X = x and Y = y}.

Then, the geodesic distance function inside the tree between a set A and a point M is:

( ) ( ) ( )( )0 0, , , / , .gd M min l U M A U path M M p U p O= ∈ ∈ ∀ ∈ ∈ (3)

The minimum distance between each point of the object and the outside of the tree on one frame F is
calculated to give a function dF called the distance function of the object: the maxima of this function are called
centred points in the x and y direction. The set of such maxima is called CF :

( ) ( ) ( ){ }/ , .F F Flet C M O F X V M d M d X= ∈ ∀ ∈ ≥! (4)

As CF is usually not connected, one enlarges the definition of the centred point to the crests lines CLF of the
distance function which link the previous maxima.

{ }/ .F Flet CL M O F M is part of a crest line of d= ∈ ! (5)

The union of these points gives a connected set for each connected component of each 2D frame of the 3D
object (Fig. 2A). This set is in fact a 2D skeleton SF of the considered frame. This has been obtained according
to the Zhou et al. (1998) algorithm.

.F F Flet S C CL= " (6)

One then obtains a 3D object by considering these 2D skeletons for all the frames: this 3D set is formed by
all the points centred in the X and Y direction.

.XY F F Flet C S the union of all the S= " (7)

The next operation follows logically. For each (x,y) coordinate, one calculates the points of the tree centred
in the Z direction according to the distance dZ. The obtained set is usually composed of surfaces centred in the tree.

( ) ( ) ( ) ( ) ( ){ }, , / , , ,Z Z Zlet C M x y z O X x y t V M d M d X= ∈ ∈ ⇒ ≥ (8)

.XYZ XY Zthen C C C is the set of the centred points in O= ! (9)

When taking the intersections between these two sets, one obtains the set of points centred in the final 3D
object (Fig. 2B) which is a good start to construct a 3D skeleton. This set is, exactly like in 2D, usually not
connected, and this problem has to be solved to be able to perform measurements on the tree.

The way to process this is as follows. Starting from one point M0 of CXYZ:

{ }0 0 0 .XYZlet M C and K M∈ = (10)

One calculates for each point M of O the length of the minimum path inside O between M0 and M. This
produces a map of the geodesic distance to the point M0. In fact this map is computed recursively by
propagation starting from M0: the distance between M0 and its neighbours is determined, then the distance
between M0 and the neighbours of the already computed points. The full distance map is not processed and one
stops the calculation when the closest points M1 to M0 in CXYZ is reached.

( ) ( ){ }1 0 0/ , , .XYZ XYZ g gM M C X C d K X d K M∈ ∈ ∈ ⇒ ≥ (11)
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The calculation of the path of minimum length is
then processed by backpropagation in the obtained
distance image: the neighbour of M1 whose distance
to M0 has been processed and is minimum is kept as
part of the path of minimum length between M0 and
M1. This step is repeated from neighbours to
neighbours until M0 is reached. This path, including
M0 and M1 is used as a new starting set to compute a
new geodesic distance map and find M2 in the same
way as M1.

( )1 0 0 1,gK K path K M= "

#
(12)

This iterative process enables us to connect all the
points in a set called K (Fig. 2C).

K could already be called a “3D skeleton of O”,
but is still not a “good object” for obtaining
meaningful measurements in the kidney because of
two main problems: firstly, K is sometimes made of
surfaces instead of single lines, and secondly, the
bulbous ending observed in ureteric tree branches can
induce some additional branches which are mostly
biologically inaccurate. The next two steps of the
algorithm try to correct these two problems. As said
previously, a connected subset of a skeleton is still a
skeleton and therefore, the aim of the next part is to
find a connected subset K' of K in which noisy
branches has been removed and the surfaces has been
replaced by thin lines.

Starting from one point M0 of K, the geodesic
distance to M0 according to the mask K is performed
where the maxima of this function are located at
places where there are no points further from M0 in
the neighbourhood. Therefore, a maximum of the
geodesic distance to M0 corresponds to a non way
path in the set K and this is the common definition
used for the extremity of a branch. The same
recursive process used for connecting the points of
CXYZ according to O, is used for linking all these
maxima according to the set K: the path of minimum
length between an extremity and M0 is computed,
then the path of minimum length between the
obtained set and another extremity is computed and
this is done recursively until all the maxima
previously detected are linked to the point M0 by a
single path. This process enables us to obtain a set
K'⊂ K in which the surfaces are removed and replaced
by thin lines.

The final process on K’ to obtain the skeleton S
starts by the detection of branch points in K’: a point
is defined as a branch point if it has more than three
neighbours in K’. Usually, these branch points are

grouped in connected sets of a few voxels that will be
called branching sets. Thin lines called branches
connect these branching sets. Starting from one
branching set (called the root), it is possible to
recursively define a tree structure where the internal
nodes are branching sets and the edges are the
branches which could be weighted according to their
length. Two types of branches can now be defined:
the branches connecting two internal nodes and the
terminal branches which have only one extremity
formed by a branching set whereas the other
extremity is only a voxel with only one neighbour.
These latter branches are the inaccurate ones due to
the shape of the ureteric tree and we can remove them
from the set K’ to obtain the skeleton S (Fig. 2D) in
which the previously defined tree structure enables us
to apply any kind of length measurement. However,
some of the terminal branches are real biological
branches and would therefore be ‘excessively
pruned’. The algorithm has therefore been modified
to keep all terminal branches if their length is greater
than a limit fixed by the user.

Fig. 2. A) 2D skeleton (points centred in x and y
direction) of one frame superimposed on the
corresponding binary image, B) intersection of the
2D skeletons and the maximum in z direction, C) the
connected 3D skeleton D) the 3D skeleton after the
cleaning process. Measurements are taken from this
image. Bar = 250µm.

RESULTS

Fig. 3 shows the resulting skeleton superimposed
on the original confocal images. The skeleton represents
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the three-dimensional ureteric tree; it is thin and
centred following the branches. Preliminary data
shows that length estimates obtained with the technique
are highly reproducible. Repeated measures (n = 3)
made on several embryonic day 12 mouse kidneys
cultured for 24 h showed estimates of total tree length
to vary by just 1 or 2% (Table 1).

Fig. 3. Skeleton superimposed on the original
confocal images. Bar = 250µm.

Table 1. Repeat measurements on the same data set
for two individual kidneys. Units are µm.

Kidney Attempt 1 Attempt 2 Attempt 3
1 5345 5376 5295
2 6339 6476 6401

When applied to 10 individual embryonic kidneys,
the length of the ureteric tree after 12 hours of culture
was 2188 ± 390µm (mean ± SD), and at 24 h, ureteric
tree length was 5,344 ± 696 µm.

DISCUSSION

The technique described allows the ureteric tree
of the developing kidney to be analysed in 3D. The
estimates of total tree length are highly reproducible.
Preliminary use of this skeletonising technique,
however, has identified various problems. Firstly,
binarisation of overlapping branches, which either
touch or lie close to each other, results in the joining
of these branches in the skeleton. Presently, these
branches need to be manually separated on the binary
images by placing blank areas between the two.
Secondly, as the grey level is not constant in all
branches, some parts of the tree are sometimes

removed and have to be manually filled in. Thirdly,
when kidneys are only cultured for short periods (eg
6 hours) the branch tips are very dilated. When
skeletonised, these dilated tips tend to form a loop,
with the skeleton following the periphery of the
dilated tip instead of stopping at the centre. To
correct these problems, a new algorithm is being
developed, which will operate directly in 3D, not on
individual frames.

This technique will now be used to further define
the growth of the ureteric tree in vitro, under both
normal culture conditions, and in the presence of
increased and decreased levels of specific molecules
suspected of regulating ureteric growth. The data
obtained will not only provide fundamental
information on the development of renal architecture,
but will also provide understanding of the regulation
of nephron number.
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