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Abstract. We discuss the relation between solutions admitting Killing spinors of minimal super-
gravities in five dimensions and four dimensional complex geometries. In the ungauged case (van-
ishing cosmological constantΛ = 0) the solutions are determined in terms of a hyper-Kähler base
space; in the gauged case (Λ < 0) the complex geometry is Kähler; in the de Sitter case (Λ > 0)
the complex geometry is hyper-Kähler with torsion (HKT). Inthe latter case some details of the
derivation are given. The method for constructing explicitsolutions is discussed in each case.
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INTRODUCTION

In the last few years it has been realised that there are some beautiful connections be-
tween solutions of minimal supergravities in five dimensions admitting Killing spinors
and complex geometries. Moreover, these connections have been useful in finding qual-
itatively new black hole solutions. The first case to be considered was the minimal un-
gauged five dimensional supergravity, i.e with no cosmological constant (Λ = 0). It was
shown by Gauntlett et al [1] that the most general stationarysolution admitting Killing
spinors is defined by a four dimensionalhyper-Kählerbase space and a set of constraint
equations. Using this construction, Elvang et al [2] obtained the supersymmetric black
ring. The second case to be considered was the minimal gaugedfive dimensional su-
pergravity, i.e with negative cosmological constant (Λ < 0). It was shown by Gauntlett
and Gutowski [3] that the most general stationary solution admitting Killing spinors is
defined by a four dimensionalKählerbase space and a set of constraint equations. Using
this construction, Gutowski and Reall found the supersymmetric AdS5 black holes [4].
It is then natural to ask: i) Is there any interesting relation with complex geometry in
five dimensional minimalde Sittersupergravity (i.e with positive cosmological constant
Λ > 0)? ii) Can we use the resulting structure to find interestingsolutions? In the fol-
lowing we will discuss how indeed the answer to i) is yes and give some hints towards
answering ii).
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MINIMAL UNGAUGED SUPERGRAVITY IN D = 4

Supersymmetric black holes are interesting gravitationalobjects. They are classically
and semi-classically stable; in many cases there is a no-force condition which allows for
a multi-object configuration. An early example is obtained in minimalN = 2, D = 4
supergravity, whose bosonic sector has action

S =
1

16πG4

∫

d4x
√−g

(

R− F2

4

)

;

the ansatz
ds2 =−H(x)−2dt2+H(x)2ds2

E3 , A= H(x)−1dt ,

reduces the full non-linear Einstein-Maxwell system to a single harmonic equation on
the Euclidean 3-spaceE3

∆E3H(x) = 0 .

This is the well known Majumdar-Papapetrou solution, and taking H(x) to be a multi-
centred harmonic function yields a multi black hole solution. Physically, the exact lin-
earisation of the supergravity equations, yielding a superposition principle, is associated
to the exact balance of electrostatic repulsion and gravitational attraction between any
pair of black holes. But it is also associated to supersymmetry. Indeed, Tod [5] showed
that the most general stationary solution of this theory admitting Killing spinors, i.e. a
non-trivial solution of

Dε − 1
4

FabΓabΓε = 0 ,

falls into the class of Israel-Wilson-Pérjes metrics (which have the modulus of charge
equal to mass). Since the most general black hole solution inthis class is the Majumdar-
Papapetrou solution one concludes the latter is the most general static (indeed the most
general stationary) supersymmetric black hole solution ofN = 2, D = 4 supergravity.

MINIMAL UNGAUGED SUPERGRAVITY IN D = 5

It follows from the above that Einstein-Maxwell theory (seen as the bosonic sector of
supergravity) does not admit any supersymmetricrotating, asymptotically flat, black
holes. And for some time it was even doubtful that such an object could exist; indeed
supersymmetry is a statement of stability and rotation is normally associated to the
instabilities which arise from the existence of an ergo-region (Penrose process and
superradience). However one such solution was found in five dimensional minimal
ungauged supergravity, whose bosonic sector has action

S =
1

16πG5

∫

d5x

[√−g
(

R−F2)− 2

3
√

3
A∧F ∧F

]

;

the ansatz

ds2 =−H(x)−2(dt+ω)2+H(x)ds2
E4 , A=

√
3

2
H(x)−1(dt+ω) ,



reduces the supergravity equations to the constraints [6]

∆E4H(x) = 0 , dω =−⋆(4) dω ,

where⋆(4) is the Hodge dual on the Euclidean 4-spaceE4. This is known as the BMPV
solution [7]. TakingH(x) to be a multi-centred harmonic function, and an appropriate
choice forω, yields a solution with multiple black holes in an asymptotically flat space-
time. Physically, the exact linearisation of the supergravity equations is again associated
to the exact balance between electromagnetic and gravitational forces between any pair
of black holes. But now, besides electric we will have magnetic effects (spin-spin and
magnetic dipole-dipole forces). And again it is also associated to supersymmetry. In-
deed, Gauntlett et al [1] showed that the most general stationary solution of this theory
admitting Killing spinors, i.e. a non-trivial solution of

[

Dα +
1

4
√

3

(

Γ βγ
α −4δ β

α Γγ
)

Fβγ

]

εa = 0 ,

is of the form

ds2 =− f 2(dt+ω)2+ f−1ds2
M , F =

√
3

2
d( f [dt+ω])− G+

√
3
,

and that the method to construct explicit examples is the following:

1) ChooseM to be a 4 dimensional hyper-Kähler manifold;
2) Decomposef dω = G++G−;
3) Solve

dG+ = 0 , ∆ f−1 =
2
9
(G+)2 .

TakingG+ = 0 andM = E4, we find the BMPV (multi) black hole solution. But this
choice also includes other, qualitatively different solutions, namely maximally super-
symmetric Gödel type universes and black holes in Gödel typeuniverses [1, 8].

Taking G+ 6= 0 one can find supersymmetric black rings. But note that in this case
one does not find a harmonic equation any longer, but rather a Poisson type equation,
to whichG+ is the source. Thus, the superposition principle is, in general, lost. And in
fact there is no solution with multiple black rings where these can be placed at arbitrary
positions, as for the multiple black holes seen above. Nevertheless, writingM as a
Gibbons-Hawking space one can construct multiple concentric black rings [9].

MINIMAL GAUGED SUPERGRAVITY IN D = 5

A negative cosmological constant is introduced by moving tominimal gauged super-
gravity in five dimensions. This theory is particularly relevant because it is related by
the AdS/CFT duality to the well understoodN = 4, D = 4 Super Yang Mills theory.
Hence one might expect to give a microscopic interpretationto the black hole solutions



in this theory using the duality. A generic analysis of the Killing spinor equation
[

Dα +
1

4
√

3

(

Γ βγ
α −4δ β

α Γγ
)

Fβγ

]

εa−gεab
(

Γα
2

−
√

3Aα

)

εb = 0 ,

shows that all susy solutions with a timelike Killing vectorfield are of the form [3]:

ds2 =− f 2(dt+ω)2+ f−1ds2
M , F =

√
3

2
d( f [dt+ω])− G+

√
3
+
√

3g f−1J ,

and that the method to construct explicit solutions is the following:

1) ChooseM to be a 4 dimensional Kähler manifold;
2) Compute

f =−24g2

R
, G+ =− 1

2g

[

R+
R
4

J

]

,

which determines completelyf andG+ in terms of the properties of the Kähler
space: its Ricci scalar,R, its Ricci form,R, and its Kähler form,J; solve also

∆ f−1 =
2
9
(G+)mn(G+)mn−g f−1(G−)mnJmn−8g2 f−2 ,

which determines the components ofG− that have a non trivial contraction with
the Kähler form;

3) Solve the constraint
f dω = G++G− ,

which determines the remaining components ofG−.

TakingM to be Bergamann space, which can be written as [10]

ds2
M = dσ2+

sinh2gσ
4g2

(

dx2

H(x)
+H(x)dψ2+cosh2gσ(dφ +xdψ)2

)

,

with H(x) = 1−x2, one findsAdS5. The Gutowski-Reall black hole [4] and the Chong
et al. black hole [11] are found by taking more general quadratic and cubic polynomials
[10]. Note that for arbitraryH(x) the above metric is Kähler; but the supersymmetry
constraints impose(H2H ′′′′)′′ = 0, where primes denotex derivatives, which shows that
a given base space might not give rise to a five dimensional solution. Also, a given base
space might give rise to a family of solutions with an infinitenumber of parameters [10].

It is worth noting that the supersymmetricAdS5 black holes found using this construc-
tionmustrotate, which is similar to what happens in three [12] and four [13] dimensions.



MINIMAL DE SITTER SUPERGRAVITY IN D = 5

It is well known that de Sitter superalgebras have only non-trivial representations in a
positive-definite Hilbert space in two dimensions [14, 15].Nevertheless one can take
the perspective offake supersymmetry, in analogy to the recently explored Domain
Wall/Cosmology correspondence [16]: that there is a special class of solutions in a
gravitational theory with a positive cosmological constant admitting “pseudo-Killing
spinors”. Thus, fake supersymmetry becomes a solution generating technique, as we
shall explain. Note that, nevertheless, a relation to fundamental theory still exists via
compactifications of the IIB* theory [17, 18].

We now follow closely [19]. The action for minimal de Sitter supergravity inD = 5 is

S =
1

4πG5

∫

(

1
4
(5R−χ2)⋆1− 1

2
F ∧⋆F − 2

3
√

3
F ∧F ∧A

)

,

and the Killing spinor equation is
[

∂M +
1
4

ΩM,
N1N2ΓN1N2 −

i

4
√

3
FN1N2ΓMΓN1N2 +

3i

2
√

3
FM

NΓN

+χ(
i

4
√

3
ΓM − 1

2
AM)

]

ε = 0 .

The sense in which fake supersymmetry can be used as a solution generating technique
is the following. If a non-trivial solution of the (pseudo) Killing spinor equation exists
and the gauge field equations are satisfied, the integrability conditions of the former
place constraints on the Ricci tensor. For the solutions we consider here, for which the
Killing spinor generates a timelike vector field, these constraints are equivalent to the
Einstein equations. Note this would not be so for the null case, for which the Killing
spinor generates a null vector field.

Let us now give some details of the derivation of the (fake) supersymmetry con-
straints. The basic principle is to assume the existence of,at least, one non-trivial
(pseudo) Killing spinor. This puts constraints on the spin connection and gauge field. In
practice we use spinorial geometry techniques [20]. That is, we take the space of Dirac
spinors to be the space of complexified forms onE2, which is spanned over the space
of complex numbers by{1,e1,e2,e12} wheree12 = e1∧e2. The action of complexified
Γ-matrices on these spinors is given by

Γα =
√

2eα∧ , Γᾱ =
√

2ieα ,

for α = 1,2, andΓ0 satisfies

Γ01=−i1, Γ0e12 =−ie12, Γ0ej = ie j , j = 1,2 ,

where we work with an oscillator basis in which the spacetimemetric is

ds2 =−(e0)2+2δαβ̄ eαeβ̄ .



The Killing spinor can be put in a canonical form using theSpin(4,1) transformations.
The canonical form isε = h1, whereh is a function, if it originates a timelike vector and
ε = 1+e1 if it originates a null vector. We will be interested in the former case.

Defining a 1-formV = e0 and introducing at coordinate such that the dual vector field
isV =−∂/∂ t, a computation shows that the frames take the form

e0 = dt+
2
√

3
χ

P +e
χt√

3Q , eα = e
− χ

2
√

3
t êα ,

where
LV êα = 0 , LVQ = 0 , LVP = 0 .

We refer to the 4-manifold witht-independent metric

ds2
M = 2δαβ̄ êα êβ̄ ,

as the “base space”M . It follows that part of the geometrical constraints imposed by
the Killing spinor equation are equivalent todJi =−2P ∧Ji for i = 1,2,3 where

J1 = ê1∧ ê2+ ê1̄∧ ê2̄ , J2 = iê1∧ ê1̄+ iê2∧ ê2̄ , J3 =−iê1∧ ê2+ iê1̄∧ ê2̄ ,

defines a triplet of anti-self-dual almost complex structures onM which satisfy the
algebra of the imaginary unit quaternions. Thus,M is hyper-Kähler with torsion, HKT;
in other words, the almost complex structures are preservedby a connection with torsion:

∇+Ji = 0 , Γ(+)i
jk = {i

jk}+H i
jk ,

where the torsion isH = ⋆4P, and⋆4 is the Hodge dual onM .
The bottom line is that the most general solution of five dimensional minimal de Sitter

supergravity admitting a (pseudo) Killing spinor, from which a timelike vector field is
constructed, is of the form:

ds2 =−
(

dt+
2
√

3
χ

P +e
χ√
3
t
Q

)2

+e
− χ√

3
t
ds2

M , A=
dt

2
√

3
+

P

χ
+

√
3

2
e

χ√
3
t
Q ,

where allt dependence isexplicit, and the method to construct explicit solutions is the
following:

1) Take the base spaceM to be a four dimensional HKT geometry with metricds2
M

and torsion tensorH;
2) The 1-formP is given byP =−⋆4 H;
3) Choose a 1-formP obeying the constraints

(

dQ−2P ∧Q
)+

= 0 , d⋆4Q+
16√
3χ3

dP ∧dP = 0 ,



where+ denotes the self-dual projection on the base-manifoldM , with positive
orientation fixed with respect to the volume form̂e1∧ ê1̄∧ ê2∧ ê2̄. Note that one
can always solve the second constraint; the general solution is given by

Q =
16√
3χ3

⋆4 (P ∧dP)+⋆4dΦ ,

whereΦ is a 2-form onM . On substituting this expression back into the first
constraint equation, one finds an equation constrainingΦ, which must be solved.

The Ricci scalar of the solution is

R =
5
3

χ2+
e

2χ√
3
t

3

[

(dP)2

χ2 − χ2

2
e

χ√
3
t
Q

2+
3
4

e
2χ√

3
t
(dQ−2P ∧Q)2

]

,

where the norms are computed with respect to thet-independent base space metric.
Therefore, thet-dependence of the Ricci scalar can be read directly from theabove
expression. Thus, in particular, for the solution to be regular at botht = ±∞ we must
requireQ = 0 anddP = 0. In particular, this implies that the base space is conformally
hyper-Kähler.

If one assumes thatM is a conformally hyper-Kähler, thendP = 0. After some
coordinate transformations, the solution can be cast in theform

ds2 =− f 2(dt+ω)2+ f−1ds2
HK , F =

√
3

2
d

(

f (dt+ω)

)

,

where
f−1 = H − χ√

3
t ,

and
∆HKH = 0 , (dω)+ = 0 .

dS5 is obtained by taking the hyper-Kähler space to beE4, H = const. andω = 0.
This form of the solution is exactly the form of the solutionsof minimal ungauged

supergravity withG+ = 0, except for the linear term int which arises inf−1 due to the
cosmological constant. Thus we are led to the following theorem:

Any solution of D= 5 minimal de Sitter supergravity with a pseudo Killing spinor
and a base space which is conformal to a hyper-Kähler manifold can be obtained from
a “seed” solution of minimal ungauged supergravity simply by adding a linear time
dependence to the harmonic function.

This result generalises an earlier result by Behrndt and Cvetic [21]. Moreover it makes
clear why we can superimpose certain solutions (like the BMPV black hole [22] or
Gödel type universes [23]) with a positive cosmological constant. But it also suggests
that solutions withG+ = 0 do not generalise easily to de Sitter space. Most notably this
includes the black ring.

Hence, in contrast to the AdS theory, the de Sitter theory admits multi-black hole
solutions (like the multi-BMPV de Sitter), in which one findsmultiple black holes co-
moving with the expansion of the universe. This latter solution can be considered as a



five dimensional rotating generalisation of the Majumdar-Papapetrou de Sitter solution,
found by Kastor and Traschen [24].

As a second class of examples one can takeM to be an HKT manifold admitting
a tri-holomorphic Killing vector fieldX. This means that both the base space metric
and the almost complex structures are preserved by Lie dragging along the integral
lines of X. Such HKT manifolds have been classified [25, 26] and their structure is
completely specified in terms of a constrained 3-dimensional Einstein-Weyl geometry.
Explicit solutions can then be obtained, the simplest of which takes the Einstein-Weyl
geometry to be a round 3-sphere [19]. But all these solutionsare singular, as expected
from the above analysis of the Ricci scalar. The outstandingquestion is if, for any of
these solutions, these singularities have interesting interpretations in terms of either
black hole or big bang/big crunch singularities. That remains to be seen.
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