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Abstract. We discuss the relation between solutions admitting Killapinors of minimal super-
gravities in five dimensions and four dimensional compleargetries. In the ungauged case (van-
ishing cosmological constat = 0) the solutions are determined in terms of a hyper-Kahlseba
space; in the gauged cask € 0) the complex geometry is Kéahler; in the de Sitter case>(0)
the complex geometry is hyper-Kéhler with torsion (HKT).the latter case some details of the
derivation are given. The method for constructing expsoiutions is discussed in each case.
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INTRODUCTION

In the last few years it has been realised that there are semdiful connections be-
tween solutions of minimal supergravities in five dimensiadmitting Killing spinors
and complex geometries. Moreover, these connections hemreuseful in finding qual-
itatively new black hole solutions. The first case to be cdex®d was the minimal un-
gauged five dimensional supergravity, i.e with no cosmalaigtonstantf = 0). It was
shown by Gauntlett et al[1] that the most general statiosahytion admitting Killing
spinors is defined by a four dimensiofgiper-Kéahlerbase space and a set of constraint
equations. Using this construction, Elvang et al [2] ob#dithe supersymmetric black
ring. The second case to be considered was the minimal gdivgedimensional su-
pergravity, i.e with negative cosmological constaht< 0). It was shown by Gauntlett
and Gutowskil[3] that the most general stationary solutidmigting Killing spinors is
defined by a four dimension&&hler base space and a set of constraint equations. Using
this construction, Gutowski and Reall found the supersytnmAdS; black holes![4].

It is then natural to ask: i) Is there any interesting relatrath complex geometry in
five dimensional minimadle Sittersupergravity (i.e with positive cosmological constant
N\ > 0)? ii) Can we use the resulting structure to find interessiolgitions? In the fol-
lowing we will discuss how indeed the answer to i) is yes ave gome hints towards
answering ii).


http://arxiv.org/abs/0901.4066v1

MINIMAL UNGAUGED SUPERGRAVITY IND =4

Supersymmetric black holes are interesting gravitatiatgécts. They are classically
and semi-classically stable; in many cases there is a me-fmndition which allows for
a multi-object configuration. An early example is obtainedrinimal 4/ =2,D =4
supergravity, whose bosonic sector has action

y—i/d“w—_ L
~ 161G, g z )

d$ = —H(x) 2dt* + H(x)?ds,  A=H(x)"ldt,

reduces the full non-linear Einstein-Maxwell system toragke harmonic equation on
the Euclidean 3-spade®

the ansatz

AE3H(X) - O .

This is the well known Majumdar-Papapetrou solution, atkihaH (x) to be a multi-
centred harmonic function yields a multi black hole solatiBhysically, the exact lin-
earisation of the supergravity equations, yielding a sppstion principle, is associated
to the exact balance of electrostatic repulsion and griamital attraction between any
pair of black holes. But it is also associated to supersymmieideed, Tod [5] showed
that the most general stationary solution of this theoryi#tdrg Killing spinors, i.e. a
non-trivial solution of

1
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falls into the class of Israel-Wilson-Pérjes metrics (Whiave the modulus of charge
equal to mass). Since the most general black hole solutitmsrtlass is the Majumdar-
Papapetrou solution one concludes the latter is the mostrglestatic (indeed the most
general stationary) supersymmetric black hole solutionof= 2, D = 4 supergravity.

MINIMAL UNGAUGED SUPERGRAVITY IND =5

It follows from the above that Einstein-Maxwell theory (sess the bosonic sector of
supergravity) does not admit any supersymmaetiating, asymptotically flat, black
holes. And for some time it was even doubtful that such anablgjeuld exist; indeed
supersymmetry is a statement of stability and rotation isnadly associated to the
instabilities which arise from the existence of an ergaaegPenrose process and
superradience). However one such solution was found in fireesional minimal
ungauged supergravity, whose bosonic sector has action
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the ansatz

d$ = —H(X) ?(dt+w)®+H(x)dL,, A= ?H(X)J-(dt—f— w) ,



reduces the supergravity equations to the constraints [6]
AesH(X) =0, dw=—+Ydw,

wherex¥ is the Hodge dual on the Euclidean 4-sp&feThis is known as the BMPV
solution [7]. TakingH (x) to be a multi-centred harmonic function, and an appropriate
choice forew, yields a solution with multiple black holes in an asymptaliy flat space-
time. Physically, the exact linearisation of the superijyaaquations is again associated
to the exact balance between electromagnetic and grawvitdtiorces between any pair
of black holes. But now, besides electric we will have maigneffects (spin-spin and
magnetic dipole-dipole forces). And again it is also asseci to supersymmetry. In-
deed, Gauntlett et al/[1] showed that the most general statyosolution of this theory
admitting Killing spinors, i.e. a non-trivial solution of
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is of the form

g’d(f[dtth])—g

d¢ = —f2(dt+ w)?>+ fd&,, F= ,
( ) Y Ne

and that the method to construct explicit examples is tHeviahg:

1) Choose# to be a 4 dimensional hyper-Kéhler manifold;

2) Decomposddw =G +G™;

3) Solve

1 2
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TakingG* = 0 and.# = E*, we find the BMPV (multi) black hole solution. But this
choice also includes other, qualitatively different smos, namely maximally super-
symmetric Godel type universes and black holes in Godel aypeerses [1,.8].

Taking G™ # 0 one can find supersymmetric black rings. But note that is ¢thse
one does not find a harmonic equation any longer, but rath@isséh type equation,
to whichG™ is the source. Thus, the superposition principle is, in ggnist. And in
fact there is no solution with multiple black rings wheregbean be placed at arbitrary
positions, as for the multiple black holes seen above. Negksss, writing# as a
Gibbons-Hawking space one can construct multiple conicelick rings [9].

dGt =0, Af (GH)2.

MINIMAL GAUGED SUPERGRAVITY IND =5

A negative cosmological constant is introduced by movingninimal gauged super-
gravity in five dimensions. This theory is particularly ndat because it is related by
the AdS/CFT duality to the well understood” = 4, D = 4 Super Yang Mills theory.

Hence one might expect to give a microscopic interpretabdhe black hole solutions



in this theory using the duality. A generic analysis of th#iKg spinor equation
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43
shows that all susy solutions with a timelike Killing vecfald are of the form.[3]:
+
ds = —f3(dt+w)?+ fd$,, F= ?d(f[dw w]) — %+¢§gfla :

and that the method to construct explicit solutions is thie¥ang:
1) Choose# to be a 4 dimensional Kahler manifold;

2) Compute
_ 249? L1 R

which determines completelfy and G in terms of the properties of the Kahler
space: its Ricci scalaR, its Ricci form,#, and its Kahler formJ; solve also
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which determines the components®f that have a non trivial contraction with
the Kahler form;

3) Solve the constraint
fdw=G"+G |,

which determines the remaining component&of

Taking.# to be Bergamann space, which can be written as [10]

42, — do? + sinffgo < dx

a2 \H +H(x)dy? +costtga(dp+ xdw>2) ,
with H(x) = 1 — X, one findsAdS;. The Gutowski-Reall black hole/[4] and the Chong
et al. black hole [11] are found by taking more general quadleand cubic polynomials
[1C]. Note that for arbitraryH (x) the above metric is Kahler; but the supersymmetry
constraints imposgH?H"")"" = 0, where primes denotederivatives, which shows that
a given base space might not give rise to a five dimensionatisol Also, a given base
space might give rise to a family of solutions with an infimtember of parameters [10].

It is worth noting that the supersymmetAd S black holes found using this construc-
tion mustrotate, which is similar to what happens in three [12] and f@8] dimensions.



MINIMAL DE SITTER SUPERGRAVITY IND =5

It is well known that de Sitter superalgebras have only mosiat representations in a
positive-definite Hilbert space in two dimensions|[14, 1S¢vertheless one can take
the perspective ofake supersymmetryn analogy to the recently explored Domain
Wall/Cosmology correspondence [16]: that there is a spetéas of solutions in a
gravitational theory with a positive cosmological constadmitting “pseudo-Killing
spinors”. Thus, fake supersymmetry becomes a solutionrgéng technique, as we
shall explain. Note that, nevertheless, a relation to fumetstal theory still exists via
compactifications of the 1IB* theory [17, 18].

We now follow closely|[19]. The action for minimal de Sittansergravity inD =5 is
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and the Killing spinor equation is
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The sense in which fake supersymmetry can be used as a sajein@rating technique
is the following. If a non-trivial solution of the (pseudo)likhg spinor equation exists
and the gauge field equations are satisfied, the integsabdiditions of the former
place constraints on the Ricci tensor. For the solutionsaevesider here, for which the
Killing spinor generates a timelike vector field, these d¢maists are equivalent to the
Einstein equations. Note this would not be so for the nulecdsr which the Killing
spinor generates a null vector field.

Let us now give some details of the derivation of the (fakg)essymmetry con-
straints. The basic principle is to assume the existencatoleast, one non-trivial
(pseudo) Killing spinor. This puts constraints on the sginrection and gauge field. In
practice we use spinorial geometry techniques [20]. Thatéstake the space of Dirac
spinors to be the space of complexified formsEh which is spanned over the space
of complex numbers byl e;, e, €12} wheree;o = e; A . The action of complexified
["-matrices on these spinors is given by

Mo =V2e4A, Mg =V2ie ,
fora = 1,2, andl o satisfies
Fol=—i1, Tge?=—ie!? Treel =iel, j=1,2,
where we work with an oscillator basis in which the spacetingtric is

dS = —(°)%+ 25, 56" .



The Killing spinor can be put in a canonical form using 8yin4,1) transformations.
The canonical form is = h1, wherehis a function, if it originates a timelike vector and
€ =1+ e ifit originates a null vector. We will be interested in thereer case.

Defining a 1-form = €” and introducing & coordinate such that the dual vector field
isV = —d/dt, a computation shows that the frames take the form

2./3 X

X ]
9 =dt+ 79’—1—e¢§£2, e —e 2380

where
KT =0, KR2=0, K P2 =0.

We refer to the 4-manifold wittrindependent metric
ds, — 25,5878,

as the “base space?/. It follows that part of the geometrical constraints impb$&eg
the Killing spinor equation are equivalentdd = —222 A J' fori = 1,2, 3 where

N\t n@,  Poidtndt4iPad, Po_itth@titth e,

defines a triplet of anti-self-dual almost complex struesuon.# which satisfy the
algebra of the imaginary unit quaternions. Thug,is hyper-Kahler with torsion, HKT;
in other words, the almost complex structures are presdryactonnection with torsion:

D+Ji :O, r(+)ljk:{ljk}+Hljk ,

where the torsion isl = x4, andx4 is the Hodge dual o7

The bottom line is that the most general solution of five disi@mal minimal de Sitter
supergravity admitting a (pseudo) Killing spinor, from whia timelike vector field is
constructed, is of the form:

23 o \° x dt 2 3 x
d€=—|(dt+"P+e5 2| +e Bdd,, A=——+"+-"e52,
X - 2v/3 X 2

where allt dependence isxplicit, and the method to construct explicit solutions is the
following:

1) Take the base spac# to be a four dimensional HKT geometry with metdsifl
and torsion tensad;
2) The 1-form&” is given by%Z = — x4 H;
3) Choose a 1-forn#” obeying the constraints
16

d2-2272)" =0, dx2+-——d@ZAdP? =0,
( ) SRV



where™ denotes the self-dual projection on the base-manifdidwith positive

orientation fixed with respect to the volume fo@hn &' A & A &. Note that one
can always solve the second constraint; the general solistigiven by

16
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where® is a 2-form on.#. On substituting this expression back into the first
constraint equation, one finds an equation constrai@inghich must be solved.

*4(9/\df@)+*4dq3,

The Ricci scalar of the solution is

2X ¢
V3 2 2 X 2_
5.02,8% [d2) _X_e%ta@%gefé‘(dg—zgmg)z ,

=3 3 | x2 2

where the norms are computed with respect totthedependent base space metric.
Therefore, tha-dependence of the Ricci scalar can be read directly fromatieve
expression. Thus, in particular, for the solution to be tagat botht = +-c0 we must
require2 =0 andd%? = 0. In particular, this implies that the base space is conddigm
hyper-Kahler.

If one assumes tha¥Z is a conformally hyper-Kahler, thed%Z = 0. After some
coordinate transformations, the solution can be cast ifotme

ds? = —f2(dt+w)?+ f df, F= ?d(f(dt—i—w)) :

where

T

V3

ApkH :0, (dw)+:O.

dSs is obtained by taking the hyper-Kahler space td&eH = const andw = 0.

This form of the solution is exactly the form of the solutiarfsminimal ungauged
supergravity withGt = 0, except for the linear term inwhich arises inf 1 due to the
cosmological constant. Thus we are led to the following teeo

Any solution of D=5 minimal de Sitter supergravity with a pseudo Killing spinor
and a base space which is conformal to a hyper-Kéhler mashifah be obtained from
a “seed” solution of minimal ungauged supergravity simply ddding a linear time
dependence to the harmonic function.

This result generalises an earlier result by Behrndt andi€Cja4]. Moreover it makes
clear why we can superimpose certain solutions (like the BMiack hole [22] or
Godel type universes [23]) with a positive cosmologicalstant. But it also suggests
that solutions witlG™ = 0 do not generalise easily to de Sitter space. Most notaisly th
includes the black ring.

Hence, in contrast to the AdS theory, the de Sitter theoryitsdmulti-black hole
solutions (like the multi-BMPV de Sitter), in which one findwultiple black holes co-
moving with the expansion of the universe. This latter solutan be considered as a

and



five dimensional rotating generalisation of the Majumdap#&petrou de Sitter solution,
found by Kastor and Traschen [24].

As a second class of examples one can takeo be an HKT manifold admitting
a tri-holomorphic Killing vector fieldX. This means that both the base space metric
and the almost complex structures are preserved by Lie orggdong the integral
lines of X. Such HKT manifolds have been classified|[25, 26] and theucsdre is
completely specified in terms of a constrained 3-dimensiBirestein-Weyl geometry.
Explicit solutions can then be obtained, the simplest ofcltiakes the Einstein-Weyl
geometry to be a round 3-spherel[19]. But all these solutamassingular, as expected
from the above analysis of the Ricci scalar. The outstandunggtion is if, for any of
these solutions, these singularities have interestingrpnetations in terms of either
black hole or big bang/big crunch singularities. That remaa@o be seen.
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