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Abstract. Inthe last few years, it has been shown that above-1 Introduction
average rainfall and the following diffusion of excess wa-

ter into subsurface structures is able to trigger earthquakehat above-average rates of rainfall may trigger earthquakes
swarms in the uppermost brittle portion of the Earth’s crust.nad been speculated since the start of detailed seismic ob-
However, there is still an ongoing debate on whether the cruskervations in alpine areas (e.g. Schmedes, 1979; Roth et al.,
already needs to be in a critical-to-failure state or whether itj992; Schwarzmann et al., 1996). Several independent stud-
is sufficient that water is transported rapidly within channelsjes carried out at Mt. Hochstaufen (SE-Bavaria, Germany),
and veins of karst or similar geological formations to the un- central Swiss and Mt. Hood (Oregon, USA) showed that the
derlying, earthquake-generating layers. Also unknown is theriggering or forcing of earthquake swarm occurrence is real
role of other forcing mechanisms, possible co-variables anchnd might be described by a simple 1-D diffusion of rain into
probably necessary tectonic loading in the triggering processhe subsurface structure (Roth et al., 1992; Saar and Manga,
of earthquakes. Because of these problems, we do not use amo3; Kraft et al., 2006a; Husen et al., 2007). In this model,
explicit physical model but instead analyze the meteorologi-the effect of rain on a critical, i.e. close-to-failure crust is
cal and geophysical data via sophisticated statistical modelsnodeled by an increase of pore pressure, which in turn leads
We are interested in the influence of a more complete set ofg 4 reduction of normal stress acting on pre-existing faults.
possible forcing parameters, including the influence of syn-Hainz| et al. (2006) combined the model of diffusivity with
thetic earth tides, on the occurrence of earthquake swarmg, model of rate-state friction (Dietrich, 1994) in order to
In this context, regression models are the adequate tool, sincguantify the effect of pore pressure changes on seismicity.
the calculation of simple correlations can be confounded byrhey concluded that even small stress changes in the range
the other variables. Since our outcome variable (the numof 100 Pa are sufficient for earthquake triggering if the crust
ber of quakes) is a count, we use Poisson regression modejs in a critical state. Husen et al. (2007) further concluded
that include the plausible assumption of a Poisson distributhat the earthquakes close to Riemenstalden and Muothal re-
tion for the counts. For this study, we use nearly continu-gion (Central Swiss) are located on prestressed fault systems
ous recordings of a seismic and meteorological network inand would have happened regardless at a future date. Above-
the years 2002-2008 at Mt. Hochstaufen in SE-Bavaria. Ougyerage rainfall is seen as the final catalyst in earthquake trig-
non-linear regression model reveals correlations between eXering. Taking into account that the upper layer at both areas
ternal forces and the triggering of earthquakes. In addition tgs dominated by karst, Miller (2008) argued that a pure diffu-
the still dominant influence of rainfa”, theoretical estimated sion process m|ght not be the appropriate model to describe
tidal tilt show some weak influence on the swarm generationthe water flow in the upper portion of this prominent geo-
However, the influence of the modeled trend functions showgggical situation. Consequently, he concluded that the excess
that rain is by far not the most important forcing mechanismpressure due to heavy rainfall is much higher in compari-
present in the data. son with a pure diffusion model and therefore earthquakes
are produced even if the stress condition of the crust is not
close to critical. In all these studies, the question remains
whether rainfall is the only acting external forcing mecha-

Correspondence tov. Svejdar nism and whether the crust needs to be in an already criti-
BY (viola.svejdar@stat.uni-muenchen.de)  ca| condition. Even when the simple 1-D diffusion equation
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describes the time-depth dependency of the earthquake froi
in some cases fairly well, there might exist different mod-
els or details of the triggering and loading process hidden in
the data, which describe the time-depth distribution of earth-
quakes at least equally well. Poisson models with the numbe
of earthquakes have been applied successfully, see e.g. Gu
las et al. (2010). These models enable us to find comple;
relationships between possible triggers and earthquake oc
currence. In particular, lagged and nonlinear effects are par
of our model.
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Following Kratft et al. (2006a, b) and Hainzl et al. (2006), we tontude
restrict our analysis to the Mt. Hochstaufen area, a 1770 m
high mountain massif at the south-east Bavarian, northerjg 1 seismic and meteorological network installed at
alpine front (see Kraft et al., 2006b for a detailed geolog-mt. Hochstaufen. The stations shown were recording during most
ical description). This area has been known for its seis-of the time period analyzed in this paper. The circles represent seis-
mic activity since 1390 and has therefore been monitorednic (3C 1 Hz seismic sensors) stations, the triangles mark seismic
starting in the 1970ies by the geophysical observatory inand additionally installed meteorological stations (rain gauge, air
Furstenfeldbruck with a changing number of seismometerstemperature, ambient pressure, humidity).
Since 1980, the swarm character of these earthquakes, which =~ ) )
occur mainly in the summer months, has been investigate@€iSmic network deployed so far, we exclude this data in a
using digital mobile seismic equipment and one permanenf€cond estimation gl from the catalogue. Both catalogues
analog ink recorder in Bad Reichenhall. From 2001 on, thef€sult in @ magnitude of completenessigf =0.2. Using
area has been monitored by six digital short period seismidhis Mc estimate, all earthquake; smaller than this threshold
stations with permanent and continuous data transmission tg€ removed from further analysis.
the data center in (Fstenfeldbruck (Figl). During sum- The error in the hypocenter determination also changed
mer, this permanent network is extended by additional mo_severa'l times during the observatlon' penqd. At its bes't in
bile stations (two—six) in order to decrease the magnitude o002, it ranges roughly 200-300m in horizontal direction
completenessc) and increase the location accuracy. Ad- @nd approximately 500m in the vertical axes for larger and
ditionally, meteorological stations (rain gauge, air pressureSmaller events, respectively (Kraft et al., 2006b). For the
air temperature, humidity) have been co-located at three siteBei0d 2003-2008 andf = 0.2, the error in horizontal di-
since mid-2004 (RJOB, RNON, RMOA, see Fi. rection is around 400m Wh||g the error in the vertical axis
After the construction of the permanent surveillance IS @Pout 800m. As the terrain shows strong 3-D topogra-
network, seven distinct earthquake swarms occurred aPhy: shallow hypocenters and small epicentral distances to
Mt. Hochstaufen (March and August 2002; May, July, Au- the network, a pseudo 3-D velocity model is used for the
gust 2005; September 2007, April 2008). The maximumhypocent_er determination (Kraft et_ ql., 2Q06a). While the 3-
magnitude was reached in 2007, when an earthquéke D quel includes th'e topography, |t.|s using a homo.geneous
3.4 happened and was felt in a wide area. The majority 0fvelocny-dep_th function, whlch s_tlll give rise to questions on
the earthquakes, however, are small in magnitude§ M) errors of estimated locations. Figuitgives the hypocenters

and thus not felt. The largest earthquake swarm by numbeff all earthquakes between 2002-2008, which were recorded

of events was recorded in August 2002 after a period of exWith more than three stations and both P and S phases, re-

traordinary heavy rainfall with more than 600 events/month, SPECtively. R

None of these earthquakes were strong enough to be felt 't P&comes apparent that the main seismicity in the area
(Kraft et al., 2006a). As we will focus on the daily or hourly of Bad Re|chenhall_|s_ connected to the eastern section of the
event rate in the period of 2002—2008, we must first estimatd0chstaufen massif in a depth range betweerkm below
the magnitude of completenest) for the entire, heteroge-  S€@ Ievgl up to the surface. This earthquake .data .(Iocatlon,
nous catalogue. We will follow the approach by WoessnerSOUrce time and magnitude) form, together with rain gauge
and Wiemer (2008) and first calculaté, by the method of anq air temperature measurements as well as additional j[heo—
the maximum curvature. Using this value as a first rough ap_retpal_earth tide ca_lculatlons: the input data for_the foIIo_Wl_ng
proximation, we than apply the “goodness of fit test” method statistical time series modeling. For the detailed statistical

(Woessner and Wiemer, 2008) in an interval centered at thi@nalysis, we divide the data set into daily (number of earth-
first estimate. In order to test the stability of thg value and ~ du@kes per day; cumulative rain per day) and hourly sampled

because the swarm of 2002 was observed with the denselfne traces.
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Fig. 2. Hypocenters of seismic events in the time range 2002—-2008%4nd0.2. The swarms are represented on a grayscale: white (2002),
light-grey (2005), grey (2007) and black (2008) circles. The size of the circles is proportional to local magnitude estimations.

3 Modeling might already point to the existence of a loading mechanism
that transforms the crust from stable to critical conditions.
As the first step of our analysis, we try to reproduce theNevertheless, using the day exceeding the threshold as origin
time-depth behavior of seismicity following above-average time, we apply the simple 1-D diffusion equation introduced
rain fall events in 2003-2008 using the approach describegyy Shapiro et al. (1997) for modeling the seismic pattern:
in Kraft et al. (2006a) for the swarm data of 2002. In do-
ing so, we first estimate the time of occurrence of excep-z = +/(4x Dt) (1)
tional rain events and check whether there was a following
seismic swarm. Already the selection of a simple “above- with z representing the depth of the diffusive water front,
average” rain threshold produces a large uncertainty as iD diffusivity and ¢ time from onset of hydraulic pressure
is sometimes impossible to define a sharp onset of “overdisturbance at the surface. In Fig, the time vs. depth
average” rainfall. For the analysis presented here, we chosplot for all available swarm data with a magnitude exceed-
the threshold of 65 mm day for practical rather than proper ing M; = 0.2 are shown together with their corresponding
physical reasons. Using this threshold condition, we arelocal magnitude estimate. In addition, the theoretical time
able to identify seven periods since 2001 (March 2002, Au-depth relationship of the hydraulic pressure front according
gust 2002, May 2005, July 2005, August 2005, Septem-to Eq. (1) is also shown whenever the chosen rain rate thresh-
ber 2007 and April 2008; see Fi@), which were also old of 65 mm day® was exceeded. To keep the analysis sim-
selected by a human interpreter when identifying seismicple, we use the diffusivity estimates by Kraft et al. (2006a)
swarms. Other promising variables may exist in the vol- for the earthquake swarms of 2002. Overall, this oversim-
ume influx or the cumulative rain amount. Without detailed plified 1-D diffusivity model seems not to give reasonable
knowledge of the influx/outflux budget of the hydrological fits for most of the swarm data. Looking more closely at
system at Mt. Hochstaufen, however, it seems not feasibld-ig. 4, several problems become apparent when applying the
to use them without adding more complexity to the model. model to the data. First of all, it is not clear what "above-
Nonetheless, the definition of swarm is also sometimes dif-average” rainfall quantitatively means. For example, if the
ficult and biased by the interpreter. In Fig. the thresh-  rain is distributed over several days, how should the thresh-
old of 65mmday? rain was apparently exceeded in 2004 old and the date of exceedance be defined? What is the “ef-
and 2006 without being followed by a seismic swarm. This fective” location or depth of the pressure disturbance? In
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l ' ' ‘ Table 1. Allocated depth categories of the quakes.
{: Depth Category j=1 j=2 j=3 j=4
£
£ Depth in km 10,-1] 1-1,-2] 1-2,-4] 1-4,—o0[
5 Number of quakes 162 56 144 14
|

= 12i 1 l uncertainty in estimating the source depth by this sparse net-
S 10} ] work (Kraft et al., 2006b). The chosen interval bounds were
§ 8f J varied several times with different interval bounds and dif-
2 6f l l l 1 ferent numbers of depth categories (from 3 to 6), which did
§ 4r l not affect the direction of our results in a massive way.

“o2r 1 Since the influence of rain possibly lags behind, we define

20002 2003 2004 2005 2006 2007 2008 . ..
Date x;—; = i-days lagged amount of rain in mm at day

fori =0,...,20. The number of lagged days included in the
Fig. 3. Rain rate and earthquake rate plots for the period of analysismodel was chosen arbitrarily. Longer lagsitit 30 were ex-
The threshold of 65 mm day is also shown as a dashed line. The amined in further studies without noteworthy improvement
arrows mark the reported occurrence of earthquake swarms. of the model. Furthermore, the influence of another external
covariateb, = temperature at dayas well as the influence of
tide induced variables;;, defining gravity, NS and EW tilt,
Fig. 4, we have chosen an “average” free surface of the areaS and EW strain, are examined. Here, we have to empha-
at 500ma.s.l. Clearly a 3-D model of the hydraulic systemsize that the tide variables are computed using a purely the-
of the Mt. Hochstaufen massif is needed but with the presenbretical relationship by using the SPOTL program package
knowledge of the hydrological system this is not feasible. (Agnew, 1996). Real in situ measured tilt and strain might
In addition, the earthquake data do not show any backfronktrongly deviate from these values due to the present local
of seismicity, which is normally observed at hydraulic frac- geology complexities.
turing experiments when the fluid influx has ended (Shapiro  As the response variable is a count, an appropriate model-
and Dinske, 2007). All these problems lead us not to useing is given by the Poisson regression. It is defined by
even more complicated but less justified physical models but
to instead apply a suitable statistical analysis in order to de-  Yj¢lXi—i,bi, 21 ~ Poissonexp(n i)
tect and compute the influence of possible external forcingf (Y, |x;—;,b;,z1,) = exp(n ;)
mechanisms. We additionally expand our observed exter- . ) o )
nal parameters by including strain or tilt induced by tides Wheren;. is the predictor containing the explanatory vari-
and air temperature into the analysis. The statistical multi-2P€s in depth categoryat day. _
component analysis will thus lead to a better understanding AS @lréady mentioned in the abstract, the use of regression

of the observed seismicity pattern and will also guide futureM0dels has advantages over the analysis of simple correla-
measurements in this area. tions: a correlation can be confounded by other variables.

In a regression model, we are able to analyze correlations
of interest of two variables adjusted for the interfering effect
4 Statistical modeling by Poisson regression based on of these confounders. We furthermore chose Poisson regres-
daily values sion in order to avoid negative expectations. The predictor is
linked with the exponential function, which ensures positive
In our study we want to apply an alternative model in order expectations (which is adequate for count data) and is the
to prove the possible influence of rainfall and other externalstandard option in the context of statistical modeling. This
forcing parameters on the occurrence of shallow earthquakesgnodel implies a multiplicative linkage of the covariates. The
For a first data set, using daily values of the different inputfact that strong rainfall can have a larger effect, if the general
variables, the response variable is defined as expectation of earthquakes is higher, seems to be reasonable
and fits into the concept of criticality of the monitored crustal
segment.
The number of quakes are observed within the four depth Except the instant influence of the rain we also take the
categories shown in Table In this case, the depth is given i =1,...,20lagged rain days into the predictor. The predictor
relative to Earth’s surface. While the chosen interval bounddn depth category is given by
are set without direct geological evidence, they reflect the

Y;; = Number of quakes in depth categgrat day:.
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Fig. 4. Time vs. depth relationship of swarm earthquakes in the years 2005, 2007 and 2008. The origin time is set to the corresponding day
when the rain rate exceeded the threshold of 65 mrmT8ass reference depth an average value of 500 ma.s.l. was chosen. For comparison,
three different diffusivity values are used to show the fit of Eq. {1)50.4; 1.1 — dashed) = 0.75 — solid). The diffusivity values are taken

from Kraft et al. (2006a). The size of the circles is proportional to local magnitude estimations and are the same as in Fig.

20 L
=S xi B kb S M F@) 2 model the trendf (z) in the data in a flexible nonlinear way.
e ; =i i+ t ; " / @) We thereby adjust for the effect of not observable covariates,

o ) _ which leads to increased trust in the detected significances in
where theg;; are the coefficients for rain lagin depth cat- oy modeling.

egory j and¢; define intercepts for depth categofy « is Due to interpretation and collinearity problems of the
the coefficient describing the instant influence of the tem-g4 rain lag depth interaction parametgs, it seems to be
perature. In case of the hourly computed five tide inducedreasonable to make some constraints on the interaction pa-
variables (gravity; NS and EW tilt; NS and EW strain), the yameters. We make the following assumptions:

daily maximum of the absolute values was used for each

of the five tide variables. In order to evaluate which of the 1. within a fixed depth category the effect of adjacent rain
five tide variables should be taken into the model, selection  lags should be similar,

methods based on Akaike’s information criterion (AIC, see
e.g. Akaike, 1973) were used. Via backward and forward 2
selection (see e.g. Hastie et al., 2009), relevant tide vari-

ables were preselected and then put into the motletle-  This can be realized by the polynomial distributed lags

scribe the parameters of the tide effects. In order to copgppL) approach (Schwartz, 2000) where it is assumed that
with detected correlations of the deviance residuals in thepe effect of the rain with lag in depth category can be

daily data set, generalized estimating equations (Fahrmeifescribed as a two-dimensional low order polynomial. A
and Tutz, 2001) were calculated with the statistical programqadratic polynomial is given by

R (http://cran.r-project.org/package gee). Second degree

B-Splines (Fahrmeir and Tutz, 2001) with six inner knots

for a fixed rain lag the effect of adjacent depth categories
should be similar.

www.nonlin-processes-geophys.net/18/849/2011/ Nonlin. Processes Geophys., 88082011
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Table 2. Lags of prime importance on the number of quakes (Pois-Table 3. External coefficients besides rain-depth coefficients in

son regression based on daily values.)

Depth Category j=1 j=2 j=3 j=4
Depth in km 10,-1] 1-1,-2] ]1-2,—-4] ]—4,—o0
Number of quakes 162 56 144 14
imax(j) Lag13 Lag13 Lagl3 Lagl3
Bimast 0014 Q010 Q007 Q005
Bij=a + 810 +y1-j +82:i% + y2- jP A vi- ®)

fori =0,...,20andj =1, ...,4.
Due to the linearity in the parameterss1, y1, 82, y2, v, the

the Poisson regression based on daily values (Backward Selection).
Temperature was not available at the beginning of the observation.

Estimate P-Value
Temperature 0.079 0.0195
Tide induced tilt North South 0.028 0.2396
Tide induced strain North South —0.099 0.2520
Tide induced strain East West 0.047 0.5536

In Fig. 7, the course of the estimated distributed lag coef-
ficients B; ; can be seen for every depth category. In every
depth category, the maximum effect of rain on the number of
quakes is on lag 13.

The coefficient plot also shows a decrease of the rain ef-

part describing the rain-depth interaction in the predictor canfect with increasing depth. The larger the distance of a depth

be written as:

th—i Bij = Oé'zxz—i +51'Zi'xt—i +
i i i

—— ———
Wt Wsqt
. .2
+ yl']'le7i+82'zl Xp—i +
i i
—— ——
Wyt Wyt
.2 . .
+ y2-] 'sz—i +v-J 'Zl Xp—i-
i i
Wyt Wyr

After construction of the new design variables, ..., w, a

known generalized linear model (Poisson regression) can be

calculated and the estimaté,{:; can be determined via Eg)(

out of the estimates, ..., v. With
wj=@ i j i® j* i-j) and
V = estimated covariance matrix 6f= (¢, ..., v)’

the standard error (se) 67]- can be calculated as

Se(,éij) = \/ui;Vuij.

class from the earth’s surface (depth category 4), the smaller
and less significant the respective coefficients. The strength
of the maximum effect in each depth class decreases from
0.014 (depth category 1) to 0.005 (depth category 4), see Ta-
ble 2. This corresponds to an increase of the expected num-
ber of earthquakes of the factor €2p x 0.014) = 1.15 and

exp(10x 0.005) = 1.05, respectively per 10 mm additional
rain.

5.1 Accuracy of the maximum

We address the question of the accuracy of the determination
of the maximum in each depth category. Focusing on the
polynomial form of the rain-depth coefficients

Bij=@+81-i+ 1) +82-i% + P2 j2 0
the maximal lag in every depth categojycan be obtained
after differentiating with respect tb and equating to zero
via:
—S =D

2.5,
The estimated variance of the maximum in each depth cate-
gory can then be calculated as:

imax(j) =

Furthermore, a statistical test for the possible rain effect caﬁ/ar(/im;( n) = (4)

be performed.

5 Results of the Poisson regression based on daily values ( T 25

In Fig. 5, the number of quakes on each of the= 2100

-1

) - 252

1 &4bj I S1+0-j
7 3 ) Vary.b.0) 22
3

262

days for each depth category is shown. As expected, the least For the Poisson model based on daily values, the estimated
quakes are counted in the deepest category 4. standard deviations (square root of Bjjof the maximum in

The amount of rain in millimeters as well as temperatureeach depth categories can be seen in Tdbl€he standard
for then = 2100 days can be seen in F&.The temperature deviations of the maxima alternate poorly for the four depth
is only available in the second part of the data set. Exemplarcategories and the maxima can be assumed to be specified
Tilt North South can be seen in the lowermost part of Big. relatively exact with standard deviations of abotit.0
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Fig. 5. Daily counts of quakes in the Hochstaufen area in the sample period of 2100 days by depth categories.

As a sensitivity analysis we fitted our model with alterna- Table 4. Accuracy of the maximum for the Poisson regression
tive depth categories. We tried less (three) and more (Up tQaseq on daily values.
six) depth categories. When testing these alternative depth
categories, the maximum lag effect can still be found at  pepth category j=1 j=2 =3 j=4

lag 13 and lag 14, respectively. The results for the other pa- —
rameters remain similar. Imax(j) Llagl3 Lagl3 Lagl3 Lag13
\/VarGmax ) 0.680 0.661 0.653 0.655

5.2 Further covariates and prediction

The influence of tides and temperature can be found in TaThe prediction was done by a 2-fold cross validation (Hastie
ble 3. Three variables were preselected by a backward seet al., 2009). One can see that the prediction is promising
lection starting with a model with all possible covariates us-in depth categories 1 and 3, the categories with large num-
ing the AIC criterion. Nevertheless, none of the tide com- bers of quakes (see Tablg. The days where the number
ponents shows statistical significance (statistical significancef quakes increase can be detected in depth category 1 and
= p-Value< 0.05). The influence of the temperature is sig- 3, whereat a certain underprediction can be seen. In depth
nificant with the coefficient =0.079. This is surprising as categories 2 and 4, where we count only 56 and 14 quakes,
the temperature effect is modeled as acting instantly and natespectively, the prediction of the earthquakes cannot func-
with a possible time delay. This delayed temperature effection reliably enough.

can be expected when a thermo-elastic strain component is

used in the model (Ben-Zion and Leary, 1986). The esti-

mated component of the trend is shown in FgThe trend 6 Results of the logistic regression based on hourly
contains the information not explained by the available co- values

variates. Figur® shows a comparison of the observed num-

ber of quakes in each depth categgrgblack dots) with the  For a shorter time period, the data is analyzed on an hourly
predicted number of quakes (red dots) in each depth categorasis. This restriction is caused by the (late) installation

www.nonlin-processes-geophys.net/18/849/2011/ Nonlin. Processes Geophys., 88082011
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Fig. 6. Daily data in the Hochstaufen area in the sample period of 2100 days. Temperature was not available at the beginning of the

observation.

of meteorologi'cal stat.ions around Mt. Hochstaufen in mid - pe 5. Lags of importance on the number of quakes (logistic
2004. For the time period 2001-2003, we only have access tQyression based on hourly values).

daily rain values from meteorological stations of the national
weather service. Therefore, our response variable converts in

this section to Depth Category  j=1 j=2 j=3 j=4
Y;; = Number of quakes in depth categoryat hourt Depth in km 10,-1 1-1,-2] 1-2-4] 1-4,-oc]
. Number of quakes 36 18 57 7
with imaxj) Lagl0 lagll  lagl?  Lag1l3
x;_; = i-days lagged amount of rain in mm at hour Bimasj) 0010 Q006 0004 Q003

As the number of quakes in each depth category is rarely |n Fig. 10, we can see that the rain depth interaction co-
>1 (only in 9h from 21 April 2004-27 February 2007) the efficients behave similarly to the coefficients based on daily
Poisson model is changed to a logistic regression which simyajues. The closer a depth category is to the Earth’s sur-
ply distinguishes if there a quake occured or not. As no correface (depth category 1), the larger the coefficients. In depth
lations in the deviance residuals could be detected, a generadjategory 1, the |agged rain of prime importance is the rain
ized linear model was calculated. Anonlir_lear trgf"(gl)_ was 10 days before a quake (see TaB)ewhile in depth cate-
added to the model so that the generallzed additive mOdeéory 4 the |agged rain of prime importance is the |agged rain
gamwas usedlfttp://cran.r-project.orgpackage gam). 13 days before a quake.
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Fig. 7. Estimated rain depth coefficier;&j with confidence intervals (dashed lines) for every depth categ@Boisson regression based
on daily values). * indicateé,-ma)«j) for each depth category.

o~ Table 6. Accuracy of the maximum for the logistic regression based
e on hourly values.
5 - -
§_ Depth Category  j=1 j=2 j=3 j=4
s 7 imaxj) Lag10 Lagll Lagl2 Lag13
T o \/Verlimas j)) 1.288 0.934 1358  2.139
]
=
o Table 7. External coefficients besides rain—depth coefficients in the

T T T T 1 logistic regression based on hourly values (Backward Selection).

0 500 1000 1500 2000
Days since January 1st, 2002 Estimate P-Value
Ti t 0.031 0.2326
Fig. 8. Estimated trend componenf (¢)) of the daily data set. Tﬁ:{rgpger:\l/i?;echanges _0.006 0.3648
Tide induced tilt North South 0.007 0.5680
. ] Tide induced tilt East West —0.011 0.0018
The accuracy of the maximum can be seen in TéblEhe Tide induced strain North South 0.033 0.5276

maxima are not as exact as in the daily data set.

The tide variables (tide induced gravity, tilt and strain
changes) to include in our model, according to the backwardyiih q| other covariates, only Tilt East West shows statisti-
selection based on the AIC criterion, include the varlablesca| significance (p-Value 0.05) in both procedures.
shown in Table7. As a sensitivity analysis, we performed a
forward selection using the AIC, which gives the preselected
variables presented in Tale It becomes apparent that, de- 7 Conclusions
pending on the selection criterion, we receive different tide
variables to include into our model. However, when includ- The application of the established 1-D diffusion model (i.e.
ing the preselected variables in the full hourly data modeldepth only) assumption for the earthquake front vs. rain
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Table 8. External coefficients besides rain—depth coefficients in the N
logistic regression based on hourly values (Forward Selection). =
g N
Estimate P-Value é o
£
Temperature 0.030 0.2527 8 «
Tide induced tilt East West —0.011 0.0014 %
=

-4

Tide induced strain East West —0.013  0.2841

-6

injection point shows profound differences with the observed
maximum depth-time distribution for the years 2003—2008 at
Mt. Hochstaufen. In this context, it is worth mentioning, that Hours since April 21st, 2004
in later parts of the depth-time plot (see FHg=30 days af-
ter rain onset), no depth variation nor a clear backfront ofrig. 11. Estimated trend component (¢)) of the hourly data set.
seismicity as described by Shapiro and Dinske (2007) can be
seen. Because of this obvious discrepancy of the 1-D diffu-
sion model, we apply different, purely statistical models in  With the use of hourly data, the time lag of rain influence
the main part of this paper in order to evaluate the influencechanges. Here, the shallow depth intervals show a reduced
of various parameters (rain, air temperature, tidal parametime lag of reaction of about 11 days, which is close to the
ters) on the forcing of earthquake swarms. The common wayalue of 10 days estimated by Kraft et al. (2006a) using a
of parameterizing earthquake swarm data into a daily basepurely linear regression model. In this model, also a more
results in a pronounced lag time and significant coefficientspronounced time-depth relation can be found.
in case of correlation with rain data. Surprisingly and in con-  Overall, this study independently emphasizes the impor-
trast to the finding of Kraft et al. (2006), the most important tance of rainfall on the triggering of earthquake swarms at
time lag is constant over all depth intervals in the daily dataMt. Hochstaufen. What remains is a significant influence of
set, while the statistical significance and the influence of thetemperature with no time delay on the occurrence of earth-
computed coefficients is smaller in deeper source regionsquake swarms in the daily data set. This raises questions
This might point to either a very unsharp time dependenceegarding whether the temperature should be modeled with
of the earthquake depth relationship or possibly reflect un-a possible time delay. Following the model of Ben-Zion and
certainties of the hypocenter location and the chosen deptheary (1986) the topography of Mt. Hochstaufen may influ-
intervals. Nonetheless, the increase in the number of earthence the temperature field in a way that a local build-up of
quakes depending on rain influx can be estimated to be apnhomogeneous thermo-elastic strain is possible. This hy-
prox. 10 % per 10 mm rain at its peak (i.e. after 13 days). Thepothesis should be tested in the future.
estimated delay is a bit larger than it was estimated by Kraft In order to answer questions about the precise influence of
et al. (2006a), which used linear cross-correlation and thdides on the swarm quake occurrence, the build-up of local
data set of 2002. While the tidal parameters (strain and tilt)stress transforming the crust from stable to critical condition
are currently not measured with the existing monitoring net-and the mechanism of water transport to the fault systems,
work, it is possible to take them into account by calculating the installation of tilt and strain components to the existing
approximate values using a theoretical model (SPOTL: Ag-monitoring network as well as a local study of persistent scat-
new, 1996). This synthetic model does not account for anytering In-SAR and a detailed modeling of the hydrology is
local geology or even topographic effects and might thereforeneeded as a next step at Mt. Hochstaufen. The significant in-
not reflect the true situation at Mt. Hochstaufen. We further-fluence of a trend function in both the daily and hourly data
more didn’'t apply a depth dependent model as this wouldset with a similar period (approx. 400500 days) makes a
just lead to a more complex statistical model without any non seasonal loading process likely. This, however, needs
physical constraint. It becomes apparent, however, that thendependent strain magnitude measurement and possible ac-
influence of a tidal component is, when present at all, verycumulation of water and hydrological discharge modeling.
weak. None of the modeled parameters show a statistically However, applying the Poisson model with distributed rain
significant influence on the daily earthquake rate. lags, we are able to quantify the influence and importance of
The results of the hourly analysis shows a similar pic- various external parameters on triggering earthquake swarms
ture. The model parameters chosen again by the AIC forat Mt. Hochstaufen without using an explicit physical model.
ward and backward selection now show only a significantlyIn doing so, we were also able to confirm results of Kraft et
negative influence of the east-west tilt component. Howal. (2006a) and Hainzl et al. (2006) about a strong influence
this can be explained in the geological or tectonic contextof rain on the earthquake triggering process.
at Mt. Hochstaufen needs to be answered in future studies
where true tilt and strain may be measured in situ.
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