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Abstract. Nonlinear wave run-up on the beach caused by
a harmonic wave maker located at some distance from the
shore line is studied experimentally. It is revealed that under
certain wave excitation frequencies, a significant increase in
run-up amplification is observed. It is found that this ampli-
fication is due to the excitation of resonant mode in the re-
gion between the shoreline and wave maker. Frequency and
magnitude of the maximum amplification are in good corre-
lation with the numerical calculation results represented in
the paper (Stefanakis et al., 2011). These effects are very im-
portant for understanding the nature of rogue waves in the
coastal zone.

1 Introduction

Recent huge tsunamis demonstrate nonlinear behaviour on
the coast leading to strong impact. It was also revealed re-
cently that the number of abnormally large and suddenly ap-
pearing waves (rogue waves) observed in the coastal zone is
sufficiently larger than Gaussian statistics predicts (Nikolk-
ina and Didenkulova, 2011, 2012). Analysis of tsunami
records showed that reflections due to bottom topography
may result in the appearance of resonant mode in the coastal
zone, see for instance Neetu et al. (2011). The study of the
coastal rogue waves is based on the nonlinear theory of shal-
low water (Kharif et al., 2009; Didenkulova and Pelinovsky,
2011; Slunyaev et al., 2011). To characterize the impact of
waves on coastal infrastructure, the systematic study of run-
up process is undertaken, and a lot of papers summariz-
ing the progress in the analytical solutions of the nonlin-
ear shallow-water theory have been published by now (see

for instance Carrier and Greenspan, 1958; Pelinovsky, 1982;
Synolakis, 1987; Pelinovsky and Mazova, 1992; Carrier et
al., 2003; K̂anŏglu and Synolakis, 2006; Didenkulova et al.,
2007; Madsen and Fuhrman, 2008; Kajiura, 1977). Recently,
Stefanakis et al. (2011), on the basis of numerical simulations
of the nonlinear shallow-water equations, pointed out the ex-
istence of resonance effects in the process of the long wave
run-up. It should be noted that such resonance effects were
predicted in Antuono and Brocchini (2010) in the framework
of linear theory.

The main result of Stefanakis et al. (2011) is that at a cer-
tain frequency of the waves there exists a significant increase
in the run-up amplitude. According to calculations, the max-
imal run-up height can be 50 times greater than the free sur-
face oscillation amplitude used as the boundary condition in
the numerical calculations. It should be emphasized that the
estimations presented in the different papers cited above pro-
vide us an order of maximal run-up height much less than
in Stefanakis et al. (2011). It was established in Stefanakis
et al. (2011) that the wave period for which maximal run-up
amplification is observed depends on the slope of the bottom
and the depth of water in the place where the waves are ex-
cited. This period is much larger than the “natural period” –
time needed for perturbations to run from the point of exci-
tation to the shoreline and return back. Results obtained in
Stefanakis et al. (2011) pose a lot of questions. That is why
in order to investigate the physical mechanisms of run-up
amplification, needed to explain the coastal extreme rouge
waves, we carried out a physical simulation of this process
in the hydrodynamic channel with an inclined bottom. The
simulation is carried out in such a way that its results can be
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used for comparison with numerical calculations presented
in Stefanakis et al. (2011).

Before the presentation of experimental results, we give
briefly some theoretical estimates. The long wave run-up on
a plane beach is described by the nonlinear shallow-water
equations:

∂u

∂t
+ u

∂u

∂x
+ g

∂η

∂x
= 0 and

∂η

∂t
+

∂

∂x
(u(h + η)) = 0, (1)

whereu is the depth-averaged velocity,h = h(x) is the un-
perturbed water depth,η = η(x, t) is the free surface dis-
placement, and g is the acceleration of gravity. For linear
variation of water depth,h = xθ (θ is the tangent of bottom
slope angle,x is horizontal coordinate), solutions of these
equations may be found using the hodograph transformation
(details can be found in papers Carrier and Greenspan, 1958;
Pelinovsky, 1982; Synolakis, 1987; Pelinovsky and Mazova,
1992; Carrier et al., 2003; K̂anŏglu and Synolakis, 2006; Di-
denkulova et al., 2007; Madsen and Fuhrman, 2008; Kajiura,
1977). For instance, if the incident wave far from the shore
is a monochromatic wave of frequencyω, the solution is pre-
sented in the following form:
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where ϕ(σ,λ) is an auxiliary function, σ = 2[g(h +

η)]1/2,andJ0 is the Bessel function of zero order. Generally
speaking, wave field in the vicinity of the shoreline (x = 0) is
not monochromatic, but if the nonlinear effects are ignored,
the solution (Eq. 2) is written in the following form:

η(x, t) = RJ0

(√
4ω2x/gθ

)
cos(ωt) . (3)

It is a standing wave with knots coinciding with zeros of the
Bessel function. The constantR plays the role of the ampli-
tude of the water oscillation on “unmoved” shore (x = 0). As
it can be rigorously shown from Eq. (2),R is the maximal
run-up amplitude of the wave on the coast (moving shore-
line) (Pelinovsky and Mazova, 1992). Far from the shoreline
the wave is always linear because its amplitude is much less
than water depth. Using asymptotics of the Bessel functions
for large values of arguments, we can select the incident wave
with amplitudeA at the distanceL from the shoreline and ob-
tain the amplification ratio in the following form (Pelinovsky,
1982; Pelinovsky and Mazova, 1992; Madsen and Fuhrman,
2008):

R/A = 2
√

π
(
h0ω

2/gθ2
)1/4

= 2π
√

2L/λ0 , (4)

whereλ0 is the wavelength on the isobathh0 located on dis-
tanceL from the shore. It is important to point out that the
asymptotic (Eq. 4) is valid for large values ofL/λ0 and rep-
resents nonlinear amplification ration obtained directly from
Eq. (2). In the case of small values ofL/λ0, correct selection
of incident and reflected waves is possible if the beach of
lengthL is matched with flat bottom. In this case the ampli-
fication ratio is given by Pelinovsky (1982), Pelinovsky and
Mazova (1992), Madsen and Fuhrman (2008), and Keller and
Keller (1964):

R/A = 2/

√
J 2

0 (4πL/λ0) + J 2
1 (4πL/λ0). (5)

Comparison of Eqs. (4) and (5) is given in Fig. 1. As it can be
seen, the resonance effects are very small because the “res-
onator” (0< x < L) is open from one boundary. For tsunami
application, the characteristics of the incident wave very of-
ten are unknown. Meanwhile, a lot of buoys are now installed
along the coasts (tide-gauge stations and DART buoys), and
tsunami records on such buoys can be considered as input for
solving the run-up problem. In the simplified geometry of a
plane beach, the buoy measures the standing wave (Eqs. 2
or 3), and in the case of small wave amplitude, free surface
oscillations are described by:

η(L, t) = a cos(ωt) , and a = RJ0

(√
4ω2L/gθ

)
. (6)

The amplification factor computed for the tsunami wave
propagated from the buoy to the coast,

C = R/a = J−1
0

(√
4ω2L/gθ

)
, (7)

has evident resonant properties and can be very large. Such
big values of local amplification factors have been discov-
ered in a recent paper (Stefanakis et al., 2011) where the re-
sult was obtained by numerical computation. In fact, it is not
the resonance caused by a particular frequency of incoming
wave but instead a ratio between the run-up and the wave am-
plitude measured at a particular distance from the coastline.
This amplification of run-up ratio can be very important for
prediction of tsunami behaviour based on data of the nearest
buoy. Following Stefanakis et al. (2011), we call amplifica-
tion of run-up ratio at particular frequencies as resonance.
Analytical and numerical results described above are exam-
ined below in physical experiment.

Experiments were performed in a long hydrodynamic
flume of 0.5 m width. The flume is equipped with a wave
maker controlled by computer. To simulate an inclined bot-
tom, a PVC plate with thickness of 1 cm is used. The
plate is placed at different angles relative to the horizon-
tal bottom of the flume in the vicinity of the wave maker
(see Fig. 2). Three series of experiments have been per-
formed for water depthh near the wave maker and length
L, (h0 =0.245 m, L =145.8 m, θ = 0.168) (h0 = 0,26 m,
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Fig. 1. Amplification run-up ratio: dashed line corresponds to the
constant beach slope Eq. (4); solid line obtained for inclined beach
matched with horizontal bottom Eq. (5).

L = 135 m,θ = 0.192) and (h0 = 0.32 m,L = 121.5 m,θ =

0.263). Two resistive probes (P1, P2, see Fig. 2) are used to
measure a displacement of water surface. The first of them,
probe P1, is placed at a fixed distance of 1 cm from the wave
maker. The position of a mobile one, P2, is changed using
a coordinate system. Probes allow us to investigate the am-
plitude of free surface oscillations and phase of oscillation
(probe P1 is used as a “clock”) along the flume. Run-up
height is determined by processing a movie that is shot by
a high-speed camera mounted as shown in Fig. 2. The wave
maker allows us to excite a harmonic wave of a given fre-
quency and it works in two regimes. The first regime allows
controlling the amplitude of wave maker displacement, the
second one allows controlling the amplitude of force applied
to the wave maker. In both regimes it is not possible to con-
trol free surface displacement, as was done in the numerical
experiment. That is why to study the run-up amplification,
simultaneous measurements of the amplitude of free surface
displacement near the wave maker and maximal run-up are
carried out for different frequencies of excitation.

The force control regime was chosen for all experiments.
The frequency dependence of the amplitude of free surface
displacement near the wave maker (a), maximal run-up (R)

and coefficient of run-up amplification are shown in Fig. 3
for the slope of the bottomθ = tan(α) = 0.263. The ampli-
tude of force applied to the wave maker was the same for all
frequencies. The amplitude of free surface displacement has
peaks at frequenciesf1 = 0.44 Hz andf2 = 0.78 Hz. They
are the resonant frequencies of the system. The maximal run-
up does not have sharp peaks, only a small increase of R in
the vicinity of f1 andf2 is observed (Fig. 3b). The coeffi-
cient of run-up amplification (Fig. 3c) increases very sharply
in the vicinity of f3 = 0.28 Hz andf4 = 0.64 Hz. It is ev-
ident that maximal amplification of run-up is observed for
frequencies corresponding to the minimal amplitudea. In

Fig. 2.Schema of experiment: resistive probes (P1, P2), high-speed
video camera (2), wave maker (3), inclined bottom (4).

the vicinity of the wave maker, the free surface amplitude
is sufficiently small and the signal is very noisy. That is why
the coefficient of run-up amplification requires rather deli-
cate measurements of free surface displacement: a band-pass
filter was used to measure the amplitude of the harmonic cor-
responding to wave maker forcing.

It is important to note that the frequency and the coefficient
of maximal amplification do not depend on the method of
wave excitation. Results presented in Fig. 3 were obtained for
the force-controlled regime of the wave maker; the same re-
sults for coefficient of run-up amplification were obtained for
the displacement controlled regime. It should be noted that if
the amplitude of force applied to the wave maker increases,
the coefficient of run-up amplification has small changes up
to the appearance of wave breaking near the coastline.

Using movie recorded by a high-speed camera, we esti-
mate the so-called wave-breaking number “Br” (Denissenko

et al., 2011): Br =V 2

gR
, whereV is velocity of fluid particles

at x = 0. Under our experimental conditions, this number is
small enough: Br< 0.2.

Amplification coefficientC was investigated for three bot-
tom inclinations. Frequencies of maximal amplification de-
pend on angleα. To compare results obtained for differ-
ent anglesα, the non-dimensional frequency (F) was intro-
duced:F = f/f0, f0 = K−1(g/h0)

1/2θ , andK = 5.23. Re-
sults are presented in Fig. 4. Non-dimensional frequencies of
maximal run-up amplificationF1 = 1 for different anglesα
coincide very precisely. The coefficient of maximal ampli-
fication, corresponding to the frequencyF1 = 1, is approx-
imately the same for different inclinations:C ∼ 20–25. The
second peak of run-up amplification coefficient is observed
for frequencyF2 = (2.2–2.3)F1. Non-dimensional frequency
F2 slightly depends on bottom slope; a small peak is ob-
served also for frequencyF3 ∼ 3.5F1.

It should be noted that in our experimental conditions, run-
up without wave breaking is observed for small frequencies
of wave excitation ofF < 2, while for higher excitation fre-
quencies ofF > 2 nearx = 0, the surface wave becomes
strongly nonlinear and run-up occurs after the wave breaking.
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Fig. 3. Frequency dependence of amplitude on free surface dis-
placement (resonance curve)(a), maximal run-up(b) and ampli-
fication of run-up (ratio of the maximal run-up and the amplitude of
surface wave)(c) for slope tanα = 0.263.

The wave breaking does not prevent precise determination
of maximal run-up position. Excepting high frequencies of
F > 3, the wave front on a sloping beach was one dimen-
sional, and maximal run-up did not depend on coordinates
along the direction perpendicular to axisx. To study fre-
quency dependence of run-up amplification more precisely,
the spatial structures of the free surface oscillations occur-
ring at frequencies corresponding to the resonant frequen-
cies of the system (f1 = 0.34 Hz,f2 = 0.58 Hz) and at fre-
quencies of maximum run-up amplification (f3 = 0.205 Hz,
f4 = 0.46 Hz) have been investigated. The results are shown
in Fig. 5 for bottom slopeθ = 0.168. Amplitude and phase
of free surface displacement are shown by diamonds and cir-
cles. Experimental data are compared with the analytical so-
lution (Eq. 3) for free surface displacementη. Theoretical
curves obtained from Eq. (3) are shown in Fig. 5 by thick
lines. The amplitudea and the phaseφ of free surface har-
monic oscillations are shown in Fig. 5. Because the Bessel
function changes sign, amplitude is chosen asa = |J0|, φ = 0
if J0 > 0 andφ = π if J0 < 0. One can find in Fig. 5 that
in the experiment the amplitude does not go to zero and

Fig. 4. Dependence of run-up amplification on normalized fre-
quency for different bottom slopes.

phase changes smoothly for all frequencies. Note that fre-
quencies of maximal run-up amplification (f3 = 0.205 Hz,
f4 = 0.46 Hz) correspond to spatial modes having minimal
amplitudes near the wave maker; resonance frequencies (f1
=0.34 Hz,f2 = 0.58 Hz) have maximum amplitudes of free
surface displacement near the wave maker. It should be noted
that according to the solution (Eq. 1), frequencies of maximal
run-up amplification correspond to the spatial modes with
boundary conditionη(L, t) = 0, and resonant frequencies
correspond to mode with boundary condition∂η (L, t)/∂x =

0. In other words, if one uses the linear solution (Eq. 1),
the coefficient of run-up amplification in this approximation
would be infinite:a = 0 atx = L. In the experiment, the am-
plitude is small, but finite. Comparison of curves presented
in Fig. 5a,b,c,d shows that differences between the theoret-
ical solution and experimental data increase with frequency
of excitation. For example, these differences are much more
significant forf2 than forf3.

Let us compare the experimental results with numerical
simulations (Stefanakis et al., 2011). The numerical simu-
lations on run-up were prepared for fixed amplitude of free
surface displacement as a boundary condition atx = L. In
the experiment, unlike the numerical calculations, it is not
possible to generate waves with fixed amplitude at a defi-
nite coordinate. Instead it, the simultaneous measurements
of the free surface displacement in the vicinity of wave
maker and maximal run-up have been performed. In our ex-
periment, the frequencies of maximal run-up amplification
are very close to those that were obtained in the numer-
ical calculation. We estimated the frequencies of the first
peak asf3 =f0 =K−1(g/h0)1/2θ , K = 5.23; in Stefanakis et
al. (2011) the coefficient is estimated asK ∼ 5.1. The second
peakf4 in the experimental frequency dependence of run-
up is more visible than in numerical simulation (Stefanakis
et al., 2011). Authors Stefanakis et al. (2011) did not give
any estimations of the second frequency peak, but if one uses
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Fig. 5. Comparison of the experimental values of amplitude (di-
amonds) and phase (circles) with theoretical values of amplitude
(thick solid lines) and phase (thick dashed lines) obtained from the
Eq. (3), ξ =

√
4ω2x/gθ , θ = 0.168; ends of horizontal axes corre-

spond the positions of the wave-maker edge.

their data, it is possible to conclude that frequency of the sec-
ond peak is 2.5–2.7 times more than frequency of the first
one. In our experiments the frequency of the second peak
exceeds the frequency of the first one 2.2–2.3 times. Exper-
imental values of frequenciesf3−4 practically coincide with
frequencies of modes having nodes near the wave maker; nu-
merical values (Stefanakis et al., 2011) exceed this frequency
by 2.5 % for all bottom inclinations. The reason of such dif-
ferences is not clear yet. Nonlinearity, wave dispersion, and
viscous dissipation influence the frequency of these peaks,
but simple estimations for linear waves in shallow water with
zero viscosity provide values which are close to experimen-
tal data. Authors Stefanakis et al. (2011) do not mention any
dissipation of energy and nonlinear parameter, which they
use in numerical simulations. As for the coefficient of run-
up amplification, the maximal value that was observed in the
experiment isC = 20–25, whereas in Stefanakis et al. (2011)
this value reachesC = 50–60. The difference is apparently
due to viscous dissipation, which is essential in our experi-
ments. In addition, capillary effects can also affect the run-
up if the value of run-upR is comparable with the capil-
lary lengthRcap=

√
(2γ /ρg) (γ is coefficient of water sur-

face tension,ρ is water density). This fact was mentioned in
Denissenko et al. (2011). For our experiment,Rcap= 3 mm,
for the most part the run-up measurements give us signif-
icantly higher values. Nevertheless, for the maximum am-
plification, the run-up is only 4 times more than the capil-
lary length. Therefore, the decrease of coefficientC in com-
parison with the theoretical value may be partly due to the
capillary effect.

2 Conclusions

On the basis of experiments, we can conclude that the value
of amplification coefficients and frequencies at which run-
up amplification maxima are observed correlate with results
of numerical simulations. The most important conclusion is
that the existence of an abnormally large increase of the co-
efficient C is due to resonator modes; this coefficient be-
comes very large because for its determination the amplitude
at the mode node is taken as the amplitude of free surface dis-
placement. This effect is very important for the prediction of
tsunami run-up using the tide-gauge data. It is not sufficient
to know the amplitude of free surface displacement in the
near-shore zone; to provide the correct predictions of run-up,
it is necessary to know if this value corresponds to the am-
plitude A of a propagating wave or to the amplitudea of a
standing wave at a fixed point. Therefore, it is necessary to
install several gauges in the coastal zone.
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