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ABSTRACT
In many biological applications, we would like to be able to computationally pre-
dict mutational effects on affinity in protein–protein interactions. However, many
commonly used methods to predict these effects perform poorly in important test
cases. In particular, the effects of multiple mutations, non alanine substitutions, and
flexible loops are difficult to predict with available tools and protocols. We present
here an existing method applied in a novel way to a new test case; we interrogate affin-
ity differences resulting from mutations in a host–virus protein–protein interface.
We use steered molecular dynamics (SMD) to computationally pull the machupo
virus (MACV) spike glycoprotein (GP1) away from the human transferrin receptor
(hTfR1). We then approximate affinity using the maximum applied force of sepa-
ration and the area under the force-versus-distance curve. We find, even without
the rigor and planning required for free energy calculations, that these quantities
can provide novel biophysical insight into the GP1/hTfR1 interaction. First, with
no prior knowledge of the system we can differentiate among wild type and mutant
complexes. Moreover, we show that this simple SMD scheme correlates well with
relative free energy differences computed via free energy perturbation. Second, al-
though the static co-crystal structure shows two large hydrogen-bonding networks
in the GP1/hTfR1 interface, our simulations indicate that one of them may not be
important for tight binding. Third, one viral site known to be critical for infection
may mark an important evolutionary suppressor site for infection-resistant hTfR1
mutants. Finally, our approach provides a framework to compare the effects of multi-
ple mutations, individually and jointly, on protein–protein interactions.

Subjects Biochemistry, Biophysics, Computational Biology, Virology, Infectious Diseases
Keywords Arenavirus, Machupo, Protein–protein interaction, Molecular dynamics,
Computational mutagenesis, Free energy perturbation

INTRODUCTION
The computational prediction of mutational effects on protein–protein interactions

remains a challenging problem. Several methods are available to perform an energy

difference calculation from an experimentally determined co-crystal structure. For
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example, end point methods can be performed rapidly, with relatively low computational

cost (Gront et al., 2011; Kortemme, Kim & Baker, 2004). However, such methods can suffer

from various simplifying assumptions. For example, they generally use an implicit solvent

approximation and assume the end state difference with minimal structural rearrangement

is sufficient to discriminate energetic differences (Gront et al., 2011; Kortemme, Kim

& Baker, 2004). Alternative approaches have been developed using machine learning,

training coefficients in a weighted equation containing geometric and energetic parame-

ters (Vreven, Hwang & Weng, 2011; Vreven et al., 2012; Bajaj, Chowdhury & Siddahanavalli,

2011; Hwang et al., 2010). Unfortunately, such machine-learning approaches often suffer

in novel applications, for which available training sets are small or non-existent. As

such, these methods are poorly suited for most host–virus protein–protein systems. By

contrast, first principles methods can forgo training, but currently available methods

such as free energy perturbation (FEP) and thermodynamic integration (TI) rely on a

transitional model (where one state may be wild-type and the other may be a mutant)

to make rigorous free energy calculations (Gilson et al., 1997; Lu, Kofke & Woolf, 2004;

Chodera et al., 2011; Gumbart, Roux & Chipot, 2013a). While these may be considered

two of the gold standard techniques for calculating affinity differences, there are a huge

number of theoretical and technical complexities that must all be properly managed

to ensure a converged solution (Gumbart, Roux & Chipot, 2013b). Such considerations

quickly come to dominate the protocol, and the necessary bookkeeping introduces the

possibility of human error (Gumbart, Roux & Chipot, 2013b). Moreover, as the two

ending states look ever more dissimilar the chances of convergence fall rapidly. To ensure

convergence, these techniques are typically limited to small differences (such as point

mutant comparisons) with a few, very impressive exceptions (Wang, Deng & Roux, 2006;

Gumbart, Roux & Chipot, 2013a; Gumbart, Roux & Chipot, 2013b). For most investigators,

larger differences quickly become intractable as the number of intermediate steps required

to compute a converged solution grows or the complexity of adding restraining potentials

and computing approximations expands (Wang, Deng & Roux, 2006; Gumbart, Roux &

Chipot, 2013a; Gumbart, Roux & Chipot, 2013b).

Here we propose that much of these complexities can be avoided if all we are interested

in is a relative comparison of the effects of different mutations on protein–protein interac-

tions, rather than measuring an absolute or relative binding affinity with experimentally

realistic units. We impart a pulling force within an all-atom molecular dynamics simula-

tion on one member of the complex while the other is held in place. Then, we measure

the force required for dissociation (Lu & Schulten, 1999; Isralewitz, Gao & Schulten, 2001;

Isralewitz et al., 2001; Park & Schulten, 2004; Gumbart et al., 2012; Miño, Baez & Gutierrez,

2013). Although such biasing techniques are commonly used in protein-ligand binding

problems, they are less commonly applied to protein–protein interactions, and almost

never to mutational analysis in a protein–protein system. This is largely the result of free

energy convergence difficulties and computational limitations (Cuendet & Michielin, 2008;

Cuendet & Zoete, 2011). Using a proxy for relative binding affinity rather than caluclating
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absolute affinities can solve these problems. Here, as proxies, we use the maximum applied

force required for separation and the area under the force-versus-distance curve (AUC).

For comparison, we also calculate relative free energy differences using the traditional dual

topology FEP paradigm, and we show that the two approaches yield congruent results.

We used SMD and FEP to interrogate the interaction between machupo virus (MACV)

spike glycoprotein (GP1) and the human transferrin receptor (hTfR1) (Abraham et al.,

2010; Charrel & de Lamballerie, 2003). Machupo virus is an ambisense RNA virus of the

arenavirus family (Charrel & de Lamballerie, 2003). Worldwide, arenaviruses represent

a significant source of emerging zoonotic diseases for the human population (Charrel

& de Lamballerie, 2003). Members of the arenavirus family include the Lassa fever virus

endemic to West Africa, the lymphochoriomeningitis virus (LCMV) endemic to rodents

in several areas of the United States, and the Guanarito, Junin, and Machupo viruses

endemic to rodents in South America (Charrel & de Lamballerie, 2003). The South

American arenaviruses typically infect humans after rodent contamination and can cause a

devastating hemorrhagic fever with high mortality (Charrel & de Lamballerie, 2003).

The hTfR1 is the primary receptor used by MACV for binding its host cell prior

to infection. The primary role of hTfR1 in vivo is to bind transferrin for cellular iron

uptake. The hTfR1 protein contains three extracellular domains: two basilar domains

and an apical domain. The two basilar domains serve most of the transferrin-binding

function (Abraham et al., 2010; Radoshitsky et al., 2011). Viral entry is initiated by GP1

binding to the apical domain of hTfR1. Previous work has indicated that the GP1/hTfR1

binding interaction is the primary determinant of MACV host range variation (Choe et

al., 2011; Radoshitsky et al., 2011). The co-crystal structure shows that the high affinity

interaction between GP1 and hTfR1 forces the normally flexible loop in the apical domain

of hTfR1 into a rigid β-pleated sheet domain. For GP1, several extended loops mediate

binding to hTfR1 (Abraham et al., 2010; Radoshitsky et al., 2011), and many of the interface

interactions are mediated by extensive hydrogen-bonding networks (Abraham et al., 2010).

Experimental alanine-scanning and whole-cell infectivity assays have identified several

sites in both GP1 and hTfR1 that are probably critical for establishing infection (Choe et al.,

2011; Radoshitsky et al., 2011).

We applied our computational method to wild type (WT) and mutant complexes, and

found that we could resolve relative differences in unbinding and predict significant affinity

changes. Importantly, the affinity changes predicted using only max force or AUC show a

strong correlation with rigorous relative free energy differences computed by FEP. At sites

known to be important for successful viral entry, we found that the biochemical cause

of reduced infectivity may not be as simple as the static structure suggests. For example,

the static structure shows a hydrogen-bonding network connected to site N348 in hTfR1.

According to our simulations, this network may not affect binding affinity directly. In

addition, our study offers an all-atom steered molecular dynamic approach to avoid some

of the pitfalls of several existing methods used to evaluate mutations in protein–protein

interfaces.
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Figure 1 The GP1/hTfR1 complex. GP1 is shown in blue and hTfR1 is shown in green. (A) The full,
de-glycosylated GP1/hTfR1 co-crystal structure. (B) The reduced structure used in SMD simulations.

MATERIALS AND METHODS
System modeling
For our experiments, we used the experimentally determined GP1/hTfR1 structure

(PDB-ID: 3KAS) (Abraham et al., 2010). The apical domain of hTfR1 interacts directly

with GP1 while the other two domains are closer to the cell membrane and have essentially

no interaction with GP1. The biophysical independence of the apical domain allowed us to

isolate it without significantly affecting the GP1/hTfR1 interaction.

We used the protein visualization software PyMOL (Schrödinger, 2010) to remove

residues 121–190, 301–329, and 383–756 in the hTfR1. No residues were removed from the

viral protein. Figure 1 shows a model of the initial structure and that of the pared structure.

Although GP1 has several glycosylatable residues, we opted to use the de-glycosylated

protein for this study. The complexity of correctly parameterizing diverse sugar moieties

is outside of the scope of this paper. Furthermore, although it is known that GP1 is

glycosylated, and some of those sugars contact hTfR1, the sugars in the available PDB

structure are not physiological for mammals (Abraham et al., 2010). In total we removed 10

sugars from the crystal structure for this study.
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After system reduction, the Visual Molecular Dynamics (VMD) (Humphrey, Dalke &

Schulten, 1996) package along with its system of back-ends was used for all subsequent

modeling. The Orient add-on package allowed us to rotate the system axis such that the

direction of steering was oriented directly down the z-axis. De-glycosylation simplified

the system such that Autopsf could easily find the chain terminations and patch them

appropriately. The Solvate package was used to generate a TIP3P water model with a

5 Å buffer (relative to the maximum dimensions of the proteins) on all sides except down

the positive z-axis where a 20 Å buffer was created. Finally, we used the Autoionize package

to place 150 millimolar NaCl and neutralize the total system charge. In the end, each

modeled system had approximately 28,000 atoms.

Equilibration
NAMD was used for all simulations in this study (Phillips et al., 2005). In addition to

the modeled system, for equilibration we generated a configuration file that fixed the

α-carbon backbone. This was accomplished by setting the B-factor column to 1 for the

fixed atoms and to zero for all other atoms. Further, we generated a configuration file

with fixed α-carbon atoms at residues 41–92 (numbered linearly, in this case, starting at

1 for the first amino acid as was required for NAMD) in the hTfR1. The second file was

used to affix a harmonic restraint, thus preventing any unfolding due to system reduction.

More importantly, the harmonic restraint allowed the protein complex to equilibrate

while preventing any drift from its predefined position; the restraint did not constrain

the structure of each protein, or the relative position or orientation of the two proteins to

each other. Finally, we calculated the system center and dimensions for use in molecular

dynamics settings. The exact NAMD configuration files are available on GitHub (https://

github.com/clauswilke/MACV SMD).

We used the Charmm27 (Brooks et al., 1983) all-atom force field. The initial system tem-

perature was set to 310 K. Several typical MD settings were used including switching and

cutoff distances (see provided configuration files). In addition, we used a 2 femtosecond

time step with rigid bonds. We used periodic boundary conditions with the particle mesh

ewald (PME) method of computing full system electrostatics outside of the explicit box.

Furthermore, we used a group pressure cell, flexible box, langevin barostat, and langevin

thermostat during equilibration. A harmonic restraint (called harmonic constraint in

VMD) was set as stated previously.

To start the simulation, the barostat was switched off and the system was minimized

for 1000 steps. Next, the fixed backbone was released, and the system was minimized

for an additional 1000 time steps. Subsequently, the system was released into all-atom

molecular dynamics for 3000 steps. Finally, the langevin barostat was turned on and the

system was simulated for 2 ns (1,000,000 steps) of chemical time. For each mutant, twenty

independent equilibration replicates were run with an identical protocol.

Steered molecular dynamics
We used the final state from each equilibrated system to restart another MD simulation.

Our steering protocol is fundamentally similar to Cuendet & Michielin (2008) with slightly
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different parameter choices. Perhaps the one significant difference lies in our choosing

to not use a thermostat or barostat. We can make this choice because we are not trying

to calculate the binding free energy by any physically rigorous approach (the Jarzynski

inequality being one example). Following equilibration, the final state of each simulation

was used to generate a configuration file fixing the α-carbon on residues 1, 58, 73–83, 96,

136, 137, 138, and 161 (again with linear numbering) in the hTfR1. These residues were

selected as they are far from the binding interface and sufficiently distributed to prevent

any orientational motion of the receptor relative to the viral spike protein. The center of

mass of the α-carbons of all residues (163–318 in linear numbering) in GP1 received an

applied force during the simulation. The NAMD convention does not actually apply a force

to all α-carbon atoms but rather uses the selection to compute an initial center of mass.

Then, during the steering run, the single center of mass point is pulled with the parameters

described below. We used the same force field parameters (exclude, cutoff, switching, etc.),

the same integrator parameters (time step, rigidbonds on, all molecular being wrapped,

etc.), and the same particle mesh ewald parameters as in equilibration. Periodic boundary

conditions were incorporated as part of the system (as is the convention in NAMD restart)

and PME was again used to approximate full system electrostatics.

We ran test simulations at several force constants and visually inspected the results. A

force constant of 5 kcal/mol/Å2 was chosen due to its relatively low signal-to-noise ratio.

This constant is slightly lower than the more common 7 kcal/mol/Å2 found in several

recent studies; that value is commonly selected primarily because it is the force constant

found in the SMD tutorial available through the NAMD developers. Moreover, the force

constant could very likely be set to a range of nearby values with little loss in predictive

power.

In SMD experiments the pulling velocity should be as low as possible for the available

computational time (Cuendet & Michielin, 2008; Cuendet & Zoete, 2011). We choose a

velocity of 0.000001 Å/fs = 1 Å/ns, and direction down the positive z-axis. One could use

faster pulling if the computing time must be reduced, but slower than necessary pulling

speeds are not typically considered problematic.

SMD was run for 15 ns (7,500,000 time steps) of chemical time. For each simulation, we

randomly selected one of the equilibration runs for restart. We ran 50 replicate simulations

per mutant for a total of 550 SMD simulations. All GP1/hTfR1 complexes separated by

greater than 4 Å and many separated to 10 or more.

To leave the final trajectory of a tractable size, only 1000 evenly spaced frames were

retained from each simulation, leaving a final trajectory size of 323 MB. See Movie S1

for a representative unbinding trajectory. Initial development of the SMD protocol was

carried out on the Lonestar cluster at the Texas Advanced Computing Center (TACC).

All production SMD simulations were performed on the Hrothgar cluster at Texas Tech

University, using NAMD 2.9. Each simulation was parallelized over 60 computational cores

and utilized approximately 20 h of computing time. The total chemical time simulated for

this project was nearly 10 µs, requiring slightly over 1 million cpu-hours.
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Free energy perturbation
Briefly, we used the traditional dual topology approach to FEP (Gao et al., 1989; Pearlman,

1989). This involves a thermodynamic cycle where a set of atoms are progressively

decoupled from the environment while another set of atoms are progressively coupled. To

compute the relative free energy difference requires knowing the free energy change when

the transformation is carried out for the bound complex and the individual protein. Then,

one can compute the relative free energy difference between a WT and mutant complex by

taking the difference between the energy required to decouple/couple the atoms in solution

from the energy required to decouple/couple the atoms in the bound complex (Gao et al.,

1989; Pearlman, 1989).

Again, the NAMD configuration file is made available via GitHub (https://github.com/

clauswilke/MACV SMD). We used a similar configuration to that in equilibration. One

significant difference was to make a cubic water box with a side length equal to the long

axis of the complex plus a 10 Å buffer on either side, and simply restrict center of mass

motion with the NAMD setting. This was done to avoid affecting the system energy while

calculating free energy differences.

The transition protocol for bound and free protein systems were identical. They started

with 1000 steps of minimization and 250,000 steps of equilibration in the starting state

for the forward and reverse directions. Phase transitions were carried out in steps of

λ = 0.05. Each transition was carried out for 250,000 steps. The first 100,000 steps after

phase transition were reserved for equilibration and the final 150,000 steps were used for

data collection.

The VMD mutator tool was used to generate the necessary topology file and the

parseFEP tool (Liu et al., 2012) in VMD was used for subsequent analysis. We used it

to perform error analysis and compute the Bennett acceptance ratio as the maximum

likelihood free energy difference of the two states under consideration. Though the

larger transitions presented difficulty in a small number of windows, forward and reverse

hysteresis was generally in good agreement for all complexes. The double mutants were

performed by first doing the Y211A mutation followed by the other of the two mutants.

Then, the ΔG’s were simply added together to get the total energetic difference.

Post-processing
The python packages MDAnalysis (Michaud-Agrawal et al., 2011) and ProDy (Bakan,

Meireles & Bahar, 2011) were both used at various points in post-processing. The

molecular trajectory (comprising the atomic coordinates per time) was parsed to compute

the center-of-mass for each of the two complexes. The starting center-of-mass distance

was set to zero and the distance was re-computed at each time step relative to the starting

distance.

The statistical package R was used for all further analysis and visualization. Each of

the 50 independent trajectories per mutant produced a fairly noisy force curve. The force

curves for each mutant were smoothed over all replicates by using the smooth.spline()

and predict() functions in R with default settings. The two primary descriptive statistics
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we used were maximum interpolated applied force and total area under the interpolated

curve (AUC). We tested for signifiant differences in maximum force or AUC by carrying

out t tests for all pairwise combinations (each mutant compared to each other mutant),

using the pairwise.t.test() function in R. We adjusted p values to correct for multiple

testing using the False-Discovery-Rate (FDR) method (Benjamini & Hochberg, 1995). The

ggplot (Wickham, 2009) package was used to generate most of the figures.

Analysis scripts and final data (except MD trajectories) are available on the github

repository accompanying this publication (https://github.com/clauswilke/MACV SMD).

RESULTS
The GP1/hTfR1 system
The GP1/hTfR1 interface (Fig. 2) marks a particularly important and useful test

system. There are several sites on both the human and viral protein known to affect the

infectivity phenotype of MACV. Many of the important sites have been mapped by in vitro

flow-cytometry based entry assays. The GP1/hTfR1 interface appears not to be dominated

by one particular type of interaction (electrostatics, hydrogen-bonding, or van der Waals).

In addition, much of the binding domain on hTfR1 is on a loop that is flexible prior to

viral binding, but organizes to become a strand of a β-sheet on binding. As a result, many

other computational techniques (Gront et al., 2011; Kortemme, Kim & Baker, 2004) are only

marginally useful. The complex nature of this interface represents a particularly difficult

challenge for traditional computational analysis.

In total, we tested 7 point mutants and 3 double mutants in addition to the WT

complex (Table 1). All of the mutations are within 5 Å of the protein–protein interface.

Mutations in hTfR1 at site 211 have proven capable of causing loss-of-entry according

to in vitro flow-cytometry infection assays or known host-range limitations (Radoshitsky

et al., 2008; Choe et al., 2011; Radoshitsky et al., 2011). Most likely, this effect is caused

by the destruction of a critical hydrogen bond to Ser113 or Ser111 in GP1. The lost

hydrogen bond would lead to the subsequent loss of a large hydrogen-bonding network

seen in the crystal structure (Table 1) (Abraham et al., 2010). In a manner similar to site

211, N348 appears to be important for binding by participating in a critical hydrogen

bonding network (Radoshitsky et al., 2008; Abraham et al., 2010) to GP1. In particular,

N348Lys is reported in the literature to cause significantly reduced viral entry in vivo

(Table 1) (Radoshitsky et al., 2008; Abraham et al., 2010). Finally, an alanine mutation

at site 111 in GP1 (mutation vR111A) has also been shown to cause decreased entry

(Table 1) (Radoshitsky et al., 2011). For notation purposes, the viral site is always referred to

with a preceding ‘v’.

Despite the fact that viral binding occurs at the site of a flexible loop in the free hTfR

structure, our data shows after binding the strand is extremely rigid. In the bound

conformation, only two sites of the loop have root mean squared fluctuation (RMSF)

values in the top half of all receptor sites during equilibration (Fig. 3), and those are

almost completely exposed to solvent. This is unsurprising considering the high degree of

burial that occurs as a result of viral binding. Computing the root mean squared deviation
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Figure 2 The two hydrogen bonding networks. GP1 is shown in blue and hTfR1 is shown in green. (A)
The first network including Y211 and R111 is shown in white, and the second network containing N348
is shown in pink. (B) Near view of the first network with contacts in yellow. (C) Near view of the second
network with contacts in yellow.

Table 1 Summary of prior information available for each mutation tested. Observed in vivo refers
to mutations that have been observed in rodent populations. Phenotype in vitro refers to the observed
phenotype in in vitro viral entry assays.

Mutation Observed in vivo Phenotype in vitro

WT Yes Normal entry

N348A No –

N348K Yes Diminished entry

N348W No –

vR111A No Diminished entry

N348A/Y211A No –

vR111A/Y211A No –

Y211D Yes No expression

Y211T No Diminished entry

Y211A No No expression

N348W/Y211A No –
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Figure 3 RMSF values during equilibration. The RMSF values for every site in the bound complex
computed during the equilibration phase of the protocol. Each color represents the average over 20
trajectories of a single mutant. Indices 17–25 are the hTfR flexible loop. The plot shows the flexibility
of each site is essentially independent of mutation, and two sites (indices 17 and 18) are a part of the
flexible loop in the free receptor. However, these two residues are not above 0.72 Å actually found in the
protein–protein interface, but rather are almost completely solvent exposed with the virus bound.

(RMSD) of the entire structure over the trajectory shows that none of the mutations are

so deleterious as to cause rapid unbinding. In fact, the RMSD over trajectory looks highly

invariant across mutants (Fig. 4). In the unbound state, calculated near the end of the SMD

trajectory, all of the residues in the WT receptor interfacial strand are in the top half of

RMSF over all receptor sites (Fig. 5). Thus, if sufficient simulation time is not dedicated to

allowing this unfolding process, standard free energy techniques may miss the energetic

contributions that result from ordering the flexible loop in the hTfR apical domain.

Molecular dynamics simulations
We analyzed the GP1/hTfR1 system using two molecular dynamics techniques. First, by

carrying out SMD using a known force constant and pulling with a constant velocity,

we could calculate the applied force during protein–protein dissociation (Cuendet &

Michielin, 2008; Cuendet & Zoete, 2011). A typical averaged force curve comparison can

be seen in Fig. 6, and individual images of all averaged force curves are available in the asso-

ciated GitHub repository, in folder figures/force curves. As seen in Fig. 6, the dissociation

distance was relatively consistent among mutants. Movie S1 visually illustrates the separa-

tion distance between peptide domains. The quantities maximum applied force and AUC

were derived from the force-versus-distances curves. Their summary statistics are reported

in Table 2. As we are more interested in the phenotypic impact of interface mutations we

avoided many of the more physically rigorous, but technically complicated calculations

that are possible with SMD (Isralewitz, Gao & Schulten, 2001; Isralewitz et al., 2001).
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Figure 4 RMSD values during equilibration. The RMSD values over the time of the trajectory computed
during the equilibration phase of the protocol. Each color represents the average over 20 trajectories of a
single mutant. The plot shows none of the mutants causes immediate unbinding of the protein–protein
complex. In addition, the universal upward trend near the end of the equilibration trajectories may
indicate the crystal is more tightly packed than would normally occur in solution.

Figure 5 RMSF values of WT hTfR in equilibration and SMD. The RMSF values for every site in the
WT receptor were computed during the equilibration phase and during final 50 frames of the SMD
trajectories. The black line was computed over equilibration and the red line during SMD. The plot shows
the solution mobility of the hTfR flexible loop increases more than the average during the unbinding
process.
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Figure 6 Force versus distance curve of WT and the Y211A mutant. The average force curve for 50
replicates of the WT complex is shown in black, and the average of 50 replicates of the Y211A mutant
is shown in red. There is a large difference in both maximum applied force and AUC between the two
complexes.

Table 2 Summary statistics for each mutation tested. µMAF is the mean in piconewtons and σMAF is
the standard deviation of maximum applied force over all simulations. µAUC is the mean and σAUC is the
standard deviation of AUC over all simulations. ΔG is the free energy difference in kcal/mol calculated
via FEP by the dual topology paradigm.

Mutation µMAF (pN) σMAF µAUC σAUC ΔG (kcal/mol)

WT 734.4856 131.6513 145460.4 60232.26 0.000

N348A 748.5217 137.4864 133913.9 51078.64 −2.149

N348K 705.0707 108.5079 141084.4 54450.28 +3.184

N348W 697.3642 132.6436 136886.0 53796.44 +3.033

vR111A 713.8081 106.7374 136103.2 52070.85 +0.466

N348A/Y211A 703.7027 128.5866 113464.2 57451.62 +5.203

vR111A/Y211A 741.0642 131.6287 130070.6 47665.56 −2.440

Y211D 825.2586 115.4343 158878.7 63039.08 −2.760

Y211T 806.8593 136.5648 167110.7 78849.29 +0.875

Y211A 654.1138 108.5343 108090.0 43661.09 +2.526

N348W/Y211A 594.9044 134.8233 108984.2 45451.00 +8.206

Before systematically applying SMD to the GP1/hTfR1 interaction, we needed to

ensure the method was sufficiently sensitive to distinguish between relatively minor point

mutations. While SMD has been applied previously to measure the binding energy of

high-affinity T-cell receptor interactions (Cuendet & Michielin, 2008; Cuendet & Zoete,

2011), it is rarely used to parse small energy differences in a protein–protein interaction

energy landscape. For this initial sensitivity analysis, we tested alanine substitutions

congruent with the traditional experimental and computational approach.

We proceeded to compare our SMD results to that of the standard dual topology

FEP approach to calculate relative free energy differences. The correlation between the
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Figure 7 Max force versus free energy perturbation. Scatter plot of maximum force in SMD versus the
relative free energy difference calculated by FEP for all 10 mutants tested plus the WT complex. The WT
complex for FEP was simply set to 0.0. The correlation between the two is r = −0.795 with p = 0.0034.

Table 3 Pairwise differences (row variable minus column variable) in mean maximum applied force. Bolded values are statistically significant at
p < 0.05.

WT N348A N348W N348K vR111A N348A/Y211A vR111A/Y211A Y211D Y211T Y211A

N348A +14.036

N348W −29.414 −43.451

N348K −37.121 −51.157 −7.7060

vR111A −20.677 −34.713 +8.7370 +16.443

N348A/Y211A −30.782 −44.819 −1.3670 +6.3380 −10.105

vR111A/Y211A +6.5790 −7.4570 +35.993 +43.700 +27.256 +37.361

Y211D +90.772 +76.736 +120.19 +127.89 +111.45 +121.56 +84.194
Y211T +72.373 +58.337 +101.79 +109.50 +93.051 +103.16 +65.795 −18.399

Y211A −80.371 −94.407 −50.956 −43.250 −59.694 −49.588 −86.950 −171.1 4 −152.75

N348W/Y211A −139.58 −153.62 −110.17 +102.46 −118.903 −108.80 +146.16 +230.35 −211.95 −59.209

energetically rigorous FEP and our statistical approach is high. For all 11 complexes tested,

the correlation between max force and FEP was r = −0.795 at p = 0.0034 (Fig. 7), and

the correlation between AUC and FEP was r = −0.593 at p = 0.055. Because of the strong

correlation, we refer exclusively to the SMD results for the remainder of this work, focusing

primarily on max force.

We found that relative to WT, one alanine mutation (Y211A) produced a very large

and statistically significant difference in the maximum applied force and AUC (Fig. 6,

Table 3), while the other two did not (Table 3). When considering additional mutants

(also discussed below), we found that maximum applied force was generally sufficient to

distinguish mutants (Tables 3 and 4), and AUC was able to add a few more statistically

significant differences (Table 5). In general, however, and consistent with the FEP results,

maximum applied force seemed to be the more sensitive statistic than AUC.
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Table 5 Pairwise difference p-values for interpolated AUC. Bolded values are statistically significant at p < 0.05.

WT N348A N348W N348K vR111A N348A/Y211A vR111A/Y211A Y211D Y211T Y211A

N348A 0.33

N348W 0.76 0.59

N348K 0.59 0.80 0.76

vR111A 0.55 0.85 0.76 0.94

N348A/Y211A 0.017 0.07 0.031 0.076 0.08

vR111A/Y211A 0.26 0.76 0.46 0.68 0.72 0.22

Y211D 0.33 0.029 0.18 0.09 0.08 0.00046 0.029

Y211T 0.09 0.0056 0.046 0.027 0.023 4.1 × 10−5 0.006 0.59

Y211A 0.0056 0.027 0.016 0.029 0.031 0.75 0.09 8.2 × 10−5 8.5 × 10−6

N348W/Y211A 0.006 0.029 0.017 0.032 0.034 0.76 0.1 9.4 × 10−5 8.5 × 10−6 0.94

Comparative analysis of the GP1/hTfR1 interface
Considering the involvement of extended hydrogen-bonding networks in the GP1/hTfR1

interface (Fig. 2), it was not clear that individual alanine mutations, even those that should

destroy such networks, would significantly change the strength of interaction. One major

advantage of first principles simulations is the ability to test mutations other than alanine

without additional underlying assumptions in the energy function. As shown in Table 1, we

made additional mutations based on biochemical intuition or available experimental

data to chemically diverse amino acids including tryptophan, lysine, aspartate, and

threonine. Several mutations caused significant relative affinity changes. In addition, to

detect synergistic effects, we tested several double mutants where both mutations appeared

to cause similar changes in binding. Then, we compared the size of those differences to

single mutants (Figs. 8 and 9).

Although Y211A appears to have a large impact on binding affinity, no single mutant

can provide enough evidence to understand the biochemical difference in binding

mechanism. Since alanine is both smaller than tyrosine and also incapable of participating

in hydrogen-bond interactions, we tested further mutations to identify the critical

biochemical difference responsible for change in binding affinity. In particular, we

substituted smaller side chains that, like tyrosine, were capable of hydrogen bonding.

We chose Y211D and Y211T, two mutations that have been discussed in the context of

selection pressure on hosts in rodent populations (Radoshitsky et al., 2008; Choe et al., 2011;

Radoshitsky et al., 2011). Both mutations proved capable of causing a significant change in

binding affinity in our simulations, but the change appeared to be increased affinity (Figs. 8

and 9, and Table 4).

We also simulated several point mutations at N348 in the hTfR1. As discussed above,

the alanine mutation at this site showed no significant difference in maximum applied

force or AUC from WT (Tables 4 and 5). In addition, neither the N348Lys nor the N348W

mutation showed a significant difference from WT. For both of these mutations, however,

mean maximum applied force and mean AUC was lower than for WT (See Table 2). On

the other hand, there was a detectable difference between N348A and N348Lys (Tables 4
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Figure 8 Distribution of interpolated maximum force for three different GP1/hTfR1 complexes. The
WT GP1-hTfR1 complex in the middle is flanked by the tighter binding mutant Y211D on the right and
the weaker binding double mutant N348W/Y211A on the left. The large non-overlapping areas indicate
a large and statistically significant difference in these three complexes.

Figure 9 Distribution of interpolated maximum force for all bound complexes tested. Stars above the
boxplots indicate a statistically significant difference in mean maximum force relative to the WT complex.

and 5), with N348Lys being a weaker binder. Moreover, N348W showed nearly identical

results to N348Lys. The mutations to large amino acids (N348W and N348Lys) produced

nearly identical affinity changes, whereas the mutations to amino acids not capable of

hydrogen bonding (N348A and N348W) produced significantly different affinity changes

(Table 3). To check the consistency of our results, we hypothesized that the combination

of Y211A and N348W, being chemically disconnected in two different hydrogen-bonding

networks, would lead to a synergistic loss-of-binding. As expected, the double mutant

was the weakest binding mutant tested (p < 10−6, Tables 4 and 5) in this study. Further,

according to maximum applied force (but not AUC), the combination of Y211A and

N348W also showed significantly weaker binding than Y211A by itself (Tables 4 and 5).
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We suspect that the effect of N348W alone is near the limit of detection using our method.

A larger number of replicates would possibly have resolved affinity differences between

N348W and WT or other mutants more consistently.

Last, we further analyzed a single mutation in GP1, vR111A. As mentioned previously,

in our simulations this mutant showed no significant change in either maximum applied

force or AUC (Tables 4 and 5), even though both quantities were, on average, lower than in

WT (Table 2). This result was somewhat surprising, since Y211A, presumably disrupting

the same hydrogen-bonding network as vR111A, displayed a significant reduction in

affinity. To probe the interaction between position 111 in the GP1 and position 211 in

the hTfR1 further, we also tested the double mutant vR111A/Y211A. This double mutant

showed affinity indistinguishable from WT and significantly higher than Y211A alone

(Table 3). This result shows that the two sites do indeed interact, and that replacing the

hydrogen-bonding network at these sites with a hydrophobic interaction could lead to

comparable binding affinity.

DISCUSSION
We have applied a method utilizing steering forces in all-atom molecular dynamics

simulations to evaluate the effects of mutations at the GP1/hTfR1 interface. We modeled

mutations at several sites in the GP1/hTfR1 interface, and verified that our computational

protocol was sensitive enough to distinguish point mutants in hTfR1. Further, we

identified two test statistics, maximum applied force and AUC, that can be used as proxies

for binding affinity. Both of these statistics correlate well with FEP, but offer the simplicity

of not requiring a large commitment to planning for the theoretical issues inherent to

free energy methods. We systematically tested several point mutations to understand their

contribution to the binding interaction. In the case of N348Lys, we have shown that the

static structure provides little insight into why this mutation causes loss-of-infectivity

in vivo. While N348 appears to be involved in a hydrogen-bonding network in the

static structure, change in binding at that site may actually be caused by size and charge

restriction. We also found that a negatively polar residue at site 211 in hTfR1 seem critical

for a tight binding interaction. Any non-polar mutation at Y211 in hTfR1 is likely to

completely halt viral entry and dramatically decrease the chances of MACV infection.

Traditionally SMD has been either applied to compute equilibrium free energies via

a non-equilibrium approximation (Park et al., 2003; Park & Schulten, 2004; Giorgino &

Fabritiis, 2011), used to estimate protein stability through unfolding (Lu & Schulten, 1999),

or used to calculate the absolute free energy of small molecule ligand binding (Dixit &

Chipot, 2001). Likewise, others have used SMD to understand the process of binding and

unbinding at a resolution unmatched by experiment (Cuendet & Zoete, 2011; Giorgino

& Fabritiis, 2011). Here, we have shown that SMD can provide insight into the relative

strength of protein–protein interactions. Via SMD, one can separate mutations whose

likely effect is altered binding affinity with simple statistics like maximum force of

separation. Thus, SMD may open avenues for subsequent experimental work in some

situations where FEP may be prohibitively difficult.

Meyer et al. (2014), PeerJ, DOI 10.7717/peerj.266 17/23

https://peerj.com
http://dx.doi.org/10.7717/peerj.266


Our findings rationalize several effects observed in both infectivity data and rodent

populations (Radoshitsky et al., 2008; Choe et al., 2011). First, we found that some

substitutions at positions 211 and 348 did affect the strength of receptor binding. However,

the computational data suggest that the reason and nature of the effects at these two sites

are very different. At position 211, mutations to non-polar residues cause a large change

in binding. This is congruent with what is known from viral entry data (Radoshitsky et

al., 2008; Choe et al., 2011). By contrast, mutations at position 348 need only be small

to maintain WT binding. The ability to hydrogen bond appears to be insignificant. This

can be inferred from the fact that Y211A paired with large (W) and positively charged

(Lys) substitutions at position 348 results in a larger than expected synergistic difference.

That is, the double mutant Y211A/N348W caused a much larger decrease in binding than

we expected from either mutation individually. Third, the GP1 mutation vR111A causes

a loss-of-infection during in vitro infectivity assays (Radoshitsky et al., 2011), yet it was

indistinguishable from the WT complex in our simulations. Although Y211A was the most

disruptive single mutant we tested, vR111A in the GP1 was able to restore mean maximum

applied force to WT levels (Table 2), and to levels significantly higher than observed for

Y211A alone.

We would like to emphasize here that we cannot expect perfect agreement between

our simulations and the available experimental data, but the correspondence to a well

established free energy method bolsters our conclusions. While we have shown that our

method can distinguish individual point mutations, we do not know the limit of detection

with our method. First, it is possible that some mutants display measurable phenotypic

effects in experiments yet appear identical in simulation. More extensive sampling or

refinement of the simulation protocol could help to differentiate such mutants (see also

next paragraph). Second, the SMD method is fundamentally limited by the accuracy of our

starting structure. Third, the available experimental data for the GP1/hTfR1 system were

generally obtained from entry assays or whole-cell binding assays rather than molecular

binding assays. A mutant may cause a phenotypic difference in infectivity without

generating a signal by our method. For example, entry could be lost in the experimental

system because the protein is grossly or partially misfolded. An additional analytical step

with circular dichroism or an analogous technique could clarify such large-scale folding

differences. Further, since our simulations start with a bound structure, any changes that

may dramatically affect the rate of association (different folds, trafficking issues, etc.) or

relative orientation of the two proteins would be underestimated by our method.

There are a few additional challenges for investigating host–virus interactions via

molecular dynamics simulation. As with any atomistic simulation, there is going to be

a fairly large noise-to-signal ratio. To reduce noise, one could further customize each

simulation, e.g., by determining the optimal pulling speed. Furthermore, larger amounts

of computational resources will have a direct and powerful impact on the strength of

any atomistic study (Jensen et al., 2012). Such resources could come in the form of

increased compute time, improved code, or customized hardware for floating point

operations (Shaw et al., 2009). With improved resources, we could investigate thousands of
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individual permutations in the GP1/hTfR1 binding interface. In addition, with additional

compute time it would be possible to incorporate equilibrium sampling approaches (Buch,

Sadiq & Fabritiis, 2011) or use brute force equilibrium approaches (Giorgino, Buch &

Fabritiis, 2012) to improve resolution.

For future studies, although our approach offers the simplicity of not requiring prior

knowledge about a system of interest (other than a bound model), at this point SMD may

not the best approach for many relative affinity calculations. To ensure one’s results are

independent of the dissociation path one selects would require computing the work of

separation for all likely paths. Such an approach eventually requires using the Jarzynski

inequality (Jarzynski, 1997) to establish a lower limit for binding energy and would quickly

become computationally inefficient for evaluating a large number of mutations in most

systems. However, considering the strong correlation between FEP and SMD in this

system, it may not be important to ensure one’s results are path independent for relative

affinity calculations, as long as the same path is used for all complexes.

More importantly, with no a priori knowledge of the appropriate number of equilibra-

tion samples, the best duration of equilibration, the appropriate number of pulling runs,

or the best pulling speed means the computational expense in our SMD protocol may not

be commensurate with the information provided. For example, another all atom approach

that makes calculations via short simulations of spatially restrained complexes has proven

capable of generating relatively accurate binding affinities with less compute time than

is required from our steering strategy (Gumbart, Roux & Chipot, 2013a; Gumbart, Roux

& Chipot, 2013b). That being said, there is no reason to believe this SMD approach to

mutagenic studies could not be optimized to reduce computational expense. Further

analysis will be needed to understand the lower limits of resources required for accurate

predictions.
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