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ABSTRACT

We develop a new asset pricing model with stochastic transaction costs and investors with het-

erogenous horizons. Short-term investors hold only liquid assets in equilibrium. This generates

segmentation effects in the pricing of liquid versus illiquid assets. Specifically, the liquidity

(risk) premia of illiquid assets are determined by the heterogeneity in investor horizons and by

the correlation between liquid and illiquid assets. We estimate our model for the cross-section

of U.S. stocks and find that it fits average returns substantially better than a standard liquid-

ity CAPM. Allowing for heterogenous horizons also leads to much larger estimates for the

liquidity premia.
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The investment horizon is a key feature distinguishing different categories of investors, with high-

frequency traders and long-term investors such as pension funds at the two extremes of the in-

vestment horizon spectrum. Most of the literature on horizon effects in portfolio choice and asset

pricing builds on the theoretical insight of Merton’s (1971) hedging demands and demonstrates

that long-horizon decisions can differ substantially from single-period decisions for various model

specifications.

Surprisingly, the interaction between investment horizons and liquidity has attracted much less

attention. Even in the absence of hedging demands, heterogeneous investment horizons can have

important asset pricing effects for the simple reason that different horizons imply different trading

frequencies. More specifically, liquidity plays a distinct role for investors with diverse horizons

because trading costs only matter when trading actually takes place. The investment horizon then

becomes a key element in the asset pricing effects of liquidity.

We explicitly take this standpoint and derive a new liquidity-based asset pricing model featur-

ing risk-averse investors with heterogeneous investment horizons and stochastic transaction costs.

Investors with longer investment horizons are clearly less concerned about trading costs, because

they do not necessarily trade every period. Our model generates a number of new implications on

the pricing of liquidity that are strongly supported empirically when we test them on the cross-

section of U.S. stock returns.

Previous theories of liquidity and asset prices have largely ignored heterogeneity in investor

horizons, with the exception of the seminal paper of Amihud and Mendelson (1986), who study a

setting where risk-neutral investors have heterogenous horizons. Their model generates clientele

effects: short-term investors hold the liquid assets and long-term investors hold the illiquid assets,
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which leads to a concave relation between transaction costs and expected returns.1 Besides risk-

neutrality, Amihud and Mendelson (1986) assume that transaction costs are constant. However,

there is large empirical evidence that liquidity is time-varying. Assuming stochastic transaction

costs, Acharya and Pedersen (2005) set out one of the most influential asset pricing models with

liquidity risk, where various liquidity risk premiums are generated. However, this model includes

homogeneous investors with a one-period horizon and thus implies a linear (as opposed to concave)

relation between (expected) transaction costs and expected returns. Our paper bridges these two

seminal papers, because our model entails heterogeneous horizons, as in Amihud and Mendelson

(1986), with stochastic illiquidity and risk aversion, as in Acharya and Pedersen (2005). This leads

to a number of novel and important implications for the impact of both expected liquidity and

liquidity risk on asset prices.

Our model setup is easily described. We have multiple assets with i.i.d. dividends and stochas-

tic transaction costs, and many investor types with mean-variance utility over terminal wealth but

different investment horizons. We obtain a stationary equilibrium in an overlapping generation

setting and we solve for expected returns in closed form.

This theoretical setup implies the existence of an intriguing equilibrium with partial segmen-

tation. Short-term investors optimally choose not to invest in the most illiquid assets, intuitively

because their expected returns are not sufficient to cover expected transaction costs. In contrast,

long-term investors trade less frequently and can afford to invest in illiquid assets. This clientele

1Hopenhayn and Werner (1996) propose a similar set-up featuring risk-neutral investors with heterogeneity in
impatience and endogenously determined liquidity effects.
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partition is different from Amihud and Mendelson (1986), because our risk-averse long-horizon

investors also buy liquid assets for diversification purposes.

The partial segmentation equilibrium implies different expressions for the expected returns of

liquid and segmented assets. For liquid assets, expected returns contain the familiar compensa-

tion for expected transaction costs and a mixture of a liquidity premium and standard-CAPM risk

premium. The presence of investors with longer investment horizons, however, reduces the im-

portance of liquidity risk relative to a homogeneous investor setting. Furthermore, the effect of

expected liquidity is relatively smaller, given that long-horizon investors do not trade every period,

and it varies in the cross-section of stocks as a function of the covariance between returns and

illiquidity costs. Interestingly, we identify cases in the cross-section of stocks where high liquidity

risk may actually lead to a lower premium on expected liquidity because of a greater presence of

long-term investors.

The expected returns of segmented assets contain additional terms, both for risk premia and in

expected liquidity effects. More specifically, there are segmentation and spillover risk premia. The

segmentation risk premium is positive and is caused by imperfect risk sharing, as only long-term

investors hold these illiquid assets. The spillover risk premium can be positive or negative, depend-

ing on the correlation between illiquid (segmented) and liquid (non-segmented) asset returns. For

example, if a segmented asset is highly correlated with non-segmented assets, the spillover effect is

negative and neutralizes the segmentation risk premium, because in this case the segmented asset

can be replicated (almost exactly) by a portfolio of non-segmented assets.

The expected liquidity term also contains a segmentation effect, in that expected liquidity mat-

ters less for segmented assets that are held only by long-term investors. Along the same lines as
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the risk premium, it also contains an expected liquidity spillover term, with a sign that is a func-

tion of the correlation between liquid and illiquid assets. In sum, the presence of these additional

effects implies that the total expected liquidity premium can be larger for liquid assets relative to

segmented assets. Hence, in contrast to Amihud and Mendelson (1986) and Acharya and Pedersen

(2005), the relation between expected returns and expected liquidity in our model is not necessarily

strictly increasing.

In summary, our model demonstrates that incorporating heterogeneous investment horizons

has a considerable impact on the way liquidity affects asset prices. It changes the relative size

of liquidity and market risk premia, leads to cross-sectional differences in liquidity effects, and

generates segmentation and spillover effects.

Armed with this array of novel theoretical predictions, we take the model to the data to test

its empirical relevance. Specifically, we analyze the cross-section of U.S. stocks over the period

1964 to 2009 and use the illiquidity measure of Amihud (2002) to proxy for liquidity costs, as in

Acharya and Pedersen (2005). We estimate our asset pricing model using the Generalized Method

of Moments (GMM) and find that a version with two horizons (one month and ten years) generates

a remarkable cross-sectional fit of expected stock returns. Specifically, for 25 liquidity-sorted

portfolios, the heterogeneous-horizon model generates a cross-sectional R2 of 82.2% compared to

62.2% for the single-horizon model, with similar improvements when using other portfolio sorting

criteria. Our model achieves this substantial increase in explanatory power using the same degrees

of freedom and imposing more economic structure on the composition of the risk premium and

on the loading of expected returns on expected liquidity. As an upshot of our richer model, the
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empirical estimates can also be used to make inferences about the risk-bearing capacity of investors

in each horizon class.

We also estimate a version of our heterogeneous horizon model without liquidity risk, thus

incorporating only the effects of expected liquidity and the associated segmentation and spillover

effects. As explained above, this model setup deviates from Amihud and Mendelson (1986) in that

investors are risk-averse, rather than risk-neutral. Interestingly, the fit of this version of the model is

as good as the fit of a model with liquidity risk. For our empirical application to the cross-section

of U.S. stocks, what matters is the combination of expected liquidity and partial segmentation.

While the cost of the homogenous horizon assumption is about 20% in terms of R2, in the end the

cost of assuming constant transaction costs seems negligible.

The final important implication of the empirical estimates of our model is the more prominent

role of the effect of expected liquidity on expected returns compared to the homogeneous horizon

case. Averaged across the 25 liquidity-sorted portfolios, the expected liquidity premium generates

about 2.40% in annual returns in our model, as compared with 0.36% in the homogeneous-horizon

model. The presence of partial segmentation is thus crucial to understand the effect of expected

liquidity on asset prices.

The remainder of the paper is organized as follows. Section I reviews the relevant literature.

Section II presents the general liquidity asset pricing model that allows for arbitrarily many in-

vestment horizons and assets. We describe our estimation methodology in Section III. Section IV

illustrates the data and Section V presents our empirical findings. We conclude with a summary of

our results in Section VI.
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I. Related Literature

Our paper contributes to the existing literature on liquidity and asset pricing along several di-

mensions. First, our model is related to theoretical work on portfolio choice and illiquidity (see

Amihud, Mendelson, and Pedersen (2005) for an overview). Starting with the work of Constan-

tinides (1986), several researchers have examined multi-period portfolio choice in the presence

of transaction costs. In contrast to these papers, we focus on a general equilibrium setting with

heterogenous investment horizons in the presence of liquidity risk. We obtain a tractable asset

pricing model by simplifying the analysis in some other dimensions. In particular, we assume no

intermediate rebalancing for long-term investors.

Second, our empirical results contribute to a rich literature that has empirically studied the

asset pricing implications of liquidity and liquidity risk. Amihud (2002) finds that stock returns

are increasing in the level of illiquidity both in the cross-section (consistent with Amihud and

Mendelson (1986)) and in the time-series. Pástor and Stambaugh (2003) show that the sensitivity of

stock returns to aggregate liquidity is priced. Acharya and Pedersen (2005) integrate these effects

into a liquidity-adjusted CAPM that performs better empirically than the standard CAPM. The

liquidity-adjusted CAPM is such that, in addition to the standard CAPM effects, the expected return

on a security increases with the level of illiquidity and is influenced by three different liquidity risk

covariances. Several articles build on these seminal papers and document the pricing of liquidity
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and liquidity risk in various asset classes.2 However, none of these papers study the liquidity

effects of heterogenous investment horizons.

Third, our paper is also related to empirical research showing the relation between liquidity

and investors’ holding periods. For example, Chalmers and Kadlec (1998) find evidence that it is

not the spread, but the amortized spread that is more relevant as a measure of transaction costs,

as it takes into account the length of investors’ holding periods. Cremers and Pareek (2009) study

how investment horizons of institutional investors affect market efficiency. Cella, Ellul, and Gian-

netti (2011) demonstrate that investors’ short horizons amplify the effects of market-wide negative

shocks. All of these articles use turnover data for stocks and investors to capture investment hori-

zons. In contrast, we estimate the degree of heterogeneity in investment horizons by fitting our

asset pricing model to the cross-section of U.S. stock returns.

Finally, our modeling approach is somewhat related to recent theories where some investors do

not trade every period, although there is no explicit role for transaction costs and illiquidity. For

example, Duffie (2010) studies an equilibrium pricing model in a setting where some “inattentive”

investors do not trade every period. He uses this setup to study how supply shocks affect price

dynamics in a single-asset model. In contrast, besides incorporating transaction costs, our focus is

cross-sectional as we study a market with multiple assets in a setting where dividends, transaction

costs, and returns are all i.i.d. Similarly, Brennan and Zhang (2012) develop an asset pricing model

2For example, Bekaert, Harvey, and Lundblad (2007) focus on emerging markets, Sadka (2010) studies hedge
funds, Franzoni, Nowak, and Phalippou (2011) focus on private equity, Bao, Pan, and Wang (2011) study corporate
bonds, and Bongaerts, De Jong, and Driessen (2011) focus on credit default swaps.
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where a representative agent has a stochastic horizon.3 However, liquidity effects are neglected

and investors are homogeneous, in that they hold the same assets and those assets are liquidated

simultaneously.

II. The Model

In this section, we first lay down the foundations of our liquidity asset pricing model with

multiple assets and horizons. We then analyze the main equilibrium implications of the model.

Finally, we explore a number of special cases of the model to obtain additional interesting insights.

A. Model Setup and Assumptions

Our liquidity asset pricing model features both stochastic liquidity and heterogenous invest-

ment horizons in a setting with multiple assets. We develop a theoretical framework that is also

suitable for empirical estimation. Our model is built on the following assumptions:

• There are K assets, with asset i paying each period a dividend Di,t .4 Selling the asset costs

Ci,t . Transaction costs and dividends are i.i.d. in order to obtain a stationary equilibrium.

There is a fixed supply of each asset, equal to Si shares, and a risk-free asset with exogenous

and constant return R f .

3Using a similar motivation, Kamara, Korajczyk, Lou, and Sadka (2012) study empirically how the horizon that is
used to calculate returns matters for the pricing of various risk factors.

4We assume that the proceeds of the dividends at all times are added to the risk-free deposit.
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• We model N classes of investors with horizons h j, where j = 1, ..,N. It turns out that empir-

ically it is sufficient to take N = 2, so we will impose this condition from here onwards to

simplify the expressions. We thus have short-term investors with horizon of h1 periods and

long-term investors with horizon h2. Appendix A solves the model for any N.

• Investors have mean-variance utility over terminal wealth with risk aversion A j for investor

type j.

• We have an overlapping generations (OLG) setup. Each period, a fixed quantity Q j > 0 of

type j investors enters the market and invests in some or all of the K assets.

• Investors with horizon h j only trade when they enter the market and at their terminal date,

hence they do not rebalance their portfolio at intermediate dates.

Most assumptions follow Acharya and Pedersen (2005).5 The key extension is that we allow

for heterogenous horizons, while Acharya and Pedersen (2005) only have one-period investors.

We make two simplifying assumptions to obtain tractable solutions. First, we assume i.i.d. div-

idends and transaction costs so as to obtain a stationary equilibrium. In reality transaction costs

are relatively persistent over time. In the empirical section of the paper, we show that the i.i.d.

assumption does not have a major impact on our empirical results.

The second simplifying assumption is that investors do not rebalance at intermediate dates.

This assumption is important mainly for the long-term investors. As long as rebalancing trades are

small relative to the total positions, we do not expect that relaxing this assumption would generate

5Acharya and Pedersen (2005) start with investors with exponential utility and normally distributed dividends and
costs, which amounts to assuming mean-variance preferences.
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very different results. Also note that, in presence of transaction costs, investors only rebalance

their portfolio infrequently (see, for example, Constantinides (1986)). In addition, positions in

some categories of investment assets, such as private equity, may be hard to rebalance.

B. Equilibrium Expected Returns

In this subsection we describe how we obtain the equilibrium expected returns given our model

setup. First, note that, at time t, investors with horizon h j solve a maximization problem where they

choose the quantity of stocks purchased y j,t (a vector with one element for each asset) to maximize

utility over their holding period return, taking into account the incurred transaction costs. The

utility maximization problem is given by

max
y j,t

E
[
Wj,t+h j

]
− 1

2
A jVar

(
Wj,t+h j

)
(1)

Wj,t+h j =

(
Pt+h j +

h j

∑
k=1

Rh j−k
f Dt+k−Ct+h j

)′
y j,t +Rh j

f

(
e j−P′t y j,t

)
,

where R f is the gross risk-free rate, Wj,t+1 is wealth of the h j investors at time t + 1, Pt+1 is the

K×1 vector of prices, and e j is the endowment of the h j investors.

In the remainder of the text of the paper, we set R f = 1 to simplify the exposition. Appendix A

derives the model for R f ≥ 1, which leads to very similar expressions. In the empirical analysis,

we obviously estimate the version of the asset pricing model with R f equal to the historical average

of the risk-free rate.
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The optimal portfolio choice may reflect endogenous segmentation, which is the possibility that

some classes of investors do not hold some assets in equilibrium because the associated trading

costs are too high relative to the expected return over the investment horizon. To this end, we

introduce sets B j ( j = 1,2) that are subsets of {1, . . . ,K}, where K is the number of tradable assets.

The set B j represents the set of assets that investors j will buy in equilibrium. We find that a

short-horizon investor (with horizon h1) will endogenously avoid investing in assets for which the

associated transaction costs are too large. The sets B j thus depend on the level of transaction

costs of the assets. Note that, for markets to clear, long-term investors will hold all assets in

equilibrium, so that B2 = {1, . . . ,K}. In Appendix B, we describe in more detail under which

conditions endogenous segmentation arises.

The solution to this utility maximization problem is the usual mean-variance solution, corrected

for transaction costs and the possibility of segmentation. As shown in Appendix A, the solution

can be written as

y j,t =
1
A j

diag(Pt)
−1 Var

(
h j

∑
k=1

Rt+k− ct+h j

)−1

B j,p

(2)

×
(
h jE [Rt+1−1]−E [ct+1]

)
,

where Rt+1 denotes the K×1 vector of gross asset returns, with Ri,t+1 = (Di,t+1 +Pi,t+1)/Pi,t , and

ct+1 the K×1 vector of percentage costs, with ci,t =Ci,t/Pi,t . For a generic matrix M, the notation

MB j is used to indicate the |B j|× |B j| matrix containing only the rows and columns of M that are

in B j. We write M−1
B j,p for the inverse of MB j with zeros inserted at the locations where rows and

columns of M were removed. With this convention, Var
(

∑
h j
k=1 Rt+k− ct+h j

)−1

B j,p
corresponds to
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the K×K matrix containing the inverse of the covariance matrix of the set of assets that investors

j invest in, with zeros inserted for the rows and columns that were not included (the assets that

investors j do not invest in). The optimal demand vector y j,t thus contains zeros for those assets in

which investor j does not invest.6

With i.i.d. dividends and costs, given a fixed asset supply, a wealth-independent optimal de-

mand, and with the same type of investors entering the market each period, we obtain a stationary

equilibrium where the price of each asset Pi,t is constant over time. At any point in time, the market

clears with new investors buying the supply of stocks minus the amount still held by the investors

that entered the market at an earlier point in time,

Q1y1,t +Q2y2,t = S−
h1−1

∑
k=1

Q1y1,t−k−
h2−1

∑
k=1

Q2y2,t−k, (3)

where S is the vector with supply of assets (in number of shares of each of the assets). Given the

i.i.d. setting, we have constant demand over time, y j,t = y j,t−k for all j and k.

We let Rm
t = S̃′tRt/S̃′tι and cm

t = S̃′tct/S̃′tι, where S̃t = diag(Pt)S denotes the dollar supply of

assets. Appendix A shows that under the stated assumptions we obtain the following result.

PROPOSITION 1: A stationary equilibrium exists with the following equilibrium expected returns

E [Rt+1−1] = (γ1h1V1 + γ2h2V2)
−1 (γ1V1 + γ2V2)E [ct+1] (4)

+(γ1h1V1 + γ2h2V2)
−1 Cov

(
Rt+1− ct+1,Rm

t+1− cm
t+1
)
,

6We compute the long-term covariance matrices using the i.i.d. assumption. Appendix C provides further details.
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where

Vj = h jVar(Rt+1− ct+1)Var

(
h j

∑
k=1

Rt+k− ct+h j

)−1

B j,p

, (5)

and γ j = Q j/(A jS̃′ι).7 R f is set equal to 1 for ease of exposition.

Proposition 1 shows that the equilibrium expected returns contain two components. The first

component is a compensation for the expected transaction costs. The second component is a com-

pensation for market risk and liquidity risk. Note that the loadings on expected costs and return

covariances are matrices. This is in contrast to standard linear asset pricing models, where these

loadings are scalars and therefore all assets have the same exposure to expected costs and the return

covariance.

In the equilibrium equation (4), the parameter γ j has an interesting interpretation as risk-

bearing capacity. Specifically, the OLG setup implies that in every period the total number of

h j-investors in the market is equal to h jQ j. This total number is important because it determines

among how many h j-investors the risky assets can be shared. Their risk aversion A j is also impor-

tant, because it determines the size of the position these investors are willing to take in the risky

assets. Therefore, we can indeed interpret the quantity

h jγ j =
h jQ j

A j

1

S̃′ι
(6)

as the risk-bearing capacity of the h j-investors (scaled by the total market capitalization).

7The time subscript for supply S̃t is omitted, as supply is constant over time.
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C. Interpreting the Equilibrium: Special Cases

We now consider several special cases to gain intuition for the different effects that the general

equilibrium model generates. It is important to note that, in the empirical analysis, we estimate the

general model in equation (4). Hence, these special cases are only used here to better understand

the new implications of our equilibrium model.

We begin with an integration setting where both short-term and long-term investors hold all

assets. In this setting, we consider the following special cases:

• the liquidity CAPM of Acharya and Pedersen (2005);

• the expected liquidity effect without liquidity risk;

• the expected liquidity effect with liquidity risk;

• the market and liquidity risk premia with two assets.

We then consider a special case within the endogenous segmentation setting, where the short-

term investors do not invest in assets that are very illiquid. Finally, we summarize and discuss the

array of novel predictions of our model.

C.1. Liquidity CAPM of Acharya and Pedersen (2005)

If we have only one investor type with a one-period horizon, we obtain a model similar to the

liquidity CAPM of Acharya and Pedersen (2005). Specifically, consider the case where N = 1 (or

γ2 = 0), h1 = 1, and B1 = {1, . . . ,K}, so that there is just one class of one-period investors. For
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ease of comparison, we write the equilibrium equation in beta form. In this case, the equilibrium

expected returns simplify to

E [Rt+1−1] = E [ct+1]+
Var
(
Rm

t+1− cm
t+1
)

γ1

Cov
(
Rt+1− ct+1,Rm

t+1− cm
t+1
)

Var
(
Rm

t+1− cm
t+1
) , (7)

which is an i.i.d. version of the equilibrium relation of Acharya and Pedersen (2005).

C.2. Expected liquidity effect without liquidity risk

We now allow for two distinct investor horizons, but assume constant transaction costs (i.e.

Var(ct+1) = 0). In the integration setting (B1 = B2 = {1, . . . ,K}), we obtain a linear asset pricing

model with scalar loadings on expected liquidity and risk

E [Rt+1−1] =
γ1 + γ2

γ1h1 + γ2h2
E [ct+1]+

1
γ1h1 + γ2h2

Cov
(
Rt+1,Rm

t+1
)
. (8)

We immediately see that the loading on expected liquidity equals 1/h1 if γ2 = 0 and 1/h2 if γ1 = 0.

As the horizon h j increases, it follows that the impact of expected liquidity on returns decreases

with the investor horizon.

To illustrate the difference with the single-horizon case in equation (7), where the loading on

expected liquidity is equal to 1, let us use a simple example with h1 = 1, h2 = 2, γ1 = 2, and γ2 = 1.

In this simple example, the loading on expected liquidity is equal to

γ1 + γ2

γ1h1 + γ2h2
=

3
4
, (9)
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which is exactly halfway between the expected liquidity coefficient with only one-period investors

(1/h1 = 1) and the loading when there are only two-period investors (1/h2 = 1/2). More gener-

ally, we observe that the introduction of long-term investors in the model decreases the impact of

expected liquidity on expected returns.

C.3. Expected liquidity effect with liquidity risk

We now extend the previous special case C.2 to a setting with stochastic transaction costs. For

simplicity, we take Var(ct+1) and Var(Rt+1− ct+1) to be diagonal matrices (in this example only),

we set h1 = 1, and still consider the integration setting (B1 = B2 = {1, . . . ,K}). In this case, we

obtain

E [Ri,t+1−1] =
γ1 + γ2V2,i

γ1h1 + γ2h2V2,i
E [ci,t+1] (10)

+
1

γ1h1 + γ2h2V2,i
Cov

(
Ri,t+1− ci,t+1,Rm

t+1− cm
t+1
)
,

where V2,i denotes the i-th diagonal element of V2. In this case, we can write V2,i as

V2,i =
h2Var(Ri,t+1− ci,t+1)

(h2−1)Var(Ri,t+1)+Var(Ri,t+1− ci,t+1)
. (11)

Now consider the following ratio:

Var(Ri,t+1− ci,t+1)

Var(Ri,t+1)
. (12)
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This ratio is a good measure of the amount of liquidity risk, as it increases with Var(ci,t+1) and with

Cov(Ri,t+1,ci,t+1). We can show that the expected liquidity coefficient in (10) decreases with this

“liquidity risk” ratio. That is, higher liquidity risk leads to a smaller expected liquidity premium.

This result might seem counterintuitive at first sight, but it has a natural interpretation. If an asset

has higher liquidity risk, it will be held in equilibrium mostly by long-term investors. Long-term

investors care less about liquidity and this leads to the smaller expected liquidity effect.

C.4. Market and liquidity risk premia with two assets

We now focus on interpreting the risk premia that the model generates in equilibrium. In the

general model of equation (4), expected returns are determined by a mix of market and liquidity

risk premia. This mix becomes especially clear when we consider the two-asset case (K = 2),

h1 = 1, again in the integration setting. Formally:

PROPOSITION 2: In the two-asset case (K = 2), with two horizons (N = 2), h1 = 1, R f = 1, and

no segmentation (B1 = B2 = {1, . . . ,K}), the equilibrium expected returns are

E [Rt+1−1] = (γ1h1V1 + γ2h2V2)
−1 (γ1V1 + γ2V2)E [ct+1] (13)

+(γ1λ1 + γ2λ2)Cov
(
Rt+1− ct+1,Rm

t+1− cm
t+1
)
+ γ2λ2(h2−1)Cov

(
Rt+1,Rm

t+1
)
,

where λ j = h2
j/d0d j is a scalar parameter. The definitions of the determinants d0 and d j are given

by equations (A19) and (A21) in Appendix D.

In this equilibrium, the total risk premium is a weighted sum of market and liquidity risk

premia. Holding everything else constant, we can show that liquidity risk becomes less important

17



relative to market risk when the long-term investors become less risk averse or more numerous

(formally, as γ2 increases). As γ2 increases, long-term investors hold a larger fraction of the total

supply in equilibrium and these investors care less about liquidity risk compared to short-term

investors.

C.5. Segmentation effects

The special cases discussed above show the expected liquidity and risk premia effects when

all investors have positive holdings of all assets. Now we show what happens to expected returns

when some assets are only held by long-term investors (endogenous segmentation).

To obtain tractable theoretical expressions, we focus on the special case where V2 equals the

identity matrix and set h1 = 1. The simplification V2 = I is appropriate when the variability of

returns is much higher than the variability of transaction costs. As we show later in the empirical

section, this is indeed the case in our data and we can thus rely on these theoretical simplified ex-

pressions. Of course, our benchmark empirical estimation focuses on the unrestricted equilibrium

in equation (4).

Without loss of generality, we order the assets by liquidity, with the most liquid assets first.

The returns on the assets that are in B1 are denoted by Rliq
t , and the returns on the assets that are

not in B1 are denoted by Rilliq
t . We use this notation also for the costs. Appendix E shows that in

this setting we obtain the following proposition.
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PROPOSITION 3: If N = 2, h1 = 1, V2 = I, R f = 1, and B1 contains only those assets that the

short-term investors hold, then for these “liquid” assets the expected returns are

E
[
Rliq

t+1−1
]
=

γ1 + γ2

γ1h1 + γ2h2
E
[
cliq

t+1

]
+

1
γ1h1 + γ2h2

Cov
(

Rliq
t+1− cliq

t+1,R
m
t+1− cm

t+1

)
. (14)

The expected returns on “illiquid” assets only held by long-term investors are

E
[
Rilliq

t+1−1
]
=

1
h2

E
[
cilliq

t+1

]
+

h2−h1

h2

γ1

γ1h1 + γ2h2
βE
[
cliq

t+1

]
+

1
γ1h1 + γ2h2

Cov
(

Rilliq
t+1− cilliq

t+1,R
m
t+1− cm

t+1

)
+

(
1

γ2h2
− 1

γ1h1 + γ2h2

)
Cov

(
Rilliq

t+1− cilliq
t+1,R

m
t+1− cm

t+1

)
−
(

1
γ2h2
− 1

γ1h1 + γ2h2

)
βCov

(
Rliq

t+1− cliq
t+1,R

m
t+1− cm

t+1

)
,

where the matrix β denotes the liquidity spillover beta, defined as

β = Cov
(

Rilliq
t+1− cilliq

t+1,R
liq
t+1− cliq

t+1

)
Var
(

Rliq
t+1− cliq

t+1

)−1
. (15)

First, we note that the equilibrium expected returns for liquid assets are similar to the special

cases discussed previously, since these assets are held by both short-term and long-term investors.

For the “illiquid” assets, the pricing is more complex. In what follows, we thus discuss separately

the different components that make up expected excess returns for illiquid assets.
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We start by analyzing the expected liquidity effect that we can decompose into three parts:

γ1 + γ2

γ1h1 + γ2h2
E
[
cilliq

t+1

]
+

(
1
h2
− γ1 + γ2

γ1h1 + γ2h2

)
E
[
cilliq

t+1

]
+

h2−h1

h2

γ1

γ1h1 + γ2h2
βE
[
cliq

t+1

]
. (16)

The first component, which we denote full risk-sharing expected liquidity premium, is the expected

liquidity effect that one would obtain if these assets were held by both short-term and long-term

investors. The second term (segmentation expected liquidity premium) reflects that, in fact, only

long-term investors hold the illiquid assets and this term dampens the effect of expected liquidity

since 1
h2
− γ1+γ2

γ1h1+γ2h2
< 0. The third component (spillover expected liquidity premium) arises from

the exposure (as given by β) of the illiquid assets to the liquid assets. If this exposure is positive,

this increases the expected liquidity effect for the illiquid assets since h2−h1
h2

γ1
γ1h1+γ2h2

> 0. In other

words, if liquid and illiquid assets are positively correlated, the expected liquidity effect on illiquid

assets cannot be much lower than the effect for liquid assets, because long-term investors would

take advantage by shorting the illiquid assets and buying the liquid assets.

We now turn to the risk premia, where we have a natural interpretation for each of the various

covariance terms in the equilibrium relation for the illiquid assets. The term

1
γ1h1 + γ2h2

Cov
(

Rilliq
t+1− cilliq

t+1,R
m
t+1− cm

t+1

)
(17)

gives the full risk-sharing risk premium that would arise if both types of investors would hold the

asset. The second term,

(
1

γ2h2
− 1

γ1h1 + γ2h2

)
Cov

(
Rilliq

t+1− cilliq
t+1,R

m
t+1− cm

t+1

)
, (18)
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gives the segmentation risk premium, which shows the impact of the lower risk sharing due to

long-term investors only holding the illiquid assets. Since 1
γ2h2
− 1

γ1h1+γ2h2
> 0, this segmentation

premium increases expected returns in case of positive return covariance. The third term,

−
(

1
γ2h2
− 1

γ1h1 + γ2h2

)
βCov

(
Rliq

t+1− cliq
t+1,R

m
t+1− cm

t+1

)
, (19)

defines a spillover risk premium. Along the lines of the discussion above for the expected liquidity

effect, this term concerns the relative pricing of the illiquid versus liquid assets. If these two assets

are positively correlated (high elements of β), their expected returns cannot be too far apart. This

term reduces the effect of segmentation when the elements of β are nonzero. Specifically, if

Cov
(

Rilliq
t+1− cilliq

t+1,R
m
t+1− cm

t+1

)
= βCov

(
Rliq

t+1− cliq
t+1,R

m
t+1− cm

t+1

)
, (20)

the net effect of segmentation is equal to zero.

We can also rewrite the expected returns on segmented assets in Proposition 3 in a more com-

pact form:

E
[
Rilliq

t+1−1
]
=

1
h2

E
[
cilliq

t+1

]
+β

(
E
[
Rliq

t+1

]
− 1

h2
E
[
cliq

t+1

])
(21)

+
1

γ2h2
Cov

(
Rilliq

t+1− cilliq
t+1−β

(
Rliq

t+1− cliq
t+1

)
,Rm

t+1− cm
t+1

)
,

which can provide some additional intuition. In particular, this expression shows in a different way

how segmentation matters. The expected returns on segmented assets are driven by the exposure
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to net-of-cost returns of the liquid assets, plus an additional effect that comes from the systematic

exposure of the residual return on segmented assets, Rilliq
t+1− cilliq

t+1−β(Rliq
t+1− cliq

t+1).

The total segmentation risk premium, as expressed in equation (21), is in the spirit of the

international asset pricing literature (e.g., De Jong and De Roon (2005)), where segmentation also

leads to additional effects on expected returns.

To better illustrate how segmentation influences the impact of expected liquidity on expected

returns, we consider again the simple example of Section II.C.2, where h1 = 1, h2 = 2, γ1 = 2, and

γ2 = 1. We also impose Var(ct+1) = 0 and β = 0. In this segmentation setting, we find that the

loading on expected liquidity is
γ1 + γ2

γ1h1 + γ2h2
=

3
4

(22)

for the liquid assets, and
1
h2

=
1
2

(23)

for the illiquid assets. This example shows that the effect of expected liquidity is smaller for the

illiquid assets, because these assets are only held by long-term investors in equilibrium. Note that

in this case the total expected liquidity component of expected returns for liquid assets (3
4E
[
cliq

t+1

]
)

is not necessarily smaller than the premium for illiquid assets (1
2E
[
cilliq

t+1

]
).
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C.6. Summary and Discussion

Our model shows that the asset pricing effects of liquidity are much more complex once we

allow for heterogenous horizons and segmentation. In summary, the main theoretical implications

are:

(i) the expected liquidity effect is decreasing with investor horizons;

(ii) the expected liquidity effect is decreasing with the amount of liquidity risk;

(iii) for “segmented” assets the expected liquidity effect is dampened because of the exclusive

ownership of long-term investors;

(iv) for “segmented” assets the expected liquidity effect also contains a spillover term due to the

correlation between segmented and non-segmented assets;

(v) the total risk premium is a mix of a market risk premium and a liquidity risk premium.

The liquidity risk premium becomes relatively more important when short-term investors are

more numerous or less risk-averse;

(vi) for “segmented” assets there is an additional segmentation risk premium due to limited risk

sharing;

(vii) for “segmented” assets there is an additional spillover risk premium due to the correlation

between segmented and non-segmented assets.

Note that the sign of the various effects listed above is not always unambiguous. For exam-

ple, the spillover effects clearly depend on the sign of the correlation between segmented and

non-segmented assets. The model thus predicts a more complex relation between liquidity and ex-
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pected returns compared to Acharya and Pedersen (2005) and Amihud and Mendelson (1986). For

example, one of the most interesting predictions of Amihud and Mendelson (1986) is the concave

relationship between expected liquidity and expected returns. In our model, the effect that drives

this concave relation is also present (a smaller expected liquidity coefficient for segmented assets,

point 3 above). However, there are other segmentation and spillover effects that also play a role.

These additional effects are not present in Amihud and Mendelson (1986), because they assume

risk-neutral investors. In their model long-term investors only invest in illiquid assets and not in the

liquid assets. In contrast, in our model with risk averse agents, long-term investors will diversify

and invest in liquid assets as well, leading to spillover and segmentation effects.

We thus observe that the introduction of heterogenous investment horizons into a liquidity asset

pricing model has strong implications for the pricing of liquid versus illiquid assets. Specifically,

we find various and potentially contrasting effects on the liquidity (risk) premia. It then becomes

an empirical question to understand the relevance of these additional effects. We take on this task

in the next Sections of the paper.

III. Empirical Methodology

In this section, we explain how our liquidity asset pricing model can be estimated. We also

explore the economic mechanism that allows the identification of the parameters. We then discuss

alternative approaches for a robust computation of standard errors.
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A. GMM Estimation

We use a Generalized Method of Moments (GMM) methodology to estimate the equilibrium

condition given by equation (4), but without imposing R f = 1. The key estimated parameters are

γ j = Q j/(A jS̃′ι), that is, the risk-bearing capacity of the different classes of investors. We define

the vector of pricing errors of all assets, denoted by g(ψ,γ), as

g(ψ,γ) = E [Rt+1−1]− (γ1h1V1 + γ2h2V2)
−1 (γ1V1 + γ2V2)E [ct+1] (24)

− (γ1h1V1 + γ2h2V2)
−1 Cov

(
Rt+1− ct+1,Rm

t+1− cm
t+1
)
,

where γ is the vector of parameters, and ψ is a vector containing the underlying expectations and

covariances that enter the pricing errors. Specifically, ψ contains all expected returns, expected

costs, covariances entering the Vj matrices, and the covariances with the market return. In a first

step, we estimate all elements of ψ by their sample moments. In a second step, we perform a GMM

estimation of γ, using an identity weighting matrix across all assets. We thus minimize the sum of

squared pricing errors over γ,

min
γ

g(ψ̂,γ)′g(ψ̂,γ). (25)

In Appendix F, we derive the asymptotic covariance matrix of this GMM estimator, taking into

account the estimation error in all sample moments in ψ, in line with the approach of Shanken

(1992).
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B. Identification

To gain insight into the economic mechanism that allows the identification of the parameters,

it is useful to illustrate some comparative statics results. Specifically, a change in γ j means that the

horizon h j investors become either more numerous, or less risk averse, or both. Appendix G shows

that the effect of such a change on expected returns is given by

∂E [Rt+1−1]
∂γ j

= (γ1h1V1 + γ2h2V2)
−1Vj

(
E [ct+1]−h jE [Rt+1−1]

)
. (26)

We observe two contrasting effects of an increase in γ j. The first effect is an increase in the

risk premium due to the impact of expected liquidity. The second effect is the increased amount

of risk sharing, which leads to a decrease in the risk premium proportional to the original risk

premium. For long-term investors, the latter effect dominates and an increase in γ implies lower

expected returns for all assets. For short-term investors, however, the expected costs may exceed

the expected return h jE [Rt+1−1] for the more illiquid assets. This is exactly what we observe in

the data for some more illiquid stocks. Hence, an increase in γ1, which corresponds to the short-

term investors, may increase the expected return of illiquid assets and decrease the expected return

of liquid assets. We also observe that hedging considerations could play a different role for short-

term versus long-term investors, because the matrix pre-multiplying the difference between the

liquidity cost and the scaled risk premium can reverse the sign of the partial derivatives in equation

(26).
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In summary, this comparative statics exercise shows that the estimated parameters for short-

term versus long-term investors may have opposing effects on equilibrium expected returns for

different assets and, as such, can be properly identified.

C. Bootstrap Standard Errors

We use a bootstrap test to check the robustness of the asymptotic standard errors. We generate

bootstrap samples by re-sampling the data and then carrying out the first step of the estimation

procedure to obtain estimates for the different moments that enter the vector of pricing errors.

The test is a bootstrap t-test based on the bootstrap estimate of the standard error. The test

does not provide asymptotic refinements, but has the advantage that it does not require direct com-

putation of asymptotically consistent standard errors and thus provides a check on the asymptotic

standard errors. Overall, we find that the bootstrap standard errors are close to the asymptotic

standard errors.

IV. Data

We largely follow Acharya and Pedersen (2005) in our data selection and construction. We use

daily stock return and volume data from CRSP from 1964 until 2009 for all common shares listed

on NYSE and AMEX. As our empirical measures of liquidity rely on volume, we do not include

Nasdaq since the volume data includes interdealer trades (and only starts in 1982). Overall, we

consider a number of stocks ranging from 1056 to 3358, depending on the month. To correct for
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survivorship bias, we adjust the returns for stock delisting (see Shumway (1997) and Acharya and

Pedersen (2005)).

The relative illiquidity cost is computed as in Acharya and Pedersen (2005). The starting point

is the Amihud (2002) illiquidity measure, which is defined as

ILLIQi,t =
1

Daysi,t

Daysi,t

∑
d=1

∣∣Ri,t,d
∣∣

Voli,t,d
(27)

for stock i in month t, where Daysi,t denotes the number of observations available for stock i in

month t, and Ri,t,d and Voli,t,d denote the trading volume in millions of dollars for stock i on day d

in month t, respectively.

We follow Acharya and Pedersen (2005) and define a normalized measure of illiquidity that

deals with non-stationarity and is a direct measure of trading costs, consistent with the model

specification. The normalized illiquidity measure can be interpreted as the dollar cost per dollar

invested and is defined for asset i by

ci,t = min
{

0.25+0.30ILLIQi,tP
m
t−1,30.00

}
, (28)

where Pm
t−1 is equal to the market capitalization of the market portfolio at the end of month t− 1

divided by the value at the end of July 1962. The product with Pm
t−1 makes the cost series ci,t

relatively stationary and the coefficients 0.30 and 0.25 are chosen as in Acharya and Pedersen

(2005) to match approximately the level and variance of ci,t for the size portfolios to those of the

effective half spread reported by Chalmers and Kadlec (1998). The value of normalized liquidity

ci,t is capped at 30% to make sure the empirical results are not driven by outliers.
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We obtain the book-to-market ratio using fiscal year-end balance sheet data from COMPU-

STAT in the same manner as Ang and Chen (2002). They follow Fama and French (1993) in

defining the book value of a firm as the sum of common stockholders’ equity, deferred taxes, and

investment credit minus the book value of preferred stocks. The ratio is obtained by dividing the

book value by the fiscal year-end market value.

We construct the market portfolio on a monthly basis and only use stocks that have a price on

the first trading day of the corresponding month between $5 and $1000. We include only stocks

that have at least 15 observations of return and volume during the month. Following Acharya and

Pedersen (2005), we use equal weights to compute the return on the market portfolio.

We construct 25 illiquidity portfolios, 25 illiquidity variation portfolios, and 25 book-to-market

and size portfolios, as in Acharya and Pedersen (2005). The portfolios are formed on an annual

basis. For these portfolios, we require again for the stock price on the first trading day of the

corresponding month to be between $5 and $1000. For the illiquidity and illiquidity variation

portfolios, we require to have at least 100 observations of the illiquidity measure in the previous

year.

Table 1 shows the estimated average costs and average returns across the 25 illiquidity port-

folios. The values correspond closely to those found in Table 1 of Acharya and Pedersen (2005).

Most importantly, we see that average returns tend to be higher for illiquid assets. Also, the table

shows that returns on more illiquid portfolios are more volatile. This finding holds for returns

net of costs as well. The returns (net of costs) on more illiquid portfolios tend to co-move more

strongly with market returns (also net of costs).
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V. Empirical Results

In this section, we take the model to the data. First, we estimate the parameters of the model for

the segmented case and compare it with single-horizon models (e.g., Acharya and Pedersen, 2005).

We also explore the implications of the estimates for the importance of the different components of

expected returns. We then study the robustness of our results to the choice of the investor horizon,

to the extent of segmentation, and to pricing different sets of portfolios.

A. Estimation Setup

We estimate the parameters of the equilibrium relation given by equation (4) for the sample

period 1964–2009 using the GMM methodology described in Section III.A. We first estimate the

model on 25 portfolios of stocks listed on NYSE and AMEX, sorted on illiquidity. In the next

subsection, we also estimate the model for 25 illiquidity-variation portfolios and 25 Book/Market-

by-Size portfolios.

Our benchmark estimation is based on two classes of investors.8 The first class (short horizon)

has an investment horizon h1 of one month, the second class (long horizon) has an investment

horizon h2 of 120 months (10 years). The choice of the length of the long horizon can be related to

the results of using the methodology of Atkins and Dyl (1997) for our sample.9 Over the 1964-2009

8Adding a third class of investors does not yield substantial empirical improvement. The corresponding coefficient
does not necessarily go to zero, but the R2 remains essentially unchanged, with little gain in terms of explanatory
power.

9Atkins and Dyl (1997) find that the mean investor holding period for NYSE stocks during the period 1975–1989
is roughly equal to 4.01 years.
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period, we find an average holding period of 5.59 years. The robustness tests later in Section V.C

show that the empirical results are virtually unchanged with the long horizon set at five years or

longer.

Long-term investors tend to hold more illiquid assets. Consistent with this idea, Table I shows

that turnover tends to be much lower and has a smaller standard deviation for the least liquid

portfolios. We thus impose a segmentation cutoff, where the one-month investors invest only in

the 19 most liquid portfolios. We choose this threshold based on the empirical evidence in Table I.

While monthly expected excess returns are larger or similar to expected costs for most portfolios,

for the six least liquid portfolios, the costs become roughly 2 to 9 times higher than the monthly

average return. As the one-month investors incur the costs each period, these assets can be seen as

prohibitively costly.10

This simple rule for the one-month investor (hold the asset if the expected monthly return ex-

ceeds the expected transaction costs and have a zero position otherwise) would also be the optimal

rule with a diagonal covariance matrix of returns, as equation (2) shows.11 Furthermore, Figure 6

shows that this threshold maximizes the cross-sectional R2 across all possible cutoffs, including

the model without any segmentation.

10A portfolio-level analysis along the lines of Atkins and Dyl (1997) shows that the first 19 portfolios have average
holding periods between 2.49 and 7.91 years, while portfolios 20 through 25 have average holding periods between
10.67 and 30.12 years, suggesting that short-term investors are unlikely to trade these illiquid stocks.

11To determine endogenously what are the portfolios held by the one-month investors, we can cast the problem
as a mean-variance optimization exercise for the one-month investors. However, with this exercise, we run into the
often-encountered issue of extreme positions in some portfolios due to close-to-singular covariance matrices.
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Having set horizons and the segmentation cutoff, we now estimate the model parameters γ j =

Q j/(A jS̃′ι) and, in some cases, a constant term in the expected return equation (α). We denote

the models with and without a constant term as specifications (SEG+α) and (SEG), respectively.

The role of the constant term is basically to provide a specification check, because it should equal

zero under the null hypothesis. Recall that we can interpret h jγ j as the risk-bearing capacity of

h j-investors. The risk-bearing capacity is determined by the risk aversion (A j) and size (Q j) of

the h j-investor group. Hence, the interpretation of the estimated parameters can offer interesting

insights on the risk aversion or size of the short-term versus long-term investor groups.

We compare our model with a baseline one-period horizon model as in equation (7), with N = 1

and h1 = 1. Here, we follow Acharya and Pedersen (2005) and allow for a slope coefficient κ on

the expected liquidity term E [ct+1], although formally the Acharya and Pedersen (2005) model

implies a coefficient on expected liquidity equal to one. This coefficient is used by Acharya and

Pedersen (2005) to correct for the fact that the typical holding period does not equal the estimation

period of one month. We denote these single-horizon specifications as (AP) and (AP+α) if we

add the constant term. These single-horizon specifications provide a very useful baseline case

to understand the empirical improvement of having multiple horizons and segmentation, because

they have the same degrees of freedom of the segmented models. For both categories, there are

two estimated parameters and, possibly, a constant. Specifically, the single horizon case contains

one horizon parameter and one expected liquidity coefficient, while the multiple horizon case has

one parameter for each horizon.
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B. Benchmark Estimation Results

Table II shows the results for the illiquidity portfolios. We find that the first specification of

the segmented model (SEG), without a constant term, improves the R2 of the Acharya-Pedersen

model by about 20%, from 62% to 82%. Importantly, this improvement is achieved retaining the

parsimony of the original model – both models depend on two parameters. The fit is graphically

displayed in Figure 2. The graphs indicate that accounting for segmentation and heterogeneous

horizons leads to smaller pricing errors in the upper-right end of the plot, i.e., for the more illiquid

portfolios (as Table I shows that illiquid portfolios tend to have higher excess returns). Since the

more illiquid portfolios are also characterized by segmentation, this is first suggestive evidence that

the economic source of the improved fit of our model is obtained by effectively constraining the

clientele of the illiquid assets to the long-term investors. Table II also shows that the segmented

model still outperforms the AP model when we allow for a constant term α in the asset pricing

equation.

We then investigate the sources of this improved fit in more detail and use the empirical es-

timates to decompose expected returns into an expected liquidity component and risk premium

component, according to equation (4). We depict this decomposition for the single-horizon and

two-horizon case with segmentation in Figure 3. We notice that in the single horizon (AP) case,

the impact of the expected liquidity term is relatively modest. This is because the expected costs

increase exponentially when moving from liquid to illiquid portfolios, while the expected returns

do not exhibit such an exponentially increasing pattern (see Table I as well as Figure 1). If any-

thing, the expected returns increase with illiquidity at a lower rate for the more illiquid portfolios:

the expected return levels off after portfolio 19, but the expected expected liquidity term keeps ris-
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ing. The (AP) specification implies a linear relation between expected costs and expected returns,

and thus has difficulty fitting the cross-section of liquid versus illiquid portfolios. As a result, the

expected liquidity effect is rather small for the (AP) specification (a few basis points per month for

most portfolios).

Our model with segmentation reduces the impact of the expected liquidity term on the illiquid

portfolios relative to the impact on the liquid portfolios. Hence, our model allows for a much larger

overall expected liquidity premium (between 10 and 40 basis points per month) and this improves

the fit substantially as shown by Figure 2 and Figure 3. The average expected liquidity premium

across portfolios is about 20 basis points per month for the (SEG) specification, compared to an

average effect of 3 basis points for the (AP) specification. Since only long-term investors hold

the most illiquid assets, the expected liquidity premium is relatively limited for these assets. This

explains the drop in the impact of the cost term around portfolios 19 and 20. Figure 3 also shows

that the covariance term provides the largest overall contribution to the expected excess returns.

To gain further insight into the impact of segmentation, we make use of Proposition 3 to decom-

pose both the expected liquidity effect and the covariance effect into a full risk-sharing component,

a segmentation component, and a spillover component. We show these components in Figure 4.

The decomposition indicates clearly how the impact of segmentation on the total expected return

builds up. For the expected liquidity premium given in equation (16) (upper panel in Figure 4), the

full risk-sharing effect increases sharply for the least liquid portfolios since expected costs increase

exponentially when moving to illiquid assets. This effect is mostly canceled out by the negative

segmentation effect, which arises because the long-term investors care less about liquidity. There

is still a modest liquidity spillover premium. Hence, the liquidity spillover effect drives most of

34



the expected liquidity effect for the least liquid assets. This is also what causes the drop in the

model-implied expected return going from portfolio 19 to 20, as depicted in Figure 3.

For the covariance component of expected returns (lower panel of Figure 4), we observe that

the segmentation premium and the spillover risk premium in equations (18) and (19) mostly cancel

out because the returns on illiquid portfolios are strongly related to liquid portfolio returns. Hence

the risk premia of liquid and illiquid assets are quite similar. This is evidence showing that the

effect of segmentation is almost entirely driven by the expected liquidity term.

The estimates in Table II can be used to obtain insight into the structural parameters in the

asset pricing model. For example, if we assume for simplicity that risk aversion is constant across

investor classes (i.e., A1 = A2), we can make inferences about the number of investors in each

class. More specifically, we examine the ratio (h2γ2)/(h1γ1) = (h2Q2)/(h1Q1).12 The results for

specifications (SEG) and (SEG+α) show that the estimates imply that there are respectively 2.1

and 2.6 times as many long horizon investors as there are short horizon investors.

We show some comparative statics results for each model parameter in Figure 5 (see equation

(26) for the analytical expression). The graphs illustrate the impact on the risk premium of an

increase in the γ j, that is, an increase in the quantity of class j investors, a decrease in their risk

aversion, or both. The top panel shows the baseline case with one-period homogeneous investors.

Here, the larger risk-sharing (with more numerous or less risk averse investors) is all that matters.

Looking now at long-term investors in the heterogeneous horizon model (Figure 5, bottom right

panel), we see that the effect of an increase in γ2 on the risk premium is always negative. This is

12As Q j investors with horizon h j enter each period, at each point in time the total number of type- j investors equals
h jQ j. Also note that including S̃′ι in the γ j does not influence our comparison.
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consistent with the theoretical analysis of Section III.B, where we show that for long-term investors

the risk sharing effect dominates the liquidity effect (absent hedging considerations). In other

words, this finding confirms empirically that long term investors are less concerned about liquidity.

For the short term investors (Figure 5, bottom left panel), we see that the effect of γ1 on expected

returns is positive for the most illiquid portfolios and negative for the more liquid portfolios, again

in line with our intuition in Section III.B. These comparative statics results show that γ1 and γ2 have

quite different effects on expected returns, which implies that these parameters are well identified

empirically.

C. Robustness Across Horizons and Portfolios

In this subsection, we check the robustness of our empirical findings to different modeling

assumptions. We first test the sensitivity of model performance to the choice of the long term

investor horizon and we compute the R2 for h2 = 30,60,120,240,480 months. The results are

given in Figure 6, and show that the explanatory power of the model is relatively insensitive to the

choice of horizon. In addition, the coefficients do not vary much across the different choices. The

performance is also robust to varying h1, the short-term investor horizon, as long as it does not

grow too large. More specifically, with h1 = 6 months we still obtain a substantial improvement

over the single-horizon model.

The second robustness check concerns the assumption of i.i.d. transaction costs, which is re-

quired to obtain a tractable solution for the asset pricing model. Empirically, transaction costs are

persistent over time. For example, Acharya and Pedersen (2005) estimate an AR(2) model for their

monthly measure of transaction costs. For our empirical application, the i.i.d. assumption is not a
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major concern for two reasons. First, as shown above, the model generates a good fit even when

the short-term investors have a six-month horizon (h1 = 6). The persistence of transaction costs

is obviously lower at a semi-annual frequency compared to the monthly frequency in Acharya

and Pedersen (2005). Second, and more importantly, we estimate a version of the model without

liquidity risk (hence with constant ct+1). The results in Table III show that the model fit is virtu-

ally unchanged. This shows that the good fit of the heterogenous-horizon model is not obtained

through the liquidity risk channel, but rather via the expected liquidity effect and the associated

segmentation and spillover effects. In addition, it follows from the result in Appendix C that with-

out liquidity risk, V2 = I (assuming R f = 1). The results for the model without liquidity risk thus

indicate that the assumption that V2 = I does not seem to be very restrictive, validating the analysis

of Section II.C.

Another robustness test is related to the specific choice of the baseline model. Equation (7)

is an i.i.d. version of the Acharya and Pedersen (2005) model, which is a conditional model. To

obtain an unconditional version, they take expectations on both sides and apply a standard result

regarding the expectation of a conditional covariance. This means that the covariance component in

their specification is actually a covariance between residuals of Rt+1−ct+1 and residuals of Rm
t+1−

cm
t+1, obtained with an AR(2) model for returns and liquidity. Unreported estimation results show

that the conditional model with AR(2) residuals yields very similar results as the unconditional

specification of equation (7). Hence, the comparison of the explanatory power between the results

of the models in Table II does not depend on the specific version of the one-period single horizon

model that is used.

37



As a final robustness check, we also estimate our model for two different portfolio sorts. As

before, the segmentation cutoff is set by comparing the average monthly return to the average

transaction costs, with the one-month investors only investing in the portfolios where the monthly

return exceeds the costs. Table IV, Panel A, shows even larger improvements in the cross-sectional

fit of our model for the σ(illiquidity) portfolios: the R2 equals 64.1% in the AP model versus 86.5%

in the heterogenous horizon model for the case without a constant term. This shows that the model

captures well both the pricing of the level of liquidity and liquidity risk. For the B/M-by-size port-

folios, the improvement is also very substantial (see Table IV, Panel B): here the cross-sectional

R2 equals 35.0% in the AP model versus 54.4% in the heterogenous horizon model (without con-

stant term).13 In summary, for any portfolio sorting criteria, our heterogeneous investment horizon

model with segmentation provides at least a 20% R2 improvement in the cross-sectional fit.

VI. Conclusions

Heterogeneous investment horizons can have important asset pricing effects through the dis-

tinct role of liquidity. Different horizons imply different trading frequencies and therefore trading

costs can have a varying impact for the expected returns of assets held by short-term versus long-

term investors.

We present a new liquidity-based asset pricing model with heterogeneous investment horizon

investors and stochastic transaction costs. Our model contributes to the literature by effectively

13If we include a constant term in the asset pricing model, the improvement in R2 is even larger. In this case,
the estimate for γ1 in the heterogenous-horizon model tends to infinity, implying a zero risk premium for the non-
segmented portfolios. For these portfolios the returns are best explained by the constant term plus the expected
liquidity effect.
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bridging the clientele of investors in the seminal Amihud and Mendelson (1986) paper with the

risk-averse agents and stochastic illiquidity of the Acharya and Pedersen (2005) model. The in-

creased generality of our model delivers a number of new theoretical insights. It also provides a

useful metric to understand the empirical cost of restrictive assumptions, such as horizon homo-

geneity, in fitting the cross-section of U.S. stock returns.

The most intriguing theoretical result is the existence of an equilibrium with partial segmen-

tation. Short-term investors optimally choose not to invest in the most illiquid assets, intuitively

because their expected returns are not sufficient to cover expected transaction costs. In contrast,

long-term investors trade less frequently and can afford to invest in illiquid assets. In this equilib-

rium, the expected returns of segmented assets contain additional terms, both for risk premia and

in expected liquidity effects. These additional terms depend partly on the segmented ownership

and partly on the correlation between liquid and illiquid assets.

The additional structure imposed by our model delivers a substantial increase in the cross-

sectional explanatory power for U.S. stock returns. For a number of portfolio sorting criteria,

we find that our heterogeneous horizon model increases the R2 by at least 20% compared to an

homogeneous-horizon liquidity asset pricing model. With the same degrees of freedom, we obtain

this large empirical improvement through a suitable characterization of the relation between excess

returns and different features of expected liquidity and the liquidity risk premium. This character-

ization depends crucially on the presence of partial segmentation and agents’ risk aversion.
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Appendix: Derivations

A. Main result

To derive the main result, we consider N classes of investors, as this shows the generality of

the result and shortens the proof. We start by introducing sets B j ( j = 1, . . . ,N) that represent

the assets that investor j optimally holds in his or her portfolio. In Appendix B we describe the

conditions that are required for these optimal portfolios. We let the B j be subsets of {1, . . . ,K},

where K is the number of assets. Without loss of generality we assume that for some j it holds that

B j = {1, . . . ,K}.

Proof of Proposition 1: To derive the equilibrium, we first consider each investor’s optimization

problem. For the investors with horizon h j it is given by

max
y j,t

E
[
Wj,t+h j

]
− 1

2
A jVar

(
Wj,t+h j

)
(A1)

Wj,t+h j =

(
Pt+h j +

h j

∑
k=1

Rh j−k
f Dt+k−Ct+h j

)′
y j,t +Rh j

f

(
e j−P′t y j,t

)
.

We first introduce notation that will allow us to derive the equilibrium in the case where investor

j holds only assets that are in B j. For a K×K matrix M, we denote by MB j the |B j|× |B j| matrix

(with | · | the cardinality of a set) with the rows and columns that are not elements of B j removed.

As it will be used frequently, we also introduce the notation M−1
B j,p for the inverse of MB j with zeros

inserted at the locations where rows and columns of M were removed, so that M−1
B j,p is a K×K

matrix.
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For example, let

M =


1 3 2

2 2 4

3 5 7


and let B j = {1,3}. Then

MB j =

 1 2

3 7

 ,
so that

M−1
B j

=

 7 −2

−3 1

 .
We then have

M−1
B j,p =


7 0 −2

0 0 0

−3 0 1

 .
If we apply this operation to the covariance matrix in the optimization problem of investor j, this

yields the solution considering only the assets in B j padded with zeros, so that it is a K×1 vector.

The benefit is that it makes the solution vectors y j,t ( j = 1, . . . ,N) conformable to addition, which

allows us to derive the equilibrium.
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Thus, given that the optimal portfolio of the investor consists only of assets that are elements

of B j, the solution is

y j,t =
1
A j

Var

(
Pt+h j +

h j

∑
k=1

Rh j−k
f Dt+k−Ct+h j

)−1

B j,p

(A2)

×

(
E

[
Pt+h j +

h j

∑
k=1

Rh j−k
f Dt+k−Ct+h j

]
−Rh j

f Pt

)
.

Using the i.i.d. assumption for dividends and costs, we obtain a stationary equilibrium with con-

stant prices and i.i.d. returns. It is then straightforward to derive that y j,t can be written as (deriva-

tion available on request)

y j,t =
1
A j

diag(Pt)
−1 Var

(
h j

∑
k=1

Rh j−k
f Rt+k− ct+h j

)−1

B j,p

(A3)

×

(
E

[
h j

∑
k=1

Rh j−k
f Rt+k− ct+h j

]
−

h j−1

∑
k=0

Rh j−k
f

)
.

Similarly, it is also straightforward to show that

E

[
h j

∑
k=1

Rh j−k
f Rt+k

]
−

h j−1

∑
k=0

Rh j−k
f = ρ j

(
E [Rt+1]−R f

)
, (A4)
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where ρ j = ∑
h j
k=1 Rh j−k

f . Making further use of the i.i.d. assumption by which E(ct+h j) = E(ct+k)

for all j and k, the allocations can thus be written as

y j,t =
1
A j

diag(Pt)
−1 Var

(
h j

∑
k=1

Rh j−k
f Rt+k− ct+h j

)−1

B j,p

(A5)

×
(
ρ j
(
E [Rt+1]−R f

)
−E [ct+1]

)
.

Each period a fixed quantity Q j > 0 of type j investors enters the market. The equilibrium condition

at time t is
N

∑
j=1

Q jy j,t = S−
N

∑
j=1

h j−1

∑
k=1

Q jy j,t−k, (A6)

which is equivalent to
N

∑
j=1

h j−1

∑
k=0

Q jy j,t−k = S. (A7)

Under the i.i.d. assumption we have y j,t−k = y j,t for all k, so that

N

∑
j=1

h jQ jy j,t = S. (A8)

Scaling by price we obtain
N

∑
j=1

h jQ j diag(Pt)y j,t = S̃t , (A9)
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where S̃t = diag(Pt)S. At this point it is useful to introduce the notation Rm
t+1 = S̃′tRt+1/S̃′tι, and

cm
t+1 = S̃′tct+1/S̃′tι. We note that in the i.i.d. setting with constant prices, S̃t is constant over time,

hence we omit the time subscript and write S̃ in what follows. This allows us to write

Var(Rt+1− ct+1) S̃ = S̃′ιCov
(
Rt+1− ct+1,Rm

t+1− cm
t+1
)
.

Then, multiplying both sides of (A9) by (1/S̃′ι)Var(Rt+1− ct+1), and filling in the expression for

the optimal allocations gives

N

∑
j=1

h j
Q j

A jS̃′ι
Var(Rt+1− ct+1)Var

(
h j

∑
k=1

Rh j−k
f Rt+k− ct+1

)−1

B j,p

(A10)

×
(
ρ j
(
E [Rt+1]−R f

)
−E [ct+1]

)
= Cov

(
Rt+1− ct+1,Rm

t+1− cm
t+1
)
.

We define γ j = Q j/(A jS̃′ι) and

Vj = h jVar(Rt+1− ct+1)Var

(
h j

∑
k=1

Rh j−k
f Rt+k− ct+h j

)−1

B j,p

. (A11)

This allows us to write

N

∑
j=1

γ jVj
(
ρ j
(
E [Rt+1]−R f

)
−E [ct+1]

)
= Cov

(
Rt+1− ct+1,Rm

t+1− cm
t+1
)
. (A12)
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We can rewrite this equilibrium condition as

E [Rt+1]−R f =

(
N

∑
j=1

γ jρ jVj

)−1 N

∑
j=1

γ jVjE [ct+1] (A13)

+

(
N

∑
j=1

γ jρ jVj

)−1

Cov
(
Rt+1− ct+1,Rm

t+1− cm
t+1
)
.

Q.E.D.

B. Endogenous Segmentation

In this Appendix we describe under which conditions endogenous segmentation arises. Con-

sider the usual (non-segmented) mean-variance solution for the short-term investors

y1,t =
1

A1
diag(Pt)

−1 Var

(
h1

∑
k=1

Rh1−k
f Rt+k− ct+h1

)−1

(A14)

×
(
ρ1
(
E [Rt+1]−R f

)
−E [ct+1]

)
,

Suppose that the costs on some illiquid assets are so high that, in equilibrium, some elements of

y1,t are negative. Without loss of generality, order the assets such that y1,t = (yliq,1,t ,yilliq,1,t) with

yliq,1,t having only positive (or non-negative) elements and yilliq,1,t having only negative elements.

In this case, these investors do not want to buy the more illiquid assets. Of course, it is still possible

that the investor wants to short these illiquid assets, but this is unlikely given the high transaction
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costs. To see this formally, we note that if the optimal position in the illiquid assets were negative

(and positive for the liquid assets), the optimal portfolio would be

z1,t =
1

A1
diag(Pt)

−1 Var

(
h1

∑
k=1

Rh1−k
f Rt+k−δ1ct+h1

)−1

(A15)

×
(
ρ1
(
E [Rt+1]−R f

)
−δ1E [ct+1]

)
,

where δ1 is a diagonal matrix with elements equal to 1 if the investor is long in the respective asset,

and -1 if the investor is short (see Bongaerts, De Jong, and Driessen (2011)). Consider the i-th

asset. If zilliq,1,i,t < 0, this is indeed the solution to the optimal portfolio rule, but this is unlikely

if costs are high for this asset. In turn, if zilliq,1,i,t > 0 and the corresponding element of yilliq,1,t

is negative, it is optimal for the short-term investors to have a zero position in the illiquid assets.

We thus focus here on the case in which costs are high enough so that the short-term investors

optimally have a zero position in the illiquid assets. Hence, the set B1 contains only those assets

that are liquid enough for the short-term investors to invest in them.

C. Computing the long-term covariance matrix

We use the i.i.d. assumption to rewrite part of the moment conditions as follows

Var

(
h j

∑
k=1

Rh j−k
f Rt+k− ct+h j

)−1

=

((
h j−1

∑
k=1

R2(h j−k)
f

)
Var(Rt+1)+Var(Rt+1− ct+1)

)−1

. (A16)

This allows us to compute the covariance terms using only one-period covariances.
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D. Market and liquidity risk premia with two assets

Proof of Proposition 2: We consider the two-asset case (K = 2), with two horizons (N = 2), h1 = 1,

and no segmentation. We start from (A9), multiply both sides by 1/S̃′tι, and use the expression for

the allocations to obtain

N

∑
j=1

Q j

A jS̃′ι
h jVar

(
h j

∑
k=1

Rh j−k
f Rt+k− ct+1

)−1 (
ρ j
(
E [Rt+1]−R f

)
−E [ct+1]

)
=

S̃

S̃′ι
. (A17)

This yields

E [Rt+1]−R f =

 N

∑
j=1

γ jρ jh jVar

(
h j

∑
k=1

Rh j−k
f Rt+k− ct+1

)−1
−1

(A18)

×

 N

∑
j=1

γ jρ jh jVar

(
h j

∑
k=1

Rh j−k
f Rt+k− ct+1

)−1
E [ct+1]

+

 N

∑
j=1

γ jρ jh jVar

(
h j

∑
k=1

Rh j−k
f Rt+k− ct+1

)−1
−1

S̃

S̃′ι
.

Next, we introduce for j = 1,2 the determinants

d j = det

(
Var

(
h j

∑
k=1

Rh j−k
f Rt+k− ct+h j

))
, (A19)
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we note that K = 2 implies that the adj(·) operator is additive, and we apply (A16) to write

Var

(
h j

∑
k=1

Rh j−k
f Rt+k− ct+h j

)−1

=
1
d j

adjVar

(
h j

∑
k=1

Rh j−k
f Rt+k− ct+h j

)
(A20)

=
1
d j

((
h j−1

∑
k=1

R2(h j−k)
f

)
adjVar(Rt+1)+ adjVar(Rt+1− ct+1)

)
.

We now let

d0 = det

 N

∑
j=1

γ jρ jh jVar

(
h j

∑
k=1

Rh j−k
f Rt+k− ct+1

)−1
 (A21)

and

σ j =
h j−1

∑
k=1

R2(h j−k)
f . (A22)

Making use of the fact that the adj(·) operator is equal to its own inverse (as K = 2), we find

 N

∑
j=1

γ jρ jh jVar

(
h j

∑
k=1

Rh j−k
f Rt+k− ct+1

)−1
−1

(A23)

=
1
d0

adj

(
N

∑
j=1

γ j
ρ jh j

d j

(
σ j adjVar(Rt+1)+ adjVar(Rt+1− ct+1)

))

=
N

∑
j=1

γ jλ j
(
σ jVar(Rt+1)+Var(Rt+1− ct+1)

)
,
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where λ j = ρ jh j/d0d j. It now follows from (A10) that

 N

∑
j=1

γ jρ jh jVar

(
h j

∑
k=1

Rh j−k
f Rt+k− ct+1

)−1

B j,p

−1
S̃

S̃′ι
(A24)

=
N

∑
j=1

γ jλ j
(
σ jCov

(
Rt+1,Rm

t+1
)
+Cov

(
Rt+1− ct+1,Rm

t+1− cm
t+1
))

=

(
N

∑
j=1

γ jλ j

)
Cov

(
Rt+1− ct+1,Rm

t+1− cm
t+1
)
+

(
N

∑
j=1

γ jλ jσ j

)
Cov

(
Rt+1,Rm

t+1
)
.

The result now follows by applying (A24) to (A18) with N = 2. Q.E.D.

E. Segmentation effects

For this part, we specialize to N = 2, and h1 = 1. To derive the result below, we assume that

V2 = I, that the h1-investors invest only in the most liquid assets, and that the h2-investors invest in

all assets.

Proof of Proposition 3: If we sort the assets by liquidity with the most liquid assets first, writing

Var(Rt+1− ct+1) =

 Vliq Vliq,illiq

Villiq,liq Villiq

 , (A25)
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we have

V1 = h1Var(Rt+1− ct+1)Var

(
h1

∑
k=1

Rh1−k
f Rt+k− ct+h1

)−1

B1,p

(A26)

=

 Vliq 0

0 Villiq


 V−1

liq 0

0 0


=

 I 0

Villiq,liqV−1
liq 0

 .
Using N = 2 and V2 = I in (A13) leads to the equilibrium relation

E [Rt+1]−R f = (γ1ρ1V1 + γ2ρ2I)−1 (γ1V1 + γ2I)E [ct+1]

+ (γ1ρ1V1 + γ2ρ2I)−1 Cov
(
Rt+1− ct+1,Rm

t+1− cm
t+1
)
.

To find the liquidity risk effect, we focus on the factor

(γ1ρ1V1 + γ2ρ2I)−1 =

 (γ1ρ1 + γ2ρ2) I 0

γ1ρ1Villiq,liqV−1
liq γ2ρ2I


−1

=

 (γ1ρ1 + γ2ρ2)
−1 I 0

−γ1ρ1 (γ2ρ2)
−1 (γ1ρ1 + γ2ρ2)

−1Villiq,liqV−1
liq (γ2ρ2)

−1 I

 .
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In what follows, we will use the liquidity spillover beta, defined by

β =Villiq,liqV−1
liq (A27)

= Cov
(

Rilliq
t+1− cilliq

t+1,R
liq
t+1− cliq

t+1

)
Var
(

Rliq
t+1− cliq

t+1

)−1
.

For the impact of the level of liquidity we write

(γ1ρ1V1 + γ2ρ2I)−1 (γ1V1 + γ2I) (A28)

=

 (γ1ρ1 + γ2ρ2)
−1 I 0

−γ1ρ1 (γ2ρ2)
−1 (γ1ρ1 + γ2ρ2)

−1
β (γ2ρ2)

−1 I


 (γ1 + γ2) I 0

γ1β γ2I


=

 (γ1 + γ2)(γ1ρ1 + γ2ρ2)
−1 I 0(

γ1 (γ2ρ2)
−1− γ1ρ1 (γ2ρ2)

−1 (γ1 + γ2)(γ1ρ1 + γ2ρ2)
−1
)

β ρ
−1
2 I

 .
We rewrite the scalar part of the spillover coefficient using the identity

γ1

γ2ρ2
− γ1ρ1 (γ1 + γ2)

γ2ρ2 (γ1ρ1 + γ2ρ2)
=

ρ2−ρ1

ρ2

γ1

γ1ρ1 + γ2ρ2
. (A29)

Combining the results above, we can write the equilibrium relation for the liquid assets as

E
[
Rliq

t+1

]
−R f =

γ1 + γ2

γ1ρ1 + γ2ρ2
E
[
cliq

t+1

]
+

1
γ1ρ1 + γ2ρ2

Cov
(

Rliq
t+1− cliq

t+1,R
m
t+1− cm

t+1

)
. (A30)
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and the equilibrium relation for the illiquid assets as

E
[
Rilliq

t+1

]
−R f =

1
ρ2

E
[
cilliq

t+1

]
+

ρ2−ρ1

ρ2

γ1

γ1ρ1 + γ2ρ2
βE
[
cliq

t+1

]
(A31)

+
1

γ2ρ2
Cov

(
Rilliq

t+1− cilliq
t+1,R

m
t+1− cm

t+1

)
− γ1ρ1

γ2ρ2 (γ1ρ1 + γ2ρ2)
βCov

(
Rliq

t+1− cliq
t+1,R

m
t+1− cm

t+1

)
.

The desired expressions now follow directly. Q.E.D.

F. Estimation Methodology – Obtaining Standard Errors

We denote the required moments that enter the asset pricing model by the vector ψ. This

vector contains expected returns, expected costs, and all required covariances of returns and costs.

It is straightforward to derive the asymptotic covariance matrix of the sample estimator of these

moments (since covariances can be written as second moments plus products of first moments),

√
T (ψ̂−ψ)

d→N
(
0,Sψ

)
. (A32)

We can now use the delta method to find the standard errors for γ̂.

Consider the GMM minimization problem given by

min
γ

g(ψ̂,γ)′g(ψ̂,γ), (A33)
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for which the solution is implicitly given by

2Gγ(ψ̂,γ)
′g(ψ̂,γ) = 0, (A34)

where

Gγ(ψ,γ) =
∂g(ψ,γ)

∂γ
. (A35)

Dividing both sides of (A34) by 2 and evaluating at γ̂, we may write

Gγ(ψ̂, γ̂)
′g(ψ̂,γ0)+Gγ(ψ̂, γ̂)

′ (g(ψ̂, γ̂)−g(ψ̂,γ0)) = 0. (A36)

Next, we expand g(ψ̂, γ̂) around γ0 to obtain

g(ψ̂, γ̂)−g(ψ̂,γ0)≈ Gγ(ψ̂, γ̂) (̂γ− γ0) . (A37)

It follows that

Gγ(ψ̂, γ̂)
′g(ψ̂,γ0)+Gγ(ψ̂, γ̂)

′Gγ(ψ̂, γ̂) (̂γ− γ0) = 0. (A38)

We now expand g(ψ̂,γ0) around ψ0 and use the fact that g(ψ0,γ0) = 0 to find that

g(ψ̂,γ0)≈ Gψ(ψ̂, γ̂)(ψ̂−ψ0) , (A39)

where

Gψ(ψ,γ) =
∂g(ψ,γ)

∂ψ
. (A40)
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Hence

Gγ(ψ̂, γ̂)
′Gγ(ψ̂, γ̂) (̂γ− γ0) =−Gγ(ψ̂, γ̂)

′Gψ(ψ̂, γ̂)(ψ̂−ψ0) . (A41)

Using this result we obtain

√
T (̂γ− γ0)≈−

(
Gγ(ψ̂, γ̂)

′Gγ(ψ̂, γ̂)
)−1 Gγ(ψ̂, γ̂)

′Gψ(ψ̂, γ̂)
√

T (ψ̂−ψ0) . (A42)

It follows that

√
T (̂γ− γ0)

d→N
(

0,
(

G′γGγ

)−1
G′γGψSψG′ψGγ

(
G′γGγ

)−1
)
. (A43)

This result allows us to compute standard errors for the γ estimates taking into account the pre-

estimation of the various moments ψ. For the final estimation procedure, we restrict the γ j per-

taining to the horizons h j to be positive by estimating the logs. We use the usual, additional, delta

method correction for the computation of the standard errors.
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G. Comparative statics

We consider an increase in γk, so that the horizon hk investors become either more numerous,

or less risk averse, or both. We find

∂
(
E [Rt+1]−R f

)
∂γk

=−

(
N

∑
j=1

γ jρ jVj

)−1

ρkVk

(
N

∑
j=1

γ jρ jVj

)−1 N

∑
j=1

γ jVjE [ct+1] (A44)

+

(
N

∑
j=1

γ jρ jVj

)−1

VkE [ct+1]

−

(
N

∑
j=1

γ jρ jVj

)−1

ρkVk

(
N

∑
j=1

γ jρ jVj

)−1

×Cov
(
Rt+1− ct+1,Rm

t+1− cm
t+1
)
.

Rearranging gives

∂
(
E [Rt+1]−R f

)
∂γk

=

(
N

∑
j=1

γ jρ jVj

)−1

Vk
(
E [ct+1]−ρk

(
E [Rt+1]−R f

))
. (A45)
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Table II
GMM estimation results: Illiquidity portfolios

This table shows the results from estimation of the various specifications of the model. The estimates are based on
monthly data corresponding to 25 value-weighted US stock portfolios sorted on illiquidity with sample period 1964–
2009. An equal-weighted market portfolio is used. The specifications are special cases of the relation

E [Rt+1]−R f = α+κ(γ1ρ1V1 + γ2ρ2V2)
−1 (γ1V1 + γ2V2)E [ct+1] (A46)

+(γ1ρ1V1 + γ2ρ2V2)
−1 Cov

(
Rt+1− ct+1,Rm

t+1− cm
t+1
)
,

where γ j = Q j/(A jS̃′ι), ρ j = ∑
h j
k=1 R

h j−k
f , and

Vj = h jVar(Rt+1− ct+1)Var

(
h j

∑
k=1

R
h j−k
f Rt+k− ct+h j

)−1

B j ,p

. (A47)

We set h1 = 1, and h2 = 120. The parameters are estimated using GMM. For each coefficient the t-value is given
in parentheses. The cross-sectional R2 is reported in the rightmost column. Estimates for the heterogeneous horizon
model, where short term investors invest only in the 19 most liquid portfolios, are denoted by SEG. AP indicates that
the specification corresponds to a variant of the Acharya and Pedersen (2005) specification (7). Where the value of κ

is unreported, it is set to 1.

γ1 γ2 α κ R2

(SEG) 0.2080 0.0036 0.8224
(0.5922) (1.9400)

(SEG+α) 0.0830 0.0018 -0.0050 0.8722
(0.2763) (1.1285) (-0.5358)

(AP) 0.3973 0.0287 0.6215
(2.2428) (0.1672)

(AP+α) 0.1737 -0.0078 0.0088 0.7660
(0.8451) (-0.5432) (0.0213)
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Table III
GMM estimation results: Illiquidity portfolios, without liquidity risk

This table shows the results from estimation of the various specifications of the model without liquidity risk. The setup
is the same as in Table II, but with ct+1 taken to be constant and equal to its estimated mean.

γ1 γ2 α κ R2

(SEG) 0.2008 0.0038 0.8243
(0.3237) (1.4004)

(SEG+α) 0.0802 0.0019 -0.0049 0.8725
(0.1172) (0.9545) (-0.2375)

(AP) 0.3922 0.0425 0.6136
(2.2360) (0.2500)

(AP+α) 0.1675 -0.0081 0.0402 0.7621
(0.8949) (-0.5933) (0.0994)
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Table IV
GMM estimation results: σ(illiquidity) and B/M-by-size portfolios

This table shows the results from estimation of the various specifications of the model for different portfolio types.
The setup is the same as in Table II. Panel A shows the results for 25 portfolios sorted on illiquidity variation. For
Panel B 25 value-weighted portfolios sorted on book-to-market value and size are used. In both cases the same rule for
the segmentation threshold is used as in Table II: the one-month investors only invest in assets for which the monthly
average return exceeds the average transaction cost.

Panel A: σ(illiquidity) portfolios

γ1 γ2 α κ R2

(SEG) 0.2030 0.0037 0.8650
(0.5557) (1.9920)

(SEG+α) 0.0796 0.0019 -0.0046 0.9078
(0.2854) (1.4201) (-0.7796)

(AP) 0.3993 0.0278 0.6407
(2.2445) (0.1718)

(AP+α) 0.1755 -0.0076 0.0014 0.7867
(0.9360) (-0.6027) (0.0037Z)

Panel B: B/M-by-size portfolios

γ1 γ2 α κ R2

(SEG) 0.7721 0.0027 0.5442
(0.3613) (0.5327)

(SEG+α) 1.8 ·1014 0.0030 0.0018 0.7579
(0.0000) (0.9388) (0.5242)

(AP) 0.4630 0.0424 0.3498
(2.0839) (0.2590)

(AP+α) 0.8201 0.0025 0.0540 0.3923
(0.8285) (0.8093) (0.5891)
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Figure 1. Expected returns and level of illiquidity. This figure illustrates the average monthly
return (left axis) and average transaction costs (right axis) for the 25 US stock portfolios sorted on
illiquidity. Portfolio 1 is the most liquid portfolio, while portfolio 25 is the least liquid portfolio.
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Figure 2. Fitted excess returns vs. realized excess returns. The left panel shows the goodness
of fit for the Acharya and Pedersen (2005) specification (AP). The right panel shows the fit for
the heterogeneous horizon specification (SEG). The graphs correspond to the estimation results as
given in Table II.
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Figure 3. Decomposition of predicted excess returns in the expected liquidity premium and
the risk premium. In each panel the lower part shows the expected liquidity premium and the
upper part the risk premium. The line indicates the actual excess return. The upper panel shows
the decomposition for the Acharya and Pedersen (2005) specification (AP). The lower panel shows
the decomposition for the heterogeneous horizon specification (SEG). The graphs correspond to
the estimation results as given in Table II.
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Figure 4. Segmentation effects. The top panel shows the decomposition of the expected liquidity
premium into three components: the full risk-sharing component, the segmentation component,
and the spillover component. The bottom panel shows a similar decomposition for the risk pre-
mium. In all cases the heterogeneous horizon specification (SEG) is used. The coefficient values
correspond to the estimation results as given in Table II.
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Figure 5. Comparative statics. The comparative statics are computed according to equation (26),
and give the sensitivity of the expected return to the parameter γ j. The top panel shows the com-
parative statics for the Acharya and Pedersen (2005) specification (AP). The bottom panel shows
the comparative statics for the heterogeneous horizon specification (SEG). The graphs correspond
to the estimation results as given in Table II.
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Figure 6. Robustness to horizons and segmentation. This graph shows the sensitivity of the
cross-sectional R2 to varying the horizons and to varying the segmentation threshold. The data
and the specifications are the same as in Table II. Setting h1 = 1, we let h2 = 30,60,120,240,480.
Alternatively, we fix h2 = 120 and let h1 = 1,3,6,12,36. For the segmentation level we take h1 = 1,
h2 = 120 and let the short-term investors invest in the 16, . . . ,25 most liquid portfolios. The case
of 25 corresponds to integration.
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