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Abstract. The various elements of the hydrological cycle
are discussed in outline from the point of view of making
progress in analysis through appropriate simplification of
these complex processes. Parallels between stochastic and
deterministic analysis and between linear and non-linear con-
ceptual models are referred to. The emphasis is on similar-
ities and contrasts between the analysis of hydrologic pro-
cesses over the range of scales from the water molecule to
the global water balance.

1 Dealing with complexity

Science in general has moved from a reductionist approach
which was characterised as a process of “knowing more and
more about less and less” to a holistic or synthetic approach
which attempts to breach interdisciplinary and other concep-
tual boundaries. Hydrology in the past has been highly re-
ductionary particularly in the separation between the indi-
vidual processes of the hydrological cycle and between de-
terministic and stochastic hydrology.

It is important to realise that most hydrological systems
of interest represent a zone between purely deterministic ap-
proach in which equations can be analysed and a stochastic
approach in which statistical distributions can be handled.
The relationship in this regard is well illustrated by the char-
acterisation of the three categories of mechanisms, systems
and aggregates as shown in Fig. 1 due to Weinberg (1975).
Mechanisms are characterised as organised simplicity, aggre-
gates are characterised as unorganised complexity, and the
intermediate category of systems characterised as organised
complexity. In seeking to understand the behaviour of hydro-
logic systems of interest it is necessary to draw on standard
results from both the statistical study of random systems and
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the deterministic analysis of classical fluid mechanics and
hydraulics.

It can readily be shown that a large series of Bernouilli
trials with equal probability of success and failure (p=1/2
andq=1/2) results in the normal distribution which is sym-
metrical. There is remarkably little curiosity about how this
result would be modified if the probability of failure was not
equal to one half. Velikanov (1962) gave a heuristic devel-
opment suggesting that the answer to this problem is that in
this case the normal distribution would be replaced by the
gamma distribution which is skewed rather than symmetri-
cal. One of the earliest hydrological observations must have
been the tendency of surface water to flow downhill and for
streams to join with one another in a network of channels
leading to an outlet at a lower level. This lack of symmetry
must be an important element in any stochastic approach to
the problem of catchment runoff.

In approaching hydrological analysis from the direction of
the simpler mechanisms of fluid mechanics and hydraulics,
the most useful strategy to follow is that based on the rig-
orous analysis of simplified equations of motion. This ap-
proach has been well summarised by Pedlosky (1979): “One
of the key features of geophysical fluid dynamics is the need
to combine approximate forms of the basic fluid-dynamical
equations of motion with careful and precise analysis. The
approximations are necessary in order to make any progress
possible, while precision in analysis is demanded to make the
progress meaningful”.

In what follows, an account is given of the progress that
can be made in the study of hydrological systems by the ap-
plication of a strategy of simplification to the basic equations.

2 Range of scales

A key task in hydrology is to attempt to unravel the organ-
isation of the complexity of hydrologic processes at various
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Fig. 1. Mechanisms, systems, and aggregates.

scales. In studying the occurrence and movement of water
it is necessary to analyse the processes at key scales vary-
ing by over 18 orders of magnitude from the water molecule
(10−10 m) to the global planetary scale (108 m) as shown as
a logarithmic plot in Fig. 2 (Dooge, 1992a).

One of the first facts to be explained about the occurrence
of water is the abundance of liquid water at the surface of
planet Earth with its mean temperature of about 15◦C. The
physical properties of water (H20) are distinctly different
from those of hydrogen sulphide (H2S) even though oxygen
(O) and sulphur (S) are immediate neighbours in the sixth
column of the table of chemical elements (Dooge, 1983). At
15◦C water is an odourless liquid whereas hydrogen sulphide
is a pungent gas. This phenomenon due to the dipole moment
of the hydrogen bond is essentially a property of water being
non-isotropic at the molecular scale (10−10 m.). The expla-
nation lies in the existence of the hydrogen bond in water at
the molecular scale.

When we come to consider the movement of water at the
continuum scale (10−5 m), we postulate a relationship be-
tween the shear stress on a given plane and the strain on
another plane. In order to handle the 4-dimensional ten-
sor connecting these two relationships (which will in general
have 81 elements), it is possible to make progress and reduce
these 81 elements (reduced to 36 if we assume symmetry)
to the two properties of dynamic viscosity and bulk viscos-
ity, by the simple assumption that water at a continuum scale
is isotropic (Dooge, 1983). The contrast between these two
basic assumptions is a warning to hydrologists of the need
to distinguish between the different simplifying assumptions
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Fig. 2. Scales in hydrology.

necessary for initial progress in analysis at different hydro-
logical scales.

Progress can be sought at any particular scale through a
number of forms of simplification of the basic equations and
evaluating the range of error in the simplified solution. A
wide variety of forms of simplification have been used in
hydrology (Dooge 1997). These include (1) simplification
by reducing the number of independent variables starting
with the one-dimensional steady case and moving by alter-
nate paths to the full unsteady three-dimensional case; (2)
reducing the number of dependent variables in such simpli-
fied cases by dimensional analysis; (3) reducing the number
of parameters that vary with space or time by assuming some
of the parameter set to be constant in space or time or both;
(4) simplifying the basic equations by either omitting certain
terms as in such approaches as kinematic wave approxima-
tion and the diffusion analogy or by linearising the complete
equation and thus availing of the powerful tools applicable in
linear analysis. The ability of such simplified analytical ap-
proaches to represent the more complex prototypes without
serious error is remarkable and sometimes paradoxical.

The question then arises as to whether any fundamental
principles can be applied over the wide range of differing hy-
drologic scales from motion at a continuum point (10−5 m.)
to the global water balance (108 m.). Hydrologists are lucky
that in progressing from the continuum scale to the global
scale the equation of continuity can be integrated in order to
move from a lower scale to a higher scale. This useful result
occurs because the equation of continuity can be written in a
linear form which contains no empirical coefficients. None
of the other basic equations of hydrology possess these two
properties and hence we can identify the equation of continu-
ity as the fundamental equation of hydrology and its validity
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Fig. 3. Control of surface fluxes.

as the fundamental theorem of hydrology. The basic require-
ment in hydrologic analysis is to satisfy this equation and
then to tackle the problem of the remaining equations which
are non-linear.

3 Role of surface fluxes

A big divide in hydrology is between the fields of surface wa-
ter hydrology and of subsurface hydrology. This natural di-
vision arises because of the key role of the hydrologic fluxes
at the surface of the ground on the switching of the control
of these fluxes between the atmosphere and the soil as shown
in Fig. 3. If rainfall continues for a sufficient length of time,
the surface of the soil becomes saturated and the surface of
the vegetation retains water (point A in Fig. 3).

If the rainfall ceases, the upward flux of evapotranspira-
tion occurs at the potential rate. As long as this lasts the
surface flux would be subject to atmospheric control. When
the surface moisture falls below saturation (point B), the con-
trol switches to the upper soil layer which controls the rate
of actual evapotranspiration which is less than the potential
rate.

A renewal of rainfall (point C) will occur in a period dur-
ing which the surface of the soil is unsaturated and the rate
of infiltration will be equal to the rate of precipitation and
the downward flux will again be atmosphere controlled. The
surface moisture contentc will increase until ponding occurs
(point D), after which the infiltration rate will be less than the
precipitation rate and the rate of infiltration will become soil
controlled.

Such a switching of control represents a concentrated non-
linearity which complicates the combination of the individ-
ual hydrological processes of subsurface flow and surface
flow. The variation of the soil water profile during these four
phases will depend on the variation of the hydraulic diffusiv-
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Fig. 4. Profiles at ponding.

ity (D) and the hydraulic conductivity (K) as functions of the
local moisture content.

For a limited number of pairs of functionsD(c) andK(c)
the soil profile for constant rainfall into an unsaturated semi-
infinite soil profile, both the shape of the soil profile and
the time to surface ponding can be determined analytically
(Wang and Dooge, 1994). If we compare this profile at pond-
ing for such atmosphere-controlled conditions with the same
volume of soil moisture content under the assumption of in-
stantaneous ponding, we find that the profiles are remarkably
similar though they vary greatly dependent on the assump-
tions in regard toD(c) andK(c). The comparison for four
such cases is shown on Fig. 4 as described in Dooge and
Wang (1993). Thus as we proceed into a following period
of soil-controlled infiltration under ponded conditions (lower
right quadrant in Fig. 3) the differences will become less and
less and ultimately can be assumed to be the same for all
practical purposes.

The result described in the last paragraph indicates that
the rate of infiltration during both the atmosphere-controlled
and soil-controlled phases can be modelled by the solution
for ponded infiltration with an appropriate adjustment for the
time to ponding (Kuhnel et al., 1990). This result justifies
the concentration on the case of initial ponding conditions
by J. R. Philip in his classical studies on unsaturated flow
involving a series solution for infiltration in the form of a
power series in terms of the square root of the elapsed time
(Philip, 1957; Dooge, 2002).
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4 Simplification of groundwater flow

There are also a number of results in regard to saturated sub-
surface flow which facilitate greatly the simplification of the
analysis of this hydrologic process. Thus Dupuit (1863) indi-
cated the advantage of assuming ground water flow towards a
well to be horizontal, thus reducing the problem from a two
dimensional one to a one dimensional one. Twenty years
later this approach was formulated by Forchheimer (1886)
in such a way as to take a full advantage of the analysis by
potential theory of such hydrologic phenomena.

Over 60 years later, Charnyi (1951) proved theoretically
that for steady saturated flow between the vertical bound-
aries, the use of the Dupuit-Forchheimmer assumption of
negligible vertical acceleration, while leading to serious error
in the shape of the groundwater profile, predicted exactly the
flow at these boundaries. Since hydrology tends to be inter-
ested in flows rather than profiles this assumption is certainly
worthwhile, at least as a preliminary step in the analysis of
groundwater flow.

For the case of unsteady flow in groundwater, the equation
becomes non-linear with serious difficulties in its solution.
However, Kraijenhoff van de Leur (1958) showed that there
was no difference in the predicted outflow based on lineari-
sation in terms of the depth of the water table and the pred-
icated outflow based on linearization in terms of the water
table (h) or in the square of this depth (h2). He showed that
in either case the impulse response of a simple groundwater
profile would be given by a highly convergent series of ex-
ponential terms in terms of the ratio of the elapsed time to a
single reservoir coefficient incorporating all four parameters
of the regular drainage system.

In the case of considerable variations in permeability, it
is possible to set limits to the solution for groundwater
flow. Matheron (1965) showed that for the case of Dupuit-
Forchheimer flow, the average permeability always ranges
between the harmonic mean and the arithmetic mean of the
local varying permeabilities whatever the spatial correlation
of the permeability and whatever the number of space di-
mensions. Matheron also showed that if the probability dis-
tribution of the local permeabilities could be assumed to be
log-normal, then for the case of two-dimensional flow the av-
erage permeability is exactly equal to the geometric mean of
the local permeability. This example illustrates the ability of
linear analysis to set limits to the effect of the variability of a
key parameter.

5 Overland flow

A key element in surface runoff is that of overland flow.
Overland flow is particularly important in such areas as ur-
ban flood hydrology, the drainage design of roads and air-
port runways, and the generation of surface runoff in natural
catchments with soils of low permeability.

The initial approach to this problem was made by assum-
ing that the outflow at the downstream end was proportional
to some power of the storage on the surface. This assumption
involves both the replacement of the general unsteady case
by a succession of steady states and the application of the
kinematic wave approach. This simplifying assumption was
applied to natural catchments by Horton (1938) and to paved
surfaces by Izzard (1944). The Horton-Izzard approach is
essentially a simplification obtained by adopting the kine-
matic wave approximation which neglects the small acceler-
ation terms in the full dynamic equation and retains only the
non-differential bottom slope and friction slope. It gives a
reasonable first approximation and is much simpler than the
solution involving the complete dynamic equation.

For the two-dimensional case of overland flow resulting
from uniform inflow along the slope the dynamic equation
is simplified to a power relationship at all times between the
outflow (q) and the storage (S):

q = aSc , (1a)

where the parameterc=3/2 for a wide outflow channel with
Chezy friction andc=5/3 for a wide outflow channel with
Manning friction. The combination of this simplified dy-
namic equation with the continuity equation

dS

dt
= qe − q , (1b)

whereqe is the rate of inflow and consequently the ultimate
state rate of outflow. Equation (1b) can be expressed in di-
mensionless form as

d(t/tc) =
d(S/Se

1 − (S/Se)c
, (1c)

where the characteristic time (tc) is given by

tc =

(
Se

qe

)
=

(
1

aSc−1
e

)
=

(
1

aqc−1
e

)1/c

. (1d)

The integral of Eq. (1c) has a closed form solution for all
rational values of the parameterc.

For the two limiting cases ofc=1 andc=2 the closed form
solution of Eq. (1b) of elapsed time (t) as a function of down-
stream runoff (q) can be inverted to obtain the runoff (q) and
as a function of the time.

In the case of the recession following the cessation of in-
flow it is possible to predict the variation of storage and hence
of outflow as an explicit function of the time elapsed since the
onset of the recession. In this case we have

S

So
=

(
1

1 + t/to

) 1
c−1

(2a)

and

q

qo
=

(
1

1 + t/to

) c
c−1

, (2b)
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where the characteristic time (to) is based on the parametera
andc and the value of either the storage (So) or the outflow
(qo) at the beginning of the recession.

Figure 5a shows typical results from a carefully designed
laboratory experiment by Amorocho and Orlob (1961),
showing the cumulative runoff against time for three differ-
ent values of uniform artificial rainfall. The comparison of
the overland flow for any given elapsed time (t) for the three
different values of inflow clearly shows that these values are
not proportional to the rate of inflow, i.e. that the system is
non-linear.

However, the relationship can be made dimensionless by
multiplying the discharge by a characteristic time (tc) and di-
viding by the corresponding characteristic volume (Vc) and
dividing the elapsed time by the same characteristic time.
When the data in Fig. 5a are treated in this fashion the three
non-linear responses of Fig. 5a plot along a single curve as
shown in Fig. 5b. The characteristic time in this case was
taken as the time at which the outflow reaches a particular
percentage of the constant inflow rate.

If we assume that the laboratory system represents a wide
rectangular channel with Manning friction then the charac-
teristic time should be inversely proportional to the charac-
teristic discharge to the power of two-fifths (i.e. 0.4). An
analysis of the data by Amorocho and Orlob indicates that
the characteristic time is inversely proportional to the rate
of constant inflow to the power of 0.3997. In this case the
progress is made not through linearization but through the
appropriate use of dimensional analysis in which parameter
values are combined with dependent variables.

The integral of Eq. (1c) above is encountered elsewhere
in hydrology, notably in relation to non-uniform steady flow
in open channels and to the long-term water balance. It was
used by French hydraulicians of the 19th century to solve
special cases of steady non-uniform flow in prismatic chan-
nels and was generalised and the results calculated and tabu-
lated by Bakhmeteff (1912, 1932).

The same integral has been suggested by Bagrov (1953),
in the analysis of the sensitivity of the evaporation ratio
(AE /PE) to the humidity index (P/PE) of a catchment or
a region. The solution of this integral allows us to calculate
the sensitivity of the long term evaporation ratio to a change
in either long term precipitation (P ) or long term potential
evaporation (PE) for the Bagrov family of curves of actual
evaporation (Dooge, 1992b).

6 Flood routing in channels

The movement of a flood wave down a channel reach in-
volves both translation and subsidence. The travel time or lag
is represented by the difference between the first moments
about the origin of the upstream inflow and the downstream
outflow. The modification of the shape of the flood wave can
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Figure 5.  Laboratory Study of Overland Flow 

   

Fig. 5. (a) Laboratory study of overland flow.(b) Dimensionless
plot of laboratory results.

be characterised by comparing the higher moments of the
two hydrographs about their respective centres.

A starting point for the analysis of these factors is the lin-
earization of the basic St. Venant equation for unsteady flow
as applied to unsteady downstream flow in a prismatic chan-
nel. This approach studies first the linear channel response
(LCR) due to an impulse at the upstream end of a semi-
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Figure 6.  Shape Factors for 2-parameter Models 

     It can be shown that for the linear channel response to an impulse at the upstream end 

Fig. 6. Shape factors for 2-parameter models.

infinite prismatic channel and then derives analytically the
values of the moments (U ′

R) and the related cumulants (kR)
of this linear channel response (Dooge and Harley, 1967; Na-
piorkowski, 1992).

The translation of the wave due to an upstream impulse
is given by the first moment of the linear channel response
which is

k1 = U1
1 =

x

muo
, (3)

wherex is the distance downstream of the point of input;
m is the index of non-linearity which has the valuesm=5/3
for a wide rectangular channel with Manning friction; and
uo is the velocity for the reference condition used as the ba-
sis of linearization. This expression holds for all values of
the Froude number (Fo) of the reference condition and cor-
responds to the lag predicted by the kinematic wave solution
for the linearised case.

Any regular shape can be characterised by the values of the
moments about the centre which are the coefficients in the
polynomial defined by the Laplace transform of the linear
channel response (LCR). This solution can be used as the
basis of comparison of the conceptual models of channel flow
used in the simulation of catchment runoff.

The translation, dispersion and skewness of the linear
channel response can be represented respectively by the first
moment about the origin (U1) and the second and third mo-
ments about the centre (U2,U3). The three parameters repre-
sented by these three moments can be reduced to the two di-
mensionless parameter obtained by reducing the second and
third moments to dimensionless shape factors (s2 ands3) by

expressing them as a ratio to the appropriate power of the
first moment as follows:

s2 =
U2

(U ′

1)
2

(4a)

and

s3 =
U3

(U ′

1)
3

(4b)

The relationship between these two dimensionless shape fac-
tors for the linearised solution is shown on Fig. 6.

It can be shown that for the linear channel response to an
impulse at the upstream end of a prismatic channel, the rela-
tionship betweens3 ands2 is given by

s3 = 83(m, Fo)(s2)
2 , (5a)

wherem is the parameter in the relationship between the dis-
charge (Q) and the area of flow (A) in the power relationship

Q = kAm (5b)

andFo is the Froude number at reference conditions.
For the Froude NumberFo=0, the relationship for all val-

ues of the non-linearity index m is given by

s3 = 3(s2)
2 , (6a)

while for the upper limit ofFo=1, the relationship for a wide
rectangular channel with Manning friction (i.e.m=5/3), the
relationship is given by

s3 = 15(s2)
2 (6b)

The wide range between these two limiting solutions in the
s3–s2 plane indicates that only a conceptual model with 3 or
more parameters could represent both of the dimensionless
shape factors (s2 ands3) with acceptable accuracy.

7 Comparison of conceptual models

It is interesting to compare the performances of the classi-
cal 2-parameter conceptual models in fitting the complete
solution. This is done on Fig. 6 for the classical flood rout-
ing methods. For the Muskingum method due to McCarthy
(1939), the relationship between the dimensionless shape
factorss3 ands2 is given by:

s3 =
3s2

2 + 1

2
, (7a)

which overlaps the solution region for values between
x=0.22 andx=0.40 which corresponds to the range of val-
ues used empirically in classical hydrology. For the lag and
route method due to Meyer (1941), the relationship is given
by:

s3 = 2(s2)
3/2 , (7b)
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which lies within the region of the complete solution (as
shown by a dashed line on Fig. 6) for values of the ratio of
the lag parameter (T ) to the reservoir parameter (K) greater
than 0.5. This lower range of overlap corresponds to values
of s2 between 0 and 0.44 and thus is also appropriate to com-
paratively short channels.

In contrast for the cascade of characteristic reach reser-
voirs due to Kalinin and Milyukov (1957) the relationship

s3 = 2s2
2 (7c)

clearly lies completely below the lower limit of the complete
solution given by Eq. (4a) above.

The lag and route model can be combined with either
the Muskingum model or the Kalinin-Milyukov model to
produce the 3-parameter models of the lagged Muskingum
model and the lagged Kalinin-Milyukov model, respectively.
These 3-parameter models can be calibrated by equating the
second and third order moments to the relevant data to pro-
duce the shape of the response function and then adjusting
the corresponding lag to conform to the measured lag by in-
troducing an additional time shift.

The efficiency of the above 3-parameter conceptual mod-
els can be evaluated by using cumulants rather moments and
equating the second and third cumulants (which are equal to
the second and third moments) of the conceptual model to
the data. The relationship between the dimensionless fourth
cumulant and the dimensionless third cumulant for the com-
plete linear solution is given by

f4 =
k4

(k2)2
=

U4

(U2)2
− 3 = ψ(m,Fo)(f3)

2 (8)

For Fo=0 (i.e. the diffusion analogy), the upper limit of the
solution region is

f4 =
5

3
(f3)

2 (9a)

and the lower limit corresponding toFo=1 is given by

f4 =
4

3
(f3)

2 (9b)

These two limiting curves shown on Fig. 7 (which are inde-
pendent of the value of the non-linearity indexm) define a
relatively narrow region and the aim becomes that of finding
a model that lies within this region.

The lagged Muskingum lies within the region only for val-
ues ofx less than 0.22 and only covers the upper right hand
section of the region.

In contrast the lagged Kalinin-Milyukov method (repre-
sented by the 3-parameter gamma distribution) is given by

f4 =
3

2
(f2)

2 (10)

and this lies cosily between the two limiting lines of the com-
plete solution for all of that region. Because of the closeness
of the latter limiting lines the error in using a lagged cascade
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Figure 7.  Shape Factors for 3-parameter Models 

The lagged Muskingum lies within the region only for values of x less than 0.22 and only 

covers the upper righthand section of the region.   

Fig. 7. Shape factors for 3-parameter models.

of equal linear reservoirs is 11% or less for all values ofFo
between 0 and 1. This is bringing us into the neighbourhood
of acceptable error in practical hydrology.

8 Total catchment runoff

The rational method for determining the peak discharge
based on the concept of the time of concentration was ap-
plied to natural catchments by Mulvany (1851) and Chamier
(1897) and to urban catchments by Kuichling (1889) and
Lloyd-Davies (1906). This approach was extended to the
prediction of the total hydrograph through the introduction of
the concept of the time-area-concentration curve by Hawken
and Ross (1921). In the 1930s, Zoch proposed modifying
this approach by routing the time-area-concentration curve
through a single linear reservoir (Zoch, 1934, 1936, 1937).
This method was developed by Turner and Bourdoin (1941)
and by Collins (1939). O’Kelly (1955) showed that there
was only a small difference in the shape of the derived unit
hydrograph if the Clark method was compared with a routed
isosceles triangle.

Around the same time that Kalinin and Milyukov (1957)
applied the cascade model to flood routing, Nash (1958) in-
dependently proposed the same model for the case of total
surface response. Figure 8 shows the relationship between
the shape factorss2 and s3 for three different conceptual
models: a routed rectangle (A), a routed isosceles triangle
(B), and a cascade of equal linear reservoirs (C). The vari-
ation in the position of the line representing these quite dif-
ferent models is remarkably small thus making the choice
between them a matter of convenience (Dooge, 1973, 2003).

One would expect that in moving from the case of a single
uniform channel reach to that of the complex network of a to-
tal catchment, that this more complex system would require

www.copernicus.org/EGU/hess/hess/9/3/ Hydrology and Earth System Sciences, 9, 3–14, 2005



10 J. C. I. Dooge: Bringing it all together

 

 

31

 

Figure 8.  Comparison of Conceptual Models 

     One would expect that in moving from the case of a single uniform channel reach to 

that of the complex network of a total catchment, that this more complex system would 

require a conceptual model with a higher number of parameters.  In fact, we find that if 

we take the concept of the geomorphological unit hydrograph (Rodriquez-Iturbe and 

Fig. 8. Comparison of conceptual models.

a conceptual model with a higher number of parameters. In
fact, we find that if we take the concept of the geomorpholog-
ical unit hydrograph (Rodriquez-Iturbe and Valdez, 1979),
based on Horton’s laws of catchment morphology, into ac-
count then in fact an accurate representation can be obtained
with the original two parameter model.

Chuta and Dooge (1990) carried out a series of 1100
Monte Carlo tests on a linear geomorphological unit hydro-
graph based on the original concept of the geomorphological
laws of drainage basin networks due to Horton (1945) and the
proposal by Rodriguez-Iturbe and Valdez (1979) to simulate
the unit hydrograph of such Horton catchments by assuming
an exponential delay time (i.e. a linear reservoir).

These experiments covered a range of branching ratios
(RB ) between 2.5 and 5.0, a range of length ratios (RL) be-
tween 1.5 and 4.1 and a range of area ratios (RA) between 3.0
and 6.0. As shown in Fig. 9 the plotted points cling closely to
the line for a Nash cascade of equal linear reservoirs without
the additional lag adjustment required in the case of flood
routing in the simple case of a uniform prismatic channel.
The range of the cascade model that matches the third order
GUH is that which corresponds to values of n between 2 and
3 in the Nash model.

This work was later extended by Shamseldin and Nash
(1998, 1999) to cover catchments of all orders between 2
and 5 as well as the original case of a third order catchment
examined by Chuta and Dooge (1990). The same close cor-
respondence between the shape factors for the GUH and the
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Figure 9.  Shape Factors for GUH 

 

Fig. 9. Shape factors for GUH.

2-parameter mode of a cascade of equal linear reservoirs is
obtained. In this case from a GUH of order 2 to one of order
5, the range of value of n in the corresponding cascade model
is between 1 and 5.

9 Extension to uniform non-linearity

While the results described above indicate the general use-
fulness of a cascade of equal linear reservoirs as a concep-
tual model in hydrology, the results for channel flow and for
catchment response are limited by the restrictive basic as-
sumption of linearity. In the case of overland flow the basic
assumption is that the differential terms in the momentum
equation which are of an order of magnitude smaller than the
non-differential terms representing channel slope and friction
slope can be neglected (i.e. the non-linear kinematic wave
approach). In this case the runoff from different events is
not proportional to the input as indicated by Fig. 5a. How-
ever, for any fixed value of the non-linearity parameterc in
Eq. (1a), the response to similar events of different intensi-
ties can be combined by the use of a single dimensionless
relationship as shown in Fig. 5b.

The latter simplification indicates that a similar approach
might prove productive in the case of the more complicated
cases of channel flow and total catchment response. Over 30
years ago, the present author proposed that this problem be
tackled by considering the non-linear conceptual model of a
cascade of equal non-linear reservoirs (Dooge, 1967).
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In such a model the combination for any individual non-
linear reservoir of the continuity equation and the non-linear
storage – discharge relationship gives the equation for the i-
th storage element as

dSi

dt
= a (Si−1)

c
− a (Si)

c (11a)

Using any convenient reference volumeSo and the re-
lated reference time appropriate to this non-linear relation-
ship given by

to =
So

Qo

=
1

aSc−1
o

=

(
1

aQc−1
o

)1/c

(11b)

this basic equation can be written for each successive value
of i as

d(Si/So)

d(t/to)
= (Si−1/So)

c
− (Si/So)

c (11c)

If the inflow at the upstream endI (t) into the first storage el-
ement is multiplied a characteristic time (to) and the product
divided by a characteristic volume (So) to obtain a dimen-
sionless input

I (t).to

So
= I ′(t/to) (12a)

then the solution of Eq. (10c) will have the form(
S1

S0

)
= f1 (t/to) (12b)

for the upstream reservoir in the cascade and successive so-
lutions of Eq. (11c) will all be of the form(
Si

So

)
= fi (t/to) (12c)

For a cascade ofn such equal non-linear reservoirs the out-
flow from the system will be given in the dimensionless form

Q(t).to

So
=

(
Sn

So

)n
(13a)

= [fn (t/to)]
c (13a)

and will be the same for every similar input that belongs to
the class of functions which differ in average intensity and
time scale but are identical when plotted in the dimension-
less form of Eq. (13). This restriction is less constraining
than might appear at first sight since large flood producing
storms tend to have a duration which varies inversely with
the intensity of the rainfall.

A classical case in hydrologic literature of non-linearity in
catchment response is due to Minshall (1960) who compared
unit hydrographs derived for a 27 acre catchment for five dif-
ferent storms where the rainfall varied from 0.95 inches per
hour to 2.65 inches per hour. The derived unit hydrographs
are shown in Fig. 10a from which it could be seen that a
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Figure 10.  Dimensionless Plotting of Non-linear Unit Hydrographs 

Fig. 10. (a)Non-linear unit hydrographs.(b) Dimension plotting
of non-linear hydrographs.

normal unit hydrograph approach of transferring derived unit
hydrograph from one storm to predict the runoff from a storm
of distant intensity does not hold in this particular case.

It is not possible to make as precise an analysis of this case
as for the laboratory data of Amorocho and Orlob (1961) dis-
cussed in Sect. 5 above. However, it is possible to use a char-
acteristic time (to) and characteristic storage (So) in Eq. (13b)
to produce a dimensionless unit hydrograph. In the case of
Minshall’s data this results in Fig. 10b which shows that the
use of this dimensionless hydrograph in combination with
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Figure 11.  Dimensionless Plotting of Non-linear Simulation 
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its counterpart in the stochastic approach to the subject.  Reference was made at the 

beginning of the paper, not only to the separation for purposes of analysis between the 

deterministic and stochastic components of hydrologic response but also to the argument 

Fig. 11. (a)Non-linear simulation.(b) Dimensionless plotting of
simulation.

the relationship between the characteristic time and some in-
tensity characteristic inflow, would allow a transfer between
storms of sufficient accuracy for most hydrological purposes.

Another interesting example is contained in the computer
simulation of catchment outflow based on the full non-linear
dynamic equation. Figure 11a shows two of the non-linear
simulations which satisfy the relationship of Eq. (11) since
they involve similar inputs with the intensity of input in-
versely proportional to the duration.

When these two outflow hydrographs are scaled simi-
larly to Eq. (13b), the resulting dimensionless outflow hydro-
graphs shown on Fig. 11b are close approximations of each
other with a small time shift. This time shift has a parallel
in the time shift required in the linearised case where a 3-
parameter gamma distribution is required to bring the error
of using the conceptual model within reasonable approxima-
tion of the complete linearised solution.

10 Deterministic and stochastic similarities

The review of the deterministic approach to hydrologic anal-
ysis outlined above has its counterpart in the stochastic ap-
proach to the subject. Reference was made at the beginning
of the paper, not only to the separation for purposes of anal-
ysis between the deterministic and stochastic components of
hydrologic response but also to the argument by Velikanov
(1962) about the importance of the gamma distribution for
multi-component stochastic systems. The emphasis on the
gamma distribution in both stochastic and deterministic hy-
drologic systems is of importance. It suggests that progress
in both areas would benefit if they were considered as com-
plementary rather than separate fields of investigation. This
is exemplified in the close approximation of the linear geo-
morphic unit hydrograph by the gamma distribution which is
applicable in other areas of both deterministic or stochastic
behaviour of natural catchments.

If we move to non-linear analysis, the question arises
whether there is a link between the deterministic analysis
of uniform non-linearity (Dooge, 1967) and the formula-
tion of the non-linear gamma distribution by Kritski and
Menkel (1948). These and similar questions pose interesting
problems deserving of attention by the present generation of
young hydrologists.

11 Conclusions

G. Pegram in his comment remarks “a concluding paragraph
is noticeably absent”. The present section is an attempt to
remedy that particular fault in the original version by sum-
marising significant features of the chief results described
and suggesting areas for future research of a similar charac-
ter both in hydrological analysis and hydrological prediction
as well as responding to the comments in the discussion.

In hydrologic analysis certain phenomena recur both in
rigorous analysis and in approximate analysis for prediction
purposes. If the analysis is conducted in terms of discharge
(Q) and the area of flow (A) as state – space variables then
the continuity equation is linear and is therefore parameter
free at all scales. A. Montanari in his comment refers to
the question of relaxing this assumption in the simulation
of catchment runoff because of the uncertainties involved in
such cases. The author is of the opinion that the principle of
continuity should be retained as an anchor rather than com-
promised by uncertainties in data and in parameters.

Less fundamental but intriguing is the efficiency of the
gamma distribution both in the linear analysis of channel
flow and of the geomorphic unit hydrograph and as the
asymptotic distribution for a large number of interacting
skewed statistical distributions. Equally interesting is the re-
currence of the Bakhmeteff-type integral from non-uniform
steady open channel flow in the analysis both of overland
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flow which occurs at a small scale and in studying the effect
of climate change on water balance at a much larger scale.

The use of measured data from one event on a particu-
lar catchment to studying other events (actual or predicted)
on the same catchment or to similar events in an ungauged
catchment is a key problem in applied hydrology. It is impor-
tant to be clear about the assumptions involved. If the same
event is repeated exactly on the same catchment, then the
only basic requirement for a direct transfer of the measured
runoff is that of time-invariance in regard to the governing
parameters. If the events are not identical, an attempt can be
made to solve the problem by assuming both time-invariance
and linearity which are the two fundamental assumptions of
the unit hydrograph approach to catchment runoff (Dooge,
1959). In the case of overland flow and of small-scale catch-
ment runoff the assumption of linearity is clearly invalid as
shown on Figs. 5a and 10a. If, however, the transfer pro-
cess is restricted to events where the inputs are the same
when plotted in dimensionless form, then the transfer can be
made as shown in Figs. 5b and 10b. Such cases of uniform
non-linearity can be handled for similar events by established
unit-hydrograph techniques supplemented by a knowledge of
the degree of non-linearity which can be derived from the re-
cession hydrograph in the case of overland flow and from
the comparison of a number of different events in the case of
catchment runoff.

It is hoped that the results described in this contribution
are sufficiently interesting and used to encourage further re-
search along the same lines. The comment by J. P. O’Kane is
an excellent example of such an extension to cover the ques-
tion of hysteresis in subsurface unsaturated flow. This con-
cerns a key area in the hydrological cycle because of switch-
ing of the control of surface fluxes between atmosphere –
control and soil – control. In the case of channel flow, it
would be interesting to extend the linearisation about a steady
condition to linearisation about the non-linear kinematic re-
sponse to a specific form of input. It would be interesting
to find out the effect of such a change in predicting a closer
approximation to the output predicted by the non-linear solu-
tion and on reducing the time lag required to match the first
moment. In the case of the catchment runoff, it would be
interesting to derive the non-linear equivalent of comparing
the shape factors of the geomorphic unit hydrograph with the
gamma distribution.

There is thus plenty of scope for a younger generation of
hydrologists to continue the approach based on careful sim-
plification. It is to be hoped that some of them would find it
more satisfying to derive simpler conceptual models through
approximate analysis rather than seek closer approximations
to uncertain data by using ever more complex models involv-
ing a further extension of the number of parameters to be
calibrated.
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