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1 . Introduction

In reliability problems, but also in studies of logistics, congestion

systems and elsewhere, it is common to encounter collections of nominally

similar equipments or other entities that generate point events at similar,

but not identical, rates. The questions then arise as to whether evidence

for differences in the rates can be elicited from event rate data on all

members of such a collection, and how the data can be well utilized to

provide strengthened estimates of the underlying true rates of the

individual equipments. If all equipments seem to have about the same

failure rate then there should be little harm in calculating a simple pooled

rate and quoting it for all members, while if evidence of considerable

difference between members is present, then the individual rates seem most

appropriate. Some form of compromise will be worthwhile for intermediate

cases. The following general setup formalizes situations and provides

compromise estimates that tend to pool the data.

Consider a collection of J equipments or other units that independently

generate events in accordance with Poisson processes of constant rate A..

Observations of these processes are available: for unit i, s. (=0,
1 , 2. . .

)

events have been observed over an exposure time interval t. , i=1,2,...I. To

describe the possible variability between rates, characterize A. as the

independent realization of a random variable A with fixed parametric density

function g (*;9), where 8 is a generic vector parameter. The density g can
A A

be said to describe a superpopulation of rate parameters, sample values from



which have been bestowed upon the units of interest. The first objective of

the analysis will be to utilize all available data to estimate the

prevailing superpopulation parameters, _9; the second is to mobilize the

estimated superpopulation parameters, possibly by Bayes' formula or an

alternative, to provide suitably pooled or shrunken estimates for individual

rates. Both point and interval estimates are desirable. Models of the

above type are called parametric empirical Bayes (PEB) models; see Morris

(1983) for a review with various references. Our present approach

emphasizes superpopulation specifications that lead to robust estimates in

the sense that the possibility of widely discrepant rates or exponential

parameters is automatically dealt with by the superpopulation form. Such

performance can be called discrepancy tolerant ; it resembles in various ways

the behavior of modern robust location estimation and regression techniques,

cf. Mosteller and Tukey (1977); we call our procedure robust parametric

empirical Bayes (RPEB). General ideas of robust Bayesian analyses have been

described by Berger (1980, 1984); Albert (1979) in an unpublished study

considers the Poisson case. The simultaneous estimation of Poisson means

has been considered by many authors; a recent high-level account is by

Johnstone (1984), who provides many references. See also Martz, H. F. and

Waller, R. A. (1982), which describes work in the system reliability areas.

The model described is simplistic in recognizing just two sorts of

variability in point event data: the ordinary, Poissonian sampling

variation of observations around a given X-value ("within" variations) and

the variation of the individual X --values around a fixed, unknown value

("between" variation). Of course, many elaborations are possible. A



natural possibility to consider is that rate variation is controlled in part

by operational factors such as temperature, vibration, maintenance frequency

and adequacy, etc., describable by a regression model. Another possibility

is that individual rates are themselves realizations of random processes,

possibly with the addition of trends, thus requiring representation of time-

dependent over-Poisson variations; see Cox and Lewis (1966) and McCullagh

and Nelder (1983), pp. 131-133. The present paper does not deal with these,

but extensions are in progress.

The emphasis of this paper is data-analytical . Algorithms are first

constructed for estimation of superpopulation parameters; confidence regions

associated with these are constructed and displayed graphically. The

superpopulation parameter estimates are then applied to compute point and

associated interval estimates of individual rate parameters. Much of this

latter process is carried out numerically and displayed graphically as well.

New shortcut and computationally economical approximate solutions to the

above problems are furnished and compared to complete Bayes solutions. The

procedures are applied to three sets of reliability data, and the results

are discussed. Despite the formal probabilistic underpinnings described for

the procedure, it seems reasonable to apply the methods in an exploratory

fashion to probe for structure in data sets. This process has been briefly

illustrated for one example.



2. Some Illustrative Data Sets

Here are some data sets that serve to motivate our later analyses

2.1 Failure rates of air-conditioning equipment.

A classical data set to which our analysis appears applicable is that

of failures of air conditioning equipment on 13 Boeing 720 aircraft; these

data were originally provided by Proschan (1963), and have been much

studied. We consider an initial analysis that takes each aircraft to have a

-1
constant individual mean time to failure, X. ( i = 1 ,2, 3. . • 1=1 3) and an i.i.d.

exponential time to failure. The data can be summarized in terms of numbers

of failures over an exposure time; see Cox and Lewis (1966); for further

discussion see Cox and Snell (1980).

Note that actual time-to-individual-failure data is available for each

individual equipment. An initial data analysis of each unit's failure

pattern failed to reveal substantial trend or evidence of departure from an

exponential failure law. The likelihood function for X., an individual

exponential law parameter, is of the Poisson-gamma form with s. the

sufficient statistic, so the data is presented as such in Section 3, and

provisionally analyzed to elicit between-A . variability. The columns headed

r. in the following tables include the raw quotient (individual mle) rates

r.=s./t.. The cases in our tables are ordered by increasing raw failureill j &

rate, r . .

l



Table 1.1

Air-conditioner Failures

3 . t. r

.

1 l i

2 0.623 3.21

9 1.800 5.00
14 1.832 7.64
15 1.819 8.25
12 1.297 9.25
6 0.639 9.39

23 2.201 10.45
29 2.422 11.97
6 0.493 12.17

16 1.312 1 2.20

27 2.074 13.02
24 1.539 15.59
30 1.788 16.78

Aircraft No.

i

11

9

5

4

12

10

2

3

1

13

7

8

6

A maximum likelihood ratio test (Cox and Lewis, pp. 235-236) further

indicates that the individual parameters are significantly different at

about a 2 percent level. Thus these data can be expected to exhibit some

between-rate variability, as measured by a scale (e.g. standard deviation)

parameter of the superpopulation.

2.2. Loss of feedwater flow.

Table 2 presents a set of data referring to the rates of loss of

feedwater flow for a collection of nuclear power generation systems; see

Kaplan (1983). This class of "initiating events" is important in the

probabilistic risk assessment (PRA) of nuclear plants. It has been treated

in an empirical Bayesian fashion by Kaplan, although he does not use that

terminology

.



Table 1.2

LOSS OF FEEDWATER FLOW

System

.

3 .

1 h l

3 8 0.041

19 2 0.17
1 4 15 0.27

7 2 5 0.4

18 1 2 0.5

8 4 4 1.0

16 3 3 1 .0

25 1 1 1.0

4 10 8 1.3
10 4 3 1.3
15 4 3 1.3

5 14 6 2.3

13 10 4 2.5

27 5 2 2.5

20 3 1 3.0
2 40 12 3.3
9 13 4 3.3

26 10 3 3.3
12 14 4 3.5
14 7 2 3.5
24 12 3 4.0

28 16 4 4.0

29 14 3 4.7

21 5 1 5.0

30 58 11 5.3
17 11 2 5.5
22 6 1 6.0

6 31 5 6.2
11 27 4 6.8

23 35 5 7.0

2.3 Pump Reliability data at a pressurized water reactor (PWR) nuclear

power plant.

In Table 1.3, there appears a small set of data representing failures

of pumps in several systems of the nuclear plant Farley 1 . The apparent

variation in failure rates has several possible sources; some are mentioned

later. These data may be found in an EPRI report (1982).



Table 1.3

PUMP FAILURES

System

.

s

.

t

.

r

.

J
1 1 i i

1 5 94.320
2 1 15.720

3 5 62.880
4 14 125.760
5 3 5.240
6 19 31 .440

7 1 1.048
8 1 1.048

9 4 2.096
10 22 10.480

5.3x10?
6.4x10'

8.0x1 0_
11.1x10~p
57.3x10
60.4x10_f
95.4x10

d

95. 4x1
0~:

191x10

3. Specific PEB Models

Consider two parametric families as representations of an assumed

superpopulation for the event rates. These are (i) the centered and scaled

log<-Student t, which includes the log-normal when the degrees of freedom

parameter, n, becomes infinite; and (ii) the gamma.

Form (i), the log-Student, is of potential interest in probabilistic

risk analysis of nuclear power systems (PRA), where the log-normal form has

long been used to characterize variability between failure rates for various

equipments; see the Reactor Safety Study (1975), and Kaplan (1983). The

log-Student generalizes the log-normal setup, admitting systematically

heavier-than-normal/Gaussian tails and so allowing for a greater-than-

Gaussian propensity for extreme outliers for the rates. The tail behavior

is regulated by n, the Student degrees of freedom parameter. We do not here

attempt to estimate n from data, but treat it as a tuning parameter, much in



the manner of the tuning constant, c, appearing in bi-weight regression; see

Mosteller and Tukey (1977). Form (ii) , the gamma, is the natural conjugate

prior associated with the Poisson likelihood, and hence yields pleasant

analytical simplicity.

Here are the formal descriptions of the PEB models considered.

Log-Student s Stage 1 (Sampling individual rates from the superpopulation)

:

X .
- exp(e.

)

, v C(n)
e m g (z;M,x;n) =

. n n~ 5 z-y . 1 (n+1)/2 U * U

[i * t—

)

2 - 1

C(n) being the appropriate normalizing constant; {e., 1=1 ,2 1} is a

sequence of independent random variables.

Stage 2 (Observations from the individual rates)

s.
|

A." Poisson (A.t. ) (3.2)

z-y
Apparently e. ~

<t>( ], the normal distribution, as n-> °°, this is the log

normal model favored by many PRA analysts. Note that in general



n

Var
2[e^ = Var[ln A.] -

( -^r ]t , n>2

(aw) a

Gamma ; Stage 1: A ' g (w;a,B) - e ( —rr——
)

(3.3)

Stage 2: s.lA. ~ Poisson (A.t.). (3.4)
i ' -i .i i

There seems to be no fundamental justification for either

parametric superpopulation form. Generally, the log-Student is appealing

because of its controllable long tails and the ease of interpretation of

normal variation, while the gamma has mathematical convenience to recommend

it. Neither represents truly eccentric behavior such as multi-modality or

extensive asymmetry — features that cannot be ruled out in real data. See

Laird (1978) and Copas (1984) for non-parametric approaches to this problem,

and Tukey (1974) for an exploratory, totally non-probabilistic approach to a

large data set of similar structure.

4. Fitting the Superpopulation Models: Stage 1.

Given data of the form exhibited in Tables 1.1, 1.2, and 1.3, it is

possible to estimate the parameters in the superpopulation form by various

methods. We examine two: simple moment matching and maximum likelihood.



4.1 Crude moment matching.

From the Poisson assumption and familiar conditioning arguments, one

can obtain these formulas:

E[s. |X ] = X.t. = Var[s. |X ],

E[s.] = ECX.lt.; Var[s.] = E{ Var[s .
|
X . ]} + Var {E[s.

|
X . ]}

So, unconditionally,

E[s.] = E[X]t.,

Var[s.] =» E[X]t. + Var[X]t.
2

. (4.2)

Consequently if the raw rates are modelled by r. = s./t.,

E[r.] = E[X] (4.3)

1

Var[r.] = Var[X] + E[X] —

-

(4.4)

1

which suggests that crude estimates for E[X] and

Var[X] can be obtained by matching moments

10



11
E[A] - r, Var[A] = s^ - r( -r- £ t~

1

) (4.5)
i-1

Now for the specific forms considered we know that

log-Normal : E[A] = exp(p + -5-—) ; Var[A] = (E[A])
2
(e

T
- 1) (4.6)

6 8

Gamma: E[A] - ; Var[A] - —5- (4.7)-a a

and so both u and t
2

, or a and B, can be assessed, perhaps inefficiently but

very conveniently, by using (4.5) in conjunction with (4.6) or (4.7). Note

that E[A], and hence Var[A], is not finite for the log-Student model, and

hence this simplest momentr-matching procedure is inapplicable. Under the

circumstance that s. is large, accurate moment approximations for In (r.) =

ln(s./t.) are obtainable for the Student superpopulation, provided the

Student parameter n is large enough (i.e. > 2) . A more refined iterative

estimating procedure has been furnished for fitting the gamma in Hill, et al

(1984), but the above formulas are extremely simple and useful for quick

appraisals, and handy as a start for iterative likelihood maximization.

4.2 Likelihood Methods.

It is anticipated that the method of maximum likelihood will provide

results superior to crude moment matching at the expense of greater

1 l



computational effort, particularly for the log-Student form. Here are the

likelihoods, and comments concerning their maximization.

log^Student : The likelihood contribution of observation i is, up to

irrelevant constants,

L
i

= L
i^

u,T; 3
i»

t
i»
n )

-
'

e-*
(z)t

l CX(z)]
3
i

z

'*

(n„ )/2
(..8)

-
[1 * l—f - ]

with A(z) = exp(z), so the total likelihood is

L(w,t;s, t;n) = n L . ( y, t; s,t ;n) (4.9)

i = 1

l

The integration, and subsequent maximization, must be carried out

numerically. Integration has been performed by several alternative Gauss-

Hermite procedures. The first begins by approximating the integral by

Laplace's Method, and concludes by Gauss-Hermite integration of a correction

term remaining after the Laplace effect is removed; see Gaver (1985) for

details; for short, this process will be called LGH. The second is a direct

Gauss-Hermite procedure adapted from Naylor and Smith (1982); we are

grateful to J. C. Naylor for furnishing a FORTRAN program that has served as

the basis for this aspect of our work; call this GH. The maximization was

accomplished in the first method by a refined grid search, and in the second

by a quasi-Newton procedure adapted from IMSL SUBROUTINE ZXMIN, operating on

12



the log-likelihood surface. The classical EM algorithm discussed by

Dempster, Laird and Rubin (1977) is applicable for estimating the

superpopulation parameters, but does not directly produce approximate

confidence regions, as obtained below.

Gamma : The likelihood contribution of observation i can be derived by

integration, and is the negative binomial expression

r(s +B) t.
S

i a
B

L.(a,e;s.,t.) -
r(fl) J VB • C«.10)

i i

In view of independence, a product of these contributions provides the total

likelihood, as in (4.9). Maximization of the log likelihood has then been

carried out by the IMSL procedure.

The numerical results obtained from applying the above procedures to

the three illustrative data sets are given in Figs. 4.1, 4,2, and 4.3. In

order to ease the comparison of the log-Student and gamma analyses, we have

re-parameterized the gamma in terms of y and x, the latter being the

parameters of a log-normal. Thus the \i and t log-normal values that match

the first two gamma moments are

6 /a

v = ln[ ], r = / ln(1+1/S) ; (4.11)

•1 +1 /B

these expressions have been used to parameterize the gamma-likelihood for

graphical display.

13



4.3 Approximate Confidence Regions for Superpopulation Parameters

The likelihood ratio test procedure has been used to define an

approximate joint confidence region for \i and x for the two superpopulation

model families. The procedure specifies that all (u, t) values such that

* *
2 " "

-2[ln(L( u, t; s,_t ;n)/L( u, x;n) )] ^ x ?
(1^a) , where (u,t) is the mle, constitute

an approximate (1-a)»100% confidence region. The regions obtained for the

three sets of data appear on the figures. The somewhat eccentric, but

unimodal, shape of the log-likelihood surface is exhibited by the confidence

contour plots; a bit more symmetry can in principle be obtained by re-

parameterizing in terms of In t, but for our data sets the effect was not

dramatic. The confidence contours are roughly elliptical with the ellipse

semi-axes nearly parallel to the y-i axes; an analysis based on the

simplifying assumption that u and t are independently bivariate normal works

reaonably well for our data. The ellipticity tends to disappear when the

data set is small and contains several s.=0 values; as anticipated the

region then often intersects the t=0 axis, suggesting that the data are

consistent with a single underlying parameter value: A.=A, i = 1 , 2, . . . , I, if

the intersection is pronounced.

5. Individualized ("Shrunken" or "Pooled") Estimates.

If the true values of u and t (log-Student) or a and 8 (gamma)

superpopulations were available, then an obvious step would be to compute

the Bayes posterior of e. = In A
.

, or of A . in the gamma case, given the

value of s . . Then any point or interval estimates desired could be

1*J



computed. Such calculations must be done numerically for the log-Student

family, but are eased in the gamma case by the conjugate prior assumption.

If the values of u and t are estimated from data, as suggested here, then

approximate superpopulations can be derived by replacing (m,t) by (m,t) and

calculating the corresponding Bayes estimates; see Deely and Lindley (1981)

for discussion of this empirical Bayes approach. Recent work by Morris

(1983) and Hill (1984) suggests refinements to the simple procedure

described. Use of the approximate individualized superpopulations

(approximate Bayesian posteriors) then leads to point estimates and

intervals. We have chosen to first calculate (i) the means e «E[e |s.] f
of

the posterior distributions for the individual unit log rates, e., in the

illustrative data sets; these can be compared with ordinary log raw rates,

1 /2
ln(s./t.); (ii) the standard deviations c=[var[e . |s . ] , of the posterior

distributions, (iii) approximately 95% upper tolerance limits (or 95? one-

sided Bayes credibility intervals) for each unit, based on a normal

approximation: e.(0.95) = e. + 1.645c, and (iv) upper confidence limits

for the credibility intervals (iii), that recognize sampling variability in

u and t. We are encouraged to believe that such intervals are reasonable by

looking at plots of the posterior densities of the e. ; see Figures 4.1, 4.2,

and 4.3. More exact calculations are possible by numerical integration of

the posterior. Explicit expressions for the above quantities are these:

Log-Student

:

The approximate conditional means and second moments are cases

of

15



Ec
fi l

s
I
]<

L (uiT;a.,t. ;n)

k -A(z)t.
z e [A(z)]

;

dz

Z-M

[1 ( -^r '

]

(5.1)

2 1 T(n+1)/2

n

again integrated by Gauss-Hermite quadrature. The normalized integrand of

k
(5.1), exclusive of z , is the approximate Bayes posterior density of &.,

given s .

.

Gamma : The mean and variance of the approximate gamma posterior have

familiar pleasant explicit forms:

ECA
jL

|s
i
: =

s. + 6

t. + a
l

(5.2)

and

s. + 6

VarE[A. |s.] - (5.3)
(t. + a)

There are no such simple expressions for e. = InA . in the gamma case, but

the posterior moments have been computed by Gauss-Hermite quadrature applied

to the log-transformed gamma density.

16



5. 1 Analytical Approximations to the Posterior

Although the above numerical computations are feasible, it is often

useful to have relatively simple and explicit, if approximate, formulas for

point estimates and posterior densities. One such can be derived for the

log-Student model by writing the posterior density as

,. x „ ~(1/2)Q(z) ._ ...

g (z|s.) = K e (5.4)

z-y(z) _

and then approximating Q(z) by a quadratic q(z) = (1/2)( -.—r )
' in the

manner of Laplace's method, c.f. N. G. de Bruijn (1957); for applications to

Bayesian statistics see Mosteller and Wallace (1964), and Kadane and Tierney

(1985). Differentiation shows that the minimum of Q(z) occurs at z . - e.,

where e. is the modal, or maximum likelihood, estimate of e.ls., and e. is
l _i ' _i l

the posterior mean.

Log-Student : The derivative of

n+1 z-u
?

Q(z) = -e
z
t. + Si z - {—2~ ) ln

t
1

+
(
—*—)(1/n)] (5.5)

set equal to zero yields an estimating equation that can be written as

follows:

c
i

" p

A. = e
e
i = [s. -

( ) w
n
(e.)](1/t.), (5.6)

17



where the weight

n+1 1

w
n
(e.) = (—— ) ~ (5.7)

e. -
y _

1 (
-^— r (1/n)

Graphical or analytical examination reveals the possibility of two

A

solutions of Q'(z) - 0, one very near \i and the other near ln(s./t.),

corresponding to a bimodal posterior. Convenient explicit analytical

criteria for biraodality to occur are not available; but neither our present

data sets, nor many others, have revealed such bimodality when the posterior
A

was evaluated numerically and plotted. Our approach is to replace w (e.) by

w = w (ln(s./t.)) and by w = w (ln(1/(3t.)) when s.=0. This approximatennii nn i l

weight leads to unique solutions of (5.6) by Newton-Raphson iteration. An

interesting and interpretable formula is obtained after one iteration,
A

starting with e.(0) = ln(s./t.):

A « ^

s. ln(s./t.) + (m/t
2
)w (ln(s./t. )-u)(1/(t 2 ))w

i i l n 11 n

e (1)« ~—r-5—— = ln(s./t.) . (5.8)
1

s. + (1/(t) ) w
X l

s. + (1/(t) 2 w
i n in

This expression resembles the familiar Bayes normal-theory formula for

combining prior mean and likelihood to obtain a linear estimator of the

posterior mean. The difference is the presence of the weight w , the effect
n

of which is to reduce the influence of the mean of the superpopulation

(prior) upon tail-discrepant observations. Discrepant observations (w

small) are not heavily shrunken or pooled towards the estimated center, y,

18



while observations close to that center (w large) are shrunken in that
n

direction. Actually, the net shrinkage is caused by the factor

(1/(t) 2w /[s. + ((x) 2 )w ], in which w plays an important but not exclusive
n 1 n n J

role: the (approximate) variance s.and (t)
2 are also significant (note that

w depends upon x and upon ln(s./t.), so shrinkage is not linear). Notice

that as n->°°, and the log-Student approaches the log-normal, the discrepancy-

tolerant effect diminishes; when n=°° there is only one solution to (5.5) and

skrinkage becomes linear (provided the effect of observation i on u and t is

small, as it usually is). The variance of the posterior can be assessed

from the second derivative of Q(z); from (5.5)

Var[e.|s.] = a.
2

= —* (5.9)

e
e
i t. + (1/t )w

i n

This formula again exhibits the behavior of the variance associated with the

posterior encountered when normal likelihoods are combined with normal

conjugate priors, except that wildly tail-discrepant observations are

substantially downweighted: automatically in such cases e. = ln(s./t.) andJO J 111
o
2 = 1/s. as is essentially correct for a simple mle. In other words, our11

approximations (5.8) and (5.9) crudely treat ln(s./t.) as normal with a

conditional mean that is Student t with non-negligible variance. Such

approximations are very convenient, and lend themselves to simulation

appraisals of the two-stage estimation procedure; see Gaver (1985), and a

summary in Section 8 of this paper.

Gamma: In the gamma case, it can be seen that
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Q(z) = -a'e
Z

+ B'z (5.10)

where a' = t. + a, 8' = s. + 8. Now differentiation again shows that

and

s + B

e
£
i = (B'/a) = - (5.11)

t. + a
l

i B

Naturally, these formulas resemble the results for the log-Student

superpopulation, but contain no weight, w , to reduce shrinkage effects upon

tail-discrepant observations.

6. Confidence Limits

Since the estimates of posterior means, variances, and tolerance limits

are functions of u and x, it is desirable to place confidence limits on

- 2
£.(m,t), o.(m,t), and e.(u,t). These may be based on the confidence

contours of Figs. 4.1-4.3, and are constructed numerically. We have

supplied only upper 95? confidence contours, obtained by grid search over

(m,t) space to maximize e.(u,x), say, under the condition that (u,x) belongs

to the appropriate confidence set; these limits are denoted by e, .

7. Analysis of Data Sets
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The estimation procedures described have been applied to the data sets

of Tables 1.1-1.3. Complete tabulations are available from the authors;

here we examine only those log parameter estimates that are at the low and

high extremes for each data set, and the middle or median level. Ordering

of the rates is in terms of log raw rates. It is anticipated that the point

estimates of the extreme individual rates will exhibit the greatest

variation across estimation procedures (superpopulation models) , while the

middle values will be roughly in agreement. Owing to the partial pooling

effect, the middle values will tend to exhibit somewhat smaller posterior

variation than the extremes. The normal superpopulation model tends to

shrink more extensively than the other superpopulation models. By and

large, these effects are observed. For a visual notion of the posterior

densities from our data sets see Figs. 7.1-7. .

7.1 Table Notation

The following notation has been used in the table headings: under

Estimates
,

(1) e(r) = ln(s./t.) = ln(r.)

(2) e(1,n) = linearized posterior mode, Student (n) prior; (n=5) here

(3) e(n) = posterior mean, Student (n) prior

(*0 e(g) = posterior mean, Gamma prior

(5) e(°°) = posterior mean, normal/Gauss prior.

The numbers in parentheses under each of the above are the standard

deviations of the associated posteriors; posterior means and standard
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deviations are either computed by numerical integration, in cases (3), (5),

or by simple explicit approximate formulas in cases (1), (2), and (4).

Under Intervals , there are included approximate upper 95% Bayes credibility

intervals based on a normal approximation (mean + ( 1 .645) (standard

deviation)), these are

(6) e(r) = e(r) + 1.645 o(r) = e. (r)+1 .645/ 1 /s. , using 1/s., the

simpliest delta-method approximation to var[ln(s. /t. )] , while in

[ ] we quote the upper limit computed making use of the chi-

squared distribution of the time to accumulate s failures, an

approximation to the former;

(7) e(1,n): same as preceding using Student (n) prior, (n=5), and

linearized estimates, see (5.8) and (5.9);

(8) e(n) : same as (6) but using (3), and associated standard

deviation;

(9) e(n) upper 95% confidence limit on e(g), as described in Section

6;

(10) e(g) : same as (6), using moments of log-gamma computed

numerically;

(11) e(g) : upper 95% confidence limit on e(g), as in Section 6;

(12) e(°°) : same as (8), using estimated normal prior;

(13) e(°°) : upper 95% confidence limit on e(g), as in Section 6.
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7.2 Air^-conditioner Data

Upward shrinkage of the smallest estimate, e(r), is most pronounced for

£(°°) , the normal prior, less so for the gamma, and still less so for the

Student (5)'s; the simple linear approximation least so. The linearized

Student (5) procedure gives a small weight to the smallest observed rate.

Upper interval boundaries differ less than point estimates, with the e

MP

levels only slightly above e.

The middle estimate is shrunk not at all numerically by any of the

point estimates, but the standard deviations of all shrunken/pooled

estimates are about 70$ of that of the raw estimate e(r). Upper interval

levels are correspondingly reduced.

The largest estimate is shrunk downwards slightly and consistently by

all estimates, shrinkage is less extensive for the largest than the

smallest; this can be partly explained by the weights: 0.52 vs 0.13-

7.3 Feedwater Flow Data

The smallest observation is a zero, and the crudely imputed rate is

e(r) - ln(1/3t.); it is enclosed in parentheses to signify its arbitrary

nature. Here all point estimates provide some upward shrinkage: the normal

prior estimate, e(°°) , shrinking upwards the most extensively; it also

exhibits the smallest standard deviation. Here the Student (5) credibility
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and confidence intervals tend to be lower than the corresponding gamma and

normal intervals.

The first middle estimate, (i)=15 in rank, is shrunk downwards by

perhaps 10%; the most extensive shrinkage occurs for the normal model, e(°°) .

Its shrunken standard deviation is about 80? of that of the raw for the

Student model. Note that this observation involves s=3 events over exposure

time t=1 , a short history. By contrast, its neighboring middle value (i)=l6

in rank, with the more extensive history s-1 3 over t«4, exhibits one-half

the shrinkage and very little standard deviation decrease.

The largest estimate is shrunken nearly the same by all estimates; the

upper intervals agree well internally, tending to be slightly below the

interval raw rate interval, e(r).

7.4 Farley Pump Data

A

The smallest observation, e(r) in this data set is shrunk towards the

mean to essentially the same degree by each alternative point estimate;

slightly less shrinkage occurs for the gamma and Student (5) models. The

upper 95? credibility limits, e, also agree for all models, with e(1,5)

being marginally the greatest. The upper confidence limits, e, are in

agreement as well.

The two median values at (i)=5,6 are individually treated consistently

so far as point estimates go: all shrunken estimates reduce the log raw
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rate towards the mean, with the greater shrinkage occurring for (i)=5

because of its smaller experience (failure count and exposure time). For

the same reason, posterior standard deviations for (i)=5 are more than twice

as great as those for (i)=6, and upper 95% credibility intervals and

confidence limits reflect this difference as well.

The point estimates associated with the largest log raw rate all

substantially agree in their modest downward shrinkage, and the upper

credibility and confidence limits. Again, the close agreement is

attributable to the relatively extensive experience embodied in unit ( i ) =1 .

It is, however, worth notice that the estimated scale parameter, x, is

quite large for this data set. A plausible reason is that the units in the

set are not truly homogeneous, and that much of the large variability is

explainable by classification or regression. Our estimation procedures tend

to reflect this: although weights w are rather similar for extreme and

middle observations, the actual shrinkages are small even when there is

little experience (e.g. for (i)=5). In fact, investigation reveals that the

four pumps with the greatest experience (relatively large s and long t) all

operate continuously, while the remaining six operate intermittently or on

standby; these latter display consistently higher failure rates than the

former, so a dummy variable (continuous vs intermittent) regression model

should tend to reduce x. In Fig. 7.^ we exhibit the result of a re-analysis

in which the two groups' estimates of u and x are found separately: the two

point estimate vectors are now much more consistent, the confidence regions

are smaller, and only partially overlap.
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8. Simulation Results

Limited simulation experiments have been carried out to evaluate some

of the estimation procedures described. Here is the design; see Gaver

(1985) for further details.

First, the superpopulation form for the Poisson log rates e was taken

for convenience to be a member of the controllably long-tailed Tukey h

family:

2
e. _y + tz. exp(hz.) with z. _ N(0,1) and h, the tail-stretching parameter,

non-negative (here h=0.15); see Hoaglin (1983), and Gaver (1983) for details

concerning this family. We wished to compare the treatment of the different

rate-values in a random sample from the superpopulation by various

estimators, so ordered A -values were next created (and stored):

X,.v = exp (e,..), e,., = u + tz... exp [h z,..], z,., being the i largest

order statistic in a sample of size I from N(0,1). For h > the extremes

A,., and X /T . tend to be outliers, while the median, 1+1 , is
(1) (I)

(-2-)

characteristic of a central value. Second, the A... -values were used to
(i)

generate Poisson counts, s,.>. Then Stage 1 and Stage 2 estimation

processes were applied to estimate first u, t, and then the individual A.-

values. The speedy LGH procedure was used to estimate u and t, and these

values were then used in conjunction with the approximation A. = exp (c.)

that solves (5.6) by iteration. Detailed numerical quadrature using the GH

procedure is perhaps superior, but would have consumed more computer time.

The squared differences of the estimated A. values and their true
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counterparts were then averaged over S(=200) simulations and quoted as mean-

squared errors (MSE). Table 8.1 summarizes results for several such

experiments. We have quoted the ordinary units estimate results as MLE, the

results of applying the estimating formulas (5.6) as RS (Restricted

Shrinkage, as governed by w ) , and the results of applying (5.6) without the

weight as SS (Simple Shrinkage); the latter approximately represents the

effect of applying a log-Student model when n=50.

The results obtained are suggestive if not dramatic. First, estimates

2
of the superpopulation mean \i are nearly unbiased, while those for x appear

biased low. Standard errors of estimates (figures in parentheses) are, not

surprisingly, substantial; apparently more simulation repetitions would be

desirable. Nevertheless, comparison of the MSE figures for the various

estimators implies that RS(n=iO has virtue: for the smallest and largest

rates, A,,, and I,,.., RS estimates resemble MLE performance, while SS over-
\\) (Id)

shrinks and for the middle value, U,, RS is far superior to the simple

individual, unpooled MLE. The numerical differences in MSE shown in the

table are small but real because of positive correlation between estimate

values on each simulation experiment.

30



Table 8.

1

Selected Mean Squared Error Comparisons
and Estimated Superpopulation Parameters

J-15, h-0.15, 200 Simulations
Student d.f. (tuning constant) n=4,50

True
Values

Estimated Estimator A... (small) X /0 . (median) A
,

, _ . (large)
v l) (o

;

(id;

(n-4)

U=K).97(0.41)

t
2
=0.17(0.15)

RS 0.016 0.019 0.33

u—1.0

t =0.25 MLE 0.007 0.030 0.32

(n-50)

u=-0.98(0.45)

x =0.18(0.15) SS 0.019 0.020 0.35

(n=4)

u—1.93(0.50) RS 0.050 0.0060 0.28

t -0.18(0.17)

U—2.0

t =0.25 MLE 0.0026 0.01 4 0.27

(n-50)

u=-1.93(0.52)

t =0.20(0.18) SS 0.005*4 0.0057 0.30
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9. Summary and Conclusions

This paper displays the results of analyzing several small batches

(optimistically, but not realistically, random samples) of event rate data

as if (i) parameters of each batch were drawn independently from a fixed

superpopulation, and then (ii) the batches themselves were samples from

random processes, here stationary Poisson or exponential-interval. Such is

at least a pleasant fiction, to be used as a starting point. Computational

methods have been used to obtain estimates of superpopulation parameters,

and, from these pooled or shrunken individualized (log) rate estimates were

obtained. Such parametric empirical Bayes (PEB) analyses have been

described before by Hill, et al (1984), Deely and Lindley (1981), Hinde

(1982), Kaplan (1983) and perhaps others. We extend these by introducing a

heavy-tailed superpopulation form, the logrStudent t, that allows for

outliers or tail discrepancies incompatible with the log- normal /Gauss

description. We call this the RPEB setup. The qualitative effect of such a

generalization is revealed by appearance of the weight, w , that selectively

reduces the linear shrinkage towards a center; see (5.8). Thus w plays a

role similar to that of an influence function in robust location estimation

(see Mosteller and Tukey (1971), p. 351), although in the estimation of a

single log rate it curbs the influence of the overall mean, \i, on that

estimate if the data give evidence of extreme discrepancy. A more complete

indication of the effect of an observation, i.e. ln(s./t.) = e.(r), on itsii l

own shrinkage is given by the quantity (1/(t) 2 )w /[s. + (1/(x) 2 )w ]

appearing in the rightmost expression in (5.8): both within variability,

measured by s. (=var[e. (r ) ]) and between variability, assessed by (t)
2

,
play

their parts along with w . Besides providing insight, expressions like

(5.8) and (5.9) seem to agree reasonably well with more exact results, and
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are easy to compute, especially if one settles for inefficient moment

estimators of superpopulation parameters.

As the Tables and Figures reveal, the example data analyses performed

do not show enormous differences between log-normal, log-Student (5) , and

gamma superpopulation (Bayes prior) specifications, especially for the

median and also for the largest batch values. The smallest batch

observations are treated similarly by gamma and Student(5), with the

normal/Gauss representation tending to shrink a "small" (zero) value more

extensively than do the others up towards the center, u, on the log scale.

As anticipated, other analyses indicate even less tail shrinkage by

Student(n) for n<5. Estimation of n from the batch values would be of

interest, but is unlikely to be done with much accuracy from scanty data.

This suggests that use of a gamma form for the prior, and hence for the

posterior may be relatively harmless. There is little evidence in our

examples that over^shrinkage of the largest values in a data set occurs

when the gamma specification is used (although a small-n Student analysis

could be performed as an indication of the possible extent of over-

shrinkage) . Certainly the gamma is technically convenient for computing

point estimates of reliabilities or availabilities of complex systems:

integrations can often be carried out explicitly as Laplace transforms.

Of considerable interest would be the reduction of the apparent between

variability by classification or regression, as briefly illustrated for the

Farley data. Research in this area is currently in progress, with promising

results. If part of the between variability could be suitably accounted

for, then estimators could be constructed that legitimately pool towards

33



appropriate individualized centers, y. rather than \i, and outliers could be

explained and reduced in effect. All of the above requires attention to

collection of representative current data, and the monitoring of analytical

results over time to check for changes, e.g. in basic parameters. Our

present analysis is only a step in this direction. Further generalizations

include analyses for failure-on-demand data, for which responses are binary

and explanatory variables could include the time durations between

inspections or serious activations. Analyses of complex redundant systems

have been proposed in Gaver and Lehoczky (1985).
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