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Event-B is a refinement-based formal method that has been shown to be useful in developing concur-
rent and distributed programs. Large models can be decomposed into sub-models that can be refined
semi-independently and executed in parallel. In this paper, we show how to introduce explicit control
flow for the concurrent sub-models in the form of event schedules. We explore how schedules can
be designed so that their application results in a correctness-preserving refinement step. For practical
application, two patterns for schedule introduction are provided, together with their associated proof
obligations. We demonstrate our method by applying it on thedining philosophers problem.

1 Introduction

Event-B [1, 18] is a state-based modelling framework with its roots in the guarded command language
and the Action Systems formalism [3, 4]. It advocates proof-based correct-by-construction design, ab-
straction, stepwise refinement and model decomposition as its main development strategies.

In an Event-B model, events are chosen non-deterministically for execution following the interleav-
ing principle and assuming atomicity of events. Much of the effort in the refinement approach, especially
down in the refinement chain, is about the modeller aiming at diminishing the non-determinism in the
model and introducing more deterministic ways of choosing events for execution. In an extreme case
we can think of the modeller encoding this by using explicit program counters in the events. Work
on introducing more deterministicschedulesof events to Event-B has been studied extensively recently
[8, 11, 14, 20]. The goal has been to avoid explicitly coding this scheduling information into the events.
We base our approach on [8], which concerns sequential systems, and extend it to concurrent programs.

When models become large, decomposition strategies are used to focus on specific parts of the model.
To be practical, such strategies need to support compositional verification in the sense that the modeller
can locally reason about properties of a decomposed part of the model even though the underlying Event-
B assumption is that events are chosen for execution from theentire set of events in the model. Relying on
the atomicity requirement for events and the interleaving semantics for Event-B models the distinct parts
can be interpreted as concurrently executing models [12]. We show here how the scheduling approach of
Boström [8] can be extended so that we can apply it in a compositional manner focusing only on part(s),
or sub-model(s), of the model. We turn these sub-models intotasks, giving each of them a schedule of
its own. The main addition to the original approach for sequential programs is to handle the possible
interferences the concurrently executing tasks might exhibit. This can also be seen as an extension, with
explicit schedules, of the Hoang-Abrial approach [12] to development of concurrent programs.

To facilitate practical use of our method, the schedules areintroduced stepwise into a model via pat-
terns. The patterns have associated proof obligations needed for ensuring the correctness of the refine-
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ment step. As a result of the schedules, the scheduling information contained in events can be expressed
explicitly in the schedules.

In this paper, we focus on developing concurrent programs following the stepwise refinement ap-
proach. Apart from the introduction of explicit schedules,concurrent programs are modelled within
Event-B in a normal manner [1, 12]. While Event-B models can be executed as such using a non-
deterministic scheduler (“animation”), our approach is designed to be close to traditional programming
languages and results in models that are more efficient to execute on a computer, since more control flow
information is explicitly stated in the schedule than usingonly Event-B [8]. The approach can also be
used to replace parts of event behaviour with scheduling information as the scheduling concept as such
is more general than what the focus is here. The schedules actually give a process-oriented specification
style for Event-B modeller complementing its state-based style [9, 17].

The rest of this paper is structured as follows. In section 2,we present the foundations needed to
understand our approach. We discuss set transformers (predicate transformers), the Event-B formalism
and model decomposition. In section 3, we introduce a diningphilosophers [13] Event-B model, which
serves as a running example. Section 4 presents our main contributions. We introduce a scheduling
language, show how schedules and tasks can be introduced, and demonstrate how it is possible to tackle
the problem of interference from interleaving tasks. In section 5, we show how our framework can be
applied on the dining philosophers example model. Finally,we sum the paper up in section 6, where we
also discuss related work and future perspectives.

2 Foundations

2.1 Event-B

Event-B [1, 10] is a state-based modelling language. Modelsin Event-B consist of a dynamic and a
static part, referred to asmachinesandcontexts, respectively. The most important parts of a machine
arevariables, an invariant andevents. Contexts contain parts such asconstants, which can be referred
to from machines. The state space is made up of the variablesv1, ..., vn of typesΣ1, ..., Σn, and can be
modelled as the cartesian productΣ = Σ1× ...×Σn. The eventsE1, ..., Em modify the state space, and
can be written in the following general form [10], wherek∈ 1..m:

Ek =̂ whenGk(v,c) then v : |Ak(v,v
′
,c) end. (1)

Here,v represents the variables,c the constants seen by the machine, and theaction v: |Ak(v,v′,c) is
the nondeterministic assignment assigningv any such valuesv′ for which Ak(v,v′,c) holds. Gk(v,c)
represents theguard, which is a condition that must hold in order for the action totake place. An event
is said to beenabledwhen its guard holds. Each machine also contains a special event Initialisation
=̂ v : |A0(v′,c) that initialises the state space. Unlike other events, it isunguarded and does not depend
on a previous state. Events can be classified asordinary, convergentor anticipated. This will be further
explained in section 2.4. The invariantI(v,c) is a predicate constraining the values of the variables.

2.2 Set transformers

The events in Event-B can be viewed as set transformers [10].Our presentation of events as set trans-
formers is similar to the presentation in [10].
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Consider a state spaceΣ. A set transformer is a functionP(Σ)→P(Σ) that tranforms a set of states
into another set of states. A weakest precondition set transformerSapplied to a setq returns the largest
setp from whichS is guaranteed to reach a state inq.

We have the following definitions to give a set transformer semantics to Event-B models:

Σ = {v|⊤}
i = {v|I(v,c)}
gk = {v|Gk(v,c)}
ak = {v 7→ v′|Ak(v,v′,c)}
a0 = {v′|A0(v′,c)}

(2)

The seti describes the subset of the state space where the invariantI holds. Similarly, the setsgk (k ∈
1..m) represent the state space subsets where guardGk of the respective eventEk is true. The relationak

describes the possible before-after states that can be achieved by the assignment of the respective event.
Note that the initialisation results in a seta0 instead of a relation, since it does not depend on the previous
values of the variables. In this paper, we do not consider properties of constantsc separately, as it is not
important at this level of reasoning. The axioms that describe the properties of the constants are here
considered to be part of the invariant.

Let g andq be subsets ofΣ, anda be a relation. Furthermore,S, S1 andS2 are arbitrary set transform-
ers. The variables ofΣ are denotedv. We have the following set transformers:

[a](q) =̂ {v|a[{v}] ⊆ q} (Nondeterministic update) (3)

[g] (q) =̂ ¬g∪q (Assumption) (4)

{g}(q) =̂ g∩q (Assertion) (5)

(S1⊓S2)(q) =̂ S1(q)∩S2(q) (Nondeterministic choice) (6)

S1; S2(q) =̂ S1(S2(q)) (Sequential composition) (7)

Sω(q) =̂ µX.(S; X⊓ skip)(q) (Strong iteration) (8)

S∗(q) =̂ νX.(S; X⊓ skip)(q) (Weak iteration) (9)

skip(q) =̂ q (Stuttering) (10)

magic(q) =̂ true (Miracle) (11)

abort(q) =̂ false (Aborting) (12)

Here,true andfalse are notations representing the setsΣ and /0, respectively. This is because of conve-
nience as well as the fact that the same notation is used in weakest precondition predicate transformers.
We will also in general use predicate notation for describing subsets of the state space. (Nondeterminis-
tic) update is used to assign values to variables in the statespace, of which the stuttering set transformer
skip is a special case, which leaves the state unmodified. The set transformermagic achieves the desired
postcondition (evenfalse) from any state, whereasabort does not guarantee to achieve any postcondi-
tion q from any state. Not even termination is guaranteed. Assumption and assertion both behave as
skip wheng is true, but when false, assumption behaves asmagic, whereas assertion behaves asabort.
Nondeterministic choice represents demonic choice between set transformers, and sequential composi-
tion combines set transformers in a sequential manner. An important property of demonic choice is that
miraculous behaviour is avoided whenever possible, whereas aborting behaviour is always preferred.
This is demonstrated by the following theorems, which follow directly from the definitions:

magic⊓S= S
abort⊓S= abort

(13)
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The following properties can easily be derived, and the proofs can also be found in [5]:

magic; S=magic abort; S= abort

{g}; [h] = {g} [g]; {h} = [g]
{g∩h}= {g}; {h} [g∩h] = [g]; [h]

(14)

The iteration set transformers are used to achieve repeatedexecution. Iteration has been thoroughly
discussed by Back and von Wright [5, 6], and is only shortly summarised here. In both strong and weak
iteration (Sω andS∗, respectively), the set transformerS is repeatedly executed a demonically chosen
number of times. In strong iteration, the number of executions may be infinite, whereas for weak iteration
it is guaranteed to be finite. Important theorems regarding iteration include the followingunfoldingrules:

Sω = S; Sω ⊓ skip

S∗ = S; S∗⊓ skip
(15)

The set of states in which a set transformerSdoes not behave miraculously is called the guard ofS.
The guardg(S) is given as:

g(S) =̂ ¬S(false) (16)

We can now interpret an eventEk from (1) as a set transformer. Using the definitions from (2),we
can now give the set transformer[Ek] for Ek as [10]:

[Ek] =̂ [gk]; [ak] (17)

For a set of events,{E1, . . . ,Em}, we will use the denotion[E] for the expression[E1]⊓ . . .⊓ [Em].

2.3 Refinement

Refinement is an important concept in Event-B. In this paper,we are mainly interested in refinement on
the set transformer level, where it can be defined as [5]:

S1 ⊑ S2 =̂ ∀s.S1(s) ⊆ S2(s) (18)

Here,S1 andS2 are set transformers. The intuitive interpretation ofS1 ⊑ S2 is that ifS1 will reach a state
in a sets, then so willS2. We say thatS1 andS2 are (refinement) equivalent if and only ifS1 ⊑ S2 and
S2 ⊑ S1. The relation between the set transformer view of refinementand a proof obligations approach
has been studied in [10].

A set transformedS is said to behave miraculously when executed in a state in theset S(false),
i.e. when the execution ofS results in a post-state belonging to the empty set. We typically want to
avoid introduction of more miraculous behaviour during refinement. Given a set transformerS1 and a
refinementS2, S2 does not exhibit more miraculous behaviour thanS1 if S1(false) = S2(false).

2.4 Behavioural semantics

We aim at using Event-B for construction of concurrent programs. Ultimately we like to show that
a (concurrent) programS is correct given a preconditionP and a postconditionQ. This correctness
requirement is expressed in the Hoare triple:

{P} S{Q} (19)
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As the basis for our method, we use the development method forconcurrent programs in [12]. In this
approach, the concurrent programs are built from atomic events in the same way as sequential programs
are constructed [1]. The programSis considered to consist of a collection of events. Note thatthere is no
control flow other than non-deterministic choice of enabledevents. Using the refinement based approach
of Event-B, the programS that satisfies the pre/post-specification is derived stepwise. In order to use
the refinement process to develop programs, the pre-/post-specification first has to be encoded into an
initial Event-B model. This model has a specific structure [1]: it has an initialisation eventinit , progress
eventsprog and a finalisation eventfin. The eventsprog model (non-deterministically) the computation
of the program, whilefin models the post-conditionQ as a guard. The precondition is encoded in an
external context machine. The semantics of an Event-B modelM specifying a sequential program is in
this setting:

M =̂ [init ] ; [prog]∗; [fin] (20)

The system is first initialised, thenprog is executed until the postcondition given byfin becomes true.
The program can then terminate. The progress eventsprog are later refined to create a deterministic
algorithm to reach the postcondition. We will also later need to show that the refinementsE of prog
terminate [1], i.e. [E]ω = [E]∗, as we are interested in total correctness. We assume that all Event-B
models in the rest of the paper have this structure. Each event should maintain the invariant and therefore
we assume that there is an invariant assertion{i} implicitly given before and after each event.

We previously mentioned that events can be classified asordinary, convergentor anticipated. This is
relevant from a behavioural semantics point of view. Eventsare normally classified as ordinary, but it is
sometimes necessary to prove that execution of events from agroup will eventually terminate. All events
belonging to this group should then be labelled as convergent. In practice, the termination property is
proven by introducing a variant, and by showing that it is decreased by all convergent events. There
is also the possibility of classifying events as anticipated. Labelling an event as anticipated indicates
that it will be classified as convergent in a later refinement step, whereby the proof is postponed until
further down the refinement chain. The notions anticipated or convergent should be for the eventsprog
to guarantee that the model eventually terminates.

2.5 Decomposition

In order for a refinement based development method to be scalable there should be a way to decompose
specifications into smaller parts that can be independentlydeveloped. The verification of refinement
should thus be compositional, i.e., refinement of the individual parts should yield a refinement of the
whole system.

Here we will use a decomposition approach based on shared variables [1, 2]. Following this approach,
a model can be decomposed into sub-models that can themselves be further decomposed. The set of sub-
models forms the complete system model.

Definition 1. Sub-model. A sub-model is given as a 7-tuple(v,x,E,X, I , init ,fin), where v and x are sets
of variables, E and X are sets of events, I the invariant, initthe initialisation and fin the finalisation.

The variablesv are only visible inside the sub-model, and will be referred to as internal variables. Vari-
ablesx are shared with other components and will be called externalvariables. The eventsE can refer
to bothv andx. Since they (also) manipulate the internal variables of thesub-model, they are denoted
the internal events. The external events,X, are abstractions that only refer to the external variablesx
modelling the effects of events of other components. Hence,each event inX has a corresponding in-
ternal event in another component. The initialisation of a sub-model is given by eventinit and the loop
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termination guard is given by eventfin. Note that a traditional Event-B model can be seen as a sub-model
where the sets of external events and external variables areempty. A sub-model(v,x,E,X, I , init , f in)
can be (further) decomposed into sub-models:

(v,x,E,X, I , init , f in) = (v1,x1,E1,X1, I1, init1, f in1) ‖ (v2,x2,E2,X2, I2, init2, f in2)

The parallel composition of the sub-models is defined as:

(v1,x1,E1,X1, I1, init1, f in1) ‖ (v2,x2,E2,X2, I2, init2, f in2)
=̂ (v1∪v2,(x1∪x2)\(v1∪v2),E1∪E2,(X1∪X2)\(E1∪E2), I1∧ I2, init1 ‖ init2, f in1 ‖ f in2)

(21)

The parallel composition of two events is given as:

whenG then v : |Send‖ whenH then w : |R end
=̂ whenG∧H then v,w : |S∧Rend

(22)

The semantics[M1 ‖ M2] of a the parallel compositionM1 ‖ M2 is given as:

[M1 ‖ M2] =̂ init1 ‖ init2;([E1∪E2∪ ((X1∪X2)\(E1∪E2))])
∗; [¬g( f in1 ‖ f in2)] (23)

The composition can be extended to arbitrary many components by recursively merging components
pairwise. Since we want to do compositional proofs of refinement, we need to show that refinement of
the individual sub-models lead to refinement of the entire system. First we need to prove that the external
events provide abstractions of their internal counterparts {i1∩ i2}; [X1]⊑ [E2]⊓ [X2] and{i1∩ i2}; [X2]⊑
[E1]⊓ [X1]. To compositionally prove the refinement[M1 ‖ M2]⊑ [M′

1 ‖ M2], we then only need to prove
the refinement[M1]⊑ [M′

1], see [7].
We need to model that external events are executed a finite number of times, as they model the

finite execution of their internal counterparts in other sub-models. Since these external events are not
necessarily terminating by themselves, strong iteration cannot be used for describing behaviour of sub-
models. The use of weak iteration can be seen as compositionally verifying partial correctness of a
program, since termination is not ensured by set transformer refinement. However, we want to prove total
correctness of the complete system. Since we in this approach [1, 12] label the eventsE as anticipated
or convergent, we show that the model will eventually terminate. Hence, total correctness follows from
partial correctness in combination with the Event-B proof obligations that ensure termination [5, 6].

3 Dining philosophers case study

3.1 Problem description

We are now ready to introduce a model of the dining philosophers [13], which will serve as a running
example. In this section, we show the initial model, we refineit, as well as decompose it into sub-models.
The dining philosophers scenario can be described as follows. There are four philosophers sitting around
a round table. Each philosopher has a plate in front of him, and there is a fork placed between each pair
of adjacent plates. Each philosopher always does one of two things: think and eat, but not both at the
same time. Furthermore, in order to eat, a philosopher must pick up both of the two forks located next to
his plate. A philosopher can also drop a fork back into its original position, but only after he has eaten.

The basic problem is that if the philosophers pick up the forks arbitrarily, there may be deadlocks.
For example, if each philosopher picks up his right fork, there will not be any forks available anymore,
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and no philosopher will have enough forks to eat. Since a philosopher will not drop a fork until he has
eaten, there will be a deadlock. One well-known solution to this problem is to assign a number to each
fork, and enforce that each philosopher picks up the adjacent fork with the lowest number first. In our
case study we assume that we have four philosophers and number the forks as follows: Philosopher 1
can access forks 1 and 2, philosopher 2 accesses forks 2 and 3,philosopher 3 uses forks 3 and 4, while
philosopher 4 has access to forks 1 and 4.

3.2 Modelling and refinement

Initially we model the scenario as an abstract Event-B machine, where the four philosophers eat in a non-
deterministic order. We only model one round, so each philosopher will only eat once. We introduce the
variablesph1eatenthru ph4eaten, to model whether each philosopher has eaten. The eventIntialisation
sets these variables to FALSE. The eventsPh1Eatthru Ph4Eatfor the four philosophers then represent
the progress of the model. They model that a philosopher eatswhich has not yet eaten by setting the cor-
responding variable to TRUE. Finally, eventFinalisation checks that all four philosophers have eaten.
The Initialisation andFinalisationevents are classified as ordinary events, whereasPh1Eat, ...,Ph4Eat
are convergent, since they correspond to theprog variables in (20). We now have:

variables
ph1eaten
ph2eaten
ph3eaten
ph4eaten

invariant
ph1eaten∈ BOOL
ph2eaten∈ BOOL
ph3eaten∈ BOOL
ph4eaten∈ BOOL

Initialisation (ordinary) =̂
begin

ph1eaten:= FALSE
ph2eaten:= FALSE
ph3eaten:= FALSE
ph4eaten:= FALSE

end

Ph1Eat (convergent) =̂
when

ph1eaten= FALSE
then

ph1eaten:= TRUE
end

Finalisation (ordinary) =̂
when

ph1eaten= TRUE
ph2eaten= TRUE
ph3eaten= TRUE
ph4eaten= TRUE

then
skip

end

In the first refinement step we introduce the forks, which are modelled as variablesfork1 thru fork4.
They are of type 0..4 to represent which philosopher that currently holds the fork. Value 0 represents
the fork lying on the table. All forks are initialised to thisvalue. There are 16 new events in this
refinement step: two for each of the four philosophers getting their adjacent forks (e.g.Ph3GetFork3and
Ph3GetFork4), and two events for each philosopher releasing the corresponding forks (e.g.Ph3RelFork4
andPh3RelFork3). Note that philosopher 4 uses forks 1 and 4.

In order to be able to prove that the new events will not take over the execution, we classify them as
convergent and give a variant that they decrease. There is novariable that can be used as a variant, but
when each new event is executed it will disable itself and it will not be enabled again. Hence, we define
a functionv as follows:
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v= { (FALSE,FALSE,FALSE) 7→ 5,
(TRUE,FALSE,FALSE) 7→ 4,
(TRUE,TRUE,FALSE) 7→ 3,
(TRUE,TRUE,TRUE) 7→ 2,
(TRUE,FALSE,TRUE) 7→ 1,
(FALSE,FALSE,TRUE) 7→ 0}

The first and second dimension of the triple correspond to whether a philosopher is holding his left or
right fork, respectively. The third one indicates whether he has already eaten or not. The variant is then
formed as a sum of the values of functionv applied on the variables of each philosopher. The refined
model is now as follows:

variables
fork1
fork2
fork3
fork4
ph1eaten
ph2eaten
ph3eaten
ph4eaten

invariant
fork1∈ 0..4
fork2∈ 0..4
fork3∈ 0..4
fork4∈ 0..4
. . .

variant
v(bool( f ork1= 1),bool( f ork2= 1), ph1eaten)

+v(bool( f ork2= 2),bool( f ork3= 2), ph2eaten)
+v(bool( f ork3= 3),bool( f ork4= 3), ph3eaten)
+v(bool( f ork1= 4),bool( f ork4= 4), ph4eaten)

Initialisation (ordinary) =̂
begin

fork1 := 0
fork2 := 0
fork3 := 0
fork4 := 0
ph1eaten:= FALSE
ph2eaten:= FALSE
ph3eaten:= FALSE
ph4eaten:= FALSE

end

Ph1GetFork1 (convergent) =̂
when

fork1= 0
ph1eaten= FALSE

then
fork1 := 1

end

Ph1GetFork2 (convergent) =̂
when

fork1= 1
fork2= 0
ph1eaten= FALSE

then
fork2 := 1

end

Ph1Eat (convergent) =̂
when

fork1= 1
fork2= 1
ph1eaten= FALSE

then
ph1eaten:= TRUE

end

Ph1RelFork2 (convergent) =̂
when

fork2= 1
ph1eaten= TRUE

then
fork2 := 0

end

Ph1RelFork1 (convergent) =̂
when

fork2= 0
fork1= 1
ph1eaten= TRUE

then
fork1 := 0

end

Finalisation (ordinary) =̂
when

fork1= 0
fork2= 0
fork3= 0
fork4= 0
ph1eaten= TRUE
ph2eaten= TRUE
ph3eaten= TRUE
ph4eaten= TRUE

then
skip

end

Note that when thev function is called, the fork variables are not directly passed as parameters. Instead,
we check whether the currently evaluated philosopher holdsthe fork or not. Thebool function is a
technicality of Event-B that is needed to convert the resultof the comparison into a value of BOOL.
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The events corresponding to philosophers 2, 3 and 4 eating, as well as picking up and releasing their
respective forks are analogous to the events of philosopher1, and are thus not shown here. We now
have a refined model for the four philosophers eating, and in the next subsection we will decompose this
model.

3.3 Decomposition

In the decomposition step we separate the functionality of the four philosophers in such a way that each
philosopher constitutes a sub-model of its own. The partitioning we achieve is shown in the table below.
Since philosophers 2 and 4 share fork 2 and fork 1, respectively, with philosopher 1, the external events
of sub-model 1 are Ph2GetFork2, Ph2RelFork2, Ph4GetFork1 and Ph4RelFork1. Analogous reasoning
is used to find the external events of the other sub-models.

Sub-model 1 Sub-model 2 Sub-model 3 Sub-model 4

Internal Ph1Eat Ph2Eat Ph3Eat Ph4Eat
events Ph1GetFork1 Ph2GetFork2 Ph3GetFork3 Ph4GetFork1

Ph1RelFork1 Ph2RelFork2 Ph3RelFork3 Ph4RelFork1
Ph1GetFork2 Ph2GetFork3 Ph3GetFork4 Ph4GetFork4
Ph1RelFork2 Ph2RelFork3 Ph3RelFork4 Ph4RelFork4

External Ph2GetFork2 Ph1GetFork2 Ph2GetFork3 Ph1GetFork1
events Ph2RelFork2 Ph1RelFork2 Ph2RelFork3 Ph1RelFork1

Ph4GetFork1 Ph3GetFork3 Ph4GetFork4 Ph3GetFork4
Ph4RelFork1 Ph3RelFork3 Ph4RelFork4 Ph3RelFork4

4 Concurrent programs

This far, we have considered model decomposition, resulting in sub-models that can be refined semi-
independently. We are now ready to examine how these sub-models can be executed in a concurrent or
parallel setting. This problem has been studied in [12], which is a case study showing how to decompose
Event-B models into concurrently executing sub-models. Here we extend this approach by giving sub-
models explicit flow control in the form of event schedules, instead of the traditional nondeterministic
choice. An important concept in our approach is the concept of tasks, which we define as follows:

Definition 2. Task. A task is an 8-tuple(v,x,E,X, I , init , f in,S) where v are the internal variables, x the
external variables, E the internal events, X the external events, I the invariant, init the initialisation,
f in the loop termination condition, and S is a schedule conforming to the syntax in (24) concerning the
internal events E.

Since all coordinates, except forS, are the same as in a sub-model, a task can be seen as an extension
of the sub-model concept. Whereas the events of traditionaldecomposed sub-models are executed non-
deterministically, the internal events of a task are scheduled according toS. The scheduleS may only
consist of internal events, and the set of events in the schedule is denotede(S). We assume thatE = e(S),
since if an internal event was not included in the schedule, it would never be executed.
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4.1 Scheduling language

In order to describe schedules of events we give a small scheduling language [8], which adheres to the
following syntax:

S ::= PS→ S | PS
PS ::= do Sod | S1 8 . . . 8Sn | E | {g}

(24)

Here→ represents sequential composition,8 non-deterministic choice,do od is a loop,E an event and
{g} is an assertion.

4.2 Semantics of tasks

The semantics of schedules is given using a functionsched that maps each schedule to the corresponding
set transformer as in [8]. However, when scheduling the events in a task we need to consider interference
from other tasks. A goal of the scheduling language is to be able to express schedules of internal events in
such a way that interference from external events does not have to be explicitly taken into account. Such
interference freedom is instead proven separately. We now recursively define a functionsched(S,X)
whereS is a schedule,X is the set of external events.

sched(PS→ S,X) = sched(PS,X);sched(S,X)
sched(do Sod ,X) = ([g([e(S)∪X])];sched(S,X))∗; [¬g([e(S)∪X])]
sched(S1 8 . . . 8Sn,X) = sched(S1,X)⊓ . . .⊓ sched(Sn,X)
sched(E,X) = [X]∗; [E]; [X]∗

sched({g},X) = {g}

(25)

The scheduling function takes the scheduleS, as well as the set of external eventsX as input and outputs a
set transformer containing both internal and external events. An arbitrary (but finite) number of external
eventsX can occur before and after an internal eventE in a schedule. This is modelled by the set
transformer[X]∗ on both sides of the event.

Consider a system consisting of two tasksT1 = (v1,x1,E1,X1, init1, f in1,S1) andT2 = (v2,x2,E2,X2,

init2, f in2,S2). To find the complete system behaviour, we need to compose thetasks, i.e. obtainT1 ‖ T2.
However, the number of interleavings of atomic set transformers grows exponentially with the length of
the schedule [19]. Hence, we need an appropriate approach toreason about the interleavings in order to
make refinement proofs manageable. Here we make the restriction that we only consider tasks where the
set transformers obtained after scheduling can be decomposed into a loop containing the demonic choice
of atomic set transformers. This is an extension of the approach used in [12], where the programs are
built from atomiceventsthat are chosen non-deterministically for execution. Composition of such tasks
can be easily handled [7]. We have the following requirementfor schedulability in our approach:

∃S11, . . . ,S1n · sched(S1,X1) = (S11⊓ . . .⊓S1n⊓ [X1])
∗; [ f in1] (26)

where allS1i are atomic compositions of internal events. Using these atomic set transformers we can
now use the traditional parallel composition [7]. The semantics of the composition of the whole system
T1 ‖ T2 is now given as:

[T1 ‖ T2] =̂ [init1 ‖ init2];((⊓iS1i)⊓ (⊓ jS2 j))
∗; [ f in1 ‖ f in2] (27)

This approach thus extends the decomposition method in [2, 12] with the possibility to reason about
groups of sequentially scheduled events, instead of only individual ones. However, to find the groups
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S11, . . . ,S1n is in general non-trivial. Here we will give special cases encoded aspatternsto make the
verification of schedules manageable in practise.

4.3 Introduction of schedules

Schedules are introduced for the sub-models as a refinement step, in which we convert sub-models into
tasks. The introduction of schedules has to constitute a refinement step in order to ensure that the prop-
erties we have already proved for the models before introduction of schedules are preserved. Note that
we do not support scheduling of anticipated events, so they have to be turned into convergent ones before
the introduction of schedules.

We now need to show for the two tasksT1 =(v1,x1,E1,X1, init1, f in1,S1) andT2=(v2,x2,E2,X2, init1,

f in1,S2):
[M1 ‖ M2]⊑ [T1 ‖ T2] (28)

where sub-modelMi corresponds to taskTi as Mi = (vi ,xi ,Ei,Xi, init i , f ini). As in the traditional de-
composition method, we can use external events to perform compositional proofs of refinement. Here
we rely on the property (26) to decompose schedulesched(Si ,Xi) into a loop consisting of atomic set
transformers. We need to show that for all tasksTi [7]:

{i1∩ i2}; [Xi j ]⊑ Sk j (29)

([e(Si)]⊓ [Xi])
∗; [ f ini ]⊑ sched(Si ,Xi) (30)

In (29) we assume that for any external eventXi j ∈ Xi, there is one corresponding atomic set transformer
Sk j in another taskTk. To give a practical approach to the decomposition of schedules required by (26),
we give patterns that give generic instantiations of the quantified variables. In the patterns we rely on
special cases of scheduling constructs where we know we can prove (29) and (30). Patterns thus encode
reusable schedule structures. One such case is when the introduction of sequential behaviour does not
alter the behaviour of the sub-model. Another useful special case is when the introduction of sequential
behaviour does not modify the externally visible behaviourof a sub-model. We use the same scheduling
approach as in [8], where patterns are applied on schedules stepwise and we prove that each pattern
application leads to a refinement of the previous application.

A pattern consists of aprecondition, a schedule, a result and a number ofassumption. The precon-
dition predicate describes under which conditions the pattern is applicable. The schedule part describes
what schedule the pattern is intended for, and the result part gives the set transformer that is produced
when the pattern is applied. The assumptions are extra conditions that have be fulfilled in order to use
the pattern.

Pattern 1 The first pattern,P1, introduces sequential behaviour into a sub-model.

P1(E1,h,g,S,X) =̂
Precondition : h
Schedule : E1 →{g} → S
Result : {h};X∗;E1;X∗;{g};sched(S,X)
Assumption 1 : h⊆ ¬g(e(S))
Assumption 2 : g⊆ ¬g(E1)
Assumption 3 : {g};(X⊓ e(S))⊑ (X⊓ e(S));{g}
Assumption 4 : {h};X ⊑ X;{h}
Assumption 5 : E1 = E1;{g}

(31)
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The first assumption states that the preconditionh implies that the events followingE1 are disabled. The
second assumption states thatg ensures thatE1 is disabled. Context information cannot be propagated in
schedules without taking interference into account. Hencewe need assumptions 3 and 4 to state thatg
andh are invariant with respect to the environment. Furthermore, g should also be invariant for all events
in the scheduleS. The last assumption states thatE1 will establishg. We also directly use the event name
E1 instead of the set transformer[E1], as well asE instead of[E].

In order to stepwise use patterns we need to show that each application of a pattern is correct, i.e. that
(30) holds. In order to do that, we assume thatsched(S,X) represents a yet unscheduled loop of events
sched(S,X) = (e(S)⊓X)∗; [g(e(S)⊓X)]. We instantiate the existential quantifier in (26) withSi asEi.
Hence, we then need to show that{h};sched(E1 →{g}→ S) = {h};X∗;E1;X∗;{g};sched(S). Note that
we also rely here on the properties (32)-(34) in Lemma 1. Notealso that to ensure (30) we here assume
i ∩¬g(E⊓X)⊆ g( f in). The reason for formulating the pattern in this way is to be able to use the same
verification approach also to nested loops.

Lemma 1. Context preservation. If{g};S⊑ S;{g} then:

{g};S= {g};S;{g} (32)

{g};S∗ = {g};S∗;{g} (33)

{g};S∗ = ({g};S)∗ (34)

The proofs of the properties in the lemma are straightforward and they are omitted for brevity. We can
now prove the correctness of patternP1.

Proof.

{h};sched(E1 →{g}→ S,X); [¬g(E1⊓E⊓X)]
= {Representation ofsched(E1 → {g}→ S)}

{h};(E1⊓E⊓X)∗; [¬g(E1⊓E⊓X)]
= {Decomposition[6] : (S⊓T)∗ = (S;T∗)∗;T∗}

{h};X∗;(E1⊓E;X∗)∗; [¬g(E1⊓E⊓X)]
= {Distributivity}

{h};X∗;((E1; X∗)⊓ (E; X∗))∗; [¬g(E1⊓E⊓X)]
= {Decomposition}

{h};X∗;((E1; X∗)∗;((E; X∗); (E1; X∗)∗)∗; [¬g(E1⊓E⊓X)]
= {Unfolding(15)}

{h};X∗;((E1; X∗);(E1; X∗)∗)⊓ skip;((E; X∗); (E1; X∗)∗)∗; [¬g(E1⊓E⊓X)]
= {Assumption 3 and Property(33)}}

{h};X∗;{h};(E1; X∗);(E1; X∗)∗)⊓{h};((E; X∗); (E1; X∗)∗)∗; [¬g(E1⊓E⊓X)]
= {Distributivity, assumptionh⊆¬g(E) and disabledness of guard}

{h};X∗;{h};(E1; X∗);(E1; X∗)∗;((E; X∗); (E1; X∗)∗)∗; [¬g(E1⊓E⊓X)]
= {AssumptionE1 = E1;{g}}

{h};X∗;{h};E1; X∗;{g};(E1; X∗)∗;((E; X∗); (E1; X∗)∗)∗; [¬g(E1⊓E⊓X)]
= {Assumptiong⊆ ¬g(E1)}

{h};X∗;{h};E1; X∗;{g};(E; X∗;(E1; X∗)∗)∗; [¬g(E1⊓E⊓X)]
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= {Property(34) and ∗ below}
{h};X∗;{h};E1; {g};X∗;{g};({g};E; X∗;{g})∗; [¬g(E1⊓E⊓X)]

= {Leapfrog[6] : S;(T;S)∗ = (S;T)∗;S}
{h};X∗;{h};E1; {g};X∗;({g};E; X∗)∗;{g}; [¬g(E1⊓E⊓X)]

= {Assumptiong⊆ ¬g(E1) and{g}; [g] = {g}}
{h};X∗;{h};E1; {g};X∗;({g};(E; X∗))∗;{g}; [¬g(E⊓X)]

= {Lemma 9(c) in [6] : S∗ = S∗;S∗ and decomposition}
{h};X∗;{h};E1;{g};X∗;({g};E⊓{g};X)∗; [¬g(E⊓X)]

= {Property(33) and assumption 5}
{h};X∗;E1;X∗;{g};({g};E⊓{g};X)∗; [¬g(E⊓X)]

= {Representation ofsched(S,X)}
{h};X∗;E1;X∗;{g};sched(S,X)

The proof of step∗ is:
({g};E; X∗;(E1; X∗)∗)∗

= {Assumption 3 and Properties(32) and(33)}
({g};E; X∗;{g};(E1; X∗)∗)∗

= {Assumption 2}
({g};E; X∗;{g})∗

Pattern 2 The second pattern,P2, also introduces sequential behaviour. However, this timewe show
that we can group local behaviourE2 to an arbitrary event.

P2(E1,E2,h,g,S1,X) =̂
Precondition : h
Schedule : E1 → E2 →{g} → S
Result : {h};X∗;E1;X∗;E2;X∗;{g};sched(S,X)
Assumption 1 : h⊆ ¬g(e(S))
Assumption 2 : g⊆ ¬g(E1⊓E2)
Assumption 3 : E2;X = X;E2

Assumption 4 : {g(E2)};X = X;{g(E2)}
Assumption 5 : {g};(X ⊓ e(S))⊑ (X⊓ e(S));{g}
Assumption 6 : {h};X ⊑ X;{h}
Assumption 7 : E2 = E2;{g}

(35)

The assumptions in patternP2 are similar to the ones inP1. However, we additionally need assumptions
that states thatE2 andX do not interfere with each other (assumptions 3 and 4). To prove the correctness
of the pattern we need to show that

• By instantiation of (26) we get:{h};X∗;E1;X∗;E2;X∗;{g};sched(S,X) = {h};(E1;E2 ⊓ e(S)⊓
X)∗; [¬g(E1⊓E2⊓ e(S)⊓X)]

• Refinement (30):{h};sched(E1 → E2 → {g} → S,X) ⊑ {h};(E1;E2⊓ e(S)⊓X)∗; [¬g(E1⊓E2⊓
e(S)⊓X)]

• Deadlock freedom:{h};(E1;E2⊓ e(S)⊓X)∗; [¬g(E1⊓E2⊓ e(S)⊓X)](false) = {h};sched(E1 →
E2 →{g} → S,X)(false)
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The deadlock freedom proof obligation ensures that the scheduling does not introduce new deadlocks.
This was not needed in patternP1, as that pattern does not alter the behaviour of models. The proofs are
straightforward using the assumptions in the pattern. Thisensures that the scheduling does not introduce
more deadlocks than in the original system.

5 Scheduling of dining philosophers

We now return to the running example introduced in section 3.Up till now, the dining philosophers
model has been refined and split into sub-models. Now, we showhow the sub-models can be turned
into tasks by introducing schedules. In the scheduling process we use the patterns given in section 4.3.
Correctness will be proven by checking the assumptions of the patterns. We will concentrate on how to
derive a schedule for task 1. The schedules for task 2, 3 and 4 can be derived analogously.

Our approach is that the schedule should be formulated such that it fulfills the previously mentioned
solution to the dining philosophers problem, i.e., that each philosopher should pick up the lower num-
bered fork first. Since we first want to pick up fork number 1, wewish to schedulePh1GetFork1as
the first event. The correct order of events will bePh1GetFork1, Ph1GetFork2, Ph1Eat, Ph1RelFork2,
Ph1RelFork1. This is captured by the following schedule:

Ph1GetFork1→{g1} → Ph1GetFork2→ Ph1Eat→{g2}
→ Ph1RelFork2→{g3} → Ph1RelFork1→{g4}

The assertions in the schedule are needed to capture intermediate results and thereby enable verification
of the schedule in smaller parts.

We now want to prove that it is correct to schedulePh1GetFork1as the first event. To show this,
we will follow patternP1 introduced in Section 4.3 and show that the assumptions 1 - 5 for the pattern
are fulfilled. We instantiate patternP1 as P1(Ph1GetFork1,h1,g1,Sr ,Xt1), whereh1 = ( f ork1 6= 1∧
ph1eaten= FALSE), g1 = ( f ork1= 1∨ ph1eaten= TRUE), Sr = Ph1GetFork2→ Ph1Eat→ {g2} →
Ph1RelFork2→ {g3} → Ph1RelFork1→ {g4} andXt1 = {Ph2GetFork2, Ph4GetFork1, Ph2RelFork2,
Ph4RelFork1}.

We chose preconditionh1 so that it also is an invariant for the external eventsXt1. Here,h1 states
that philosopher 1 does not hold his forks nor has he eaten. Moreover, we chose assertiong1 to state that
philosopher 1 has picked up fork 1 or eaten. This condition isan invariant for the eventse(Sr)∪Xt1 and
established byPh1GetFork1. We now confirm that the assumptions for the pattern hold:

• h1 = ( f ork1 6= 1∧ ph1eaten= FALSE) implies that events ine(Sr ) are disabled. This holds, since
they are only enabled when philosopher 1 holds fork 1 or has eaten.

• The assertiong1 = ( f ork1 = 1∨ ph1eaten= TRUE) following eventPh1GetFork1ensures that
Ph1GetFork1is disabled. Sinceg1 is a negation of the guard ofPh1GetFork1the second assump-
tion is fulfilled.

• g1 is an invariant of the environmente(Sr)∪Xt1. This is fulfilled, since in the events ofe(Sr)
philosopher 1 holds fork 1 or has eaten. Moreover, the eventsin Xt1 that share fork 1 are not
enabled when philosopher 1 holds fork 1, and none of these events modify variableph1eaten.

• h1 is an invariant of the external eventsXt1. Since none of the external events model that philoso-
pher 1 picks up fork 1 or modify variableph1eaten, this assumption holds.

• EventPh1GetFork1establishesg1. This holds trivially sincePh1GetFork1models that philosopher
1 picks up fork 1 (f ork1 := 1).
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To verify the complete schedule, we then apply patternP2 once, followed by three applications ofP1.
In the last application ofP1, the schedule following the assertion is empty. This can be interpreted as a
schedule with an event that is always disabled. When task 1 has been fully proven, the whole procedure
is repeated to schedule tasks 2, 3 and 4 in the order shown in the table below (for simplicity, the assertions
are not shown).

Task 1 Task 2 Task 3 Task 4
Ph1GetFork1 Ph2GetFork2 Ph3GetFork3 Ph4GetFork1

→ Ph1GetFork2 → Ph2GetFork3 → Ph3GetFork4 → Ph4GetFork4
→ Ph1Eat → Ph2Eat → Ph3Eat → Ph4Eat
→ Ph1RelFork2 → Ph2RelFork3 → Ph3RelFork4 → Ph4RelFork4
→ Ph1RelFork1 → Ph2RelFork2 → Ph3RelFork3 → Ph4RelFork1

6 Conclusions and related work

In this paper, we have proposed a method of correct-by construction development of concurrent pro-
grams using Event-B. The programs are first developed as proposed by Hoang and Abrial [12]. From
this development process we obtain a number of sub-models that communicate via shared variables,
which represent the program. We then introduce explicit control flow in the form of schedules for each
sub-model, so that each sub-model/schedule corresponds toexactly one task. The schedules are intro-
duced as correctness preserving refinements. We use a set-transformer semantics for Event-B, as well
as well known algebraic rules [6] for the analysis of correctness. The schedules are verified in a step-
wise manner, and each step carries some related proof obligations. The schedules enable more efficient
implementation of the Event-B models as more explicit control flow information is available than for
pure event-B models. We can, e.g., use the transformations in [8] to introduce traditional control flow
constructs, such as while loops and if-statements, as well as remove unnecessary guards. Furthermore,
the schedules give a process-oriented specification of the behaviour of the models.

Our goal is to compositionally reason about concurrent programs. This has been a very active field
of research [19]. Our approach directly extends the approach in [12] for development of concurrent
programs with explicit schedules of events. Compositionalreasoning in this setting goes back to the
work of Owicki and Gries [16] and Jones’ Rely-Guarantee reasoning [15]. The decomposition method
based on shared variables in Event-B [2, 12] is based on theseideas. Essentially the same approach is
also available for action systems using the refinement calculus [7]. The theory for decomposition in the
set-transformer setting is largely based on that paper. Several approaches to introducing control flow
into Event-B models have been developed. Hallerstede’s approach in [11] to adding control flow only
deals with sequential programs and it is thus more related toBoström’s earlier work [8]. The scheduling
approaches in [14, 20] can also handle concurrent schedules. In [14] the scheduling (referred to asflows)
is expressed using a special purpose language, while in the approach [20] the scheduling is expressed
in CSP. The latter approach can be seen as an extension of the former. Processes or flows are both
considered to communicate via shared events. Our focus is oncompositional verification and scheduling
of concurrent programs that use shared variables for communication. However, in both approaches not
all events need to be scheduled, but non-scheduled events are considered interleaved in the scheduled.
This could be used to take into account external events, and thus be used for compositional verification
of shared variable programs also. Our contribution is threefold: 1) Compared to purely event-based
modelling, we consider explicit schedules of events that can be interleaved 2) We do all analysis on the
level of set transformers, which gives convenient formalism to algebraically perform the needed analysis
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of Event-B models 3) We provide patterns and a method to develop patterns for introducing control flow
in a stepwise manner. This is important, since verifying that a certain event schedule is correct can be
very challenging and reusable scheduling structures can significantly aid in this task.

Set-transformers give a powerful framework to reason aboutEvent-B models on a high level of
abstraction. They give a good basis for creating reusable patterns for scheduling, which are essential
for practical applications. If schedules are introduced asa last refinement step, as in the example of
this paper, existing tool support can be used for development up till, but not including, the scheduling
step. Future work involves investigating tool support for schedule application. Generation of refinement
proof obligations for scheduled models is also of interest,since that would allow for schedule intoduction
earlier in the refinement chain.
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