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Event-B is a refinement-based formal method that has beewstodoe useful in developing concur-
rent and distributed programs. Large models can be decadpo®m sub-models that can be refined
semi-independently and executed in parallel. In this papeshow how to introduce explicit control
flow for the concurrent sub-models in the form of event schesiuWe explore how schedules can
be designed so that their application results in a correstpeeserving refinement step. For practical
application, two patterns for schedule introduction avjated, together with their associated proof
obligations. We demonstrate our method by applying it ordihang philosophers problem.

1 Introduction

Event-B [1,18] is a state-based modelling framework wishrdots in the guarded command language
and the Action Systems formalisim| [3, 4]. It advocates ptwasged correct-by-construction design, ab-
straction, stepwise refinement and model decompositiots asdin development strategies.

In an Event-B model, events are chosen non-determinifstit@l execution following the interleav-
ing principle and assuming atomicity of events. Much of tffierein the refinement approach, especially
down in the refinement chain, is about the modeller aimingratrishing the non-determinism in the
model and introducing more deterministic ways of choosimgnes for execution. In an extreme case
we can think of the modeller encoding this by using explicibgszam counters in the events. Work
on introducing more deterministechedule®f events to Event-B has been studied extensively recently
[8,[11,14] 20]. The goal has been to avoid explicitly codinig scheduling information into the events.
We base our approach an [8], which concerns sequentialsgstnd extend it to concurrent programs.

When models become large, decomposition strategies alléaif@us on specific parts of the model.
To be practical, such strategies need to support compaaitieerification in the sense that the modeller
can locally reason about properties of a decomposed pdreéahbdel even though the underlying Event-
B assumption is that events are chosen for execution fromrttie set of events in the model. Relying on
the atomicity requirement for events and the interleaviergpantics for Event-B models the distinct parts
can be interpreted as concurrently executing models [12]shéw here how the scheduling approach of
Bostrém [8] can be extended so that we can apply it in a cortippal manner focusing only on part(s),
or sub-model(s), of the model. We turn these sub-modelstasks, giving each of them a schedule of
its own. The main addition to the original approach for sedjaé programs is to handle the possible
interferences the concurrently executing tasks mightléixhihis can also be seen as an extension, with
explicit schedules, of the Hoang-Abrial approachl [12] teedepment of concurrent programs.

To facilitate practical use of our method, the schedulesrareduced stepwise into a model via pat-
terns. The patterns have associated proof obligationsedefed ensuring the correctness of the refine-
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ment step. As a result of the schedules, the schedulingnivaftion contained in events can be expressed
explicitly in the schedules.

In this paper, we focus on developing concurrent prograriewiong the stepwise refinement ap-
proach. Apart from the introduction of explicit schedulesncurrent programs are modelled within
Event-B in a normal manner|[1, 12]. While Event-B models canelecuted as such using a non-
deterministic scheduler (“animation”), our approach isigeed to be close to traditional programming
languages and results in models that are more efficient tuexen a computer, since more control flow
information is explicitly stated in the schedule than usimyy Event-B [8]. The approach can also be
used to replace parts of event behaviour with schedulimgyrimdtion as the scheduling concept as such
is more general than what the focus is here. The schedulesllstagive a process-oriented specification
style for Event-B modeller complementing its state-badgle §9,17].

The rest of this paper is structured as follows. In sediiowe present the foundations needed to
understand our approach. We discuss set transformerdqaedransformers), the Event-B formalism
and model decomposition. In sectioh 3, we introduce a dipimitpsophers[[13] Event-B model, which
serves as a running example. Secfidbn 4 presents our mainbetioins. We introduce a scheduling
language, show how schedules and tasks can be introduakdearonstrate how it is possible to tackle
the problem of interference from interleaving tasks. Intised5, we show how our framework can be
applied on the dining philosophers example model. Finalgysum the paper up in sectioh 6, where we
also discuss related work and future perspectives.

2 Foundations

2.1 Event-B

Event-B [1,/10] is a state-based modelling language. Moutesvent-B consist of a dynamic and a
static part, referred to amachinesand contexts respectively. The most important parts of a machine
arevariables aninvariant andevents Contexts contain parts such eenstantswhich can be referred
to from machines. The state space is made up of the varighles, v, of typeszy, ..., Z,, and can be
modelled as the cartesian prodact >, x ... x Z,. The eventEy, ..., Ey, modify the state space, and
can be written in the following general form [10], wheee 1..m:

Ex = when G(v,c) thenv: |Ac(v,V,c) end. 1)

Here,v represents the variablesthe constants seen by the machine, andattteon v: |Ac(v,V,C) is
the nondeterministic assignment assigningny such values’ for which A¢(v,V/,c) holds. Gg(v,c)
represents thguard, which is a condition that must hold in order for the actioriake place. An event
is said to beenabledwhen its guard holds. Each machine also contains a spe@at kwtialisation

= v: |Ap(V,c) that initialises the state space. Unlike other events,unguarded and does not depend
on a previous state. Events can be classifiedrdimary, convergenor anticipated This will be further
explained in section 2.4. The invaridr, c) is a predicate constraining the values of the variables.

2.2 Set transformers

The events in Event-B can be viewed as set transformers [20}.presentation of events as set trans-
formers is similar to the presentation in [10].
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Consider a state spage A set transformer is a functiof? (%) — Z7(Z) that tranforms a set of states
into another set of states. A weakest precondition setftvsemer Sapplied to a seq returns the largest
setp from which Sis guaranteed to reach a statajin

We have the following definitions to give a set transformenaetics to Event-B models:

z = {VT}

i = {vll(vo)}

& = {VGk(v0o)} )
a = {v—=VIA(vV,c)}

a = {VIA(V,0)}

The seti describes the subset of the state space where the invataids. Similarly, the setgy (k €
1..m) represent the state space subsets where gbiaofithe respective evell is true. The relatioray
describes the possible before-after states that can bevachby the assignment of the respective event.
Note that the initialisation results in a sgtinstead of a relation, since it does not depend on the prgviou
values of the variables. In this paper, we do not considgpeaties of constants separately, as it is not
important at this level of reasoning. The axioms that descthe properties of the constants are here
considered to be part of the invariant.

Letg andq be subsets df, anda be a relation. Furthermor§, S, andS; are arbitrary set transform-
ers. The variables & are denoted. We have the following set transformers:

[a(g) = {vla[{v}] C a} (Nondeterministic updaje 3)
[g](a) =—-gUq (Assumption )
{g}(a) =gnq (Assertion) (5)
(S:N1S)(a) = Si(a) NS(0) (Nondeterministic choige (6)
Si; () = S1(S(0)) (Sequential compositign @)
S¥(q) = uX.(S XTskip)(q) (Strong iteratiof ®)
S'(q) = vX.(S XTskip)(q) (Weak iteratiof 9)
skip(q) = ¢ (Stuttering (10)
magic(q) = true (Miracle) (12)
abort(q) = false (Aborting) (12)

Here,true andfalse are notations representing the setand 0, respectively. This is because of conve-
nience as well as the fact that the same notation is used ikeseprecondition predicate transformers.
We will also in general use predicate notation for descglsnbsets of the state space. (Nondeterminis-
tic) update is used to assign values to variables in the spatee, of which the stuttering set transformer
skip is a special case, which leaves the state unmodified. Theasstarmemagic achieves the desired
postcondition (eveffalse) from any state, whereashort does not guarantee to achieve any postcondi-
tion g from any state. Not even termination is guaranteed. Assomptnd assertion both behave as
skip wheng is true, but when false, assumption behavesagic, whereas assertion behavesaasrt.
Nondeterministic choice represents demonic choice betweetransformers, and sequential composi-
tion combines set transformers in a sequential manner. Awritant property of demonic choice is that
miraculous behaviour is avoided whenever possible, wikeabarting behaviour is always preferred.
This is demonstrated by the following theorems, which feltdirectly from the definitions:

magicl1S=3S

abortMS= abort (13)



P. Bostrém, F. Degerlund, K. Sere and M. Waldén 169

The following properties can easily be derived, and the fsroan also be found in [5]:

magic; S= magic abort; S= abort
{a}; [h] = {g} [g]; {h} = [g] (14)
{gnh} ={g}; {h} [9nh] = [g]; [h]

The iteration set transformers are used to achieve repexexltion. Iteration has been thoroughly

discussed by Back and von Wright [5, 6], and is only shortijswarised here. In both strong and weak
iteration G and S', respectively), the set transformgris repeatedly executed a demonically chosen
number of times. In strong iteration, the number of exeaigtimay be infinite, whereas for weak iteration

itis guaranteed to be finite. Important theorems regardergtion include the followinginfoldingrules:

P =g Priskip

S =S S'Mskip (15)

The set of states in which a set transforrBetoes not behave miraculously is called the guar8. of
The guardg(S) is given as:
g(S) = —S(false) (16)

We can now interpret an eveBf from (1) as a set transformer. Using the definitions from @&,
can now give the set transformi@] for Ey as [10]:

[Ex] = [ok]; [ax] 17)

For a set of eventdE;, ..., En}, we will use the denotiofE] for the expressiofE;| M...M[Ey)].

2.3 Refinement

Refinement is an important concept in Event-B. In this paperare mainly interested in refinement on
the set transformer level, where it can be defined as [5]:

SICS2VsS(9) C (9 (18)

Here,S and$S are set transformers. The intuitive interpretatiorspEE S is that if S; will reach a state
in a sets, then so willS;. We say thats; andS; are (refinement) equivalent if and onlySf C S and
S C . The relation between the set transformer view of refineraadta proof obligations approach
has been studied ih [1L0].

A set transformeds is said to behave miraculously when executed in a state irs¢h&(false),
i.e. when the execution dresults in a post-state belonging to the empty set. We tipieant to
avoid introduction of more miraculous behaviour duringnmefihent. Given a set transform&r and a
refinementS;, S, does not exhibit more miraculous behaviour ti&aif S;(false) = Sy(false).

2.4 Behavioural semantics

We aim at using Event-B for construction of concurrent paogs. Ultimately we like to show that
a (concurrent) prograrn is correct given a preconditioR and a postconditior. This correctness
requirement is expressed in the Hoare triple:

{P} S{Q} (19)



170 Concurrent Scheduling of Event-B Models

As the basis for our method, we use the development methotbfarurrent programs in [12]. In this
approach, the concurrent programs are built from atomintevie the same way as sequential programs
are constructed [1]. The progra®is considered to consist of a collection of events. Notetthere is no
control flow other than non-deterministic choice of enaldeents. Using the refinement based approach
of Event-B, the prograns that satisfies the pre/post-specification is derived stggwin order to use
the refinement process to develop programs, the pre-/pestfication first has to be encoded into an
initial Event-B model. This model has a specific structufie ithas an initialisation evenhit, progress
eventsprog and a finalisation everiin. The eventprog model (non-deterministically) the computation
of the program, whildin models the post-conditio as a guard. The precondition is encoded in an
external context machine. The semantics of an Event-B niddgbecifying a sequential program is in
this setting:

M = [init]; [prog]*; [fin] (20)

The system is first initialised, thgorog is executed until the postcondition given fig becomes true.
The program can then terminate. The progress evawois are later refined to create a deterministic
algorithm to reach the postcondition. We will also later chée show that the refinemenks of prog
terminate [[1], i.e.[E]® = [E]*, as we are interested in total correctness. We assume tHzaveait-B
models in the rest of the paper have this structure. Each sfienld maintain the invariant and therefore
we assume that there is an invariant asserfionmplicitly given before and after each event.

We previously mentioned that events can be classifientdigary, convergenbr anticipated This is
relevant from a behavioural semantics point of view. Evangsnormally classified as ordinary, but it is
sometimes necessary to prove that execution of events fignougp will eventually terminate. All events
belonging to this group should then be labelled as convérderpractice, the termination property is
proven by introducing a variant, and by showing that it isrdased by all convergent events. There
is also the possibility of classifying events as anticidatéabelling an event as anticipated indicates
that it will be classified as convergent in a later refinemegp,swhereby the proof is postponed until
further down the refinement chain. The notions anticipatecbavergent should be for the evepisg
to guarantee that the model eventually terminates.

2.5 Decomposition

In order for a refinement based development method to bebdedlzere should be a way to decompose
specifications into smaller parts that can be independelaiyeloped. The verification of refinement
should thus be compositional, i.e., refinement of the inldigl parts should yield a refinement of the
whole system.

Here we will use a decomposition approach based on shariadblesr[1| 2]. Following this approach,
a model can be decomposed into sub-models that can thembelverther decomposed. The set of sub-
models forms the complete system model.

Definition 1. Sub-model. A sub-model is given as a 7-tuple, E, X, I,init, fin), where v and x are sets
of variables, E and X are sets of events, | the invariant, timit initialisation and fin the finalisation.

The variabless are only visible inside the sub-model, and will be referreés internal variables. Vari-
ablesx are shared with other components and will be called extesar@bles. The events can refer
to bothv andx. Since they (also) manipulate the internal variables ofstiiemodel, they are denoted
the internal events. The external everXs,are abstractions that only refer to the external variakles
modelling the effects of events of other components. Heeaeh event irK has a corresponding in-
ternal event in another component. The initialisation ofila-sodel is given by evenhit and the loop
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termination guard is given by evefihi. Note that a traditional Event-B model can be seen as a sweimo
where the sets of external events and external variablesrapgy. A sub-mode(v,x,E, X, ,init, fin)
can be (further) decomposed into sub-models:

(V, X, E,X, | s init, fln) = (Vl,X]_, El,Xl, |1, initl, finl) H (VQ,Xz, Eg,Xz, |2, initz, finz)
The parallel composition of the sub-models is defined as:

(V]_,Xl, El,X]_, |1, initl, finl) || (V2,X2, Ez,Xz, |2, initg, fing)

= (iU, (XaUX2)\(V1UV2), By UEp, (Xg UX2)\(E1 UE2),l1 Alg,inity || initz, fing || fing) (21)
The parallel composition of two events is given as:
) whenGthenv: \Senq || whenH thenw: |Rend (22)
= whenGAH thenv,w:|SARend
The semantic§Vl; | M| of a the parallel compositioll; || Mz is given as:
[M1 || M2] = inity || inity; ([E1 UE2U (X1 UX2)\(E1UE2))])"; [-g(fing || fing)] (23)

The composition can be extended to arbitrary many compen@ntecursively merging components
pairwise. Since we want to do compositional proofs of refiaethwe need to show that refinement of
the individual sub-models lead to refinement of the entistesy. First we need to prove that the external
events provide abstractions of their internal countegp@itniz}; [Xq] C [Ez] M [X2] and{iz Niz}; [X2] C

[E1] M [X1]. To compositionally prove the refinemeiM; || M2] C [M] || Mz], we then only need to prove
the refinemeniM;| C [Mj], seel[7].

We need to model that external events are executed a finitderuof times, as they model the
finite execution of their internal counterparts in other-safidels. Since these external events are not
necessarily terminating by themselves, strong iteratammot be used for describing behaviour of sub-
models. The use of weak iteration can be seen as compodijfiomaifying partial correctness of a
program, since termination is not ensured by set transforafimement. However, we want to prove total
correctness of the complete system. Since we in this appifdad2] label the eventg as anticipated
or convergent, we show that the model will eventually telatén Hence, total correctness follows from
partial correctness in combination with the Event-B prdafgations that ensure terminatian [5, 6].

3 Dining philosophers case study

3.1 Problem description

We are now ready to introduce a model of the dining philosopfiE3], which will serve as a running
example. In this section, we show the initial model, we reifines well as decompose it into sub-models.
The dining philosophers scenario can be described as felldWere are four philosophers sitting around
a round table. Each philosopher has a plate in front of hird,thare is a fork placed between each pair
of adjacent plates. Each philosopher always does one ofHingg: think and eat, but not both at the
same time. Furthermore, in order to eat, a philosopher nicisup both of the two forks located next to
his plate. A philosopher can also drop a fork back into itgiogl position, but only after he has eaten.
The basic problem is that if the philosophers pick up thedatbitrarily, there may be deadlocks.
For example, if each philosopher picks up his right forkr¢heill not be any forks available anymore,
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and no philosopher will have enough forks to eat. Since apbpher will not drop a fork until he has
eaten, there will be a deadlock. One well-known solutiorhts problem is to assign a number to each
fork, and enforce that each philosopher picks up the adidoek with the lowest number first. In our
case study we assume that we have four philosophers and ntimeberks as follows: Philosopher 1
can access forks 1 and 2, philosopher 2 accesses forks 2 ahdddopher 3 uses forks 3 and 4, while
philosopher 4 has access to forks 1 and 4.

3.2 Modelling and refinement

Initially we model the scenario as an abstract Event-B meghihere the four philosophers eat in a non-
deterministic order. We only model one round, so each pbyiber will only eat once. We introduce the
variablesphleaterthru ph4eatento model whether each philosopher has eaten. The éviadisation
sets these variables to FALSE. The evdpitid Eatthru Ph4Eatfor the four philosophers then represent
the progress of the model. They model that a philosopheméddth has not yet eaten by setting the cor-
responding variable to TRUE. Finally, evefinhalisation checks that all four philosophers have eaten.
The Initialisation andFinalisation events are classified as ordinary events, whelrdd€at ..., Ph4Eat
are convergent, since they correspond toptug variables in[(2D). We now have:

variables invariant Initialisation (ordinary) =
phleaten phleatere BOOL begin
ph2eaten ph2eatere BOOL phleaten= FALSE
ph3eaten ph3eatere BOOL ph2eaten= FALSE
phdeaten ph4eatere BOOL ph3eaten= FALSE
ph4eaten= FALSE
end
Ph1Eat ¢onvergent = Finalisation 6rdinary) =
when when
phleaterr FALSE phleater- TRUE
then ph2eaten- TRUE
phleaten= TRUE ph3eaten- TRUE
end ph4eaten- TRUE
then
skip
end

In the first refinement step we introduce the forks, which aoel@elied as variableforkl thru fork4.
They are of type 0..4 to represent which philosopher thateatily holds the fork. Value O represents
the fork lying on the table. All forks are initialised to thi@mlue. There are 16 new events in this
refinement step: two for each of the four philosophers ggttieir adjacent forks (e.d?h3GetFork3and
Ph3GetFork4, and two events for each philosopher releasing the carrelipg forks (e.gPh3RelFork4
andPh3RelFork3. Note that philosopher 4 uses forks 1 and 4.

In order to be able to prove that the new events will not taler tive execution, we classify them as
convergent and give a variant that they decrease. Therevanable that can be used as a variant, but
when each new event is executed it will disable itself andlitvet be enabled again. Hence, we define
a functionv as follows:
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v={ (FALSEFALSEFALSE) 5,
(TRUE FALSE FALSE) - 4,
(TRUE, TRUE FALSE) - 3,
(TRUE, TRUE TRUE) - 2,
(TRUE,FALSE TRUE) - 1,

(FALSE FALSE TRUE) — 0}

The first and second dimension of the triple correspond tatlvenea philosopher is holding his left or
right fork, respectively. The third one indicates whetherhias already eaten or not. The variant is then
formed as a sum of the values of functierapplied on the variables of each philosopher. The refined
model is now as follows:

variables invariant Initialisation (ordinary) =
forkl forkle 0..4 begin
fork2 fork2e 0..4 fork1:=0
fork3 fork3€ 0..4 fork2:=0
fork4 fork4 € 0..4 fork3:=0
phleaten e fork4:=0
ph2eaten variant phleaten= FALSE
ph3eaten v(bool(forkl = 1),bool(fork2 = 1), phleater) ph2eaten= FALSE
ph4eaten +v(bool(fork2 = 2),bool( fork3 = 2), ph2eaten ph3eaten= FALSE
+v(bool(fork3=3),bool( forkd = 3), ph3eater) ph4eaten= FALSE
+v(bool(forkl=4),bool(forkd = 4), phdeater) end
PhlGetForkldonvergent = PhlGetFork2donvergent = PhlEat ¢onvergent =
when when when
fork1=0 forkl1=1 fork1=1
phleaten FALSE fork2=0 fork2=1
then phleaten- FALSE phleaten- FALSE
forkl:=1 then then
end fork2:=1 phleaten= TRUE
end end
Ph1RelFork2¢onvergent = Ph1RelFork1l¢onvergent = Finalisation 6rdinary) =
when when when
fork2=1 fork2=0 fork1=0
phleaten- TRUE forkl=1 fork2=0
then phleaten- TRUE fork3=0
fork2:=0 then forkd=0
end fork1:=0 phleaten- TRUE
end ph2eaten TRUE
ph3eaten- TRUE
ph4eaten- TRUE
then
skip
end

Note that when the function is called, the fork variables are not directly mabkas parameters. Instead,
we check whether the currently evaluated philosopher hitldsfork or not. Thebool function is a
technicality of Event-B that is needed to convert the resiilhe comparison into a value of BOOL.
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The events corresponding to philosophers 2, 3 and 4 easingethas picking up and releasing their
respective forks are analogous to the events of philosophand are thus not shown here. We now
have a refined model for the four philosophers eating, anldeméext subsection we will decompose this
model.

3.3 Decomposition

In the decomposition step we separate the functionalithefour philosophers in such a way that each
philosopher constitutes a sub-model of its own. The paniitig we achieve is shown in the table below.
Since philosophers 2 and 4 share fork 2 and fork 1, respégtivéh philosopher 1, the external events
of sub-model 1 are Ph2GetFork2, Ph2RelFork2, Ph4GetForéPh4RelForkl. Analogous reasoning
is used to find the external events of the other sub-models.

\ | Sub-modell | Sub-model2 | Sub-model3 | Sub-model4 |

Internal PhlEat Ph2Eat Ph3Eat Ph4Eat

events Ph1GetForkl Ph2GetFork2 Ph3GetFork3 Ph4GetForkl

Phi1RelFork1 Ph2RelFork2 Ph3RelFork3 Ph4RelFork1

Ph1GetFork2 Ph2GetFork3 Ph3GetFork4 Ph4GetFork4

Ph1RelFork2 Ph2RelFork3 Ph3RelFork4 Ph4RelFork4

External Ph2GetFork2 Ph1GetFork2 Ph2GetFork3 Ph1GetForkl

events Ph2RelFork2 Ph1RelFork2 Ph2RelFork3 Phl1RelForkl

Ph4GetForkl Ph3GetFork3 Ph4GetFork4 Ph3GetFork4

Ph4RelForkl Ph3RelFork3 Ph4RelFork4 Ph3RelFork4

4 Concurrent programs

This far, we have considered model decomposition, resultinrsub-models that can be refined semi-
independently. We are now ready to examine how these sulelsiodn be executed in a concurrent or
parallel setting. This problem has been studied in [12]chlg a case study showing how to decompose
Event-B models into concurrently executing sub-modelstelee extend this approach by giving sub-
models explicit flow control in the form of event schedulestéad of the traditional nondeterministic
choice. An important concept in our approach is the concefaisks which we define as follows:

Definition 2. Task. A task is an 8-tupley, x, E, X, I, init, fin,S) where v are the internal variables, x the
external variables, E the internal events, X the externaingy;, | the invariant, init the initialisation,
fin the loop termination condition, and S is a schedule confog to the syntax if(24) concerning the
internal events E.

Since all coordinates, except f8 are the same as in a sub-model, a task can be seen as anaxtensi
of the sub-model concept. Whereas the events of traditid@admposed sub-models are executed non-
deterministically, the internal events of a task are sclelaccording t&5. The schedulé& may only
consist of internal events, and the set of events in the stdésidenoted(S). We assume thd = e(S),
since if an internal event was not included in the scheduieould never be executed.
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4.1 Scheduling language

In order to describe schedules of events we give a small sihgdanguage([8], which adheres to the
following syntax:

S 1= PS—>S|PS
PS = doSod |S][...[S|E]|{g}

Here— represents sequential compositifmon-deterministic choicelo od is a loop,E an event and
{g} is an assertion.

(24)

4.2 Semantics of tasks

The semantics of schedules is given using a funciibad that maps each schedule to the corresponding
set transformer as in[[8]. However, when scheduling thetsviara task we need to consider interference
from other tasks. A goal of the scheduling language is to betalexpress schedules of internal events in
such a way that interference from external events does wetthebe explicitly taken into account. Such
interference freedom is instead proven separately. We eowrsively define a functiosched (S, X)
whereSis a scheduleX is the set of external events.

sched(PS— S X) = sched(PS X);sched(S X)

sched(do Sod , X) = ([g([e(S)UX])];sched(S X))*; [-g([e(S)UX])]

sched(S1[... [ S, X) = sched(S,X)M...Msched(S,X) (25)
sched (E, X) — X [E];[X)*

sched({g},X) = {9

The scheduling function takes the schedglas well as the set of external eveKtas input and outputs a
set transformer containing both internal and external isven arbitrary (but finite) number of external
eventsX can occur before and after an internal evenin a schedule. This is modelled by the set
transformefX]* on both sides of the event.

Consider a system consisting of two tads= (v1, X1, E1, Xg,inity, fing, ) and T, = (o, X2, E2, Xo,
initz, finy, ). To find the complete system behaviour, we need to compogasks, i.e. obtaif || T,.
However, the number of interleavings of atomic set tramsérs grows exponentially with the length of
the schedule [19]. Hence, we need an appropriate approaeldon about the interleavings in order to
make refinement proofs manageable. Here we make the riestrilctit we only consider tasks where the
set transformers obtained after scheduling can be dec@dpot® a loop containing the demonic choice
of atomic set transformers. This is an extension of the ambraised in[12], where the programs are
built from atomiceventghat are chosen non-deterministically for execution. Cositn of such tasks
can be easily handled][7]. We have the following requirenfienschedulability in our approach:

31S11,...,S0 - SChed(Sg_,Xl) = (Sg|_;|_|_| RIS [Xl])*; [flnl] (26)

where allS;; are atomic compositions of internal events. Using thesmiatget transformers we can
now use the traditional parallel composition [7]. The setitarof the composition of the whole system
Ty || T2 is now given as:

[Ty || T2] = [inity || inito]; ((MiSy) M (M;S2;))"; [fing || fing] (27)

This approach thus extends the decomposition method inZPwith the possibility to reason about
groups of sequentially scheduled events, instead of onliviolual ones. However, to find the groups



176 Concurrent Scheduling of Event-B Models

Si1,---,Sin is in general non-trivial. Here we will give special casesated agatternsto make the
verification of schedules manageable in practise.

4.3 Introduction of schedules

Schedules are introduced for the sub-models as a refinetegnts which we convert sub-models into
tasks. The introduction of schedules has to constitute memeent step in order to ensure that the prop-
erties we have already proved for the models before inttimluof schedules are preserved. Note that
we do not support scheduling of anticipated events, so theg to be turned into convergent ones before
the introduction of schedules.

We now need to show for the two tasks= (v1,X1, E1, Xy, init1, fing,S;) andT, = (vo, X2, E2, Xo, inity,
finy, S):

M1 || Mz] E [Ty || T (28)
where sub-modeM; corresponds to task asM; = (vi, X, E;, X;,initj, fin;). As in the traditional de-
composition method, we can use external events to perfompaositional proofs of refinement. Here
we rely on the property( (26) to decompose scheddhed(S,X;) into a loop consisting of atomic set
transformers. We need to show that for all ta$kiF]:

{itNiz}; [Xij] E &; (29)
([e(S)]M[X])"; [fini] C sched(S, %) (30)

In (29) we assume that for any external ev¥jte X;, there is one corresponding atomic set transformer
&j in another tasKy. To give a practical approach to the decomposition of sdesdequired by[(26),
we give patterns that give generic instantiations of thentified variables. In the patterns we rely on
special cases of scheduling constructs where we know wercae {£9) and[(30). Patterns thus encode
reusable schedule structures. One such case is when tbéuation of sequential behaviour does not
alter the behaviour of the sub-model. Another useful speeise is when the introduction of sequential
behaviour does not modify the externally visible behavioius sub-model. We use the same scheduling
approach as in_[8], where patterns are applied on schedidpwise and we prove that each pattern
application leads to a refinement of the previous applioatio

A pattern consists of precondition aschedulearesultand a number oAssumption The precon-
dition predicate describes under which conditions theepatis applicable. The schedule part describes
what schedule the pattern is intended for, and the resuitgbges the set transformer that is produced
when the pattern is applied. The assumptions are extratoamslihat have be fulfilled in order to use
the pattern.

Pattern 1 The first patternp,, introduces sequential behaviour into a sub-model.

Pl(E17 ha g7 87 X) =

Precondition : h

Schedule :E1—{g}—S

Result : {h}; X*;Eq; X*;{g};sched (S X)

Assumption 1 : hC —g(e(S)) (31)

Assumption 2 : g C —g(E1)

Assumption 3 : {g};(XMe(9) C (XMe(S));{g}
Assumption 4 : {h};X C X;{h}

Assumption 5 : E; = Ep;{g}
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The first assumption states that the preconditi@amplies that the events following; are disabled. The
second assumption states tga&nsures thdk; is disabled. Context information cannot be propagated in
schedules without taking interference into account. Heameaeed assumptions 3 and 4 to state that
andh are invariant with respect to the environment. Furtherpgshould also be invariant for all events
in the schedulé&. The last assumption states thatwill establishg. We also directly use the event name
E; instead of the set transformf;], as well as instead of E].

In order to stepwise use patterns we need to show that eatbadjgm of a pattern is correct, i.e. that
(30) holds. In order to do that, we assume #uied (S, X) represents a yet unscheduled loop of events
sched(S X) = (e(§ M X)*; [g(e(S) M X)]. We instantiate the existential quantifier in(26) whasE;.
Hence, we then need to show tHat;sched (E1 — {g} — S) = {h}; X*; E1; X*;{g};sched (S). Note that
we also rely here on the propertiés](32)1(34) in Leniina 1. dtste that to ensuré (B0O) we here assume
iNn—-g(EMX) Cg(fin). The reason for formulating the pattern in this way is to ble &b use the same
verification approach also to nested loops.

Lemma 1. Context preservation. ifg}; SC S {g} then:

{9};S={9};S {9} (32)
{9}, S ={9};S"; {9} (33)
{g};S" = ({g},9" (34)

The proofs of the properties in the lemma are straightfodveard they are omitted for brevity. We can
now prove the correctness of patté#n

Proof.

{h};sched(E1 — {g} — S X);[-g(E1MEMX)]
= {Representation akhed(E; — {g} — S)}
{h}; (EsNENX)*;[-g(E1MEMX)]
= {Decompositiorf6] : (SIT)* = (ST*)*;T*}
{h}; X*; (E1 M E; X*)*; [~g(ELME M X)]

= {Distributivity }

{h}: X5 ((Ex; X*)M(E; X*))*; [g(E1MEMX)]
= {Decompositiofh

{h}; X5 ((Bx; X*)*5 ((B; X*); (Exs X*)*)*; [~g(E1MENX)]
= {Unfolding (I5)}

{h}: X5 ((Ens X*); (Ex; X*)*) Mskip; ((E; X*); (Exs X*)*)*; [~g(E1 MENX)]
= {Assumption 3 and Propertg3)}}
{h}; X7 {h}; (Ex; X*); (Ex; X)) M{h}; ((E; X*); (Ex; X*)*)*; [~g(ELMEMX))]
= {Distributivity, assumptioth C —g(E) and disabledness of gugrd
{h};X*; {h}; (Ex; X*); (Ex; X*)*; ((E; X*); (Eq; X*)*)*; [-g(EtNEMX)]
= {AssumptiorE; = E;; {g}}
{h} X5 {h} Ex X*5{g}s (BEx X)*5 ((B5 X*); (Exs X*)*)*; [~g(E1MEMX)]
= {Assumptiong C —g(E1)}
{h} X7 {h} Ea X7 {g}; (B; X*; (Ex; X)) [~g(Et METTX))]
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= {Property(34) and = below}
{hy: x5 {h}; Ex; {9} X% {a}; ({9}; E; X*5 {g})*; [~g(E1 ME M X)]
= {Leapfrog[] : S,(T;9)* = (ST)*;S}
{h} X {h} By {9} X ({1 E; X*)*5{g}; [g(ELMEM X))
= {Assumptiong C ~g(Ey) and{g};[g] = {g}}
{h}: X {h} By {9} X ({g): (B X)) {g}: [~e(EMX)]
= {Lemmadc)in [6] : S = S"; S and decomposition
{hy X5 {hy Ex {gh X5 ({91 E M {gh X) [~g(EMX))]
= {Property(33) and assumption}s
{h}; X B X {gh ({91 EN{g} X)"; [-g(EMX)]
= {Representation afched(S X)}
{h}; X*;E1; X*; {g};sched(S X)
The proof of step is:
({g}: Es X" (Ey; X))
= {Assumption 3 and Properti¢82) and33)}
({g}; B X" {g}: (Ee; X7)7)"
= {Assumption 2
({eh B X" {g})"
O

Pattern 2 The second patterii,, also introduces sequential behaviour. However, this tiaeshow
that we can group local behaviobg to an arbitrary event.

PZ(E17 E27 h7 ga S.|.7 X) =

Precondition : h

Schedule E1—>Ex—{g} —S

Result o {h}; X*; Eq; X*; Eo; X*; {9} sched (S X)

Assumption 1 : hC —g(e(9))

Assumption 2 : gC —g(E1MNEy) (35)

Assumption 3 : Ex; X =X;Ep

Assumption 4 : {g(Ex)}; X =X;{g(E2)}
Assumption 5 : {g}; (XMe(9) C (XMe(S));{g}
Assumption 6 : {h};X C X;{h}

Assumption 7 : E; =Ey; {9}

The assumptions in pattem are similar to the ones iR,.. However, we additionally need assumptions
that states thdE, andX do not interfere with each other (assumptions 3 and 4). Teepitee correctness
of the pattern we need to show that

e By instantiation of [26) we get{h};X*; E1; X*; E2; X*;{g};sched (S, X) = {h};(E1;E2Me(S N
X)*; [~g(E1MEzMe(S) MX)]

o Refinement[(30){h};sched(Ex — E2 — {9} — S X) C {h}; (E1;ExMe(SMX)*; [-g(E1ME2MN
e(§ X))

e Deadlock freedomih}; (Ex;ExMe(S)MX)*; [—g(E1ME2Me(S) M X)](false) = {h};sched(E; —
E, — {g} — S X)(false)
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The deadlock freedom proof obligation ensures that thedsdimg does not introduce new deadlocks.
This was not needed in pattey, as that pattern does not alter the behaviour of models. dwpare
straightforward using the assumptions in the pattern. &hsires that the scheduling does not introduce
more deadlocks than in the original system.

5 Scheduling of dining philosophers

We now return to the running example introduced in sedfiorU. till now, the dining philosophers
model has been refined and split into sub-models. Now, we stmwthe sub-models can be turned
into tasks by introducing schedules. In the schedulinggssave use the patterns given in section 4.3.
Correctness will be proven by checking the assumptionseop#tterns. We will concentrate on how to
derive a schedule for task 1. The schedules for task 2, 3 aad Be& derived analogously.

Our approach is that the schedule should be formulated badlit fulfills the previously mentioned
solution to the dining philosophers problem, i.e., thatheplilosopher should pick up the lower num-
bered fork first. Since we first want to pick up fork number 1, wish to scheduld’hlGetForklas
the first event. The correct order of events will BelGetFork]l Ph1GetFork2 Phl1Eat Ph1RelFork2
Ph1RelForkl This is captured by the following schedule:

PhlGetForkt- {g1} — PhlGetFork2— PhlEat— {02}
— Ph1RelFork2— {gs} — Ph1lRelFork1— {g4}

The assertions in the schedule are needed to capture imli@taeesults and thereby enable verification
of the schedule in smaller parts.

We now want to prove that it is correct to schedBRlelGetForklas the first event. To show this,
we will follow patternP; introduced in Sectioh 4.3 and show that the assumptions br thé pattern
are fulfilled. We instantiate patter®, as P;(PhlGetForKl h;,g91,S,%1), wherehy = (forkl # 1A
phleaten= FALSE), g; = (forkl = 1V phleaten= TRUE), S = PhlGetFork2» PhlEat— {g,} —
PhlRelFork2— {gs} — PhlRelForkl— {gs} andX; = {Ph2GetFork2, Ph4GetForkl, Ph2RelFork2,
Ph4RelFork}.

We chose preconditioh; so that it also is an invariant for the external evexis Here,h; states
that philosopher 1 does not hold his forks nor has he eatenedwer, we chose assertignto state that
philosopher 1 has picked up fork 1 or eaten. This conditianigvariant for the eventgS ) U X1 and
established byh1GetForkl We now confirm that the assumptions for the pattern hold:

e h; = (forkl # 1A phleaten= FALSE) implies that events ig(S ) are disabled. This holds, since
they are only enabled when philosopher 1 holds fork 1 or hesiea

e The assertiory; = (forkl = 1V phleaten= T RUE) following eventPhlGetForklensures that
PhlGetForklis disabled. Sincg; is a negation of the guard &hlGetForkithe second assump-
tion is fulfilled.

e g; is an invariant of the environmer(S ) U X;;. This is fulfilled, since in the events &S )
philosopher 1 holds fork 1 or has eaten. Moreover, the evien¥; that share fork 1 are not
enabled when philosopher 1 holds fork 1, and none of thesgt®ewsodify variablephleaten

e h is an invariant of the external everXg. Since none of the external events model that philoso-
pher 1 picks up fork 1 or modify variablghleaten this assumption holds.

e EventPhlGetForklestablisheg;. This holds trivially sincé?h1GetForkImodels that philosopher
1 picks up fork 1 forkl :=1).
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To verify the complete schedule, we then apply patirance, followed by three applications ef.
In the last application oP;, the schedule following the assertion is empty. This cambepreted as a
schedule with an event that is always disabled. When tasls béen fully proven, the whole procedure
is repeated to schedule tasks 2, 3 and 4 in the order showe fatite below (for simplicity, the assertions
are not shown).

Task 1 Task 2 Task 3 Task 4

Ph1GetForkl Ph2GetFork2 Ph3GetFork3 Ph4GetForkl
— PhlGetFork2 | — Ph2GetFork3 | — Ph3GetFork4 | — Ph4GetFork4
— PhlEat — Ph2Eat — Ph3Eat — Ph4Eat

— Phl1lRelFork2
— Phl1lRelForkl

— Ph2RelFork3
— Ph2RelFork2

— Ph3RelFork4
— Ph3RelFork3

— Ph4RelFork4
— Ph4RelForkl

6 Conclusions and related work

In this paper, we have proposed a method of correct-by amrigin development of concurrent pro-
grams using Event-B. The programs are first developed a®gedpby Hoang and Abrial [12]. From
this development process we obtain a number of sub-modatscdtmmunicate via shared variables,
which represent the program. We then introduce explicitrabfiow in the form of schedules for each
sub-model, so that each sub-model/schedule correspore@abtly one task. The schedules are intro-
duced as correctness preserving refinements. We use arssfibsimer semantics for Event-B, as well
as well known algebraic rules][6] for the analysis of comess. The schedules are verified in a step-
wise manner, and each step carries some related proof tiatigaThe schedules enable more efficient
implementation of the Event-B models as more explicit carfliow information is available than for
pure event-B models. We can, e.g., use the transformatiof&j to introduce traditional control flow
constructs, such as while loops and if-statements, as we#raove unnecessary guards. Furthermore,
the schedules give a process-oriented specification ofdhaviour of the models.

Our goal is to compositionally reason about concurrent ianmg. This has been a very active field
of research[[19]. Our approach directly extends the appraadl2] for development of concurrent
programs with explicit schedules of events. Compositiorakoning in this setting goes back to the
work of Owicki and Gries[[16] and Jones’ Rely-Guarantee saaxy [15]. The decomposition method
based on shared variables in Event-B[[2, 12] is based on tHeas. Essentially the same approach is
also available for action systems using the refinement keddid]. The theory for decomposition in the
set-transformer setting is largely based on that paperer8eapproaches to introducing control flow
into Event-B models have been developed. Hallerstede'soapp in [11] to adding control flow only
deals with sequential programs and it is thus more relat@bsirém’s earlier work [8]. The scheduling
approaches in[14, 20] can also handle concurrent schednolfs4] the scheduling (referred to 8swg
is expressed using a special purpose language, while inpihvach [20] the scheduling is expressed
in CSP. The latter approach can be seen as an extension dbrtherf Processes or flows are both
considered to communicate via shared events. Our focusasropositional verification and scheduling
of concurrent programs that use shared variables for conuaion. However, in both approaches not
all events need to be scheduled, but non-scheduled eventoasidered interleaved in the scheduled.
This could be used to take into account external events,targllde used for compositional verification
of shared variable programs also. Our contribution is fiofde 1) Compared to purely event-based
modelling, we consider explicit schedules of events thatlminterleaved 2) We do all analysis on the
level of set transformers, which gives convenient fornmalie algebraically perform the needed analysis
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of Event-B models 3) We provide patterns and a method to dpyegtterns for introducing control flow
in a stepwise manner. This is important, since verifying thaertain event schedule is correct can be
very challenging and reusable scheduling structures gguifisaintly aid in this task.

Set-transformers give a powerful framework to reason alwmeint-B models on a high level of
abstraction. They give a good basis for creating reusatiterpa for scheduling, which are essential
for practical applications. If schedules are introducedh dast refinement step, as in the example of
this paper, existing tool support can be used for developmgtill, but not including, the scheduling
step. Future work involves investigating tool support fonedule application. Generation of refinement
proof obligations for scheduled models is also of intergst;e that would allow for schedule intoduction
earlier in the refinement chain.
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