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abstract: We give different definitions for g-closed sets, R0 and R1 spaces in gen-
eralized topological spaces, characterize such spaces and compare with the existing
definitions and results.
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1. Introduction and preliminaries

A generalized topology or simply GT µ [3] on a nonempty set X is a
collection of subsets of X such that ∅ ∈ µ and µ is closed under arbitrary union.
Elements of µ are called µ−open sets. A subset A of X is said to be µ−closed if
X−A is µ−open. The pair (X,µ) is called a generalized topological space (GTS). If
A is a subset of a space (X,µ), then cµ(A) is the smallest µ−closed set containing
A and iµ(A) is the largest µ−open set contained in A. If γ : ℘(X) → ℘(X) is a
monotonic function defined on a nonempty set X and µ = {A | A ⊂ γ(A)}, the
family of all γ−open sets is also a GT [2], iµ = iγ , cµ = cγ and µ = {A | A =
iµ(A)} [4, Corollary 1.3]. The family of all monotonic functions defined on X is
denoted by Γ. By a space (X,µ), we will always mean a GTS (X,µ). A subset
A of a space (X,µ) is said to be α−open [4] (resp., semiopen [4], preopen [4],
b−open [14], β−open [4] ) if A ⊂ iµcµiµ(A) (resp.,A ⊂ cµiµ(A), A ⊂ iµcµ(A), A ⊂
iµcµ(A) ∪ cµiµ(A), A ⊂ cµiµcµ(A)). We will denote the family of all α−open sets
by α, the family of all semiopen sets by σ, the family of all preopen sets by π,

the family of all b−open sets by b and the family of all β−open sets by β. If
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(X,µ) is a GTS, then we say that a subset A ∈ δ ⊂ ℘(X) [6] if for every x ∈ A,

there exists a µ−closed set Q such that x ∈ iµ(Q) ⊂ A. Then (X, δ) is a GTS
[6, Proposition 2.1] such that δ ⊂ µ [6, Theorem 1]. Elements of δ are called the
δ−open sets of (X,µ). For A ⊂ X, iδ(A) and cδ(A) are the interior and closure
of A in (X, δ). We will denote by ν (resp. ξ, η, ε, ψ), the family of all α−open
(resp. semiopen, preopen, b−open, β−open) sets of the generalized space (X, δ). If
κ ∈ {µ, α, σ, π, b, β, δ, ν, ξ, η, ε, ψ} and A is a subset of a space (X,κ), then
cκ(A) is the smallest κ−closed set containing A and iκ(A) is the largest κ−open set
contained in A. Note that the operator cκ is monotonic, increasing and idempotent
and the operator iκ is monotonic, decreasing and idempotent. Clearly, A is κ−open
if and only if A = iκ(A) and A is κ−closed if and only if A = cκ(A). Also, for every
subset A of a space (X,κ), X − iκ(A) = cκ(X − A). If λ ⊂ ℘(X) is a GT, then
γ ∈ Γ is said to be λ− friendly [5] if γ(A) ∩ L ⊂ γ(A ∩ L) for A ⊂ X and L ∈ λ.

In [14], it is denoted that Γ4 = {γ | γ is µ−friendly where µ is the GT of all
γ−open sets} and if γ ∈ Γ4, the space (X, γ)(resp. (X,µ)) is called a γ−space.
By [14, Theorem 2.1], the intersection of two µ−open sets is again a µ−open set
and so every γ−space is a quasi-topological space [5]. By [14, Theorem 2.3], it
is established that in a γ−space, iµ and cµ preserve finite intersection and finite
union, respectively. Later, in [5], it is established that the above result is also true
for quasi-topological spaces. A space (X,µ) is said to be strong if X ∈ µ. The
following lemma is essential to proceed further where the easy proof is omitted.

Lemma 1.1. Let (X,µ) be a space where µ is the family of all γ−open sets of a
γ ∈ Γ4. Then the following hold.
(a) The intersection of two δ−open sets is a δ−open set.
(b) iδ(A) ∩ iδ(B) = iδ(A ∩B) for every subsets A and B of X.
(c) cδ(A) ∪ cδ(B) = cδ(A ∪B) for every subsets A and B of X.
(d) iδ ∈ Γ4.

2. Strong generalized spaces

If (X,µ) is any generalized space which is not strong, then in [7, Proposition
1.2], it is established that X ∈ σ and so it follows that always X ∈ b and X ∈ β.

The following Example 2.1 shows that in general, if X 6∈ µ, then X 6∈ λ for
λ ∈ {µ, δ, α, π, ν, η} and Theorem 2.1 below shows that X ∈ ξ and hence X ∈ ε

and X ∈ ψ.

Example 2.1. Let X be the set of all real numbers and µ = {∅, {0}}. Then X 6∈ λ

where λ ∈ {µ, δ, α, π, ν, η}.

Theorem 2.1. If (X,µ) is a generalized space which is not strong, then the fol-
lowing hold.
(a) X 6∈ π and hence X 6∈ α.

(b) X 6∈ δ and hence X 6∈ η and X 6∈ ν.

(c)X ∈ ξ and hence X ∈ ε and X ∈ ψ.

Proof: (a) Suppose X ∈ π. But always, X ∈ σ and so X ∈ σ ∩ π = α. Therefore,
X ⊂ iµcµiµ(X) ⊂ iµcµ(X) = iµ(X). Hence X ∈ µ, a contradiction and so X 6∈ π
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and hence X 6∈ α.

(b) Since X 6∈ µ, X 6∈ δ, since δ ⊂ µ. Since η = π(δ), by (a), X 6∈ η and hence
X 6∈ ν, since ν = α(δ).
(c) Since ξ = σ(δ), X ∈ ξ and so X ∈ ε and X ∈ ψ. 2

3. g⋆
λ−closed sets

Let (X,µ) be a generalized space. A subset A of X is said to be gµ−closed
[9] if cµ(A) ⊂ M whenever A ⊂ M and M ∈ µ. Various properties of gµ−closed
are discussed and characterizations are given in [9] and these properties are valid
for the generalized topologies induced by µ and δ. Given a topological space (X, τ)
and a generalized topology µ on X, a subset A of X is said to be gµ−closed [11]
if cµ(A) ⊂ M whenever A ⊂ M and M ∈ τ. If µ = τ, then the gµ−closed sets
coincide with the g−closed sets of Levine [8]. If τ is fixed and µ is any one of the
generalized topology, namely α, σ, π, b and β of the topological space (X, τ), where
all these family contains X, then we have gα−closed, gsemi−closed, gpre−closed,
gb−closed and gβ−closed sets in (X, τ) and all the results established in [11] are
valid for these sets. If µ is a fixed generalized topology, and instead of τ, if we
consider σ, b and β, the generalized topologies induced by µ, which contains X,
then we can define gσ(µ)−closed, gb(µ)−closed and gβ(µ)−closed sets in the space
(X,µ) and for these family of sets also, all the results established in [11] are valid.

The difference between the two definitions is that the definition of gµ−closed
sets uses elements of the topology τ on X where X ∈ τ where as the definition of
gµ−closed sets uses elements of the generalized topology µ where X may or may
not be in µ. Therefore, the definition of gµ−closed sets is more general, since the
definition uses a large class of generalized topologies which also contains the class
of all topological spaces. Moreover, similar results established for gµ−closed sets in
[11] are already established for gµ−closed sets in [9]. We give below a new definition
for generalized closed sets in a generalized space, which is common for both strong
spaces and non-strong spaces, and discuss the relation between these three kinds
of sets in the following Examples 3.1 to 3.3. A subset A of Mµ = ∪{B | B ∈ µ}
of a generalized space (X,µ) is said to be g⋆

µ−closed if cµ(A)∩Mµ ⊂M whenever
A ⊂M and M ∈ µ. Note that, if the space is strong, then this definition coincides
with the definition of gµ−closed sets.

Example 3.1. Let X be a nonempty set and µ be a generalized topology on X.
Suppose Mµ = ∪{A | A ∈ µ} 6= X and τ = ℘(Mµ)∪{X}. Then every µ−closed sub-
set of X contains X −Mµ. Therefore, every subset A of Mµ is neither a gµ−closed
set nor a gµ−closed set. g⋆

µ−closed sets depend on the generalized topology µ. Ev-
ery nonempty subset B of X such that B ∩ (X −Mµ) 6= ∅ or B ⊂ (X −Mµ) is not
contained in any µ−open set which implies that such sets are trivially gµ−closed.
Clearly, such sets are gµ−closed, since X is the only open set containing such sets.

Example 3.2. [1, Example 2.1] Let X = In = {1, 2, 3, ......, n}. Define κ : ℘(In) →
℘(In) by κ(A) = A if In − {i} ⊆ A for some i ∈ {1, 2, 3, ......, n} and κ(A) = ∅
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otherwise. Then µ = {∅, X} ∪ {A ⊂ In | A = In − {i}, i = 1, 2, 3, ...n}, the co-
singleton generalized topology defined on a finite set. The only µ−closed sets are
∅, X and singleton subsets of In. In this space, the family of all g⋆

µ−closed sets,
the family of all gµ−closed sets and family of all µ−closed sets coincide. For the
topology τ = {∅} ∪ {G ⊂ X | {1, 2} ⊂ G} on X, the µ−closed sets are precisely the
gµ−closed sets.

Example 3.3. Consider the space (X, τ) and generalized topology µ of the Example
2.3 of [11]. In this space, {a, c} is gµ−closed but it is not g⋆

µ−closed and also not
gµ−closed.

Throughout the paper, if µ is a generalized topology on X, let Mµ = ∪{A | A ∈
µ}, X 6∈ µ and λ ∈ {µ, α, π, σ, b, β, δ, ν, ξ, η, ε, ψ}. Then, by Theorem 2.1,
we have Mλ 6= X if λ ∈ {µ, α, π, δ, ν, η} and Mλ = X if λ ∈ {σ, b, β, ξ, ε, ψ}.
Moreover, Mλ = Mµ, if Mλ 6= X. The following Lemma 3.1 is essential to proceed
further.

Lemma 3.1. Let X be a nonempty set, µ be a generalized topology on X and
A ⊂ X. Then the following hold.
(a) (X − Mλ) is a λ−closed set contained in every λ−closed set.
(b) cλ(A ∩ Mλ) ∩ Mλ = cλ(A) ∩ Mλ.

(c) If A is λ−closed, then cλ(A ∩ Mλ) ∩ Mλ = A ∩ Mλ.

(d) cλ(A) = (cλ(A) ∩ Mλ) ∪ (X − Mλ).
(e) If A is λ−closed, then A = (A ∩ Mλ) ∪ (X − Mλ).
(f) (Mλ, λ

⋆) is a strong generalized space where λ⋆ = λ | Mλ is the subspace
generalized topology.
(g) If A ⊂ Mλ, then cλ∗(A) = cλ(A) ∩ Mλ and iλ⋆(A) = iλ(A) where cλ∗(A)(resp.
iλ∗(A)) is the closure (resp. interior) of A in Mλ.

(h) A ⊂ Mλ is λ⋆−closed in Mλ if and only if A = cλ(A) ∩ Mλ.

(i) A ⊂ Mλ is λ⋆−closed in Mλ if and only if cλ(A) = A ∪ (X − Mλ).

Proof: (a) follows from the fact that if G is λ−open, then G ⊂ Mλ.

(b) Clearly, cλ(A∩Mλ)∩Mλ ⊂ cλ(A)∩Mλ. Let x ∈ cλ(A)∩Mλ. Then x ∈ cλ(A) and
x ∈ Mλ. Now x ∈ cλ(A) implies that G∩A 6= ∅ for every λ−open set G containing
x and so G ∩ (A ∩ Mλ) 6= ∅ for every λ−open set G containing x. Therefore,
x ∈ cλ(A∩Mλ) and so x ∈ cλ(A∩Mλ)∩Mλ. Hence cλ(A)∩Mλ ⊂ cλ(A∩Mλ)∩Mλ.

This completes the proof.
(c) The proof follows from (b).
(d) cλ(A) = cλ(A) ∩ X = cλ(A) ∩ (Mλ ∪ (X − Mλ)) = (cλ(A) ∩ Mλ) ∪ (cλ(A) ∩
(X − Mλ)) = (cλ(A) ∩ Mλ) ∪ (X − Mλ), by (a).
(e) If A is λ−closed, by (d), we have A = (A ∩ Mλ) ∪ (X − Mλ).
The proofs of (f), (g), (h) and (i) are clear. 2

As per the present definition, the g⋆
λ−closed sets must be subsets of Mλ. More-

over, g⋆
λ−closed subsets coincide with gλ−closed subsets if X is µ−open. In Exam-

ple 3.2, the space is strong and the g⋆
λ−closed sets are exactly the gλ−closed sets.
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It is easy to note that g⋆
λ−closed subsets are g⋆

λ−closed subsets of the subspace
(Mλ, λ

⋆). In Example 3.1, there is no g⋆
λ−closed subset and here also, the two con-

cepts coincide. The following Theorem 3.1 gives some properties of g⋆
λ−closed sets.

Example 3.4 shows that the converse of Theorem 3.1(a) is not true.

Theorem 3.1. Let (X,µ) be a generalized space and A ⊂ X. Then the following
hold.
(a) If A is a λ−closed subset of X, then A ∩ Mλ is a g⋆

λ−closed set.
(b) cλ(A) ∩ Mλ is a g⋆

λ−closed set for every subset A of X.

Proof: (a) Let A∩Mλ ⊂M and M be λ−open. Since cλ(A∩Mλ)∩Mλ = cλ(A)∩
Mλ, by Lemma 3.1(b), we have cλ(A ∩ Mλ) ∩ Mλ = cλ(A) ∩ Mλ = A ∩ Mλ ⊂ M.

Therefore, we have cλ(A ∩ Mλ) ∩ Mλ ⊂M and so A ∩ Mλ is g⋆
λ−closed.

(b) The proof follows from (a). 2

Example 3.4. Let X = {a, b, c} and µ = {∅, {a}, {b}, {a, b}}. Then µ−closed
sets are X, {a, c}, {b, c} and {c}. If A = {a, b}, then A ∩ Mµ = {a, b} and
A ∩ Mµ is a g⋆

µ−closed set but A is not µ−closed.

The following Theorem 3.2 gives a characterization of g⋆
λ−closed sets.

Theorem 3.2. Let (X,µ) be a space. Then a subset A of Mλ is g⋆
λ−closed if and

only if F ⊂ cλ(A) −A and F is λ−closed imply that F = X − Mλ.

Proof: Let F be a λ−closed subset of cλ(A) − A. Since A ⊂ X − F and A is
g⋆

λ−closed, cλ(A) ∩ Mλ ⊂ X − F and so F ⊂ X − (cλ(A) ∩ Mλ) = (X − cλ(A) ∪
(X − Mλ). Since F ⊂ cλ(A), we have F ⊂ (X − Mλ). Therefore, by Lemma
3.1(a), F = X − Mλ. Conversely, suppose the condition holds and A ⊂ M and
M ∈ λ. Suppose (cλ(A) ∩ Mλ) ∩ (X −M) is a nonempty subset. Then (cλ(A) ∩
Mλ) ∩ (X − M) ⊂ cλ(A) ∩ (X − M) ⊂ cλ(A) ∩ (X − A) ⊂ cλ(A) − A. Thus
cλ(A) ∩ (X −M) is a nonempty λ−closed set contained in cλ(A) − A. Therefore,
cλ(A) ∩ (X −M) = X − Mλ which implies that (cλ(A) ∩ Mλ) ∩ (X −M) = ∅, a
contradiction to the assumption. Therefore, cλ(A) ∩ Mλ ⊂ M which implies that
A is a g⋆

λ−closed set. 2

Theorem 3.3. Let (X,µ) be a generalized space. Then a g⋆
λ−closed subset A of

Mλ is a λ−closed set, if cλ(A) −A is a λ−closed set.

Proof: By Theorem 3.2, cλ(A) −A = X − Mλ. Then cλ(A) = A ∪ (X − Mλ). By
Lemma 3.1(i), A is λ−closed. 2

The following Theorem 3.4 shows that in a γ−space (X,µ), the union of two
g⋆

δ−closed sets (resp. g⋆
ν−closed sets) is again a g⋆

δ−closed set (resp. g⋆
ν−closed

sets). Example 3.5 shows that the condition γ−space on the space cannot be
replaced by generalized topology. Example 3.6 below shows that the intersection
of two g⋆

λ−closed sets need not be a g⋆
λ−closed set in a strong generalized space.

Theorem 3.5 shows that, the intersection of a g⋆
λ−closed set with a λ−closed is a

g⋆
λ−closed set.
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Theorem 3.4. Let (X,µ) be a γ−space. Then the following hold.
(a) If A and B are g⋆

δ−closed subsets of Mδ, then A ∪B is also a g⋆
δ−closed set.

(b) If A and B are g⋆
ν−closed subsets of Mν , then A ∪B is also a g⋆

ν−closed set.

Proof: (a) Suppose A and B are g⋆
δ−closed sets. Let M ∈ δ such that A∪B ⊂M.

Since A and B are g⋆
δ−closed sets, cδ(A) ∩ Mδ ⊂ M and cδ(B) ∩ Mδ ⊂ M and so

(cδ(A) ∩ Mδ) ∪ (cδ(B) ∩ Mδ) ⊂ M and so (cδ(A) ∪ cδ(B)) ∩ Mδ ⊂ M. By Lemma
1.1(c), it follows that cδ(A ∪B) ∩ Mδ ⊂M and so the proof follows.
(b) The proof follows from (a) and Lemma 1.1(c). 2

Example 3.5. Let X = {a, b, c} and µ = {∅, {b}, {c}, {a, b}, {a, c}, {b, c},X}.
Then µ is a GT but not a quasi-topology. If A = {b} and B = {c}, then A
and B are g⋆

δ−closed sets but their union is not a g⋆
δ−closed set.

Example 3.6. Consider the space (X,µ) where X = {a, b, c, d, e} with µ = {∅, {a, b},
{a, c}, {a, b, c},X}. If A = {a, c, d} and B = {b, c, e}, then A and B are g⋆

δ−closed
sets. But A ∩ B = {c}, is not a g⋆

δ−closed set, since {c} ⊂ {a, b, c} but cδ({c}) ∩
Mδ = X.

Theorem 3.5. Let (X,µ) be a generalized space. If A is g⋆
λ−closed subset of Mλ

and B is λ−closed, then A ∩B is a g⋆
λ−closed set.

Proof: Suppose A ∩ B ⊂ M where M is λ−open. Then A ⊂ (M ∪ (X − B)).
Since A is g⋆

λ−closed, cλ(A) ∩ Mλ ⊂ (M ∪ (X − B)) and so (cλ(A) ∩ B ∩ Mλ) =
(cλ(A)∩ cλ(B))∩Mλ ⊂M which implies that cλ(A∩B)∩Mλ ⊂M and so A∩B
is a g⋆

λ−closed set. 2

A subset A of Mλ in a space (X,µ) is said to be g⋆
λ−open if Mλ − A is

g⋆
λ−closed. The following Theorem 3.6 gives a characterization of g⋆

λ−open sets.
Since the intersection of two g⋆

λ−closed sets need not be a g⋆
λ−closed set, the

union of two g⋆
λ−open sets need not be a g⋆

λ−open set. Theorem 3.7 below gives
a characterization of g⋆

λ−open sets and Theorem 3.8 below gives a property of
g⋆

λ−open sets. Theorem 3.9 below gives a characterization of g⋆
λ−closed sets in

terms of g⋆
λ−open sets.

Theorem 3.6. A subset A of Mλ in a space (X,µ) is g⋆
λ−open if and only if

F ∩ Mλ ⊂ iλ(A) whenever F is λ−closed and F ∩ Mλ ⊂ A.

Proof: Let A be a g⋆
λ−open subset of Mλ and F be a λ−closed subset of X

such that F ∩ Mλ ⊂ A. Then Mλ − A ⊂ Mλ − (F ∩ Mλ) = Mλ − F. Since
Mλ − F is λ−open and Mλ − A is g⋆

λ−closed, cλ(Mλ − A) ∩ Mλ ⊂ Mλ − F and
so F ⊂ Mλ − (cλ(Mλ − A) ∩ Mλ) = Mλ ∩ (Mλ − cλ(Mλ − A)) = iλ(A) ∩ Mλ =
iλ(A). Conversely, suppose the condition holds. Let A be a subset of Mλ and
F is λ−closed such that F ∩ Mλ ⊂ A. By hypothesis, F ∩ Mλ ⊂ iλ(A) which
implies that Mλ − iλ(A) ⊂ Mλ − (F ∩ Mλ) and cλ(Mλ − A) ⊂ Mλ − F. Then
cλ(Mλ − A) ∩ Mλ ⊂ (Mλ − F ) ∩ Mλ = Mλ − F which implies that Mλ − A is
g⋆

λ−closed and so A is g⋆
λ−open. 2
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Theorem 3.7. Let (X,µ) be a space. A subset A of Mλ is g⋆
λ−open if and only if

M = Mλ whenever M is λ−open and iλ(A) ∪ (Mλ −A) ⊂M.

Proof: Suppose A is g⋆
λ−open subset of Mλ and M is λ−open such that iλ(A) ∪

(Mλ−A) ⊂M. Then Mλ−M ⊂ (Mλ−iλ(A))∩A = cλ(Mλ−A)∩A = cλ(Mλ−A)−
(Mλ−A) and so (Mλ−M)∪(X−Mλ) ⊂ cλ(Mλ−A)−(Mλ−A). By Theorem 3.2,
(Mλ−M)∪ (X−Mλ) = X−Mλ and so Mλ−M = ∅ which implies that Mλ = M.

Conversely, suppose the condition holds. Let F be a λ−closed set such that F ∩
Mλ ⊂ A. Since iλ(A)∪(Mλ−A) ⊂ iλ(A)∪(Mλ−F )∪(Mλ−Mλ) = iλ(A)∪(Mλ−F )
and iλ(A) ∪ (Mλ − F ) is λ−open, by hypothesis, Mλ = iλ(A) ∪ (Mλ − F ) and so
F∩Mλ ⊂ (iλ(A)∪(Mλ−F ))∩F = (iλ(A)∩F )∪((Mλ−F )∩F ) = iλ(A)∩F ⊂ iλ(A).
By Theorem 3.6, A is g⋆

λ−open. 2

Theorem 3.8. Let (X,µ) be a space and A and B be subsets of Mλ. If iλ(A) ⊂
B ⊂ A and A is g⋆

λ−open, then B is g⋆
λ−open.

Proof: The proof follows from Theorem 3.7. 2

Theorem 3.9. Let (X,λ) be a space. Then a subset A of Mλ is g⋆
λ−closed if and

only if (cλ(A) −A) ∩ Mλ is g⋆
λ−open.

Proof: Suppose (cλ(A) − A) ∩ Mλ is g⋆
λ−open. Let A ⊂ M and M is λ−open.

Since cλ(A)∩(Mλ−M) ⊂ cλ(A)∩(Mλ−A) = (cλ(A)−A)∩Mλ, (cλ(A)−A)∩Mλ is
g⋆

λ−open and cλ(A)∩ (Mλ−M) is λ−closed, by Theorem 3.6, cλ(A)∩ (Mλ−M) ⊂
iλ((cλ(A) − A) ∩ Mλ) ⊂ iλ(cλ(A)) ∩ iλ(Mλ − A) ⊂ iλ(cλ(A)) ∩ iλ(X − A) =
iλ(cλ(A)) ∩ (X − cλ(A)) = ∅. Therefore, cλ(A) ∩ Mλ ⊂M which implies that A is
g⋆

λ−closed. Conversely, suppose A is g⋆
λ−closed and F ∩ Mλ ⊂ (cλ(A) − A) ∩ Mλ,

where F is λ−closed. Then F ⊂ (cλ(A)−A) and so by Theorem 3.2, F = X −Mλ

and so ∅ = (X − Mλ) ∩ Mλ = F ∩ Mλ ⊂ (cλ(A) − A) ∩ Mλ which implies that
F ∩ Mλ ⊂ iλ((cλ(A) −A) ∩ Mλ). By Theorem 3.6, cλ(A) −A is g⋆

λ−open. 2

4. R0 and R1−spaces

In this section, we define and discuss generalized R0 and R1 spaces which
are not strong and establish that all the results established already will follow as
a corollary. Generalized R0 and R1 spaces are independently defined by Sivagami
and Sivaraj [15], Roy [12] and Sarsak [13]. Unless otherwise stated, in this section,
(X,µ) is a generalized space which is not strong and λ ∈ {µ, δ, α, σ, π, b, β, ν, ξ,
η, ε, ψ}. The following definitions and Lemma 4.1 are essential to proceed further.
For A ⊂ Mλ, we define ∧λ(A) = ∩{U ⊂ X | A ⊂ U and U ∈ λ} [15]. The
following Lemma 4.1 gives the properties of the operator ∧λ, the proof is similar
to the corresponding result in [15].

Lemma 4.1. [15, Theorem 3.1] Let (X,µ) be a generalized space and A, B and
Cι for ι ∈ ∆ be subsets of Mλ. Then the following hold.
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(a) If A ⊂ B, then ∧λ(A) ⊂ ∧λ(B).
(b) A ⊂ ∧λ(A).
(c) ∧λ(∧λ(A)) = ∧λ(A).
(d) ∧λ(∪{Cι | ι ∈ ∆}) = ∪{∧λ(Cι) | ι ∈ ∆}.
(e) ∧λ(∩{Cι | ι ∈ ∆}) ⊂ ∩{∧λ(Cι) | ι ∈ ∆}.
(f) If A ∈ λ, then ∧λ(A) = A.

(g) ∧λ(A) = {x ∈ Mλ | cλ({x}) ∩A 6= ∅}.
(h) For every x, y ∈ Mλ, y ∈ ∧λ({x}) if and only if x ∈ cλ({y}) ∩ Mλ.

(i) ∧λ({x}) 6= ∧λ({y}) if and only if cλ({x}) 6= cλ({y}) for every x, y ∈ Mλ.

A space (X,λ) is said to be a λ−R0 space [15,12,13] if every λ−open subset
of X contains the λ−closure of its singletons. (X,λ) is said to be a λ − R1space
[15,12,13] if for x, y ∈ X with cλ({x}) 6= cλ({y}), there exist disjoint λ−open sets
G and H such that cλ({x}) ⊂ G and cλ({y}) ⊂ H. The results on generalized R0

and R1 spaces are independently established in [15,12,13]. The space in Example
3.1 is neither λ−R0 nor λ−R1. Example 3.2 is λ−R0, since each point is λ−closed
but is not λ − R1, since no disjoint λ−open sets exist. In particular, if a space is
not strong, then it is neither λ−R0 nor λ−R1 (Refer Example 3.1). To rectify it,
we redefine R0 and R1 spaces as follows.

A generalized space (X,λ) is said to be a λ⋆ − R0 space if for every λ−open
subset G of Mλ and x ∈ G, cλ({x})∩Mλ ⊂ G. (X,λ) is said to be a λ⋆ −R1 space
if for x, y ∈ Mλ with cλ({x}) 6= cλ({y}), there exist disjoint λ−open sets G and
H such that cλ({x}) ∩ Mλ ⊂ G and cλ({y}) ∩ Mλ ⊂ H. Clearly, for strong spaces,
λ⋆ − Ri spaces coincide with λ − Ri spaces and every λ⋆ − R1 space is a λ⋆ − R0

space but the converse is not true (Refer to Example 3.2). Also, for i = 1, 2, (X,λ)
is λ − Ri implies that (X,λ) is λ⋆ − Ri. The following Example 4.1 shows that
the converses are not true and it shows that non strong generalized spaces may be
λ⋆ − R0 and λ⋆ − R1 spaces. Theorems in this section give characterizations of
λ⋆ −Ri, i = 1, 2 generalized spaces which are true for both strong and non strong
generalized spaces.

Example 4.1. Let X = {a, b, c} and µ = {∅, {a}, {b}, {a, b}}. Since cµ({a}) =
{a, c} and cµ({b}) = {b, c}, it is easy to show that (X,µ) is neither µ − R1 nor
µ−R0 but (X,µ) is both µ⋆ −R1 and µ⋆ −R0.

Theorem 4.1. For a generalized space (X,µ), the following are equivalent.
(a) (X,λ) is λ⋆ −R0.

(b) For each λ−closed set F and x 6∈ F, there exists U ∈ λ such that F ∩Mλ ⊂ U

and x 6∈ U.

(c) For every λ−closed set F with x 6∈ F, F ∩ cλ({x}) = X −Mλ.

(d) For any two distinct points x, y ∈ Mλ, either cλ({x}) = cλ({y}) or cλ({x}) ∩
cλ({y}) = X −Mλ.

Proof: (a)⇒(b). Let F be a λ−closed set and x 6∈ F. Then by hypothesis,
cλ({x}) ∩ Mλ ⊂ X − F and so F ⊂ (X − cλ({x})) ∪ (X − Mλ). Therefore,
F ∩ Mλ ⊂ (X − cλ({x})) ∩ Mλ ⊂ X − cλ({x}). If U = X − cλ({x}), then x 6∈ U
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and U ∈ λ such that F ∩ Mλ ⊂ U.

(b)⇒(c). Let F be a λ−closed set and x 6∈ F. Then by hypothesis, there exists
U ∈ λ such that x 6∈ U and F ∩ Mλ ⊂ U. x 6∈ U implies that U ∩ cλ({x}) = ∅ and
so (F ∩ Mλ) ∩ cλ({x}) = ∅ which implies that F ∩ cλ({x}) = X − Mλ.

(c)⇒(d). Let x, y ∈ Mλ such that cλ({x}) 6= cλ({y}). Then there exists z ∈
cλ({x}) such that z 6∈ cλ({y}). Then there exists z ∈ V ∈ λ such that y 6∈ V and
x ∈ V. Hence x 6∈ cλ({y}). By hypothesis, cλ({x}) ∩ cλ({y}) = X − Mλ.

(d)⇒(a). Let G be a λ−open set such that x ∈ G. If y 6∈ G, then x 6= y and
so x 6∈ cλ({y}) which implies that cλ({x}) 6= cλ({y}). By hypothesis, cλ({x}) ∩
cλ({y}) = X − Mλ and so y 6∈ cλ({x}) ∩ Mλ. Hence cλ({x}) ∩ Mλ ⊂ G which
implies that (X,λ) is a λ⋆ −R0 space. 2

Theorem 4.2. Let (X,µ) be generalized space. Then, (X,λ) is a λ⋆ −R0 space if
and only if for x, y ∈ Mλ, ∧λ({x}) 6= ∧λ({y}) implies that ∧λ({x})∩∧λ({y}) = ∅.

Proof: Suppose (X,λ) is a λ⋆ − R0 space. Let x, y ∈ Mλ such that ∧λ({x}) 6=
∧λ({y}). By Lemma 4.1(i), cλ({x}) 6= cλ({y}). By Theorem 4.1, it follows that
cλ({x}) ∩ cλ({y}) = X − Mλ. Let z ∈ ∧λ({x}) ∩ ∧λ({y}). Then z ∈ ∧λ({x}) and
z ∈ ∧λ({y}) and so by Lemma 4.1(h), x ∈ cλ({z})∩Mλ and y ∈ cλ({z})∩Mλ which
implies that {x, y} ⊂ cλ({z}). Therefore, cλ({x}) ∪ cλ({y}) ⊂ cλ({z}. Now x ∈
cλ({z})∩Mλ implies that x ∈ cλ({x})∩cλ({z})∩Mλ and so cλ({x})∩cλ({z})∩Mλ 6=
∅. By Theorem 4.1(d), cλ({x}) = cλ({z}). Similarly, cλ({y}) = cλ({z}) and so
cλ({x}) = cλ({y}), a contradiction. Therefore, ∧λ({x})∩∧λ({y}) = ∅. Conversely,
suppose the condition holds. Let x, y ∈ X such that cλ({x}) 6= cλ({y}). By Lemma
4.1(i), ∧λ({x}) 6= ∧λ({y}). By hypothesis, ∧λ({x}) ∩ ∧λ({y}) = ∅. We prove that
cλ({x}) ∩ cλ({y}) = X − Mλ. Suppose z ∈ Mλ such that z ∈ cλ({x}) ∩ cλ({y}).
Then z ∈ cλ({x}) and z ∈ cλ({y}). Now z ∈ cλ({x}) implies that x ∈ ∧λ({z}) and
so ∧λ({x}) ∩ ∧λ({z}) 6= ∅. Similarly, we can prove that ∧λ({y}) ∩ ∧λ({z}) 6= ∅.
So by hypothesis, cλ({x}) = cλ({y}) = cλ({z}), a contradiction. Thus cλ({x}) ∩
cλ({y}) = X − Mλ. By Theorem 4.1, X is a λ⋆ −R0 space. 2

Theorem 4.3. For a generalized space (X,µ), the following are equivalent.
(a) (X,λ) is a λ⋆ −R0 space.
(b) For any nonempty subset A of Mλ and a λ−open set G such that A ∩ G 6= ∅,
there exists a λ−closed set F such that A ∩ F 6= ∅ and F ∩ Mλ ⊂ G.

(c) If G 6= ∅ is λ−open, then G = ∪{F ∩ Mλ | F ∩ Mλ ⊂ G and F is λ−closed}.
(d) If F is λ−closed, then F = ∩{G ∪ (X − Mλ) | F ⊂ G ∪ (X − Mλ) and G is
λ−open}.
(e) For every x ∈ Mλ, cλ({x}) ∩ Mλ ⊂ ∧λ({x}).

Proof: (a)⇒(b). Suppose (X,λ) is a λ⋆ −R0 space. Let A be a nonempty subset
of Mλ and G be a λ−open set such that A ∩ G 6= ∅. If x ∈ A ∩ G, then x ∈ G

and so by hypothesis, cλ({x}) ∩ Mλ ⊂ G. If F = cλ({x}), then F is the required
λ−closed set such that A ∩ F 6= ∅ and F ∩ Mλ ⊂ G.

(b)⇒(c). Let G be λ−open. Clearly, G ⊃ ∪{F ∩ Mλ | F ∩ Mλ ⊂ G and F is
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λ−closed}. If x ∈ G, then {x}∩G 6= ∅ and so by (b), there is a λ−closed set F such
that {x}∩F 6= ∅ and F ∩Mλ ⊂ G which implies that x ∈ ∪{F ∩Mλ | F ∩Mλ ⊂ G

and F is λ−closed}. Therefore, G ⊂ ∪{F ∩Mλ | F ∩Mλ ⊂ G and F is λ−closed}.
This completes the proof.
(c)⇒(d). Let F be λ−closed. By (c), X−F = ∪{K∩Mλ | F ⊂ (X−K)∪(X−Mλ)
and K is λ−closed} and so F = ∩{(X−K)∪ (X−Mλ) | F ⊂ (X−K)∪ (X−Mλ)
and X −K is λ−open}=∩{G∪ (X −Mλ) | F ⊂ G∪ (X −Mλ) and G is λ−open}.
(d)⇒(e). Let x ∈ Mλ. If y 6∈ ∧λ({x}), then by Lemma 3.1(g), {x} ∩ cλ({y}) = ∅.
By (d), cλ({y}) = ∩{G ∪ (X −Mλ) | cλ({y}) ⊂ G ∪ (X −Mλ) and G is λ−open}.
Therefore, there is a λ−open G such that cλ({y}) ⊂ G ∪ (X − Mλ) and x 6∈ G

which implies that y 6∈ cλ({x}). Therefore, cλ({x}) ⊂ ∧λ({x}).
(e)⇒(a). Let G be a λ−open set such that x ∈ G. If y ∈ cλ({x}) ∩ Mλ, then
by (e), y ∈ ∧λ({x}). Since ∧λ({x}) ⊂ ∧λ(G) = G, y ∈ G and it follows that
cλ({x}) ∩ Mλ ⊂ G. Hence (X,λ) is a λ⋆ −R0 space. 2

Corollary 4.3A. For a generalized space (X,µ), the following are equivalent.
(a) (X,λ) is a λ⋆ −R0 space.
(b) For every x ∈ Mλ, cλ({x}) ∩ Mλ = ∧λ({x}).

Proof: (a)⇒(b). Let x ∈ Mλ. By Theorem 4.3, cλ({x})∩Mλ ⊂ ∧λ({x}). To prove
the converse, assume that y ∈ ∧λ({x}). By Lemma 4.1(h), x ∈ cλ({y}) ∩ Mλ and
so cλ({x}) ⊂ cλ({y}) which implies that cλ({x})∩cλ({y}) 6= X−Mλ. By Theorem
4.1, cλ({x}) = cλ({y}) and so y ∈ cλ({x}) ∩ Mλ. Hence cλ({x}) ∩ Mλ = ∧λ({x}).
(b)⇒(a). The proof follows from Theorem 4.3. 2

Theorem 4.4. For a generalized space (X,µ), the following are equivalent.
(a) (X,λ) is a λ⋆ −R0 space.
(b) For each x, y ∈ Mλ, x ∈ cλ({y}) ∩ Mλ ⇒ y ∈ cλ({x}) ∩ Mλ.

Proof: (a)⇒(b). Suppose (X,λ) is a λ⋆ − R0 space. Let x ∈ cλ({y}) ∩ Mλ and
G be a λ−open set containing y. By hypothesis, y ∈ cλ({y}) ∩ Mλ ⊂ G and
so x ∈ G which implies that every open set containing y contains x. Therefore,
y ∈ cλ({x}) ∩ Mλ.

(b)⇒(a). Let G be a λ−open set containing x. If y 6∈ G, then by hypothesis,
x 6∈ cλ({y})∩Mλ and so y 6∈ cλ({x})∩Mλ. Hence cλ({x})∩Mλ ⊂ G and so (X,λ)
is a λ⋆ −R0 space. 2

Theorem 4.5. For a generalized space (X,µ), the following are equivalent.
(a) (X,λ) is a λ⋆ −R0 space.
(b) If F is a λ−closed set, then F ∩ Mλ = ∧λ(F ∩ Mλ).
(c) If F is a λ−closed set and x ∈ F ∩ Mλ, then ∧({x}) ⊂ F ∩ Mλ.

(d) If x ∈ Mλ, then ∧({x}) ⊂ cλ({x}) ∩ Mλ.

Proof: (a)⇒(b). If (X,λ) is λ⋆ − R0 and F is λ−closed, by Theorem 4.3, F =
∩{G ∪ (X − Mλ) | F ⊂ G ∪ (X − Mλ) and G is λ−open} and so F ∩ Mλ =
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∩{G ∩ Mλ) | F ∩ Mλ ⊂ G and G is λ−open}=∧λ(F − Mλ).
(b)⇒(c). Let z ∈ ∧λ({x}). Then z is in every λ−open set containing x. Since
x ∈ F ∩ Mλ, x is in every λ−open set containing F ∩ Mλ and so z is in every
λ−open set containing F ∩ Mλ. Therefore, z ∈ ∧λ(F ∩ Mλ) = F ∩ Mλ and so
∧({x}) ⊂ F ∩ Mλ.

(c)⇒(d). The proof is clear.
(d)⇒(a). Let x ∈ cλ({y})∩Mλ. By Lemma 4.1(h), y ∈ ∧λ({x}) and so by hypoth-
esis, y ∈ cλ({x}) ∩ Mλ. By Theorem 4.4, (X,λ) is a λ⋆ −R0 space. 2

The following Theorem 4.6 gives a characterization of λ⋆ −R1 space.

Theorem 4.6. For a generalized space (X,µ), the following are equivalent.
(a) (X,λ) is a λ⋆ −R1 space.
(b) For x, y ∈ Mλ such that ∧λ({x}) 6= ∧λ({y}), there exist disjoint λ−open sets
G and H such that cλ({x}) ∩ Mλ ⊂ G and cλ({y}) ∩ Mλ ⊂ H.

Proof. (a)⇒(b). Let x, y ∈ Mλ such that ∧λ({x}) 6= ∧λ({y}). Then, by Lemma
4.1(i), cλ({x}) 6= cλ({y}). Since (X,λ) is a λ⋆ − R1 space, there exist disjoint
λ−open sets G and H such that cλ({x}) ∩ Mλ ⊂ G and cλ({y}) ∩ Mλ ⊂ H.

(b)⇒(a). Let x, y ∈ Mλ such that cλ({x}) 6= cλ({y}). By Lemma 4.1(i), ∧λ({x}) 6=
∧λ({y}). By hypothesis, there exist disjoint λ−open sets G and H such that
cλ({x}) ∩ Mλ ⊂ G and cλ({y}) ∩ Mλ ⊂ H and so (X,λ) is a λ⋆ −R1 space.

5. Gµ−regular generalized spaces

In [11], µg−regular spaces are defined as follows. Let (X, τ) be a topological
space and µ be a generalized topology on X. (X, τ) is said to be a µg−regular space,
if for each closed set F and a point x 6∈ F, there exist disjoint µ−open sets U and
V such that x ∈ U, F ⊂ V. The space (X, τ) of Example 3.1 with the family of all
generalized open sets µ, which is not strong, is not µg−regular and the space (X, τ)
of Example 3.2 (resp. Example 3.3) with the family of all generalized open sets µ,
which is strong, is also not µg−regular. Example 2.4(a) of [11] gives an example
of a µg−regular space. A space (X,λ) is said to be a λ−regular space [10], if for
each x ∈ Mλ and λ−closed set F such that x 6∈ F, there exist disjoint λ−open sets
U and V such that x ∈ U, F ∩ Mλ ⊂ V. The space (X,µ) in Example 3.2 is not
a µ−regular space. Spaces (X,µ) in Examples 5.1(a) and (b) below are µ−regular
spaces. The following Lemma 5.1 is due to Min [10] where (c) follows from (b).

Lemma 5.1. Let (X,µ) be a generalized space. Then the following hold.
(a) (X,λ) is λ−regular if and only if for each x ∈ Mλ and λ−open set U containing
x, there is a λ−open set V containing x such that x ∈ V ⊂ cλ(V ) ∩ Mλ ⊂ U [10,
Theorem 3.12].
(b) If (X,µ) is µ−regular, then every µ−open set is a δ(µ)−open set [10, Theorem
3.13].
(c) If (X,µ) is µ−regular, then α(µ) = ν(δ), σ(µ) = ξ(δ), π(µ) = η(δ), b(µ) = ε(δ)
and β(µ) = ψ(δ).
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Let X be a nonempty set and µ be a generalized topology on X. The space
(X,µ) is said to be gµ−regular if for each pair consisting of a point x ∈ Mλ and
a g⋆

µ−closed set F not containing x, there exist disjoint µ−open sets U and V
such that x ∈ U and F ⊂ V. By Theorem 3.4(a), every gµ−regular space is a
µ−regular space and the following Example 5.1(b) shows that the converse is not
true. Example 5.1(c) gives an example of a gλ−regular space. Theorem 5.1 below
gives a characterization of gλ−regular spaces.

Example 5.1. (a) Let X = R, the set of all real numbers and Z be the set of all
integers. Then µ = ℘(R−Z) is a GT on X. Clearly, a subset G of X is µ−open if
and only if G ⊂ R−Z and a subset F of X is µ−closed if and only if F ⊃ Z. Note
that X 6∈ µ, cµ(A) = A ∪ Z for every subset A of X. Then (X,µ) is µ−regular.
(b) Let X = {a, b, c, d} and µ = {∅, {a}, {b, c}, {a, b, c}}. The space (X,µ) is
µ−regular. If A = {a, c}, then A is g⋆

µ−closed. Since b and A are not separated by
disjoint µ−open sets, (X,µ) is not gµ−regular.
(c) Consider the space (X,µ) of Example 3.5. Then (X,µ) is a gµ−regular space.
Note that this space is not strong.

Theorem 5.1. Let (X,µ) be a generalized space. Then the following are equivalent.
(a) (X,λ) is gλ−regular.
(b) For each g⋆

λ−open set G and x ∈ G, there exists a λ−open set U such that
x ∈ U ⊂ cλ(U) ∩ Mλ ⊂ G.

Proof: (a)⇒(b) Suppose (X,λ) is gλ−regular. Let G be a g⋆
λ−open set containing

x. Then Mλ − G is a g⋆
λ−closed set such that x 6∈ Mλ − G. By hypothesis, there

exists disjoint λ−open sets U and V such that x ∈ U and Mλ − G ⊂ V. Since
U ∩ V = ∅, cλ(U) ∩ V = ∅ and so cλ(U) ∩ Mλ ⊂ (X − V ) ∩ Mλ = Mλ − V ⊂ G.

Thus, there exists a λ−open set U such that x ∈ U ⊂ cλ(U) ∩ Mλ ⊂ G.

(b)⇒(a). Suppose the condition holds. Let x ∈ X and F be a g⋆
λ−closed set

such that x 6∈ F. Then U = Mλ − F is a g⋆
λ−open set such that x ∈ U. By

hypothesis, there exits a λ−open set V such that x ∈ V ⊂ cλ(V ) ∩Mλ ⊂ U. Since
cλ(V )∩Mλ ⊂ U = Mλ −F, we have F = Mλ − (Mλ −F ) ⊂ Mλ − (cλ(V )∩Mλ) =
Mλ − cλ(V ) = G. Then V and G are the required λ−open sets such that x ∈ V

and F ⊂ G. Therefore, (X,λ) is gλ−regular. 2

The following Theorem 5.2 gives another characterization of gµ−regular spaces.

Theorem 5.2. Let (X,µ) be a generalized space. Then the following are equivalent.
(a) (X,λ) is a gλ−regular space.
(b) For each g⋆

λ−closed set F and x 6∈ F, there exists λ−open sets U and V such
that x ∈ U, F ⊂ V and cλ(U) ∩ cλ(V ) = X − Mλ.

Proof: (a)⇒(b). Let F be a g⋆
λ−closed set and x 6∈ F. Then there exists disjoint

λ−open sets U and V such that x ∈ U and F ⊂ V. Clearly, (X − Mλ) ⊂ cλ(U) ∩
cλ(V ). Moreover, cλ(U) ∩ cλ(V ) = (cλ(U) ∩ cλ(V )) ∩ Mλ ∪ (X − Mλ), by Lemma
3.1(d) and so cλ(A)∩cλ(B) ⊃ ((U∩V )∩Mλ)∪(X−Mλ) = ∅∪(X−Mλ) = X−Mλ.
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Hence cλ(A) ∩ cλ(B) = X − Mλ.

(b)⇒(a). Enough to prove that if A and B are λ−open set such that cλ(A) ∩
cλ(B) = X−Mλ, then A∩B = ∅. Now ∅ = (X−Mλ)∩Mλ = (cλ(A)∩cλ(B))∩Mλ ⊃
(A ∩B) ∩ Mλ = A ∩B and so A ∩B = ∅. Therefore, the proof follows. 2

The following Lemma 5.2 follows from the definitions. Corollary 5.2A below
follows from Theorem 5.2 and Lemma 5.2.

Lemma 5.2. Let (X,µ) be a generalized space. Then (X,λ) is λ⋆ −R0 if and only
if every point of Mλ is g⋆

λ−closed.

Corollary 5.2A. Let (X,λ) be an λ⋆ −R0, gλ−regular space. Then the following
hold.
(a) For distinct points x and y of Mλ, there exist λ−open sets U and V such that
x ∈ U, y ∈ V and cλ(U) ∩ cλ(V ) = X − Mλ.

(b) For distinct points x and y of Mλ, there exist disjoint λ−open sets U and V
such that x ∈ U and y ∈ V.

Let X be a nonempty set and µ be a generalized topology on X. A point x is
said to be in the θ−closure of A [6], denoted by cθ(µ)(A), if A ∩ cµ(U) 6= ∅ for
every x ∈ U ∈ µ. The following Theorem 5.3 gives characterizations of gλ−regular
spaces in terms of the θ−closure operator.

Theorem 5.3. Let X be a nonempty set, µ be a generalized topology on X. Then
the following are equivalent.
(a) X is a gλ−regular space.
(b) cθ(λ)(A) ∩ Mλ = ∩{F | A ⊂ F and F is g⋆

λ−closed} for every subset A of Mλ.

(c) cθ(λ)(A) ∩ Mλ = A for every g⋆
λ−closed set A.

Proof: (a)⇒(b). Clearly, A ⊂ ∩{F | A ⊂ F and F is g⋆
λ−closed}. We first prove

that ∩{F | A ⊂ F and F is g⋆
λ−closed}⊂ cθ(λ)(A). Let x ∈ ∩{F | A ⊂ F and F is

g⋆
λ−closed}. Suppose x 6∈ cθ(λ)(A). Then there is a λ−open set U containing x such

that A ∩ cλ(U) = ∅ and so A ∩ U = ∅. Since X − U is a λ−closed set and hence a
g⋆

λ−closed set containing A, x ∈ X −U, a contradiction. Hence x ∈ cθ(λ)(A) which
implies that ∩{F | A ⊂ F and F is g⋆

λ−closed}⊂ cθ(λ)(A). Conversely, suppose
x 6∈ ∩{F | A ⊂ F and F is g⋆

λ−closed}. Then, there exists a g⋆
λ−closed set F

such that A ⊂ F and x ∈ X − F. Then there exists disjoint λ−open sets U and
V such that x ∈ U ⊂ cλ(U) ⊂ X − V ⊂ X − F ⊂ X − A. Hence A ∩ cλ(U) = ∅
which implies that x 6∈ cθ(λ)(A). Hence it follows that A ⊂ ∩{F | A ⊂ F and F is
g⋆

λ−closed}. Hence ∩{F | A ⊂ F and F is g⋆
λ−closed}=cθ(λ)(A) ∩ Mλ.

(b)⇒(c). The proof is clear.
(c)⇒(a). Let F be a g⋆

λ−closed set not containing x. Then x 6∈ cθ(λ)(F ). Then
there exists a λ−open set U containing x such that F ∩ cλ(U) = ∅. Then U and
X−cλ(U) are the required disjoint λ−open sets such that x ∈ U and F ⊂ X−cλ(U).
Therefore, X is a gλ−regular space. 2
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