

(3s.) v. 31 1 (2013): 29-42. ISSN-00378712 IN PRESS doi:10.5269/bspm.v31i1.12969

Some separation axioms in generalized topological spaces^{*}

V. Pankajam and D. Sivaraj

ABSTRACT: We give different definitions for g-closed sets, R_0 and R_1 spaces in generalized topological spaces, characterize such spaces and compare with the existing definitions and results.

Key Words: generalized topology, μ -closed and μ -open sets; δ -open and δ -closed sets, connected, irreducible, μ -regular, R_0 and R_1 generalized topological spaces.

Contents

1	Introduction and preliminaries	29
2	Strong generalized spaces	30
3	$g^{\star}_{\lambda} - {f closed sets}$	31
4	R_0 and R_1 -spaces	35

5 G_{μ} -regular generalized spaces

1. Introduction and preliminaries

A generalized topology or simply GT μ [3] on a nonempty set X is a collection of subsets of X such that $\emptyset \in \mu$ and μ is closed under arbitrary union. Elements of μ are called μ -open sets. A subset A of X is said to be μ -closed if X - A is μ -open. The pair (X, μ) is called a *generalized topological space* (GTS). If A is a subset of a space (X, μ) , then $c_{\mu}(A)$ is the smallest μ -closed set containing A and $i_{\mu}(A)$ is the largest μ -open set contained in A. If $\gamma : \wp(X) \to \wp(X)$ is a monotonic function defined on a nonempty set X and $\mu = \{A \mid A \subset \gamma(A)\}$, the family of all γ -open sets is also a GT [2], $i_{\mu} = i_{\gamma}$, $c_{\mu} = c_{\gamma}$ and $\mu = \{A \mid A =$ $i_{\mu}(A)$ [4, Corollary 1.3]. The family of all monotonic functions defined on X is denoted by Γ . By a space (X, μ) , we will always mean a GTS (X, μ) . A subset A of a space (X, μ) is said to be α -open [4] (resp., semiopen [4], preopen [4], b-open [14], $\beta-open$ [4]) if $A \subset i_{\mu}c_{\mu}i_{\mu}(A)$ (resp., $A \subset c_{\mu}i_{\mu}(A), A \subset i_{\mu}c_{\mu}(A), A \subset i_{\mu}c_{\mu}(A)$ $i_{\mu}c_{\mu}(A) \cup c_{\mu}i_{\mu}(A), A \subset c_{\mu}i_{\mu}c_{\mu}(A)$. We will denote the family of all α -open sets by α , the family of all semiopen sets by σ , the family of all preopen sets by π , the family of all b-open sets by b and the family of all β -open sets by β . If

Typeset by $\mathcal{B}^{s}\mathcal{P}_{M}$ style. © Soc. Paran. de Mat.

39

^{*} The first author thank the management of G.K.M College of Engineering and Technology for their encouragement during her visit to the college. 2000 Mathematics Subject Classification: 54A05, 54D05, 54D10

V. PANKAJAM AND D. SIVARAJ

 (X,μ) is a GTS, then we say that a subset $A \in \delta \subset \wp(X)$ [6] if for every $x \in A$, there exists a μ -closed set Q such that $x \in i_{\mu}(Q) \subset A$. Then (X, δ) is a GTS [6, Proposition 2.1] such that $\delta \subset \mu$ [6, Theorem 1]. Elements of δ are called the δ -open sets of (X, μ) . For $A \subset X$, $i_{\delta}(A)$ and $c_{\delta}(A)$ are the *interior* and *closure* of A in (X, δ) . We will denote by ν (resp. $\xi, \eta, \varepsilon, \psi$), the family of all α -open (resp. semiopen, preopen, b-open, β -open) sets of the generalized space (X, δ) . If $\kappa \in \{\mu, \ \alpha, \ \sigma, \ \pi, \ b, \ \beta, \ \delta, \ \nu, \ \xi, \ \eta, \ \varepsilon, \ \psi\}$ and A is a subset of a space (X, κ) , then $c_{\kappa}(A)$ is the smallest κ -closed set containing A and $i_{\kappa}(A)$ is the largest κ -open set contained in A. Note that the operator c_{κ} is monotonic, increasing and idempotent and the operator i_{κ} is monotonic, decreasing and idempotent. Clearly, A is κ -open if and only if $A = i_{\kappa}(A)$ and A is κ -closed if and only if $A = c_{\kappa}(A)$. Also, for every subset A of a space (X,κ) , $X - i_{\kappa}(A) = c_{\kappa}(X - A)$. If $\lambda \subset \wp(X)$ is a GT, then $\gamma \in \Gamma$ is said to be $\lambda - friendly$ [5] if $\gamma(A) \cap L \subset \gamma(A \cap L)$ for $A \subset X$ and $L \in \lambda$. In [14], it is denoted that $\Gamma_4 = \{\gamma \mid \gamma \text{ is } \mu \text{-friendly where } \mu \text{ is the GT of all } \}$ γ -open sets} and if $\gamma \in \Gamma_4$, the space (X, γ) (resp. (X, μ)) is called a γ -space. By [14, Theorem 2.1], the intersection of two μ -open sets is again a μ -open set and so every γ -space is a quasi-topological space [5]. By [14, Theorem 2.3], it is established that in a γ -space, i_{μ} and c_{μ} preserve finite intersection and finite union, respectively. Later, in [5], it is established that the above result is also true for quasi-topological spaces. A space (X,μ) is said to be strong if $X \in \mu$. The following lemma is essential to proceed further where the easy proof is omitted.

Lemma 1.1. Let (X, μ) be a space where μ is the family of all γ -open sets of a $\gamma \in \Gamma_4$. Then the following hold.

(a) The intersection of two δ -open sets is a δ -open set.

(b) $i_{\delta}(A) \cap i_{\delta}(B) = i_{\delta}(A \cap B)$ for every subsets A and B of X. (c) $c_{\delta}(A) \cup c_{\delta}(B) = c_{\delta}(A \cup B)$ for every subsets A and B of X. (d) $i_{\delta} \in \Gamma_4$.

 $\iota_{\delta} \in \mathbf{1}_{4}.$

2. Strong generalized spaces

If (X, μ) is any generalized space which is not strong, then in [7, Proposition 1.2], it is established that $X \in \sigma$ and so it follows that always $X \in b$ and $X \in \beta$. The following Example 2.1 shows that in general, if $X \notin \mu$, then $X \notin \lambda$ for $\lambda \in \{\mu, \delta, \alpha, \pi, \nu, \eta\}$ and Theorem 2.1 below shows that $X \in \xi$ and hence $X \in \varepsilon$ and $X \in \psi$.

Example 2.1. Let X be the set of all real numbers and $\mu = \{\emptyset, \{0\}\}$. Then $X \notin \lambda$ where $\lambda \in \{\mu, \delta, \alpha, \pi, \nu, \eta\}$.

Theorem 2.1. If (X, μ) is a generalized space which is not strong, then the following hold.

(a) $X \notin \pi$ and hence $X \notin \alpha$.

(b) $X \notin \delta$ and hence $X \notin \eta$ and $X \notin \nu$.

 $(c)X \in \xi$ and hence $X \in \varepsilon$ and $X \in \psi$.

Proof: (a) Suppose $X \in \pi$. But always, $X \in \sigma$ and so $X \in \sigma \cap \pi = \alpha$. Therefore, $X \subset i_{\mu}c_{\mu}i_{\mu}(X) \subset i_{\mu}c_{\mu}(X) = i_{\mu}(X)$. Hence $X \in \mu$, a contradiction and so $X \notin \pi$

and hence $X \notin \alpha$. (b) Since $X \notin \mu$, $X \notin \delta$, since $\delta \subset \mu$. Since $\eta = \pi(\delta)$, by (a), $X \notin \eta$ and hence $X \notin \nu$, since $\nu = \alpha(\delta)$. (c) Since $\xi = \sigma(\delta)$, $X \in \xi$ and so $X \in \varepsilon$ and $X \in \psi$.

3. g_{λ}^{\star} -closed sets

Let (X, μ) be a generalized space. A subset A of X is said to be g_{μ} -closed [9] if $c_{\mu}(A) \subset M$ whenever $A \subset M$ and $M \in \mu$. Various properties of q_{μ} -closed are discussed and characterizations are given in [9] and these properties are valid for the generalized topologies induced by μ and δ . Given a topological space (X, τ) and a generalized topology μ on X, a subset A of X is said to be $g\mu$ -closed [11] if $c_{\mu}(A) \subset M$ whenever $A \subset M$ and $M \in \tau$. If $\mu = \tau$, then the $g\mu$ -closed sets coincide with the g-closed sets of Levine [8]. If τ is fixed and μ is any one of the generalized topology, namely α, σ, π, b and β of the topological space (X, τ) , where all these family contains X, then we have $q\alpha$ -closed, gsemi-closed, gpre-closed, gb-closed and $g\beta$ -closed sets in (X, τ) and all the results established in [11] are valid for these sets. If μ is a fixed generalized topology, and instead of τ , if we consider σ , b and β , the generalized topologies induced by μ , which contains X, then we can define $g\sigma(\mu)$ -closed, $gb(\mu)$ -closed and $g\beta(\mu)$ -closed sets in the space (X,μ) and for these family of sets also, all the results established in [11] are valid.

The difference between the two definitions is that the definition of $g\mu$ -closed sets uses elements of the topology τ on X where $X \in \tau$ where as the definition of g_{μ} -closed sets uses elements of the generalized topology μ where X may or may not be in μ . Therefore, the definition of g_{μ} -closed sets is more general, since the definition uses a large class of generalized topologies which also contains the class of all topological spaces. Moreover, similar results established for $q\mu$ -closed sets in [11] are already established for g_{μ} -closed sets in [9]. We give below a new definition for generalized closed sets in a generalized space, which is common for both strong spaces and non-strong spaces, and discuss the relation between these three kinds of sets in the following Examples 3.1 to 3.3. A subset A of $\mathcal{M}_{\mu} = \bigcup \{B \mid B \in \mu\}$ of a generalized space (X, μ) is said to be $g^{\star}_{\mu} - closed$ if $c_{\mu}(A) \cap \mathcal{M}_{\mu} \subset M$ whenever $A \subset M$ and $M \in \mu$. Note that, if the space is strong, then this definition coincides with the definition of g_{μ} -closed sets.

Example 3.1. Let X be a nonempty set and μ be a generalized topology on X. Suppose $\mathfrak{M}_{\mu} = \bigcup \{A \mid A \in \mu\} \neq X \text{ and } \tau = \wp(\mathfrak{M}_{\mu}) \cup \{X\}.$ Then every μ -closed subset of X contains $X - \mathcal{M}_{\mu}$. Therefore, every subset A of \mathcal{M}_{μ} is neither a g_{μ} -closed set nor a $g\mu$ -closed set. g_{μ}^{\star} -closed sets depend on the generalized topology μ . Every nonempty subset B of X such that $B \cap (X - \mathcal{M}_{\mu}) \neq \emptyset$ or $B \subset (X - \mathcal{M}_{\mu})$ is not contained in any μ -open set which implies that such sets are trivially q_{μ} -closed. Clearly, such sets are $g\mu$ -closed, since X is the only open set containing such sets.

Example 3.2. [1, Example 2.1] Let $X = \mathcal{I}_n = \{1, 2, 3, \dots, n\}$. Define $\kappa : \wp(\mathcal{I}_n) \to \mathcal{I}_n$ $\wp(\mathfrak{I}_n)$ by $\kappa(A) = A$ if $\mathfrak{I}_n - \{i\} \subseteq A$ for some $i \in \{1, 2, 3, \dots, n\}$ and $\kappa(A) = \emptyset$ otherwise. Then $\mu = \{\emptyset, X\} \cup \{A \subset \mathfrak{I}_n \mid A = \mathfrak{I}_n - \{i\}, i = 1, 2, 3, ...n\}$, the cosingleton generalized topology defined on a finite set. The only μ -closed sets are \emptyset , X and singleton subsets of \mathfrak{I}_n . In this space, the family of all g_{μ}^{\star} -closed sets, the family of all g_{μ} -closed sets and family of all μ -closed sets coincide. For the topology $\tau = \{\emptyset\} \cup \{G \subset X \mid \{1,2\} \subset G\}$ on X, the μ -closed sets are precisely the $g\mu$ -closed sets.

Example 3.3. Consider the space (X, τ) and generalized topology μ of the Example 2.3 of [11]. In this space, $\{a, c\}$ is $g\mu$ -closed but it is not g^*_{μ} -closed and also not g_{μ} -closed.

Throughout the paper, if μ is a generalized topology on X, let $\mathfrak{M}_{\mu} = \bigcup \{A \mid A \in \mu\}$, $X \notin \mu$ and $\lambda \in \{\mu, \alpha, \pi, \sigma, b, \beta, \delta, \nu, \xi, \eta, \varepsilon, \psi\}$. Then, by Theorem 2.1, we have $\mathfrak{M}_{\lambda} \neq X$ if $\lambda \in \{\mu, \alpha, \pi, \delta, \nu, \eta\}$ and $\mathfrak{M}_{\lambda} = X$ if $\lambda \in \{\sigma, b, \beta, \xi, \varepsilon, \psi\}$. Moreover, $\mathfrak{M}_{\lambda} = \mathfrak{M}_{\mu}$, if $\mathfrak{M}_{\lambda} \neq X$. The following Lemma 3.1 is essential to proceed further.

Lemma 3.1. Let X be a nonempty set, μ be a generalized topology on X and $A \subset X$. Then the following hold.

(a) $(X - \mathcal{M}_{\lambda})$ is a λ -closed set contained in every λ -closed set.

(b) $c_{\lambda}(A \cap \mathfrak{M}_{\lambda}) \cap \mathfrak{M}_{\lambda} = c_{\lambda}(A) \cap \mathfrak{M}_{\lambda}.$

(c) If A is λ -closed, then $c_{\lambda}(A \cap \mathfrak{M}_{\lambda}) \cap \mathfrak{M}_{\lambda} = A \cap \mathfrak{M}_{\lambda}$.

 $(d) c_{\lambda}(A) = (c_{\lambda}(A) \cap \mathcal{M}_{\lambda}) \cup (X - \mathcal{M}_{\lambda}).$

(e) If A is λ -closed, then $A = (A \cap \mathfrak{M}_{\lambda}) \cup (X - \mathfrak{M}_{\lambda})$.

(f) $(\mathfrak{M}_{\lambda}, \lambda^{\star})$ is a strong generalized space where $\lambda^{\star} = \lambda \mid \mathfrak{M}_{\lambda}$ is the subspace generalized topology.

(g) If $A \subset \mathcal{M}_{\lambda}$, then $c_{\lambda*}(A) = c_{\lambda}(A) \cap \mathcal{M}_{\lambda}$ and $i_{\lambda*}(A) = i_{\lambda}(A)$ where $c_{\lambda*}(A)$ (resp. $i_{\lambda*}(A)$) is the closure (resp. interior) of A in \mathcal{M}_{λ} .

(h) $A \subset \mathfrak{M}_{\lambda}$ is λ^* -closed in \mathfrak{M}_{λ} if and only if $A = c_{\lambda}(A) \cap \mathfrak{M}_{\lambda}$.

(i) $A \subset \mathfrak{M}_{\lambda}$ is λ^* -closed in \mathfrak{M}_{λ} if and only if $c_{\lambda}(A) = A \cup (X - \mathfrak{M}_{\lambda})$.

Proof: (a) follows from the fact that if G is λ -open, then $G \subset \mathcal{M}_{\lambda}$. (b) Clearly, $c_{\lambda}(A \cap \mathcal{M}_{\lambda}) \cap \mathcal{M}_{\lambda} \subset c_{\lambda}(A) \cap \mathcal{M}_{\lambda}$. Let $x \in c_{\lambda}(A) \cap \mathcal{M}_{\lambda}$. Then $x \in c_{\lambda}(A)$ and $x \in \mathcal{M}_{\lambda}$. Now $x \in c_{\lambda}(A)$ implies that $G \cap A \neq \emptyset$ for every λ -open set G containing x and so $G \cap (A \cap \mathcal{M}_{\lambda}) \neq \emptyset$ for every λ -open set G containing x. Therefore, $x \in c_{\lambda}(A \cap \mathcal{M}_{\lambda})$ and so $x \in c_{\lambda}(A \cap \mathcal{M}_{\lambda}) \cap \mathcal{M}_{\lambda}$. Hence $c_{\lambda}(A) \cap \mathcal{M}_{\lambda} \subset c_{\lambda}(A \cap \mathcal{M}_{\lambda}) \cap \mathcal{M}_{\lambda}$.

This completes the proof. (c) The proof follows from (b). (d) $c_{\lambda}(A) = c_{\lambda}(A) \cap X = c_{\lambda}(A) \cap (\mathcal{M}_{\lambda} \cup (X - \mathcal{M}_{\lambda})) = (c_{\lambda}(A) \cap \mathcal{M}_{\lambda}) \cup (c_{\lambda}(A) \cap (X - \mathcal{M}_{\lambda})) = (c_{\lambda}(A) \cap \mathcal{M}_{\lambda}) \cup (X - \mathcal{M}_{\lambda}),$ by (a). (e) If A is λ -closed, by (d), we have $A = (A \cap \mathcal{M}_{\lambda}) \cup (X - \mathcal{M}_{\lambda}).$ The proofs of (f), (g), (h) and (i) are clear.

As per the present definition, the g_{λ}^{\star} -closed sets must be subsets of \mathcal{M}_{λ} . Moreover, g_{λ}^{\star} -closed subsets coincide with g_{λ} -closed subsets if X is μ -open. In Example 3.2, the space is strong and the g_{λ}^{\star} -closed sets are exactly the g_{λ} -closed sets. It is easy to note that g_{λ}^{\star} -closed subsets are g_{λ}^{\star} -closed subsets of the subspace $(\mathcal{M}_{\lambda}, \lambda^{\star})$. In Example 3.1, there is no g_{λ}^{\star} -closed subset and here also, the two concepts coincide. The following Theorem 3.1 gives some properties of g_{λ}^{\star} -closed sets. Example 3.4 shows that the converse of Theorem 3.1(a) is not true.

Theorem 3.1. Let (X, μ) be a generalized space and $A \subset X$. Then the following hold.

(a) If A is a λ-closed subset of X, then A ∩ M_λ is a g^{*}_λ-closed set.
(b) c_λ(A) ∩ M_λ is a g^{*}_λ-closed set for every subset A of X.

Proof: (a) Let $A \cap \mathcal{M}_{\lambda} \subset M$ and M be λ -open. Since $c_{\lambda}(A \cap \mathcal{M}_{\lambda}) \cap \mathcal{M}_{\lambda} = c_{\lambda}(A) \cap \mathcal{M}_{\lambda}$, by Lemma 3.1(b), we have $c_{\lambda}(A \cap \mathcal{M}_{\lambda}) \cap \mathcal{M}_{\lambda} = c_{\lambda}(A) \cap \mathcal{M}_{\lambda} = A \cap \mathcal{M}_{\lambda} \subset M$. Therefore, we have $c_{\lambda}(A \cap \mathcal{M}_{\lambda}) \cap \mathcal{M}_{\lambda} \subset M$ and so $A \cap \mathcal{M}_{\lambda}$ is g_{λ}^{*} -closed. (b) The proof follows from (a).

Example 3.4. Let $X = \{a, b, c\}$ and $\mu = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$. Then μ -closed sets are X, $\{a, c\}$, $\{b, c\}$ and $\{c\}$. If $A = \{a, b\}$, then $A \cap \mathcal{M}_{\mu} = \{a, b\}$ and $A \cap \mathcal{M}_{\mu}$ is a g_{μ}^{\star} -closed set but A is not μ -closed.

The following Theorem 3.2 gives a characterization of g^{\star}_{λ} -closed sets.

Theorem 3.2. Let (X, μ) be a space. Then a subset A of \mathcal{M}_{λ} is g_{λ}^{\star} -closed if and only if $F \subset c_{\lambda}(A) - A$ and F is λ -closed imply that $F = X - \mathcal{M}_{\lambda}$.

Proof: Let F be a λ -closed subset of $c_{\lambda}(A) - A$. Since $A \subset X - F$ and A is g_{λ}^{\star} -closed, $c_{\lambda}(A) \cap \mathcal{M}_{\lambda} \subset X - F$ and so $F \subset X - (c_{\lambda}(A) \cap \mathcal{M}_{\lambda}) = (X - c_{\lambda}(A) \cup (X - \mathcal{M}_{\lambda})$. Since $F \subset c_{\lambda}(A)$, we have $F \subset (X - \mathcal{M}_{\lambda})$. Therefore, by Lemma 3.1(a), $F = X - \mathcal{M}_{\lambda}$. Conversely, suppose the condition holds and $A \subset M$ and $M \in \lambda$. Suppose $(c_{\lambda}(A) \cap \mathcal{M}_{\lambda}) \cap (X - M)$ is a nonempty subset. Then $(c_{\lambda}(A) \cap \mathcal{M}_{\lambda}) \cap (X - M) \subset c_{\lambda}(A) \cap (X - A) \subset c_{\lambda}(A) - A$. Thus $c_{\lambda}(A) \cap (X - M) \subset c_{\lambda}(A) \cap (X - M) \subset c_{\lambda}(A) \cap (X - A) \subset c_{\lambda}(A) - A$. Therefore, $c_{\lambda}(A) \cap (X - M) = X - \mathcal{M}_{\lambda}$ which implies that $(c_{\lambda}(A) \cap \mathcal{M}_{\lambda}) \cap (X - M) = \emptyset$, a contradiction to the assumption. Therefore, $c_{\lambda}(A) \cap \mathcal{M}_{\lambda} \subset M$ which implies that A is a g_{λ}^{\star} -closed set.

Theorem 3.3. Let (X, μ) be a generalized space. Then a g_{λ}^{\star} -closed subset A of \mathcal{M}_{λ} is a λ -closed set, if $c_{\lambda}(A) - A$ is a λ -closed set.

Proof: By Theorem 3.2, $c_{\lambda}(A) - A = X - \mathfrak{M}_{\lambda}$. Then $c_{\lambda}(A) = A \cup (X - \mathfrak{M}_{\lambda})$. By Lemma 3.1(i), A is λ -closed.

The following Theorem 3.4 shows that in a γ -space (X, μ) , the union of two g_{δ}^{\star} -closed sets (resp. g_{ν}^{\star} -closed sets) is again a g_{δ}^{\star} -closed set (resp. g_{ν}^{\star} -closed sets). Example 3.5 shows that the condition γ -space on the space cannot be replaced by generalized topology. Example 3.6 below shows that the intersection of two g_{λ}^{\star} -closed sets need not be a g_{λ}^{\star} -closed set in a strong generalized space. Theorem 3.5 shows that, the intersection of a g_{λ}^{\star} -closed set with a λ -closed is a g_{λ}^{\star} -closed set.

Theorem 3.4. Let (X, μ) be a γ -space. Then the following hold. (a) If A and B are g_{δ}^{\star} -closed subsets of \mathcal{M}_{δ} , then $A \cup B$ is also a g_{δ}^{\star} -closed set. (b) If A and B are g_{ν}^{\star} -closed subsets of \mathcal{M}_{ν} , then $A \cup B$ is also a g_{ν}^{\star} -closed set.

Proof: (a) Suppose A and B are g_{δ}^{\star} -closed sets. Let $M \in \delta$ such that $A \cup B \subset M$. Since A and B are g_{δ}^{\star} -closed sets, $c_{\delta}(A) \cap \mathcal{M}_{\delta} \subset M$ and $c_{\delta}(B) \cap \mathcal{M}_{\delta} \subset M$ and so $(c_{\delta}(A) \cap \mathcal{M}_{\delta}) \cup (c_{\delta}(B) \cap \mathcal{M}_{\delta}) \subset M$ and so $(c_{\delta}(A) \cup c_{\delta}(B)) \cap \mathcal{M}_{\delta} \subset M$. By Lemma 1.1(c), it follows that $c_{\delta}(A \cup B) \cap \mathcal{M}_{\delta} \subset M$ and so the proof follows. (b) The proof follows from (a) and Lemma 1.1(c).

Example 3.5. Let $X = \{a, b, c\}$ and $\mu = \{\emptyset, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}$. Then μ is a GT but not a quasi-topology. If $A = \{b\}$ and $B = \{c\}$, then A and B are g^{\star}_{δ} -closed sets but their union is not a g^{\star}_{δ} -closed set.

Example 3.6. Consider the space (X, μ) where $X = \{a, b, c, d, e\}$ with $\mu = \{\emptyset, \{a, b\}, \{a, c\}, \{a, b, c\}, X\}$. If $A = \{a, c, d\}$ and $B = \{b, c, e\}$, then A and B are g_{δ}^{\star} -closed sets. But $A \cap B = \{c\}$, is not a g_{δ}^{\star} -closed set, since $\{c\} \subset \{a, b, c\}$ but $c_{\delta}(\{c\}) \cap \mathcal{M}_{\delta} = X$.

Theorem 3.5. Let (X, μ) be a generalized space. If A is g_{λ}^{\star} -closed subset of \mathcal{M}_{λ} and B is λ -closed, then $A \cap B$ is a g_{λ}^{\star} -closed set.

Proof: Suppose $A \cap B \subset M$ where M is λ -open. Then $A \subset (M \cup (X - B))$. Since A is g_{λ}^{\star} -closed, $c_{\lambda}(A) \cap \mathcal{M}_{\lambda} \subset (M \cup (X - B))$ and so $(c_{\lambda}(A) \cap B \cap \mathcal{M}_{\lambda}) = (c_{\lambda}(A) \cap c_{\lambda}(B)) \cap \mathcal{M}_{\lambda} \subset M$ which implies that $c_{\lambda}(A \cap B) \cap \mathcal{M}_{\lambda} \subset M$ and so $A \cap B$ is a g_{λ}^{\star} -closed set. \Box

A subset A of \mathcal{M}_{λ} in a space (X, μ) is said to be $g_{\lambda}^{\star} - open$ if $\mathcal{M}_{\lambda} - A$ is g_{λ}^{\star} -closed. The following Theorem 3.6 gives a characterization of g_{λ}^{\star} -open sets. Since the intersection of two g_{λ}^{\star} -closed sets need not be a g_{λ}^{\star} -closed set, the union of two g_{λ}^{\star} -open sets need not be a g_{λ}^{\star} -open set. Theorem 3.7 below gives a characterization of g_{λ}^{\star} -open sets and Theorem 3.8 below gives a property of g_{λ}^{\star} -open sets. Theorem 3.9 below gives a characterization of g_{λ}^{\star} -closed sets in terms of g_{λ}^{\star} -open sets.

Theorem 3.6. A subset A of \mathcal{M}_{λ} in a space (X, μ) is g_{λ}^{\star} -open if and only if $F \cap \mathcal{M}_{\lambda} \subset i_{\lambda}(A)$ whenever F is λ -closed and $F \cap \mathcal{M}_{\lambda} \subset A$.

Proof: Let A be a g_{λ}^{\star} -open subset of \mathcal{M}_{λ} and F be a λ -closed subset of X such that $F \cap \mathcal{M}_{\lambda} \subset A$. Then $M_{\lambda} - A \subset M_{\lambda} - (F \cap \mathcal{M}_{\lambda}) = M_{\lambda} - F$. Since $M_{\lambda} - F$ is λ -open and $M_{\lambda} - A$ is g_{λ}^{\star} -closed, $c_{\lambda}(M_{\lambda} - A) \cap \mathcal{M}_{\lambda} \subset \mathcal{M}_{\lambda} - F$ and so $F \subset \mathcal{M}_{\lambda} - (c_{\lambda}(\mathcal{M}_{\lambda} - A) \cap \mathcal{M}_{\lambda}) = \mathcal{M}_{\lambda} \cap (\mathcal{M}_{\lambda} - c_{\lambda}(\mathcal{M}_{\lambda} - A)) = i_{\lambda}(A) \cap \mathcal{M}_{\lambda} = i_{\lambda}(A)$. Conversely, suppose the condition holds. Let A be a subset of \mathcal{M}_{λ} and F is λ -closed such that $F \cap \mathcal{M}_{\lambda} \subset A$. By hypothesis, $F \cap \mathcal{M}_{\lambda} \subset i_{\lambda}(A)$ which implies that $\mathcal{M}_{\lambda} - i_{\lambda}(A) \subset \mathcal{M}_{\lambda} - (F \cap \mathcal{M}_{\lambda})$ and $c_{\lambda}(\mathcal{M}_{\lambda} - A) \subset \mathcal{M}_{\lambda} - F$. Then $c_{\lambda}(\mathcal{M}_{\lambda} - A) \cap \mathcal{M}_{\lambda} \subset (\mathcal{M}_{\lambda} - F) \cap \mathcal{M}_{\lambda} = \mathcal{M}_{\lambda} - F$ which implies that $\mathcal{M}_{\lambda} - A$ is g_{λ}^{\star} -closed and so A is g_{λ}^{\star} -open. \Box

Theorem 3.7. Let (X, μ) be a space. A subset A of \mathcal{M}_{λ} is g_{λ}^{\star} -open if and only if $M = \mathcal{M}_{\lambda}$ whenever M is λ -open and $i_{\lambda}(A) \cup (\mathcal{M}_{\lambda} - A) \subset M$.

Proof: Suppose A is g_{λ}^{\star} -open subset of \mathcal{M}_{λ} and M is λ -open such that $i_{\lambda}(A) \cup (\mathcal{M}_{\lambda}-A) \subset M$. Then $\mathcal{M}_{\lambda}-M \subset (\mathcal{M}_{\lambda}-i_{\lambda}(A)) \cap A = c_{\lambda}(\mathcal{M}_{\lambda}-A) \cap A = c_{\lambda}(\mathcal{M}_{\lambda}-A) - (\mathcal{M}_{\lambda}-A)$ and so $(\mathcal{M}_{\lambda}-M) \cup (X-\mathcal{M}_{\lambda}) \subset c_{\lambda}(\mathcal{M}_{\lambda}-A) - (\mathcal{M}_{\lambda}-A)$. By Theorem 3.2, $(\mathcal{M}_{\lambda}-M) \cup (X-\mathcal{M}_{\lambda}) = X-\mathcal{M}_{\lambda}$ and so $\mathcal{M}_{\lambda}-M = \emptyset$ which implies that $\mathcal{M}_{\lambda} = M$. Conversely, suppose the condition holds. Let F be a λ -closed set such that $F \cap \mathcal{M}_{\lambda} \subset A$. Since $i_{\lambda}(A) \cup (\mathcal{M}_{\lambda}-A) \subset i_{\lambda}(A) \cup (\mathcal{M}_{\lambda}-F) \cup (\mathcal{M}_{\lambda}-\mathcal{M}_{\lambda}) = i_{\lambda}(A) \cup (\mathcal{M}_{\lambda}-F)$ and $i_{\lambda}(A) \cup (\mathcal{M}_{\lambda}-F)$ is λ -open, by hypothesis, $\mathcal{M}_{\lambda} = i_{\lambda}(A) \cup (\mathcal{M}_{\lambda}-F)$ and so $F \cap \mathcal{M}_{\lambda} \subset (i_{\lambda}(A) \cup (\mathcal{M}_{\lambda}-F)) \cap F = (i_{\lambda}(A) \cap F) \cup ((\mathcal{M}_{\lambda}-F) \cap F) = i_{\lambda}(A) \cap F \subset i_{\lambda}(A)$. By Theorem 3.6, A is g_{λ}^{\star} -open.

Theorem 3.8. Let (X, μ) be a space and A and B be subsets of \mathfrak{M}_{λ} . If $i_{\lambda}(A) \subset B \subset A$ and A is g_{λ}^{\star} -open, then B is g_{λ}^{\star} -open.

Proof: The proof follows from Theorem 3.7.

Theorem 3.9. Let (X, λ) be a space. Then a subset A of \mathcal{M}_{λ} is g_{λ}^{\star} -closed if and only if $(c_{\lambda}(A) - A) \cap \mathcal{M}_{\lambda}$ is g_{λ}^{\star} -open.

Proof: Suppose $(c_{\lambda}(A) - A) \cap \mathcal{M}_{\lambda}$ is g_{λ}^{\star} -open. Let $A \subset M$ and M is λ -open. Since $c_{\lambda}(A) \cap (\mathcal{M}_{\lambda} - M) \subset c_{\lambda}(A) \cap (\mathcal{M}_{\lambda} - A) = (c_{\lambda}(A) - A) \cap \mathcal{M}_{\lambda}$, $(c_{\lambda}(A) - A) \cap \mathcal{M}_{\lambda}$ is g_{λ}^{\star} -open and $c_{\lambda}(A) \cap (\mathcal{M}_{\lambda} - M)$ is λ -closed, by Theorem 3.6, $c_{\lambda}(A) \cap (\mathcal{M}_{\lambda} - M) \subset i_{\lambda}((c_{\lambda}(A) - A) \cap \mathcal{M}_{\lambda}) \subset i_{\lambda}(c_{\lambda}(A)) \cap i_{\lambda}(\mathcal{M}_{\lambda} - A) \subset i_{\lambda}(c_{\lambda}(A)) \cap i_{\lambda}(X - A) = i_{\lambda}(c_{\lambda}(A)) \cap (X - c_{\lambda}(A)) = \emptyset$. Therefore, $c_{\lambda}(A) \cap \mathcal{M}_{\lambda} \subset M$ which implies that A is g_{λ}^{\star} -closed. Conversely, suppose A is g_{λ}^{\star} -closed and $F \cap \mathcal{M}_{\lambda} \subset (c_{\lambda}(A) - A) \cap \mathcal{M}_{\lambda}$, where F is λ -closed. Then $F \subset (c_{\lambda}(A) - A)$ and so by Theorem 3.2, $F = X - \mathcal{M}_{\lambda}$ and so $\emptyset = (X - \mathcal{M}_{\lambda}) \cap \mathcal{M}_{\lambda} = F \cap \mathcal{M}_{\lambda} \subset (c_{\lambda}(A) - A) \cap \mathcal{M}_{\lambda}$ which implies that $F \cap \mathcal{M}_{\lambda} \subset i_{\lambda}((c_{\lambda}(A) - A) \cap \mathcal{M}_{\lambda})$. By Theorem 3.6, $c_{\lambda}(A) - A$ is g_{λ}^{\star} -open.

4. R_0 and R_1 -spaces

In this section, we define and discuss generalized R_0 and R_1 spaces which are not *strong* and establish that all the results established already will follow as a corollary. Generalized R_0 and R_1 spaces are independently defined by Sivagami and Sivaraj [15], Roy [12] and Sarsak [13]. Unless otherwise stated, in this section, (X, μ) is a generalized space which is not *strong* and $\lambda \in \{\mu, \delta, \alpha, \sigma, \pi, b, \beta, \nu, \xi, \eta, \varepsilon, \psi\}$. The following definitions and Lemma 4.1 are essential to proceed further. For $A \subset \mathcal{M}_{\lambda}$, we define $\wedge_{\lambda}(A) = \cap \{U \subset X \mid A \subset U \text{ and } U \in \lambda\}$ [15]. The following Lemma 4.1 gives the properties of the operator \wedge_{λ} , the proof is similar to the corresponding result in [15].

Lemma 4.1. [15, Theorem 3.1] Let (X, μ) be a generalized space and A, B and C_{ι} for $\iota \in \Delta$ be subsets of \mathcal{M}_{λ} . Then the following hold.

 $\begin{array}{l} (a) \ If \ A \subset B, \ then \ \wedge_{\lambda}(A) \subset \wedge_{\lambda}(B). \\ (b) \ A \subset \wedge_{\lambda}(A). \\ (c) \ \wedge_{\lambda}(\wedge_{\lambda}(A)) = \wedge_{\lambda}(A). \\ (d) \ \wedge_{\lambda}(\cup\{C_{\iota} \mid \iota \in \Delta\}) = \cup\{\wedge_{\lambda}(C_{\iota}) \mid \iota \in \Delta\}. \\ (e) \ \wedge_{\lambda}(\cap\{C_{\iota} \mid \iota \in \Delta\}) \subset \cap\{\wedge_{\lambda}(C_{\iota}) \mid \iota \in \Delta\}. \\ (f) \ If \ A \in \lambda, \ then \ \wedge_{\lambda}(A) = A. \\ (g) \ \wedge_{\lambda}(A) = \{x \in \mathcal{M}_{\lambda} \mid c_{\lambda}(\{x\}) \cap A \neq \emptyset\}. \\ (h) \ For \ every \ x, \ y \in \mathcal{M}_{\lambda}, \ y \in \wedge_{\lambda}(\{x\}) \ if \ and \ only \ if \ x \in c_{\lambda}(\{y\}) \cap \mathcal{M}_{\lambda}. \\ (i) \ \wedge_{\lambda}(\{x\}) \neq \wedge_{\lambda}(\{y\}) \ if \ and \ only \ if \ c_{\lambda}(\{x\}) \neq c_{\lambda}(\{y\}) \ for \ every \ x, \ y \in \mathcal{M}_{\lambda}. \end{array}$

A space (X, λ) is said to be a $\lambda - R_0$ space [15,12,13] if every λ -open subset of X contains the λ -closure of its singletons. (X, λ) is said to be a $\lambda - R_1$ space [15,12,13] if for $x, y \in X$ with $c_{\lambda}(\{x\}) \neq c_{\lambda}(\{y\})$, there exist disjoint λ -open sets G and H such that $c_{\lambda}(\{x\}) \subset G$ and $c_{\lambda}(\{y\}) \subset H$. The results on generalized R_0 and R_1 spaces are independently established in [15,12,13]. The space in Example 3.1 is neither $\lambda - R_0$ nor $\lambda - R_1$. Example 3.2 is $\lambda - R_0$, since each point is λ -closed but is not $\lambda - R_1$, since no disjoint λ -open sets exist. In particular, if a space is not strong, then it is neither $\lambda - R_0$ nor $\lambda - R_1$ (Refer Example 3.1). To rectify it, we redefine R_0 and R_1 spaces as follows.

A generalized space (X, λ) is said to be a $\lambda^* - R_0$ space if for every λ -open subset G of \mathcal{M}_{λ} and $x \in G$, $c_{\lambda}(\{x\}) \cap \mathcal{M}_{\lambda} \subset G$. (X, λ) is said to be a $\lambda^* - R_1$ space if for $x, y \in \mathcal{M}_{\lambda}$ with $c_{\lambda}(\{x\}) \neq c_{\lambda}(\{y\})$, there exist disjoint λ -open sets G and H such that $c_{\lambda}(\{x\}) \cap \mathcal{M}_{\lambda} \subset G$ and $c_{\lambda}(\{y\}) \cap \mathcal{M}_{\lambda} \subset H$. Clearly, for strong spaces, $\lambda^* - R_i$ spaces coincide with $\lambda - R_i$ spaces and every $\lambda^* - R_1$ space is a $\lambda^* - R_0$ space but the converse is not true (Refer to Example 3.2). Also, for $i = 1, 2, (X, \lambda)$ is $\lambda - R_i$ implies that (X, λ) is $\lambda^* - R_i$. The following Example 4.1 shows that the converses are not true and it shows that non strong generalized spaces may be $\lambda^* - R_0$ and $\lambda^* - R_1$ spaces. Theorems in this section give characterizations of $\lambda^* - R_i, i = 1, 2$ generalized spaces which are true for both strong and non strong generalized spaces.

Example 4.1. Let $X = \{a, b, c\}$ and $\mu = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$. Since $c_{\mu}(\{a\}) = \{a, c\}$ and $c_{\mu}(\{b\}) = \{b, c\}$, it is easy to show that (X, μ) is neither $\mu - R_1$ nor $\mu - R_0$ but (X, μ) is both $\mu^* - R_1$ and $\mu^* - R_0$.

Theorem 4.1. For a generalized space (X, μ) , the following are equivalent. (a) (X, λ) is $\lambda^* - R_0$.

(b) For each λ -closed set F and $x \notin F$, there exists $U \in \lambda$ such that $F \cap M_{\lambda} \subset U$ and $x \notin U$.

(c) For every λ -closed set F with $x \notin F$, $F \cap c_{\lambda}(\{x\}) = X - M_{\lambda}$.

(d) For any two distinct points $x, y \in M_{\lambda}$, either $c_{\lambda}(\{x\}) = c_{\lambda}(\{y\})$ or $c_{\lambda}(\{x\}) \cap c_{\lambda}(\{y\}) = X - M_{\lambda}$.

Proof: (a) \Rightarrow (b). Let F be a λ -closed set and $x \notin F$. Then by hypothesis, $c_{\lambda}(\{x\}) \cap \mathcal{M}_{\lambda} \subset X - F$ and so $F \subset (X - c_{\lambda}(\{x\})) \cup (X - \mathcal{M}_{\lambda})$. Therefore, $F \cap \mathcal{M}_{\lambda} \subset (X - c_{\lambda}(\{x\})) \cap \mathcal{M}_{\lambda} \subset X - c_{\lambda}(\{x\})$. If $U = X - c_{\lambda}(\{x\})$, then $x \notin U$

and $U \in \lambda$ such that $F \cap \mathfrak{M}_{\lambda} \subset U$.

(b) \Rightarrow (c). Let F be a λ -closed set and $x \notin F$. Then by hypothesis, there exists $U \in \lambda$ such that $x \notin U$ and $F \cap \mathcal{M}_{\lambda} \subset U$. $x \notin U$ implies that $U \cap c_{\lambda}(\{x\}) = \emptyset$ and so $(F \cap \mathcal{M}_{\lambda}) \cap c_{\lambda}(\{x\}) = \emptyset$ which implies that $F \cap c_{\lambda}(\{x\}) = X - \mathcal{M}_{\lambda}$.

(c) \Rightarrow (d). Let $x, y \in \mathcal{M}_{\lambda}$ such that $c_{\lambda}(\{x\}) \neq c_{\lambda}(\{y\})$. Then there exists $z \in c_{\lambda}(\{x\})$ such that $z \notin c_{\lambda}(\{y\})$. Then there exists $z \in V \in \lambda$ such that $y \notin V$ and $x \in V$. Hence $x \notin c_{\lambda}(\{y\})$. By hypothesis, $c_{\lambda}(\{x\}) \cap c_{\lambda}(\{y\}) = X - \mathcal{M}_{\lambda}$.

(d) \Rightarrow (a). Let G be a λ -open set such that $x \in G$. If $y \notin G$, then $x \neq y$ and so $x \notin c_{\lambda}(\{y\})$ which implies that $c_{\lambda}(\{x\}) \neq c_{\lambda}(\{y\})$. By hypothesis, $c_{\lambda}(\{x\}) \cap c_{\lambda}(\{y\}) = X - \mathcal{M}_{\lambda}$ and so $y \notin c_{\lambda}(\{x\}) \cap \mathcal{M}_{\lambda}$. Hence $c_{\lambda}(\{x\}) \cap \mathcal{M}_{\lambda} \subset G$ which implies that (X, λ) is a $\lambda^* - R_0$ space. \Box

Theorem 4.2. Let (X, μ) be generalized space. Then, (X, λ) is a $\lambda^* - R_0$ space if and only if for $x, y \in \mathcal{M}_{\lambda}, \ \wedge_{\lambda}(\{x\}) \neq \wedge_{\lambda}(\{y\})$ implies that $\wedge_{\lambda}(\{x\}) \cap \wedge_{\lambda}(\{y\}) = \emptyset$.

Proof: Suppose (X, λ) is a $\lambda^* - R_0$ space. Let $x, y \in \mathcal{M}_{\lambda}$ such that $\wedge_{\lambda}(\{x\}) \neq \wedge_{\lambda}(\{y\})$. By Lemma 4.1(i), $c_{\lambda}(\{x\}) \neq c_{\lambda}(\{y\})$. By Theorem 4.1, it follows that $c_{\lambda}(\{x\}) \cap c_{\lambda}(\{y\}) = X - \mathcal{M}_{\lambda}$. Let $z \in \wedge_{\lambda}(\{x\}) \cap \wedge_{\lambda}(\{y\})$. Then $z \in \wedge_{\lambda}(\{x\})$ and $z \in \wedge_{\lambda}(\{y\})$ and so by Lemma 4.1(h), $x \in c_{\lambda}(\{z\}) \cap \mathcal{M}_{\lambda}$ and $y \in c_{\lambda}(\{z\}) \cap \mathcal{M}_{\lambda}$ which implies that $\{x, y\} \subset c_{\lambda}(\{z\})$. Therefore, $c_{\lambda}(\{z\}) \cup c_{\lambda}(\{y\}) \subset c_{\lambda}(\{z\}) \cap \mathcal{M}_{\lambda}$ which implies that $x \in c_{\lambda}(\{x\}) \cap c_{\lambda}(\{z\}) \cap \mathcal{M}_{\lambda}$ and $so c_{\lambda}(\{z\}) \cap \mathcal{M}_{\lambda}$ implies that $x \in c_{\lambda}(\{x\}) \cap c_{\lambda}(\{z\}) \cap \mathcal{M}_{\lambda}$ and $so c_{\lambda}(\{z\}) \cap \mathcal{M}_{\lambda} \neq \emptyset$. By Theorem 4.1(d), $c_{\lambda}(\{x\}) = c_{\lambda}(\{z\})$. Similarly, $c_{\lambda}(\{y\}) = c_{\lambda}(\{z\})$ and so $c_{\lambda}(\{x\}) = c_{\lambda}(\{y\})$, a contradiction. Therefore, $\wedge_{\lambda}(\{x\}) \cap \wedge_{\lambda}(\{y\}) = \emptyset$. Conversely, suppose the condition holds. Let $x, y \in X$ such that $c_{\lambda}(\{x\}) = c_{\lambda}(\{y\})$. By Lemma 4.1(i), $\wedge_{\lambda}(\{x\}) \neq \wedge_{\lambda}(\{y\})$. By hypothesis, $\wedge_{\lambda}(\{x\}) \cap \wedge_{\lambda}(\{y\}) = \emptyset$. We prove that $c_{\lambda}(\{x\}) \cap c_{\lambda}(\{y\}) = X - \mathcal{M}_{\lambda}$. Suppose $z \in \mathcal{M}_{\lambda}$ such that $z \in c_{\lambda}(\{x\}) \cap c_{\lambda}(\{z\})$ and so $\wedge_{\lambda}(\{x\}) \cap \wedge_{\lambda}(\{z\}) \neq \emptyset$. Similarly, we can prove that $\wedge_{\lambda}(\{y\}) \cap \wedge_{\lambda}(\{z\}) \neq \emptyset$. So by hypothesis, $c_{\lambda}(\{x\}) = c_{\lambda}(\{y\}) = c_{\lambda}(\{z\})$, a contradiction. Thus $c_{\lambda}(\{x\}) \cap c_{\lambda}(\{y\}) = X - \mathcal{M}_{\lambda}$. By Theorem 4.1, X is a $\lambda^* - R_0$ space.

Theorem 4.3. For a generalized space (X, μ) , the following are equivalent. (a) (X, λ) is a $\lambda^* - R_0$ space.

(b) For any nonempty subset A of \mathfrak{M}_{λ} and a λ -open set G such that $A \cap G \neq \emptyset$, there exists a λ -closed set F such that $A \cap F \neq \emptyset$ and $F \cap \mathfrak{M}_{\lambda} \subset G$.

(c) If $G \neq \emptyset$ is λ -open, then $G = \bigcup \{F \cap \mathcal{M}_{\lambda} \mid F \cap \mathcal{M}_{\lambda} \subset G \text{ and } F \text{ is } \lambda - closed \}$.

(d) If F is λ -closed, then $F = \cap \{G \cup (X - \mathcal{M}_{\lambda}) \mid F \subset G \cup (X - \mathcal{M}_{\lambda}) \text{ and } G \text{ is } \lambda$ -open}.

(e) For every $x \in \mathfrak{M}_{\lambda}$, $c_{\lambda}(\{x\}) \cap \mathfrak{M}_{\lambda} \subset \wedge_{\lambda}(\{x\})$.

Proof: (a) \Rightarrow (b). Suppose (X, λ) is a $\lambda^* - R_0$ space. Let A be a nonempty subset of \mathcal{M}_{λ} and G be a λ -open set such that $A \cap G \neq \emptyset$. If $x \in A \cap G$, then $x \in G$ and so by hypothesis, $c_{\lambda}(\{x\}) \cap \mathcal{M}_{\lambda} \subset G$. If $F = c_{\lambda}(\{x\})$, then F is the required λ -closed set such that $A \cap F \neq \emptyset$ and $F \cap \mathcal{M}_{\lambda} \subset G$.

(b) \Rightarrow (c). Let G be λ -open. Clearly, $G \supset \cup \{F \cap \mathcal{M}_{\lambda} \mid F \cap \mathcal{M}_{\lambda} \subset G \text{ and } F \text{ is}$

 λ -closed}. If $x \in G$, then $\{x\} \cap G \neq \emptyset$ and so by (b), there is a λ -closed set F such that $\{x\} \cap F \neq \emptyset$ and $F \cap \mathcal{M}_{\lambda} \subset G$ which implies that $x \in \bigcup \{F \cap \mathcal{M}_{\lambda} \mid F \cap \mathcal{M}_{\lambda} \subset G$ and F is λ -closed}. Therefore, $G \subset \bigcup \{F \cap \mathcal{M}_{\lambda} \mid F \cap \mathcal{M}_{\lambda} \subset G$ and F is λ -closed}. This completes the proof.

(c) \Rightarrow (d). Let F be λ -closed. By (c), $X - F = \bigcup \{K \cap \mathcal{M}_{\lambda} \mid F \subset (X - K) \cup (X - \mathcal{M}_{\lambda})$ and K is λ -closed and so $F = \cap \{(X - K) \cup (X - \mathcal{M}_{\lambda}) \mid F \subset (X - K) \cup (X - \mathcal{M}_{\lambda})$ and X - K is λ -open $\} = \cap \{G \cup (X - \mathcal{M}_{\lambda}) \mid F \subset G \cup (X - \mathcal{M}_{\lambda}) \text{ and } G$ is λ -open $\}$. (d) \Rightarrow (e). Let $x \in \mathcal{M}_{\lambda}$. If $y \notin \wedge_{\lambda}(\{x\})$, then by Lemma 3.1(g), $\{x\} \cap c_{\lambda}(\{y\}) = \emptyset$. By (d), $c_{\lambda}(\{y\}) = \cap \{G \cup (X - \mathcal{M}_{\lambda}) \mid c_{\lambda}(\{y\}) \subset G \cup (X - \mathcal{M}_{\lambda}) \text{ and } G \text{ is } \lambda$ -open $\}$. Therefore, there is a λ -open G such that $c_{\lambda}(\{y\}) \subset G \cup (X - \mathcal{M}_{\lambda})$ and $x \notin G$ which implies that $y \notin c_{\lambda}(\{x\})$. Therefore, $c_{\lambda}(\{x\}) \subset \wedge_{\lambda}(\{x\})$.

(e) \Rightarrow (a). Let G be a λ -open set such that $x \in G$. If $y \in c_{\lambda}(\{x\}) \cap \mathcal{M}_{\lambda}$, then by (e), $y \in \wedge_{\lambda}(\{x\})$. Since $\wedge_{\lambda}(\{x\}) \subset \wedge_{\lambda}(G) = G$, $y \in G$ and it follows that $c_{\lambda}(\{x\}) \cap \mathcal{M}_{\lambda} \subset G$. Hence (X, λ) is a $\lambda^{*} - R_{0}$ space. \Box

Corollary 4.3A. For a generalized space (X, μ) , the following are equivalent. (a) (X, λ) is a $\lambda^* - R_0$ space. (b) For every $x \in \mathcal{M}_{\lambda}$, $c_{\lambda}(\{x\}) \cap \mathcal{M}_{\lambda} = \wedge_{\lambda}(\{x\})$.

Proof: (a) \Rightarrow (b). Let $x \in \mathcal{M}_{\lambda}$. By Theorem 4.3, $c_{\lambda}(\{x\}) \cap \mathcal{M}_{\lambda} \subset \wedge_{\lambda}(\{x\})$. To prove the converse, assume that $y \in \wedge_{\lambda}(\{x\})$. By Lemma 4.1(h), $x \in c_{\lambda}(\{y\}) \cap \mathcal{M}_{\lambda}$ and so $c_{\lambda}(\{x\}) \subset c_{\lambda}(\{y\})$ which implies that $c_{\lambda}(\{x\}) \cap c_{\lambda}(\{y\}) \neq X - \mathcal{M}_{\lambda}$. By Theorem 4.1, $c_{\lambda}(\{x\}) = c_{\lambda}(\{y\})$ and so $y \in c_{\lambda}(\{x\}) \cap \mathcal{M}_{\lambda}$. Hence $c_{\lambda}(\{x\}) \cap \mathcal{M}_{\lambda} = \wedge_{\lambda}(\{x\})$. (b) \Rightarrow (a). The proof follows from Theorem 4.3.

Theorem 4.4. For a generalized space (X, μ) , the following are equivalent. (a) (X, λ) is a $\lambda^* - R_0$ space. (b) For each $x, y \in \mathcal{M}_{\lambda}, x \in c_{\lambda}(\{y\}) \cap \mathcal{M}_{\lambda} \Rightarrow y \in c_{\lambda}(\{x\}) \cap \mathcal{M}_{\lambda}$.

Proof: (a) \Rightarrow (b). Suppose (X, λ) is a $\lambda^* - R_0$ space. Let $x \in c_{\lambda}(\{y\}) \cap \mathcal{M}_{\lambda}$ and G be a λ -open set containing y. By hypothesis, $y \in c_{\lambda}(\{y\}) \cap \mathcal{M}_{\lambda} \subset G$ and so $x \in G$ which implies that every open set containing y contains x. Therefore, $y \in c_{\lambda}(\{x\}) \cap \mathcal{M}_{\lambda}$.

(b) \Rightarrow (a). Let *G* be a λ -open set containing *x*. If $y \notin G$, then by hypothesis, $x \notin c_{\lambda}(\{y\}) \cap \mathcal{M}_{\lambda}$ and so $y \notin c_{\lambda}(\{x\}) \cap \mathcal{M}_{\lambda}$. Hence $c_{\lambda}(\{x\}) \cap \mathcal{M}_{\lambda} \subset G$ and so (X, λ) is a $\lambda^{\star} - R_0$ space. \Box

Theorem 4.5. For a generalized space (X, μ) , the following are equivalent. (a) (X, λ) is a $\lambda^* - R_0$ space. (b) If F is a λ -closed set, then $F \cap \mathcal{M}_{\lambda} = \wedge_{\lambda}(F \cap \mathcal{M}_{\lambda})$. (c) If F is a λ -closed set and $x \in F \cap \mathcal{M}_{\lambda}$, then $\wedge(\{x\}) \subset F \cap \mathcal{M}_{\lambda}$. (d) If $x \in \mathcal{M}_{\lambda}$, then $\wedge(\{x\}) \subset c_{\lambda}(\{x\}) \cap \mathcal{M}_{\lambda}$.

Proof: (a) \Rightarrow (b). If (X, λ) is $\lambda^* - R_0$ and F is λ -closed, by Theorem 4.3, $F = \cap \{G \cup (X - \mathcal{M}_\lambda) \mid F \subset G \cup (X - \mathcal{M}_\lambda) \text{ and } G \text{ is } \lambda \text{-open} \}$ and so $F \cap \mathcal{M}_\lambda = \cap \{G \cup (X - \mathcal{M}_\lambda) \mid F \subset G \cup (X - \mathcal{M}_\lambda) \}$

 $\cap \{G \cap \mathfrak{M}_{\lambda}) \mid F \cap \mathfrak{M}_{\lambda} \subset G \text{ and } G \text{ is } \lambda - \text{open} \} = \wedge_{\lambda} (F - \mathfrak{M}_{\lambda}).$

(b) \Rightarrow (c). Let $z \in \wedge_{\lambda}(\{x\})$. Then z is in every λ -open set containing x. Since $x \in F \cap \mathcal{M}_{\lambda}$, x is in every λ -open set containing $F \cap \mathcal{M}_{\lambda}$ and so z is in every λ -open set containing $F \cap \mathcal{M}_{\lambda}$. Therefore, $z \in \wedge_{\lambda}(F \cap \mathcal{M}_{\lambda}) = F \cap \mathcal{M}_{\lambda}$ and so $\wedge(\{x\}) \subset F \cap \mathcal{M}_{\lambda}$.

(c) \Rightarrow (d). The proof is clear.

(d) \Rightarrow (a). Let $x \in c_{\lambda}(\{y\}) \cap \mathcal{M}_{\lambda}$. By Lemma 4.1(h), $y \in \wedge_{\lambda}(\{x\})$ and so by hypothesis, $y \in c_{\lambda}(\{x\}) \cap \mathcal{M}_{\lambda}$. By Theorem 4.4, (X, λ) is a $\lambda^{*} - R_{0}$ space. \Box

The following Theorem 4.6 gives a characterization of $\lambda^* - R_1$ space.

Theorem 4.6. For a generalized space (X, μ) , the following are equivalent. (a) (X, λ) is a $\lambda^* - R_1$ space.

(b) For $x, y \in \mathfrak{M}_{\lambda}$ such that $\wedge_{\lambda}(\{x\}) \neq \wedge_{\lambda}(\{y\})$, there exist disjoint λ -open sets G and H such that $c_{\lambda}(\{x\}) \cap \mathfrak{M}_{\lambda} \subset G$ and $c_{\lambda}(\{y\}) \cap \mathfrak{M}_{\lambda} \subset H$.

Proof. (a) \Rightarrow (b). Let $x, y \in \mathcal{M}_{\lambda}$ such that $\wedge_{\lambda}(\{x\}) \neq \wedge_{\lambda}(\{y\})$. Then, by Lemma 4.1(i), $c_{\lambda}(\{x\}) \neq c_{\lambda}(\{y\})$. Since (X, λ) is a $\lambda^{\star} - R_1$ space, there exist disjoint λ -open sets G and H such that $c_{\lambda}(\{x\}) \cap \mathcal{M}_{\lambda} \subset G$ and $c_{\lambda}(\{y\}) \cap \mathcal{M}_{\lambda} \subset H$. (b) \Rightarrow (a). Let $x, y \in \mathcal{M}_{\lambda}$ such that $c_{\lambda}(\{x\}) \neq c_{\lambda}(\{y\})$. By Lemma 4.1(i), $\wedge_{\lambda}(\{x\}) \neq \wedge_{\lambda}(\{y\})$. By hypothesis, there exist disjoint λ -open sets G and H such that $c_{\lambda}(\{x\}) \cap \mathcal{M}_{\lambda} \subset G$ and $c_{\lambda}(\{y\}) \cap \mathcal{M}_{\lambda} \subset H$.

5. G_{μ} -regular generalized spaces

In [11], μg -regular spaces are defined as follows. Let (X, τ) be a topological space and μ be a generalized topology on X. (X, τ) is said to be a μg -regular space, if for each closed set F and a point $x \notin F$, there exist disjoint μ -open sets U and V such that $x \in U, F \subset V$. The space (X, τ) of Example 3.1 with the family of all generalized open sets μ , which is not strong, is not μg -regular and the space (X, τ) of Example 3.2 (resp. Example 3.3) with the family of all generalized open sets μ , which is strong, is also not μg -regular. Example 2.4(a) of [11] gives an example of a μg -regular space. A space (X, λ) is said to be a λ -regular space [10], if for each $x \in \mathcal{M}_{\lambda}$ and λ -closed set F such that $x \notin F$, there exist disjoint λ -open sets U and V such that $x \in U, F \cap \mathcal{M}_{\lambda} \subset V$. The space (X, μ) in Example 3.2 is not a μ -regular space. Spaces (X, μ) in Examples 5.1(a) and (b) below are μ -regular spaces. The following Lemma 5.1 is due to Min [10] where (c) follows from (b).

Lemma 5.1. Let (X, μ) be a generalized space. Then the following hold.

(a) (X, λ) is λ -regular if and only if for each $x \in \mathcal{M}_{\lambda}$ and λ -open set U containing x, there is a λ -open set V containing x such that $x \in V \subset c_{\lambda}(V) \cap \mathcal{M}_{\lambda} \subset U$ [10, Theorem 3.12].

(b) If (X, μ) is μ -regular, then every μ -open set is a $\delta(\mu)$ -open set [10, Theorem 3.13].

(c) If (X, μ) is μ -regular, then $\alpha(\mu) = \nu(\delta)$, $\sigma(\mu) = \xi(\delta)$, $\pi(\mu) = \eta(\delta)$, $b(\mu) = \varepsilon(\delta)$ and $\beta(\mu) = \psi(\delta)$.

Let X be a nonempty set and μ be a generalized topology on X. The space (X,μ) is said to be g_{μ} -regular if for each pair consisting of a point $x \in \mathcal{M}_{\lambda}$ and a g_{μ}^{\star} -closed set F not containing x, there exist disjoint μ -open sets U and V such that $x \in U$ and $F \subset V$. By Theorem 3.4(a), every g_{μ} -regular space is a μ -regular space and the following Example 5.1(b) shows that the converse is not true. Example 5.1(c) gives an example of a g_{λ} -regular space. Theorem 5.1 below gives a characterization of g_{λ} -regular spaces.

Example 5.1. (a) Let $X = \mathbf{R}$, the set of all real numbers and \mathbf{Z} be the set of all integers. Then $\mu = \wp(\mathbf{R} - \mathbf{Z})$ is a GT on X. Clearly, a subset G of X is μ -open if and only if $G \subset \mathbf{R} - \mathbf{Z}$ and a subset F of X is μ -closed if and only if $F \supset \mathbf{Z}$. Note that $X \notin \mu$, $c_{\mu}(A) = A \cup \mathbf{Z}$ for every subset A of X. Then (X, μ) is μ -regular.

(b) Let $X = \{a, b, c, d\}$ and $\mu = \{\emptyset, \{a\}, \{b, c\}, \{a, b, c\}\}$. The space (X, μ) is μ -regular. If $A = \{a, c\}$, then A is g_{μ}^{\star} -closed. Since b and A are not separated by disjoint μ -open sets, (X, μ) is not g_{μ} -regular.

(c) Consider the space (X, μ) of Example 3.5. Then (X, μ) is a g_{μ} -regular space. Note that this space is not strong.

Theorem 5.1. Let (X, μ) be a generalized space. Then the following are equivalent. (a) (X, λ) is g_{λ} -regular.

(b) For each g_{λ}^{\star} -open set G and $x \in G$, there exists a λ -open set U such that $x \in U \subset c_{\lambda}(U) \cap \mathcal{M}_{\lambda} \subset G$.

Proof: (a) \Rightarrow (b) Suppose (X, λ) is g_{λ} -regular. Let G be a g_{λ}^{\star} -open set containing x. Then $\mathcal{M}_{\lambda} - G$ is a g_{λ}^{\star} -closed set such that $x \notin \mathcal{M}_{\lambda} - G$. By hypothesis, there exists disjoint λ -open sets U and V such that $x \in U$ and $\mathcal{M}_{\lambda} - G \subset V$. Since $U \cap V = \emptyset, c_{\lambda}(U) \cap V = \emptyset$ and so $c_{\lambda}(U) \cap \mathcal{M}_{\lambda} \subset (X - V) \cap \mathcal{M}_{\lambda} = \mathcal{M}_{\lambda} - V \subset G$. Thus, there exists a λ -open set U such that $x \in U \subset c_{\lambda}(U) \cap \mathcal{M}_{\lambda} \subset G$.

(b) \Rightarrow (a). Suppose the condition holds. Let $x \in X$ and F be a g_{λ}^{\star} -closed set such that $x \notin F$. Then $U = \mathcal{M}_{\lambda} - F$ is a g_{λ}^{\star} -open set such that $x \in U$. By hypothesis, there exits a λ -open set V such that $x \in V \subset c_{\lambda}(V) \cap \mathcal{M}_{\lambda} \subset U$. Since $c_{\lambda}(V) \cap \mathcal{M}_{\lambda} \subset U = \mathcal{M}_{\lambda} - F$, we have $F = \mathcal{M}_{\lambda} - (\mathcal{M}_{\lambda} - F) \subset \mathcal{M}_{\lambda} - (c_{\lambda}(V) \cap \mathcal{M}_{\lambda}) =$ $\mathcal{M}_{\lambda} - c_{\lambda}(V) = G$. Then V and G are the required λ -open sets such that $x \in V$ and $F \subset G$. Therefore, (X, λ) is g_{λ} -regular.

The following Theorem 5.2 gives another characterization of g_{μ} -regular spaces.

Theorem 5.2. Let (X, μ) be a generalized space. Then the following are equivalent. (a) (X, λ) is a g_{λ} -regular space.

(b) For each g_{λ}^{\star} -closed set F and $x \notin F$, there exists λ -open sets U and V such that $x \in U$, $F \subset V$ and $c_{\lambda}(U) \cap c_{\lambda}(V) = X - \mathcal{M}_{\lambda}$.

Proof: (a) \Rightarrow (b). Let F be a g_{λ}^{\star} -closed set and $x \notin F$. Then there exists disjoint λ -open sets U and V such that $x \in U$ and $F \subset V$. Clearly, $(X - \mathcal{M}_{\lambda}) \subset c_{\lambda}(U) \cap c_{\lambda}(V)$. Moreover, $c_{\lambda}(U) \cap c_{\lambda}(V) = (c_{\lambda}(U) \cap c_{\lambda}(V)) \cap \mathcal{M}_{\lambda} \cup (X - \mathcal{M}_{\lambda})$, by Lemma 3.1(d) and so $c_{\lambda}(A) \cap c_{\lambda}(B) \supset ((U \cap V) \cap \mathcal{M}_{\lambda}) \cup (X - \mathcal{M}_{\lambda}) = \emptyset \cup (X - \mathcal{M}_{\lambda}) = X - \mathcal{M}_{\lambda}$.

40

Hence $c_{\lambda}(A) \cap c_{\lambda}(B) = X - \mathcal{M}_{\lambda}$.

(b) \Rightarrow (a). Enough to prove that if A and B are λ -open set such that $c_{\lambda}(A) \cap c_{\lambda}(B) = X - \mathcal{M}_{\lambda}$, then $A \cap B = \emptyset$. Now $\emptyset = (X - \mathcal{M}_{\lambda}) \cap \mathcal{M}_{\lambda} = (c_{\lambda}(A) \cap c_{\lambda}(B)) \cap \mathcal{M}_{\lambda} \supset (A \cap B) \cap \mathcal{M}_{\lambda} = A \cap B$ and so $A \cap B = \emptyset$. Therefore, the proof follows. \Box

The following Lemma 5.2 follows from the definitions. Corollary 5.2A below follows from Theorem 5.2 and Lemma 5.2.

Lemma 5.2. Let (X, μ) be a generalized space. Then (X, λ) is $\lambda^* - R_0$ if and only if every point of \mathfrak{M}_{λ} is g_{λ}^* -closed.

Corollary 5.2A. Let (X, λ) be an $\lambda^* - R_0$, g_{λ} -regular space. Then the following hold.

(a) For distinct points x and y of \mathfrak{M}_{λ} , there exist λ -open sets U and V such that $x \in U, y \in V$ and $c_{\lambda}(U) \cap c_{\lambda}(V) = X - \mathfrak{M}_{\lambda}$.

(b) For distinct points x and y of \mathcal{M}_{λ} , there exist disjoint λ -open sets U and V such that $x \in U$ and $y \in V$.

Let X be a nonempty set and μ be a generalized topology on X. A point x is said to be in the θ -closure of A [6], denoted by $c_{\theta(\mu)}(A)$, if $A \cap c_{\mu}(U) \neq \emptyset$ for every $x \in U \in \mu$. The following Theorem 5.3 gives characterizations of g_{λ} -regular spaces in terms of the θ -closure operator.

Theorem 5.3. Let X be a nonempty set, μ be a generalized topology on X. Then the following are equivalent.

(a) X is a g_{λ} -regular space.

(b) $c_{\theta(\lambda)}(A) \cap \mathfrak{M}_{\lambda} = \cap \{F \mid A \subset F \text{ and } F \text{ is } g_{\lambda}^{\star} - closed\}$ for every subset A of \mathfrak{M}_{λ} . (c) $c_{\theta(\lambda)}(A) \cap \mathfrak{M}_{\lambda} = A$ for every $g_{\lambda}^{\star} - closed$ set A.

Proof: (a)⇒(b). Clearly, $A \subset \cap \{F \mid A \subset F \text{ and } F \text{ is } g_{\lambda}^{\star} - \text{closed}\}$. We first prove that $\cap \{F \mid A \subset F \text{ and } F \text{ is } g_{\lambda}^{\star} - \text{closed}\} \subset c_{\theta(\lambda)}(A)$. Let $x \in \cap \{F \mid A \subset F \text{ and } F \text{ is } g_{\lambda}^{\star} - \text{closed}\}$. Suppose $x \notin c_{\theta(\lambda)}(A)$. Then there is a λ -open set U containing x such that $A \cap c_{\lambda}(U) = \emptyset$ and so $A \cap U = \emptyset$. Since X - U is a λ -closed set and hence a g_{λ}^{\star} -closed set containing $A, x \in X - U$, a contradiction. Hence $x \in c_{\theta(\lambda)}(A)$ which implies that $\cap \{F \mid A \subset F \text{ and } F \text{ is } g_{\lambda}^{\star} - \text{closed}\} \subset c_{\theta(\lambda)}(A)$. Conversely, suppose $x \notin \cap \{F \mid A \subset F \text{ and } F \text{ is } g_{\lambda}^{\star} - \text{closed}\} \subset c_{\theta(\lambda)}(A)$. Conversely, suppose $x \notin \cap \{F \mid A \subset F \text{ and } F \text{ is } g_{\lambda}^{\star} - \text{closed}\}$. Then, there exists a $g_{\lambda}^{\star} - \text{closed}$ set F such that $A \subset F$ and $x \in X - F$. Then there exists disjoint λ -open sets U and V such that $x \in U \subset c_{\lambda}(U) \subset X - V \subset X - F \subset X - A$. Hence $A \cap c_{\lambda}(U) = \emptyset$ which implies that $x \notin c_{\theta(\lambda)}(A)$. Hence it follows that $A \subset \cap \{F \mid A \subset F \text{ and } F \text{ is } g_{\lambda}^{\star} - \text{closed}\}$. Hence $\cap \{F \mid A \subset F \text{ and } F \text{ is } g_{\lambda}^{\star} - \text{closed}\} = c_{\theta(\lambda)}(A) \cap M_{\lambda}$. (b)⇒(c). The proof is clear.

(c) \Rightarrow (a). Let F be a g_{λ}^{\star} -closed set not containing x. Then $x \notin c_{\theta(\lambda)}(F)$. Then there exists a λ -open set U containing x such that $F \cap c_{\lambda}(U) = \emptyset$. Then U and $X - c_{\lambda}(U)$ are the required disjoint λ -open sets such that $x \in U$ and $F \subset X - c_{\lambda}(U)$. Therefore, X is a g_{λ} -regular space. \Box

V. PANKAJAM AND D. SIVARAJ

Acknowledgments

The authors sincerely thank the referee for the nice comments, suggestions and some additions to be made.

References

- 1. R. Baskaran, M. Murugalingam and D. Sivaraj, Separated sets in generalized topological spaces, J. Adv. Res. Pure Maths., 2(1) 74 83, (2010), DOI: 10.5373/jarpm.280.110209.
- Á. Császár, Generalized Open Sets, Acta Math. Hungar., 75(1-2), 65 87, (1997), DOI: 10.1023/A:1006582718102.
- Á. Császár, Generalized topology, generalized continuity, Acta Math. Hungar., 96, 351 357, (2002), DOI: 10.1023/A:1019713018007.
- Á. Császár, Generalized open sets in generalized topologies, Acta Math. Hungar., 106, 53 -66, (2005), DOI: 10.1007/s10474-005-0005-5.
- 5. Á. Császár, Further remarks on the formula for $\gamma-interior,$ Acta Math. Hungar., 113, 325 332, (2006), DOI: 10.1007/s10474-006-0109-6.
- Á. Császár, δ- and θ-modifications of generalized topologies, Acta Math. Hungar., 120(3), 275 - 279, (2008), DOI: 10.1007/s10474-007-7136-9.
- 7. A. Guldurdek and O. B. Ozbakir, $On \, \gamma-semi-open \, sets,$ Acta Math. Hungar.,109 (4), 347-355, (2005), DOI: 10.1007/s10474-005-0252-5.
- N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo(2)., 19, 89 96, (1970).
- S. Maragathavalli, M. Sheik John and D. Sivaraj, On g-closed sets in generalized topological spaces, J. Adv. Res. Pure Maths., 2(1), 57 - 64, (2010), DOI: 10.5373/jarpm.243.102109.
- 10. W.K. Min, (δ, δ') -continuity on generalized topological spaces, Acta Math. Hungar, 129(4), 350-356, (2010), DOI: 10.1007/s10474-010-0036-4.
- 11. T. Noiri and B. Roy, Unification of generalized open sets on topological spaces, Acta Math. Hungar., 130(4), 349 357, (2011), DOI: 10.1007/s10474-010-0010-1.
- 12. B. Roy, On generalized R_0 and R_1 spaces, Acta Math. Hungar., 127(3), 291-300, (2010), DOI: 10.1007/s10474-009-9135-5.
- M.S. Sarsak, Weak separation axioms in generalized topological spaces, Acta Math. Hungar., 131(1-2), 110 - 121, (2011), DOI: 10.1007/s10474-010-0017-7.
- 14. P. Sivagami, Remarks on $\gamma-interior,$ Acta Math. Hungar., 119, 81 94, (2008), DOI: 10.1007/s10474-007-7007-4.
- 15. P. Sivagami and D. Sivaraj, ∨ and ∧-sets of generalized topologies, Sciencia Magna, 5(1), 83 93, (2009).

D. Sivaraj Department of Mathematics, G.K.M College of Engineering and Technology, Tamil Nadu - 600 063, India E-mail address: ttn_sivaraj@yahoo.co.in