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Abstract. Prochlorococcus, Synechococcus, picophy-
toeukaryotes and bacterioplankton abundances and contribu-
tions to the total particulate organic carbon concentration,
derived from the total particle beam attenuation coefficient
(cp), were determined across the eastern South Pacific be-
tween the Marquesas Islands and the coast of Chile. All
flow cytometrically derived abundances decreased towards
the hyper-oligotrophic centre of the gyre and were highest
at the coast, except forProchlorococcus, which was not de-
tected under eutrophic conditions. Temperature and nutri-
ent availability appeared important in modulating picophyto-
plankton abundance, according to the prevailing trophic con-
ditions. Although the non-vegetal particles tended to domi-
nate thecp signal everywhere along the transect (50 to 83%),
this dominance seemed to weaken from oligo- to eutrophic
conditions, the contributions by vegetal and non-vegetal par-
ticles being about equal under mature upwelling conditions.
Spatial variability in the vegetal compartment was more im-
portant than the non-vegetal one in shaping the water col-
umn particle beam attenuation coefficient. Spatial variabil-
ity in picophytoplankton biomass could be traced by changes
in both total chlorophylla (i.e. mono + divinyl chlorophyll
a) concentration andcp. Finally, picophytoeukaryotes con-
tributed∼38% on average to the total integrated phytoplank-
ton carbon biomass or vegetal attenuation signal along the
transect, as determined by size measurements (i.e. equiva-
lent spherical diameter) on cells sorted by flow cytometry
and optical theory. Although there are some uncertainties as-
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sociated with these estimates, the new approach used in this
work further supports the idea that picophytoeukaryotes play
a dominant role in carbon cycling in the upper open ocean,
even under hyper-oligotrophic conditions.

1 Introduction

Global estimates indicate that about half of the Earth’s pri-
mary production (PP) takes place in the ocean (Field et
al., 1998). Of a mean global marine PP of 50.7 Gt C
y−1 estimated through ocean-colour-based models (Carr et
al., 2006), 86% would occur in the open ocean (Chen et
al., 2003). Here the photosynthetic biomass is dominated
by three main picophytoplanktonic (<2–3µm) groups (e.g.
Li, 1995): cyanobacteria of the generaProchlorococcus
(Chisholm et al., 1988) andSynechococcus(Waterbury et al.,
1979), and eukaryotes belonging to diverse taxa (Moon-van
der Staay et al., 2001).

Although cyanobacteria, especiallyProchlorococcus(Li
and Wood, 1988; Chisholm et al., 1988), tend to dominate
in terms of numerical abundance, it has been shown that eu-
karyotic phytoplankton (usually<3.4µm) dominates the ul-
traplankton (<5µm) photosynthetic biomass in the northern
Sargasso Sea (Li et al., 1992) and in the eastern Mediter-
ranean Sea (Li et al., 1993). Across the North and South
Atlantic Subtropical Gyres (Zubkov et al., 1998, 2000) and
eastern South Pacific (Grob et al., 2007) picophytoeukary-
otes also constituted a considerable fraction of the picophy-
toplanktonic carbon biomass.
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Using flow cytometry cell sorting combined with14C mea-
surements, Li (1994) made the only simultaneous group-
specific primary production rates measurements available so
far in the literature forProchlorococcus, Synechococcusand
picophytoeukaryotes. Even though he could only apply this
methodology at three different stations in the North Atlantic
Ocean and at a single depth per station, this author’s results
showed that picophytoeukaryotes contribution to picophyto-
plankton primary production increased as theProchlorococ-
cus to picophytoeukrayotes abundances ratio decreased. At
a coastal Pacific site in the Southern California Bight, on
the other hand, Worden et al. (2004) reported that picophy-
toeukaryotes had the highest picophytoplankton growth rates
and contributions to the net community production and car-
bon biomass on annual bases.

Picophytoeukaryotes can therefore make a significant con-
tribution to the picophytoplanktonic PP and carbon biomass
(see above). Carbon being the universal currency in marine
ecological modelling, looking inside the pico-autotrophic
“black box” to determine the distribution of carbon biomass
among the different groups becomes fundamental to better
understand the respective role of these groups in the global
carbon cycle. Recent biogeochemical models have made
a significant step forward on this subject by incorporating
not only different plankton functional types, but also differ-
ent groups within these functional types (e.g. cyanobacteria,
picophytoeukaryotes, nitrogen fixers) in order to reproduce
some of the ecosystem’s variability (e.g. Bisset et al., 1999;
Le Qúeŕe et al., 2005). Different picophytoplanktonic groups
have different physiological characteristics such as optimal
specific rates of photosynthesis, adaptation to light, pho-
tosynthetic efficiencies and maximum specific growth rates
(Veldhuis et al., 2005, and references therein). Knowing
where one group dominates over the others could therefore
help choosing the appropriate physiological parameters to
estimate PP from surface chlorophylla concentrations re-
trieved from space and improve such estimates at the large
scale.

The measurement of the particle beam attenuation coef-
ficient (cp) has proven to be a very powerful tool in deter-
mining particle load and particulate organic carbon (POC)
concentrations at the global (e.g. Gardner, 2006) as well as
at the regional scale (e.g. Claustre et al., 1999; Oubelkheir
et al., 2005). High frequency measurements ofcp signal can
also be used to derive rates of change in particulate organic
stocks like gross and net community production (Claustre
et al., 2007). In situcp profiles associated with the si-
multaneous cytometric determination of the different phyto-
planktonic groups and bacterioplankton (Bacteria + Archaea)
abundances have the potential to allow the estimation of the
contribution of these groups to the bulkcp, and hence to
POC. Group-specific contributions to POC can therefore be
estimated from their contributions tocp. In the equatorial Pa-
cific, for instance, picophytoeukaryotic cells would dominate
the vegetal contribution tocp (Chung et al., 1996; DuRand

and Olson, 1996; Claustre et al., 1999). These estimations
require however that the mean cell size and refractive index
of each group are known or at least assumed (Claustre et al.,
1999, and references therein). Total and group-specific beam
attenuation coefficients can be obtained at relatively short
time scales, but also have the advantage of being amenable
to large scale in situ surveys on carbon stocks and cycling,
and even to global estimation, since bulk oceanic bio-optical
properties can be retrieved from space (e.g. Gardner, 2006).

In the present work we tried to answer the following ques-
tions: (1) What is the contribution of the different picoplank-
tonic groups to POC in the upper ocean? and (2) How does
the spatial variability in these group’s contributions influence
the spatial changes in POC in the upper ocean? For this,
we studied the waters of the eastern South Pacific, which
present an extreme gradient in trophic conditions, from the
hyper-oligotrophic waters of the central gyre to the eutrophic
coastal upwelling waters off South America. Using flow cy-
tometry cell sorting we were able to isolate different pico-
phytoplankton populations in situ to obtain their mean cell
sizes (as equivalent spherical diameters), which allowed us to
improve estimations on the group-specific attenuation coeffi-
cients, and therefore on group-specific contributions to POC.

2 Methods

A total of 24 stations were sampled between the Mar-
quesas Islands (∼8.4◦ S; 141.2◦ W) and the coast of Chile
(∼34.6◦ S; 72.4◦ W) during the French expedition BIOSOPE
(BIogeochemistry and Optics SOuth Pacific Experiment)
in austral spring time (26 October to 11 December 2004)
(Fig. 1). Temperature, salinity and oxygen profiles were
obtained with a conductivity-temperature-depth-oxygen pro-
filer (CTDO, Seabird 911 Plus). Nutrient concentrations (ni-
trate, nitrite, ammonium, phosphate and silicate) were de-
termined onboard (see Raimbault et al., 2007). Pigment
concentrations from noon profiles (local time) were de-
termined using High Performance Liquid Chromatography
(HPLC). For HPLC analyses, water samples were vacuum
filtered through 25 mm diameter and 0.7µm porosity What-
man GF/F glass fibre filters (see Ras et al., 2007), where on
average 97% ofProchlorococcuscells are retained (Chavez
et al., 1995). The above implies a maximum error of 3% on
the total divinyl-chlorophylla concentrations (dv-chla, pig-
ment that is specific only to this group) determined using this
technique. Daily integrated surface total irradiance was de-
termined from on-board calibrated measurements.

All stations reported here were sampled at local noon time
at 6 to 14 different depths from the surface down to 300 m
(Fig. 1). The position of the deepest sampling depth was es-
tablished relative to the position of the bottom of the photic
layer, Ze (m) defined as the depth where the irradiance is
reduced to 1% of its surface value. Five stations of very dif-
ferent trophic conditions, here referred to as long stations,
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Fig. 1. BIOSOPE transect. In this study we include data from sta-
tions 1–8, 11–15 and 17–21, MAR, HNL, GYR, EGY, UPW (W)
and UPX (X).

were also sampled at high frequency (i.e. every 3 h) during
2 to 4 days: (1) mesotrophic (MAR, Marquesas Islands), (2)
high nutrient-low chlorophyll (HNL,∼9.0◦ S and 136.9◦ W),
(3) hyper-oligotrophic (GYR,∼26.0◦ S and 114.0◦ W), (4)
oligotrophic (EGY,∼31.8◦ S and 91.5◦ W) and (5) eutrophic
(UPW, highly productive upwelling region,∼34.0◦ S and
73.3◦ W) (Fig. 1). The coastal-most station (UPX) was addi-
tionally sampled to compare it with UPW’s upwelling condi-
tion (Fig. 1).

Our results are presented in terms of oligo-, meso- and eu-
trophic conditions according to surface total chlorophylla

concentrations (Tchla, chlorophyll a + divinyl chlorophyll
a) of ≤0.1,>0.1 and≤1, and>1 mg m−3, respectively (An-
toine et al., 1996). This division has been used to characterize
the trophic status of the ocean from space and we consider it
as appropriate to describe the large spatial patterns investi-
gated during the BIOSOPE cruise.

2.1 Picoplankton analyses

Prochlorococcus, Synechococcusand picophytoeukaryotes
abundances were determined on fresh samples on board with
a FACSCalibur (Becton Dickinson) flow cytometer. For bac-
terioplankton counts (Bacteria + Archaea), samples fixed
either with paraformaldehyde at 1% or glutaraldehyde at
0.1% final concentration and quick-frozen in liquid nitro-
gen were stained with SYBR-Green I (Molecular Probes)
and run in the same flow cytometer within two months af-
ter the end of the cruise. Reference beads (Fluoresbrite YG
Microspheres, calibration grade 1.00µm, Polysciences, Inc)
were added to each sample before acquiring the data with
the Cell Quest Pro software (Becton Dickinson) in logarith-
mic mode (256 channels). During data acquisition, between
5×103 and 300×103 events were registered in order to count
at least 500 cells for each picoplanktonic group. The er-
ror associated with abundances determined using flow cy-
tometry is ≤5% (D. Marie, unpublished data). The data

Fig. 2. Prochlorococcusintracellular dv-chla content (fg cell−1)
as a function of the percentage of surface irradiance at MAR (filled
circles) and the rest of the transect (empty circles). Dashed line in-
dicates the average surface intracellular dv-chla content established
at 0.23 fg cell−1.

were then analysed with the Cytowin software (Vaulot, 1989)
to separate the picoplanktonic populations based on their
scattering and fluorescence signals, according to Marie et
al. (2000) (see Supp. Mat.:www.biogeosciences.net/4/837/
2007/bg-4-837-2007-supplement.pdf).

SurfaceProchlorococcusabundance for weakly fluores-
cent populations (i.e.∼7% of total samples) was estimated
by fitting a Gaussian curve to the data using Cytowin. When
their fluorescence was too dim to fit the curve (e.g. sur-
face and sub-surface samples at the center of the gyre) their
abundance was estimated from dv-chla concentrations by
assuming an intracellular pigment content of 0.23 fg cell−1

(see Supp. Mat.). This intracellular dv-chla content corre-
sponds to the mean value obtained for cells in the surface
layer (above∼5% of surface light) by dividing the HPLC-
determined dv-chla by the cell number estimated from flow
cytometry, considering all but the MAR data (Fig. 2). At the
GYR station,Synechococcusand picophytoeukaryotes abun-
dances above 100 m were only available for the first morning
profile (samples taken above 90 m for the other GYR pro-
files are unfortunately not available). This profile showed
that both groups’ abundances were homogeneous over the
first 100 m, so we assumed the abundances measured at 90–
100 m to be representative of the abundances within the 0–
100 m layer. All picoplankton abundances were then inte-
grated from the surface to 1.5 Ze rather than to Ze, because
deep chlorophyll maxima (DCM) were observed between
these two depths at the center of the gyre.
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Fig. 3. Log-log relationships established between the flow cyto-
metric forward scatter signal (FSC), expressed in units relative to
reference beads (relative units, r.u.), and mean cell size inµm (a)
and intracellular carbon (C) content in fig cell−1 (b). In (a), mean
cell sizes measured on natural populations isolated in situ (empty
circles) as well as on populations from culture (filled circles) are
included. Mean intracellular carbon contents in (b) were obtained
from culture cells. Carbon measurements were performed on tripli-
cate with≤5% of standard deviation.∗∗ indicatesp<0.0001.

In order to establish a relationship between ac-
tual sizes (i.e. mean cell sizes actually measured) and
the mean forward scatter cytometric signal normal-
ized to the reference beads (FSC in relative units,
r.u.; see Supp. Mat.:www.biogeosciences.net/4/837/2007/
bg-4-837-2007-supplement.pdf), in situ Prochlorococcus,
Synechococcusand picophytoeukaryotes populations were
sorted separately on board with a FACS Aria flow cytometer
(Becton Dickinson). Each sorted population was then anal-
ysed with a Multisizer 3 Coulter Counter (Beckman Coulter)
for size (µm) and with the FACS Calibur flow cytometer for
FSC. SeveralSynechococcusand picophytoeukaryotes pop-
ulations isolated in situ could be measured with the Coul-
ter Counter.Prochlorococcussize, on the other hand, could
only be determined for one population because they were
at the detection limit of the instrument. A similar analysis
was performed on monospecific cultures of various picophy-
toplankton species (without pre-sorting) to combine both in
situ and laboratory measurements to establish a log-log poly-
nomial relationship between FSC and size (Fig. 3a). We be-
lieve that even though the left-most end of the fitted curve is
driven by a sole data point, it is still very useful to the re-
lationship because it represents the actual mean cell size of
a naturalProchlorococcuspopulation (i.e. 0.59µm), corre-
sponding to a mean FSC of 0.02 r.u. Based on this relation-
ship established within the picophytoplankton size range, we
calculated the upper size limit for the FSC settings we used
during the whole cruise at 3µm (i.e. FSC=0.88 r.u.).

Also using culture cells, we established a direct relation-
ship between the mean cytometric FSC signal and intracel-
lular carbon content to estimateSynechococcusand pico-
phytoeukaryotes carbon biomass (Fig. 3b). To obtain in-
tracellular carbon contents, a known volume of each cul-

ture population was filtered onto GF/F filters previously pre-
combusted at 400◦C, in triplicate. One blank filter per cul-
ture was put aside to be used as control. The number of
phytoplankton and contaminating bacterioplankton cells re-
tained in and passing through the filters were determined us-
ing flow cytometry (see Supp. Mat.:www.biogeosciences.
net/4/837/2007/bg-4-837-2007-supplement.pdf). The filters
were then dried at 60◦C for 24 h, fumigated with concen-
trated chlorhydric acid for 6 to 8 h to remove inorganic
carbon and dried again for 6 to 8 h. Each filter was fi-
nally put in a tin capsule and analysed with a Carbon-
Hydrogen-Nitrogen (CHN) autoanalyzer (Thermo Finnigan,
Flash EA 1112) (see Supp. Mat.:www.biogeosciences.net/4/
837/2007/bg-4-837-2007-supplement.pdf). Carbon contents
were estimated based on a calibration curve performed using
Acetanilide.

Considering both size and carbon content derived from
FSC, a conversion factor (in fgCµm−3) was established for
Synechococcusand then applied to the mean cell size esti-
mated forProchlorococcusto obtain the intracellular carbon
content of that group. Picophytoplankton carbon biomass
was then calculated by multiplying cell abundance and in-
tracellular carbon content for each group.

2.2 Beam attenuation coefficients specific for each pi-
coplankton group

Profiles of the total particle beam attenuation coefficient at
660 nm (cp, m−1), a proxy for POC (e.g. Claustre et al.,
1999), were obtained with a C-Star transmissometer (Wet
Labs, Inc.) attached to the CTD rosette. Procedures for
data treatment and validation have been described elsewhere
(Loisel and Morel, 1998; Claustre et al., 1999). Inherent
optical properties of sea water (IOP’s), such ascp, depend
exclusively on the medium and the different substances in
it (Preisendorfer, 1961). The vegetal (cveg) and non-vegetal
(cnveg) contribution (Eq. 1) to the particle beam attenuation
coefficient can therefore be expressed as

cp = cveg + cnveg (1)

whereas theProchlorococcus(cproc), Synechococcus(csyn),
picophytoeukaryotes (ceuk) and larger phytoplankton
(>3µm, clarge) contribution to the vegetal signal (Eq. 2) can
be described by

cveg = cproc + csyn + ceuk + clarge (2)

Bacterioplankton (cbact), heterotrophs (chet) and detritus (cdet
= non living particles) contribute to the non-vegetal compo-
nent (Eq. 3) as follows,

cnveg = cp − cveg

= cbact+ chet + cdet

= cbact+ 2cbact+ cdet

= 3cbact+ cdet (3)

Biogeosciences, 4, 837–852, 2007 www.biogeosciences.net/4/837/2007/

www.biogeosciences.net/4/837/2007/bg-4-837-2007-supplement.pdf
www.biogeosciences.net/4/837/2007/bg-4-837-2007-supplement.pdf
www.biogeosciences.net/4/837/2007/bg-4-837-2007-supplement.pdf
www.biogeosciences.net/4/837/2007/bg-4-837-2007-supplement.pdf
www.biogeosciences.net/4/837/2007/bg-4-837-2007-supplement.pdf
www.biogeosciences.net/4/837/2007/bg-4-837-2007-supplement.pdf


C. Grob et al.: Picoplankton in the eastern South Pacific 841

wherechet is assumed to be approximately 2cbact (Morel and
Ahn, 1991). This assumption was adopted in order to be
able to estimate the fraction of total particulate organic car-
bon corresponding to detritus, which is the group of particles
contributing tocp that is not directly measured, i.e. the unac-
countedcp (see below; Eq. 4).

Since particulate absorption is negligible at 660 nm (Loisel
and Morel, 1998), beam attenuation and scattering are equiv-
alent, so we can estimatecproc, csyn, ceuk, clarge and cbact
by determining the group-specific scattering coefficientsbi

(m−1)=Ni [si Qbi ], where i = proc, syn, euk, large or
bact. We used flow cytometry to retrieve both picophy-
toplankton cell abundance (Ni , cells m−3) and mean cell
sizes (through FSC, see Sect. 2.1). Mean geometrical cross
sections (s, m2 cell−1) were calculated from size, while
Qbi (660), the optical efficiency factors (dimensionless),
were computed through the anomalous diffraction approx-
imation (Van de Hulst, 1957) assuming a refractive in-
dex of 1.05 for all groups (Claustre et al., 1999). For
ProchlorococcusandSynechococcuswe used mean sizes ob-
tained from a few samples, whereas for the picophytoeukary-
otes we used the mean cell size estimated for each sam-
ple (see Supp. Mat.:www.biogeosciences.net/4/837/2007/
bg-4-837-2007-supplement.pdf). For samples where pico-
phytoeukaryotes abundance was too low to determine their
size we used the nearest sample value, i.e. the mean cell size
estimated for the sample taken immediately above or below
the missing one. This approximation was applied to∼26% of
the samples and although it may seem a large fraction, it cor-
responds mostly to deep samples where cell abundance was
very low. Low cell abundances will result in low biomasses
and it is therefore unlikely that the error associated with this
approximation will introduce important errors in the carbon
biomass estimates. For bacterioplankton we used a value of
0.5µm, as used by Claustre et al. (1999). Finally, oncecveg,
cbact and thereforechet are determined,cdet is obtained di-
rectly by difference (Eq. 4).

cdet = cnveg− cbact− chet

= cnveg− cbact− 2cbact

= cnveg− 3cbact (4)

Contributions to cp by larger phytoplanktonic cells in
the western and eastern part of the transect were es-
timated by assuming that peaks larger than 3µm in
the particle size distribution data obtained either with
the Coulter Counter or with a HIAC optical counter
(Royco; Pacific Scientific) corresponded to autotrophic or-
ganisms (see Supp. Mat.:www.biogeosciences.net/4/837/
2007/bg-4-837-2007-supplement.pdf). Coulter Counter data
were only available for 1 (surface samples,≤5 m) to 3 dif-
ferent depths. Thus, in order to obtain water column pro-
files for MAR, HNL, EGY and UPW, the estimatedclarge
were extrapolated by assumingclarge=0 at the depth where
no peak>3µm was detected (usually below 50 m). When

only surface data were available,clarge was assumed to be
negligible at the depth where chlorophyll fluorescence be-
came lower than the surface one. Group-specific attenuation
signals were integrated from the surface down to 1.5 Ze (wa-
ter column,c0−1.5 Ze) and from the surface to 50 m (surface
layer,c0−50 m) to estimate their contribution to integratedcp.

Finally, cp(660) was converted to particulate organic car-
bon (POC) by using the empirical relationship established by
Claustre et al. (1999) for the tropical Pacific (Eq. 5), which
has proven to be valid as part of BIOSOPE (see Stramski et
al., 2007).

POC(mg m−3)=cp(m
−1) × 500(mg m−2) (5)

Through the above relationshipcp explains∼92% of the vari-
ance in POC concentration (Claustre et al., 1999). To eval-
uate the ability of Tchla andcp to trace spatial changes in
picophytoplankton biomass along the transect, we used local
noon time data within the integration depth (0 to 1.5 Ze) from
the stations where no large phytoplankton cells were detected
with the particle counters (Coulter or HIAC), i.e. stations 3
to 15+GYR. We chose these stations because we do not have
intracellular carbon content data for larger cells to include in
the photosynthetic carbon biomass estimates.

3 Results

The sampled transect included South Pacific Tropical Wa-
ters (SPTW), with a clear salinity maximum extending from
the surface down to 150 m between HNL and GYR, East-
ern South Pacific Central Waters (ESPCW) characterized by
salinities of 34.5 to 36 (Fig. 4a) and temperatures of 15 to
20◦C at the centre of the gyre (GYR to EGY) and colder and
fresher waters at the Chilean coast (Claustre et al., 2007).
Limits between oligo-, meso- and eutrophic conditions were
set at 133, 89 and 74.5◦ W according to the measured sur-
face chlorophylla concentrations, as explained above. Un-
der oligotrophic conditions nitrate concentrations were close
to 0µM or undetectable between the surface and 150–200 m,
and still very low (∼2.5µM) between the latter depth and
1.5 Ze (Fig. 4b). Expectedly, nutrient concentrations were
higher under mesotrophic conditions and highest near the
coast (see Raimbault et al., 2007), whereas phosphate was
never a limiting factor (Moutin et al., 2007).

The hyper-oligotrophic centre of the South Pacific Sub-
tropical Gyre (SPSG), i.e. the clearest waters of the world’s
ocean (Morel et al., 2007), was characterized by extremely
low surface Tchla concentrations (<0.03 mg m−3; see Ras
et al., 2007) and undetectable nutrient levels (see Raimbault
et al., 2007), greatly differing from the Marquesas Islands’
mesotrophic conditions and the typical High Nutrient – Low
Chlorophyll situation (i.e. HNL) encountered at the borders
of the gyre, and the upwelling conditions observed at the
coast.

www.biogeosciences.net/4/837/2007/ Biogeosciences, 4, 837–852, 2007

www.biogeosciences.net/4/837/2007/bg-4-837-2007-supplement.pdf
www.biogeosciences.net/4/837/2007/bg-4-837-2007-supplement.pdf
www.biogeosciences.net/4/837/2007/bg-4-837-2007-supplement.pdf
www.biogeosciences.net/4/837/2007/bg-4-837-2007-supplement.pdf


842 C. Grob et al.: Picoplankton in the eastern South Pacific

Salinity

Nitrate concentration ( )
-1

µmol L

Total particle beam attenuation coefficient (m )
-1

Total chlorophyll concentration (mg m )a
-3

D
e
p
th

(d
b
)

D
e
p
th

(d
b
)

D
e
p
th

(d
b
)

D
e
p
th

(d
b
)

Longitude (ºW)

M O M E

(a)

(b)

(d)

(c)

Prochlorococcus abundance (x 10 cells ml )
3 -1

Synechococcus abundance (x 10 cells ml )
3 -1

Picophytoeukaryotes abundance (x 10 cells ml )
3 -1

Bacterioplankton abundance (x 10 cells ml )
3 -1

Longitude (ºW)

D
e
p
th

(d
b
)

D
e
p
th

(d
b
)

D
e
p
th

(d
b
)

D
e
p
th

(d
b
)

M O M E

(e)

(f)

(g)

(h)
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Horizontal black dashed line corresponds to the depth of the 1.5 Ze. Black dashed square in (e) indicates whereProchlorococcusabundances
were estimated from dv-chla concentration.

3.1 Picoplankton numerical abundance

All groups’ abundances tended to decrease towards the centre
of the gyre.Prochlorococcuswas highest at the western (up
to 300×103 cells ml−1 around 50 m, associated with SPTW)
and eastern (up to 200×103 cells ml−1 in the 50 to 100 m
layer) borders of the oligotrophic region (Fig. 4e). Peaks in
Synechococcus(up to 190×103 cells ml−1; Fig. 4f), pico-
phytoeukaryotes (10–70×103 cells ml−1; Fig. 4g) and bac-
terioplankton abundances (up to 2×106 cells ml−1; Fig. 4h)
were registered near the coast. DeepProchlorococcus
(100–150×103 cells ml−1 between 50 and 200 m; Fig. 4e)
and picophytoeukaryotes (∼2×103 cells ml−1 between 150

and 200 m; Fig. 4g) maxima were recorded at the centre
of the gyre following the pattern of Tchla concentrations
(∼0.15 mg m−3; Fig. 4d), above the deep chlorophyll maxi-
mum (DCM) for the former and within the DCM depth range
for the latter (Figs. 4e and g).Synechococcusreached lower
depth ranges than the rest of the groups everywhere along the
transect (Fig. 4f). In terms of chlorophyll biomass, the im-
portance of the DCM at the centre of the gyre is highlighted
when comparing the surface-to-DCM average ratios for the
different long stations: 0.67±0.13 at MAR, 0.44±0.04 at
HNL, 0.12±0.02 at GYR and 0.27±0.02 at EGY.

Water column integrated picoplankton abundance (0 to
1.5 Ze) was strongly dominated by bacterioplankton along
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Fig. 5. Prochlorococcus(a), and bacterioplankton(b) integrated
abundances (0 to 1.5 Ze,×1011 cells m−2) as a function of sur-
face temperature, which was representative of the general eastward
decrease in water temperature within the integration depth (0 to
1.5 Ze) along the transect. Vertical lines indicate the limits estab-
lished between meso- (M), oligo- (O) and eutrophic (E) conditions.

Table 1. Correlation matrix for log integrated (0 to 1.5 Ze) pi-
coplankton abundances (Proc = Prochlorococcus, Syn = Syne-
chococcus, Euk = picophytoeukaryotes and Bact = bacterioplank-
ton; ×1011 cells m−2) and log integrated total chlorophylla
(Tchla; mg m−2), considering the entire transect. Picophytoplank-
ton =Proc+ Syn+ Euk; picoplankton =Proc+ Syn+ Euk + Bact.

Proc Syn Euk Bact Tchla

Proc 1.00 n.s n.s n.s −0.42∗

Syn – 1.00 0.68∗∗ n.s 0.82∗∗

Euk – – 1.00 n.s n.s
Bact – – – 1.00 0.46∗

Picophytoplankton – – – – 0.58∗

Picoplankton – – – – 0.61∗∗

Upper right values show correlation coefficients with their corre-
sponding level of significance:
∗∗ significance level<0.0001;∗ significance level<0.05; n.s., not
statistically significant

the whole transect (83±7% of total picoplanktonic cells),
followed byProchlorococcuswhen present (up to 27% under
oligotrophic conditions), the contributions bySynechococcus
(0.1 to 3.7%) and picophytoeukaryotes (0.2 to 3.1%) being
almost negligible. When not considering MAR,Prochloro-
coccusshowed an evident positive relationship with surface
temperature (Fig. 5a), which was representative of the gen-
eral eastward decrease in water temperature within the inte-
gration depth (0 to 1.5 Ze) along the transect (see Claustre
et al., 2007). Picophytoeukaryotes andSynechococcusabun-
dances did not follow the surface temperature trend. Bacteri-
oplankton, on the other hand, followed theProchlorococcus
pattern under oligotrophic conditions (Fig. 5b).

When considering the entire data set,Prochlorococcus
integrated abundance was negatively correlated to Tchla,
whereas bacterioplankton andSynechococcus(strongest cor-
relation) were both positively correlated to this variable (Ta-
ble 1). Bacterioplankton abundance covaried with phyto-

Fig. 6. Mean group-specific particle beam attenuation coeffi-
cients forProchlorococcus(cproc), Synechococcus(csyn), picophy-
toeukaryotes (ceuk), bacterioplankton (cbact). Insets contain the
vegetal (cveg), non-vegetal (cnveg), and total particle beam atten-
uation coefficient (cp) in m−1. For MAR (a), HNL (b), GYR (c),
EGY (d), UPW (e) and UPX(f). Note that UPW and UPX scales
are equal to each other and different from the rest. For MAR, HNL,
GYR and EGY all scale are the same except for GYR’scp, cveg and
cnveg.

plankton biomass (Table 1). Except forSynechococcusand
picophytoeukaryotes, no statistically significant correlations
were observed between picoplanktonic groups (Table 1).

3.2 Picoplankton contributions tocp, a proxy for POC

Mean pico- and large phytoplankton cell sizes used to esti-
mate the group-specific attenuation cross sections are sum-
marized in Table 2 and compared with values from the
literature. These values and the standard errors associ-
ated with them (Table 2) were obtained using the relation-
ship established between mean FSC and cell size (Fig. 3a).
The largest size difference between previous studies and
the present one was observed for the picophytoeukary-
otes (Table 2). For this group, the attenuation coefficients
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Table 2. Picoplankton mean cell size (µm), volume (µm3) and intracellular carbon content (fgC cell−1).

Group Mean cell size (µm) Mean cell volume (µm3) Intracellular carbon Reference
content (fgC cell−1)

Prochlorococcus 0.68±0.08 0.17 29±11∗∗∗ 1
0.74 0.21 – 2
0.7 0.18 – 3

0.63±0.2 0.13 29 4
Synechococcus 0.86±0.1∗ and 1.16±0.02∗∗ 0.33 and 0.82 60±19∗ and 140±9∗∗ 1

0.90 0.38 2
1.2 0.90 3

0.95±0.31 0.45 100 4
Picophytoeukaryotes 1.74±0.13 (range = 1.37 to 1.99) 2.76 730±226 (range = 257 to 1266) 1

1.26 1.05 – 2
2.28 6.21 – 3
2.35 6.8 1500 4

Large phytoplankton 3.3 (MAR) to∼20 (UPW) 18.8 to 4189 – 1
10 to 22 523.6 to 5575.28 – 2
6 to 13 113.1 to 1150.35 – 5

Bacterioplankton 0.5 0.07 – 1, 3
0.56 0.09 – 2

0.46±0.14 0.05 – 4
0.50 to 0.65 0.07 to 0.13 – 6
0.15 to 0.73 0.002 to 2 – 7

1 This study
2 Chung et al. (1998); Equatorial Pacific
3 Claustre et al. (1999); Tropical Pacific Ocean
4 Zubkov et al. (2000); North and South Atlantic Subtropical Gyres
5 Oubelkheir et al. (2005); Mediterranean Sea
6 Ulloa et al. (1992); Western North Atlantic
7 Gundersen et al. (2002); Bermuda Atlantic Time Series (BATS)
∗ For most of the transect and∗∗ for UPX, the most coastal station
∗∗∗ Obtained using the conversion factor 171±15 fg Cµm3 derived fromSynechococcus(see Sect. 2.1)

were determined by changes in both size (decreasing to-
wards the coast; see Supp. Mat.:www.biogeosciences.
net/4/837/2007/bg-4-837-2007-supplement.pdf) and abun-
dance, when considering a constant refractive index. As
a result, for instance, an average decrease in mean
cells size of 0.22µm (0.0056µm3) from MAR to HNL
(see Supp. Mat.: www.biogeosciences.net/4/837/2007/
bg-4-837-2007-supplement.pdf) counteracts the higher cell
abundance in the latter (Fig. 6g; Table 2) to modulateceuk
along the transect (Figs. 6 and 7). In the case ofProchloro-
coccus, the mean value presented in Table 2 was obtained
from samples taken at different depths along the entire tran-
sect, except at the centre of the gyre where the FSC signal
could only be retrieved at depth. Larger cell sizes for this
group were always found in deeper samples (not shown).

Along the transect, the shape and magnitude of the ver-
tical cp profiles were mainly determined by the non-vegetal
compartment, withcp andcnveg presenting the same vertical
pattern at all long stations (Fig. 6). At MAR and HNL,cp
was rather homogeneous in the top 50 m and declined be-

low this depth, whereascnveg decreased systematically with
depth (Figs. 6a and b). At GYRcp and cnveg subsurface
maxima were both observed around 100 m, these two vari-
ables being highest around 40 m at EGY (Figs. 6c and d).
Both cp andcveg tended to be lower under hyper- and olig-
otrophic conditions at the centre of the gyre and were highest
at UPW (Fig. 6). BothProchlorococcus(when present) and
picophytoeukaryotes usually presented subsurface maxima
in their attenuation coefficients (e.g. at GYR around 125 m
for the former and between 150 and 250 m for the latter;
Fig. 6c) except at UPW, whereceuk tended to decrease be-
low 30 m (Fig. 6e). UPX profiles were included to highlight
the differences observed with UPW, the other upwelling sta-
tion (Figs. 6e and f). No large phytoplankton peaks (>3µm)
were detected between Station 3 and 15, including GYR.

Total and group-specific integrated attenuation coeffi-
cients (0 to 1.5 Ze) tended all to decrease from the west-
ern side towards the center of the gyre and increased
again towards the coast (Fig. 7a). The integrated non-
vegetal attenuation coefficient (detritus + bacterioplankton
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Fig. 7. Integrated attenuation coefficients forProchlorococcus
(Proc), Proc + Synechococcus(Cyano), Cyano + picophytoeukary-
otes (Picophyto), Picophyto + nanophytoplankton (Phyto), Phyto +
bacterioplankton (Phyto + Bact), Phyto + Bact + heterotrophic pro-
tists (Phyto + Bact + Hetero) and Phyto + Bact + Hetero + detritus
(cp) in the 0 to 1.5 Ze layer(a) and the 0 to 50 m layer(c). The con-
tributions byProchlorococcus(cproc), picophytoeukaryotes (ceuk),
detritus (cdet), vegetal (cveg) and non-vegetal (cnveg) particles to the
corresponding total integrated attenuation coefficients are shown in
(b) and (d). The top black lines in (a) and (c) correspond to the
total integrated particle beam attenuation coefficient (cp, left hand
axis) and particulate organic carbon concentration (POC, right hand
axis) estimated fromcp using Claustre et al. (1999) relationship (see
Sect. 2.2; Eq. 5). M, O and E stand for meso-, oligo- and eutrophic
conditions (top of each panel). H, G, EG and W indicate HNL,
GYR, EGY and UPW stations.

+ heterotrophic organisms) was quite variable, constituting
≥70% ofc0−1.5 Ze in most of the transect, reaching the high-
est (83%) and lowest (50%) contributions at GYR and UPW,
respectively (Fig. 7b). Detritus being estimated by difference
(Eq. 4), cdet and cveg’s contributions toc0−1.5 Ze followed
a general opposite trend, presenting similar values near the
meso-oligotrophic limits (∼128 and 87◦ W) (Fig. 7b). De-
tritus contribution toc0−1.5 Ze was always≤50%, the low-
est values being associated with highest vegetal contribu-
tions (Fig. 7b). Interestingly, between the two extreme
trophic conditions encountered at GYR (hyper-oligotrophic;
see Claustre et al., 2007) and UPW (eutrophic),c0−1.5 Ze
and integratedcveg increased∼2- and 6-fold, respectively,
whereas integratedcnveg andcdet were only∼1.2- and 1.1-
fold higher at the upwelling station (Fig. 7a). Furthermore, in
terms of contribution toc0−1.5 Ze, cveg was∼3 times higher
at UPW,cnveg and cdet representing only about half of the
percentage estimated at GYR (Fig. 7b).

Fig. 8. Picophytoeukaryotes carbon biomass estimated from intra-
cellular carbon content (see Sect. 2.1) compared to that estimated by
calculatingceuk contribution tocp, the latter assumed to be equiv-
alent to POC (see Sect. 2.2). Note that both approaches gave very
similar results. 1:1 indicates the 1-to-1 line relating both estimates.

Mean integratedProchlorococcus(when present) and pi-
cophytoeukaryotes contributions toc0−1.5 Ze for the whole
transect were equivalent (9.7±4.1 and 9.4±3.8%, respec-
tively), although the latter were clearly more important un-
der mesotrophic conditions in both absolute values (Fig. 7a)
and relative terms (Fig. 7b).Synechococcusattenuation co-
efficients were too low (Fig. 7a) to contribute significantly
to cp (only 1.0±1.0% on average), so we did not include
them in Fig. 7b. Bacterioplankton attenuation coefficients
varied little along the transect and were always lower than all
phytoplankton combined (Fig. 7b). Large phytoplankton at-
tenuation coefficients were lower than that of the picophyto-
plankton (cyanobacteria and picophytoeukaryotes combined)
in the western part of the transect and higher or similar near
the coast (Fig. 7a), their contributions tocp following the
same trend (included incveg’s contribution, Fig. 7b).

When comparingc0−1.5 Ze to c0−50 m and their integrated
group-specific attenuation coefficients, it becomes clear that
not considering data below 50 m leads to very different re-
sults in most of the transect and especially at the centre of
the gyre (Figs. 7a and c). For instance, whereas at UPW
c0−1.5 Ze andc0−50 m were equivalent, the former is 2- and
the latter 13-fold higher than the corresponding GYR inte-
grated values (Figs. 7a and c). Similarly, there was a 2-fold
difference incveg’s contributions toc0−1.5 Ze andc0−50 m at
the centre of the gyre (Figs. 7b and d).
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Fig. 9. Picophytoeukaryotes contribution to the photosynthetic car-
bon biomass as derived fromceuk’s contribution tocveg by apply-
ing Eq. (5) (bio-optical method) and as obtained using intracellu-
lar carbon contents in Table 2 to estimate picophytoplankton car-
bon biomass(a). When comparing the results obtained using both
approaches, it can clearly be seen that the contributions estimated
using the intracellular carbon (C) content approach are lower than
those estimated using the bio-optical approach, with almost all data
points being below the 1-to-1 line relating both estimates(b).

3.3 Phytoplanktonic carbon biomass stocks and spatial
variability

To avoid the use of carbon conversion factors from the litera-
ture, in the present work we used two different approaches to
estimate the picophyoteukaryotes carbon biomass: (1) from
intracellular carbon content (Fig. 3b; see Sect. 2.1) and (2)
calculatingceuk contribution tocp, the latter assumed to be
equivalent to POC (see Sect. 2.2). Both approaches gave very
similar results (Fig. 8), indicating that the premise that all pi-
cophytoeukaryotic organisms have the same refractive index
(∼1.05) is valid for the sampled transect, even if we know
that this group is usually constituted by diverse taxa (Moon-
van der Staay et al., 2001). The above provides strong sup-
port for the use of optical techniques and theory to determine
picophytoeukaryotes carbon biomass, under the sole condi-
tion of using actual mean cell sizes.

The deconvolution ofcp indicates that at the centre of the
gyre (∼120.36 to 98.39◦ W or Station 7 to 14+GYR) the
photosynthetic biomass, which was dominated by picophyto-
plankton, constituted∼18% of the total integratedcp or POC
(Fig. 7b). Even more interestingly, when looking at the vege-
tal compartment alone,∼43% of this photosynthetic biomass
would correspond to the picophytoeukaryotes (Fig. 9a; filled
circles). Let us now assume that the contribution to in-
tegratedcp by all phytoplanktonic groups is representative
of their contribution to POC, as proven for the picophy-
toeukaryotes (see above). Under this assumption, picophy-
toeukaryotes would constitute 51% of the total phytoplank-
ton carbon biomass (large phytoplankton included) at MAR,
about 39% at HNL and GYR and 43% at EGY (Fig. 9a; filled
circles). At UPW, however, where mean integrated POC es-
timated fromcp (see Sect. 2.2) was∼6 g m−2 (right axis on

Fig. 7a), picophytoeukaryotes would only constitute 5% of
the photosynthetic biomass (Fig. 9a; filled circles). When
considering the whole transect, picophytoeukaryotes mean
contribution to the total photosynthetic carbon biomass (i.e.
ceuk’s mean contribution tocp) was∼38%.

Intracellular carbon contents used to estimate picophyto-
plankton biomass through the relationship established with
FSC (Fig. 3b) are given in Table 2. Contributions to POC
by ProchlorococcusandSynechococcuswere∼1.7 and 1.5
times higher when estimated using this approach rather than
attenuation coefficients (not shown). Using these higher val-
ues for cyanobacteria and assuming that the contribution
by large phytoplankton is equivalent toclarge’s contribution
to cp, picophytoeukaryotes mean contribution to the total
photosynthetic carbon biomass along the transect would be
∼30%, representing∼28 instead of 43% at the centre of the
gyre (Fig. 9a; empty circles). These contributions are slightly
lower than the ones estimated through the optically-based ap-
proach, with almost all data points being below the 1-to-1
line relating both estimates (Fig. 9b).

Regarding spatial variability, both Tchla (r=0.67,
p<0.001) andcp (r=0.53, p<0.001) were correlated to
the dominant picophytoplankton carbon biomass, i.e.
Prochlorococcus+ picophytoeukaryotes, between Stations 3
and 15, GYR included (Fig. 10). The results of a t-test
on the z-transformed correlation coefficients (Zokal and
Rohlf, 1994) indicates that both correlations are not sig-
nificantly different (p>0.05). Therefore, Tchla and cp
were equally well correlated to the picophytoplanktonic
biomass. Synechococcusbiomass, on the other hand, was
negatively correlated to Tchla (Fig. 10a) and positively to
cp (Fig. 10b). However, despite the differences observed
between this cyanobacterium and the other two groups, cor-
relation coefficients calculated for total picophytoplankton
biomass (i.e. dominant +Synechococcus; not shown) were
not significantly different (p>0.05) from those calculated
for the dominant groups (Fig. 10).Synechococcushad
no influence on the general relationships because of its
negligible biomass. Tchla and cp were therefore useful in
tracing total picophytoplanktonic carbon biomass in the part
of the transect where no large phytoplankton was detected
(i.e. Stations 3 to 15+GYR).

4 Discussion and conclusion

4.1 Picoplankton abundance

Macroecological studies indicate that 66% of the variance in
picophytoplankton abundance can be explained by tempera-
ture (the dominant factor), nitrate and chlorophylla concen-
tration (Li, 2007). It has also been established that higher
Prochlorococcusabundances are observed in more stratified
waters, whereasSynechococcusand picophytoeukaryotes are
more abundant when mixing prevails (e.g. Blanchot and
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Rodier, 1996; Shalapyonok et al., 2001). Across the eastern
South Pacific Ocean temperature, especially forProchloro-
coccusand bacterioplankton (Fig. 5), and nitrate concentra-
tion along the transect (see Fig. 4b) appear important in mod-
ulating picophytoplankton abundance, their influence vary-
ing according to the prevailing trophic conditions.

As expected (e.g. Gasol and Duarte, 2000), integrated
bacterioplankton abundances covaried with phytoplankton
biomass (Table 1). Integrated picophytoeukaryotes abun-
dance was the only one to vary independently from Tchla

when considering the whole transect (Table 1), suggesting
that the factors controlling picophytoplankton population,
such as sinking, sensitivity to radiation, grazing, viral in-
fection, etc. (Raven, 2005) acted differently on this group.
Thus, the ecology of picophytoeukaryotes needs to be stud-
ied in further detail. Across the eastern South Pacific, surface
bacterioplankton concentrations were similar to those found
by Grob et al. (2007) at 32.5◦ S. However, in the deep layer
of the hyper-oligotrophic part of the gyre (200 m) this group
was 2.5 times more abundant than published by Grob et
al. (2007). Given the correlation between integrated bacteri-
oplankton abundance and Tchla concentration (Table 1), the
latter could be attributed to the presence of deepProchloro-
coccusand picophytoeukaryotes maxima that were not ob-
served by Grob et al. (2007). Such deep maxima are a recur-
rent feature in the oligotrophic open ocean (Figs. 4e and g;
Table 3). Along the transect, picophytoplankton abundances
were usually within the ranges established in the literature
for oligo-, meso- and eutrophic regions of the world’s ocean
(see Table 3). It is worth noticing that our estimates for sur-
faceProchlorococcusabundance were, to our knowledge, the
lowest ever estimated for the open ocean (see Table 3), al-
though a possible underestimation cannot be ruled out.

The presence of the mentioned groups under extreme poor
conditions suggests a high level of adaptation to an environ-
ment where inorganic nutrients are below detection limit. Al-
though little is known on picophytoeukaryotes metabolism,
several cyanobacteria ecotypes have been shown to grow on
urea and ammonium (Moore et al., 2002). Ammonium up-
take at the centre of the gyre was low but still detectable
(Raimbault et al., 2007). Considering that heterotrophic bac-
teria would be responsible for∼40% of this uptake in ma-
rine environments (Kirchman, 2000), the possibility of sur-
face picophytoplankton growing on this form of nitrogen at
the centre of the gyre cannot be discarded.

4.2 Picoplankton contribution tocp

The larger increase of integratedcveg as compared tocnveg
observed between extreme trophic conditions (see Sect. 3.2)
indicates that across the eastern South Pacific spatial variabil-
ity in the vegetal compartment was more important than the
non-vegetal one in shaping the water column optical prop-
erties, at least the particle beam attenuation coefficient. As
expected (e.g. Chung et al., 1996; Loisel and Morel, 1998;

Fig. 10. Log-log relationships forProchlorococcus(Proc), Syne-
chococcus(Syn) and picophytoeukarytos (Euk) carbon biomass
(mg m−3) with total chlorophylla concentration in mg m−3 (a) and
total particle beam attenuation coefficient in m−1 (b). Only data
from Stations 3 to 15 and GYR, where no large phytoplankton cells
were detected, and between the surface and 1.5 Ze are included (see
Sect. 2.2). Correlation coefficients (r) were calculated for the sum
of Proc and Euk (upper values) and forSyncarbon biomass (lower
values) with Tchla (a) andcp (b). (+) indicatesp<0.001.

Claustre et al., 1999),cp and cveg tended to be lower un-
der hyper- and oligotrophic conditions at the centre of the
gyre and were highest at UPW. Here, the highestcp andcveg
were associated with mature upwelling conditions character-
ized by the highest primary production (Moutin et al., 2007)
and Tchla (Fig. 4d), and low nutrient concentration (Fig. 4b;
Raimbault et al., 2007).

Although the non-vegetal particles tended to dominate the
cp signal, and therefore POC, regardless of trophic condi-
tion (Fig. 7b; e.g. Chung et al., 1998; Claustre et al., 1999;
Oubelkheir et al., 2005), this dominance seems to weaken
from oligo- to eutrophic conditions (Claustre et al., 1999; this
study). Here we showed that under mature upwelling condi-
tions (UPW) the contribution by vegetal and non-vegetal par-
ticles may even be equivalent (Fig. 7b), in contrast with the
invariant∼80% cnveg contribution estimated by Oubelkheir
et al. (2005) for different trophic conditions. We therefore
emphasize the importance of using complementary data to
interpret bio-optical measurements since, for instance, the
∼2.3-fold difference incveg’s contribution tocp observed be-
tween our UPW results and those published by Ouberkheir
et al. (2005) seems to be related to the state of development
of the upwelling event (mature versus early).

At the hyper-oligotrophic centre of the gyre,ceuk con-
tribution to c0−1.5 Ze was equivalent to the one possibly
overestimated (because of the larger cell size assumed) by
Claustre et al. (1999). The above highlights the importance
of making good size estimates when decomposing the to-
tal attenuation signal since, for example, a difference of
1.02µm in size leads to a 10-fold difference in the scatter-
ing cross-section calculated for picophytoeukaryotes (Claus-
tre et al., 1999; Oubelkheir et al., 2005). In the present
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Table 3. Prochlorococcus, Synechococcusand picophytoeukaryotes abundances (×103 cells ml−1) registered during spring time in different
regions of the world’s ocean under varying trophic conditons.

Trophic condition Prochlorococcus Synechococcus Picophytoeukaryotes Reference

Hyper-oligotrophic 16–18∗

150–160 (125 m)
1.2–1.6∗

0.8–1.4 (125 m)
0.76–1.3∗

1.8–2.3 (175 m)
1 (GYR)

Oligotrophic 35–40∗

200–250 (50–75 m)
6.9–8.6∗

20 (50 m)
4.5–4.9∗

14 (60 m)
1 (EGY)

240 (0 to 100 m) 1.5 (0 to 100 m) 0.8-1 (0 to 100 m) 2
30∗

200 (120 m)
0.7∗

1–1.5 (50–125 m)
0.5∗

2 (140–150 m)
3

100–150∗

100 (120 m)
3–30∗

1 (120–160 m)
0.6–2∗

1–2 (80–120 m)
4

115∗

150–200 (50–100 m)
0.2–1 (0 to 100 m) 0.25–0.5∗

Up to 3 (100 m)
5

60 (0 to 100 m) 2.5 (0 to 50–100 m) 2–4∗

2 (100 m)
6

HNL 200 (surf)
270 (30–60 m)

10–28 (surf)
25 (50 m)

5–9 (0 to 80 m) 1

150–300 (0 to 80 m) 3–5 (0 to 80 m) 0.6–1 (0 to 100 m) 3
200 (0 to 50 m)
100 (80 m)

8 (0 to 100 m) 3 (0 to 100 m) 7

200 (30 and 60 m) 15 and 13 (30 and 60 m) 6 and 5 (30 and 60 m) 8
Mesotrophic 50–60 (0 to 80 m) 17–20 (0 to 60 m) 3–5 (0 to 80 m) 1 (MAR)

30–200∗

1–40 (100 m)
5–44∗

0.2–3 (100 m)
3–18∗

0.4–4 (100 m)
6

Eutrophic – 60–200 5–10 1 (UPW)
– 50–250 10–60 9

– Up to 150 Up to 80–90 10

∗ Surface data
1 This study
2 Campbell and Vaulot (1993); Subtropical North Pacific (ALOHA)
3 Vaulot et al. (1999); Subtropical Pacific (16◦ S; 150◦ W). These authors considered their surfaceProchlorococcusabundances as “severely
underestimated”.
4 Zubkov et al. (2000); North and South Atlantic Subtropical Gyres
5 Veldhuis and Kraay (2004); Eastern North Atlantic Subtropical Gyre
6 Grob et al. (2007); Eastern South Pacific
7 Mackey et al. (2002); Equatorial Pacific
8 Landry et al. (2003); Equatorial Pacific
9 Worden et al. (2004); Southern California Bight, North Pacific
10 Sherr et al. (2005); Oregon upwelling ecosystem, North Pacific

work, picophytoplankton populations were isolated on board
by flow-cytometry cell sorting in order to measure their ac-
tual sizes using a particle counter (see Sect. 2.1). It is the
first time to our knowledge that such direct measurements
have been made in the field. For future studies we recom-
mend to measure the different picophytoplankton mean cell
sizes in situ for at least a few samples, including surface and
deep populations in order to consider possible vertical vari-
ability. If these samples are taken under different oceano-
graphic conditions, we also recommend including samples
from each one of these conditions.

By establishing a relationship with FSC to estimate ac-
tual picophytoplankton cell size (Fig. 3a), we confirmed
that picophytoeukaryotes were more important contribu-
tors to cp than cyanobacteria under both meso- and eu-
trophic conditions (Claustre et al., 1999). The uncer-
tainties in this relationship are larger for cyanobacteria
(lower part of the curve; Fig. 3a) than for picophytoeukary-
otes. However,ProchlorococcusandSynechococcus’ mean
cell sizes measured in situ were≤0.59 (only one isolated
population could be measured with the Coulter Counter,
the rest being too small) and≤0.87µm, respectively (see
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Table A, Supp. Mat.:www.biogeosciences.net/4/837/2007/
bg-4-837-2007-supplement.pdf). We therefore believe that
these group’s mean cell sizes, and therefore their contribu-
tions tocp along the transect, may have been at most over-
rather than underestimated by this relationship. Differences
in cell size (Table 2) would also explain the much lower
Synechococcuscontribution to cp observed in the hyper-
oligotrophic centre of the gyre compared to that published by
Claustre et al. (1999) for the tropical Pacific (16◦ S, 150◦ W).

Only data collected at local noon time were used to es-
timate group-specific attenuation coefficients, to avoid er-
rors associated with the natural diel variability that has been
observed in the refractive index of picophytoplankton cells
from culture (e.g. Stramski et al., 1995; DuRand and Ol-
son, 1998; DuRand et al., 2002). Here we showed that
the premise that all picophytoeukaryotes are homogeneous
spheres with the same refractive index of 1.05 (assumptions
of the anomalous diffraction approximation) is valid for the
sampled transect when actual mean cell sizes are used. In
the case ofSynechococcus, a high refractive index of 1.083
(Aas, 1996) would only increase this group’s mean attenua-
tion cross-section by an almost negligible 6%. Given their
low abundance compared to the other groups, the resulting
increase in their contribution tocp would be even lower.

If Prochlorococcuswere to have a refractive index of 1.06
for instance, their mean attenuation cross-section would be
43% higher than the one calculated here. Nevertheless, the
resultingProchlorococcus’ contribution tocp for the entire
transect would only be 4±2% higher. However, this group’s
contribution tocveg would increase by 18±2% on average,
constituting up to 99% of the vegetal compartment under
hyper-oligotrophic conditions. Such high contribution con-
tradicts both HPLC (dv-chla to Tchla ratios of∼0.2 to 0.5;
see Ras et al., 2007) and flow cytometry data (seeSyne-
chococcusand picophytoeukaryotes abundances; Figs. 4f
and g) and appears hence not possible. We therefore be-
lieve that the assumption of a refractive index of 1.05 for
cyanobacteria is appropriate for the purposes of the present
work. It is worth noticing that lower refractive indexes for
these two groups would only reduce their contribution tocp
(and therefore POC) andcveg, the contribution by picophy-
toeukaryotes resulting even more important than stated in
this work.

Regarding mean cell size, deepProchlorococcuscells are
larger than surface ones (e.g. Li et al., 1993; this study). The
former are better represented than the latter in the data set
used to estimate meanProchlorococcuscell size for the tran-
sect, since surface FSC signals could not be retrieved for a
large area at the centre of the gyre. We therefore consider
that the mean cell size used here for this group could be at
most overestimated, i.e. biased towards a larger value due
to the fewer surface data available. Hence, picophytoeukary-
otes’ contributions tocveg could only be underestimated. The
above highlights the importance of this group in terms of
photosynthetic biomass in the open ocean.

Definitively the largest uncertainties in the deconvolution
of cp are related to the determinationcbact and chet, which
have a direct influence oncdet’s estimates (see Sect. 2.2,
Eq. 4). First, bacterioplankton cells were assumed to have
a mean cell size of 0.5µm. Taking the minimum and max-
imum sizes presented in Table 2 (i.e. 0.46 and 0.73µm),
the scattering cross section for bacterioplankton would be
∼28% lower and 4.5 times higher than the one used here, re-
spectively. The lower scattering cross sections for these two
groups would imply an underestimation of detritus’ contribu-
tion to cp of only 11±3% on average for the entire transect.
A scattering cross section 4.5 times higher (i.e. 0.73µm of
mean cell size) would imply contributions≥100% tocp, and
therefore POC, by bacteria and heterotrophic protests alone,
which seems unrealistic. Using a mean cell size of 0.6µm,
i.e. the average value between 0.46 and 0.73µm, leads to the
same kind of overestimation of the heterotrophic contribu-
tions tocp. Based on the above, we consider the assumption
of a 0.5µm mean cell size for bacterioplankton to be ap-
propriate for our estimates, since at most it would slightly
underestimate detritus.

Following Claustre et al. (1999), here we assumed that
chet=2 cbact (see Sect. 2.2, Eq. 3). The range reported by
Morel and Ahn (1993) for this conversion factor is 1.8 to
2.4. Using these values instead of 2 would result in an
average increase and decrease incdet’s contribution tocp
across the eastern South Pacific of 2±1% and 4±2%, respec-
tively, which in both cases is negligible. It is worth noticing
that even if larger errors were associated with the assump-
tions made in this work regarding bacterioplankton and het-
erotrophic protists, our results and conclusions regarding pi-
cophytoeukaryotes contributions tocp, and therefore POC,
and to the photosynthetic carbon biomass across the eastern
South Pacific would not change.

4.3 Phytoplankton carbon biomass stocks and spatial vari-
ability

One of the most important observations of the present
study is that spatial variability in the open-ocean, where no
large phytoplankton was detected, picophytoplankton car-
bon biomass can be traced by changes in both Tchla andcp
(Fig. 10). While chlorophyll concentration has widely been
used as a proxy for photosynthetic carbon biomass, the use
of cp is more controversial. For instance, althoughcp seems
to be a better estimate of phytoplankton biomass than Tchla

in Case I waters (Behrenfeld and Boss, 2003) and within the
mixed layer of the eastern Equatorial Pacific (Behrenfeld and
Boss, 2006), chlorophyll concentration would work better
in subtropical stratified waters (Huot et al., 2007). Our re-
sults indicate that Tchla andcp would be equally useful esti-
mates of photosynthetic carbon biomass in the South Pacific
gyre, where it is mainly constituted by picophytoplankton
(≤3µm). However, it is important to highlight that in order
to estimate the photosynthetic carbon biomass fromcp it is
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necessary to have information or make some assumptions on
the contributions by vegetal and non-vegetal particles to this
coefficient. In this case, picophytoplankton biomass andcp
were positively correlated such as that the former could be
retrieved from the latter. Despite of the stated limitations,
the bio-optical approach used in the present work could be
a good alternative for large scale open ocean surveys, espe-
cially considering thatcp measurements are much less time-
consuming than determining chlorophyll concentration and
can also be obtained at a much higher vertical resolution.
Further research should be done to test the ability ofcp in
tracing phytoplankton biomass in the ocean.

Although when presentProchlorococcuslargely domi-
nates in terms of abundance, the picophytoeukaryotes would
constitute∼38% on average of the total integrated phyto-
plankton carbon biomass (Prochlorococcus+ Synechococ-
cus+ picophytoeukaryotes + large phytoplankton) estimated
from ceuk’s contribution to cveg (Fig. 9a, filled circles;
see Sect. 3.3). Furthermore, under oligotrophic conditions
this group constituted∼43% of the photosynthetic carbon
biomass. Previous studies indicate that picophytoeukaryotes
largely dominate the vegetal compartment in the equatorial
Pacific (DuRand et al., 1996; Claustre et al., 1999) and the pi-
cophytoplanktonic carbon biomass across the eastern South
Pacific along 32.5◦ S (Grob et al., 2007). Here we showed
that this group constitutes a very important and in some cases
a dominant fraction ofcveg across the eastern South Pacific,
confirming the findings by Grob et al. (2007). The above
also agrees with what has been observed in the North and
South Atlantic Subtropical Gyres (Zubkov et al., 2000). Pi-
cophytoeukaryotes also dominated the picophytoplanktonic
carbon biomass in the coastal region, as previously indicated
by Worden et al. (2004) and Grob et al. (2007).

Picophytoeukaryotes contributions obtained by estimat-
ing cyanobacteria biomass from intracellular carbon content
were probably underestimated compared to those obtained
using the bio-optical approach (Fig. 9b) because of the con-
version factor used forProchlorococcus(Table 2). We be-
lieve that establishing a relationship between intracellular
carbon content and FSC for this cyanobacterium, as we did
for Synechococcusand picophytoeukaryotes, would lead to
contributions similar to those estimated using attenuation co-
efficients. It is worth noticing that higher or lower cyanobac-
teria carbon biomasses would only modify the y-intercept of
the biomass relationships with Tchla andcp (Fig. 10), but not
their slope or their strength.

When normalized to 1µm3, maximal growth rates
estimated for picophytoeukaryotes are higher than for
Prochlorococcus(Raven, 2005, and references therein).
Considering that the former are∼16 times larger than the
latter in terms of mean cell volume, the amount of car-
bon passing through the picophytoeukaryotes could be very
important. For the same reason, this group could also be
the most important contributor to export fluxes in the open
ocean, since picophytoplankton share of this carbon pathway

seems to be much more important than previously thought
(Richardson and Jackson, 2007; Barber, 2007). The role of
this group in carbon and energy flow would therefore be cru-
cial.

Picophytoeukaryotes carbon biomass in the open ocean
seems to be much more important than previously thought.
Across the eastern South Pacific, this group’s biomass is
almost equivalent to that ofProchlorococcusunder hyper-
oligotrophic conditions and even more important under
mesotrophic ones. The role of picophytoeukaryotes in bio-
geochemical cycles needs to be evaluated in the near future.
Further attention needs to be focused on this group.

Acknowledgements.This work was supported by the Chilean
National Commission for Scientific and Technological Research
(CONICYT) through the FONDAP Program and a graduate fel-
lowship to C. Grob; the ECOS (Evaluation and Orientation of the
Scientific Cooperation, France)-CONICYT Program, the French
program PROOF (Processus Biogeochimiques dans l’Océan et
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M. R., Röttgers, R., Sciandra, A., Stramska, M., Twardowski,
M. S., and Claustre, H.: Relationships between the surface con-
centration of particulate organic carbon and optical properties in
the eastern South Pacific and eastern Atlantic Oceans, Biogeo-
sciences Discuss., 4, 3453–3530, 2007,
http://www.biogeosciences-discuss.net/4/3453/2007/.

Ulloa, O., Sathyendranath, S., Platt, T., and Quiñones, R. A.: Light
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