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Abstract. Multifractal modeling of geochemical map data
can help to explain the nature of frequency distributions of
element concentration values for small rock samples and
their spatial covariance structure. Useful frequency distri-
bution models are the lognormal and Pareto distributions
which plot as straight lines on logarithmic probability and
log-log paper, respectively. The model of de Wijs is a sim-
ple multiplicative cascade resulting in discrete logbinomial
distribution that closely approximates the lognormal. In this
model, smaller blocks resulting from dividing larger blocks
into parts have concentration values with constant ratios that
are scale-independent. The approach can be modified by
adopting random variables for these ratios. Other modifi-
cations include a single cascade model with ratio parame-
ters that depend on magnitude of concentration value. The
Turcotte model, which is another variant of the model of de
Wijs, results in a Pareto distribution. Often a single straight
line on logarithmic probability or log-log paper does not pro-
vide a good fit to observed data and two or more distributions
should be fitted. For example, geochemical background and
anomalies (extremely high values) have separate frequency
distributions for concentration values and for local singular-
ity coefficients. Mixtures of distributions can be simulated
by adding the results of separate cascade models. Regardless
of properties of background, an unbiased estimate can be ob-
tained of the parameter of the Pareto distribution characteriz-
ing anomalies in the upper tail of the element concentration
frequency distribution or lower tail of the local singularity
distribution. Computer simulation experiments and practical
examples are used to illustrate the approach.

Correspondence to:F. P. Agterberg
(agterber@nrcan.gc.ca)

1 Introduction

1.1 Lognormal and pareto frequency distribution models

Two frequency distribution models frequently used in geo-
chemistry and natural resource analysis are the lognormal
and Pareto. Both models can provide good approximations
for chemical element concentration values of rock samples,
the sizes and grades of ore deposits, or the sizes of oil and
gas pools. The lognormal has a longer history of application
in these fields than the Pareto, leading Mandelbrot (1983) to
pose a challenge to the geoscience community by stating that
oil and other resources have Pareto distributions, and that this
“finding disagrees with the dominant opinion, that the quan-
tities in question are lognormally distributed. The difference
is extremely significant, the reserves being much higher un-
der the hyperbolic than under the lognormal law.”

The preceding statement is graphically illustrated in Fig. 1.
In Fig. 1a a hypothetical lognormal distribution for amount of
metal per ore deposit plots as a curve on log-log paper. The
straightline that is approximately tangent to the lognormal
would represent a Pareto distribution. In Fig. 1b the same
lognormal plots as a straightline on logarithmic probability
paper whereas the Pareto of Fig. 1a has become a curve. The
curvatures in these two diagrams are such that the Pareto has
a high-value tail that is thicker than that of the lognormal.
For low values, Pareto frequencies also exceed those of the
lognormal.

In a later paper concerned with multifractal measures for
the geoscientist, and assuming that ore tonnage is equiva-
lent to volume, Mandelbrot (1989) uses the model of de Wijs
(1951) as a starting point for spatial distribution of metals
in the Earth and concludes that ore “curdles” into a bino-
mial multifractal. The model of de Wijs also will be taken as
a starting point in this paper. However, it generally leads
to lognormal distribution of metal concentrations without
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Fig. 1a. Lognormal on log-log paper; artificial example (Log base
10).

Pareto tails and further modifications of the approach are
needed.

The model of de Wijs is a simple example of a binomial
multiplicative cascade (cf. Mandelbrot, 1989). The theory of
cascades was developed extensively over the past 20 years by
Lovejoy and Schertzer (1991) and Schertzer et al. (1997), and
other geophysicists, particularly in connection with cloud
formation and rainfall (Schertzer and Lovejoy, 1987; Over
and Gupta, 1996; Veneziano and Furcolo, 2003; Veneziano
and Langousis, 2005). More recently, multifractal model-
ing of solid-Earth processes has been advanced by Cheng
and colleagues (Cheng, 1994; Cheng and Agterberg, 1996;
Cheng, 1995; Cheng, 2005).

In applications concerned with turbulence, the original bi-
nomial model of de Wijs is known as thep-model (Schertzer
et al., 1997). Several advanced cascade models in meteorol-
ogy (Veneziano and Langousis, 2005) result in frequency dis-
tributions that resemble the lognormal but have Pareto tails.
The Pareto is characterized by a single parameter that can
be related to a fractal dimension. The lognormal has two
parameters. A basic difference between the two models is
that Pareto frequency density approaches infinity in its low-
value tail whereas lognormal frequency density at zero-value
is zero. During the last 20 years it became increasingly clear
that the Pareto generally performs better than the lognormal
in modeling the upper-value tails of frequency distributions
in geochemistry and resource analysis. Turcotte (1997, 2002)
has developed a variant of the model of de Wijs that results
in a Pareto distribution, which is truncated in its lower tail.

In practical applications, frequency density at zero-value is
observed to be zero. Thus the lognormal generally provides
a more realistic model for modeling low-value tails. This is
probably one reason why the lognormal was preferred to the
Pareto in the past. The other reason was that, in practical
applications, the largest values in upper tails of frequency
distributions become increasingly rare when value goes to
infinity. In goodness-of-fit tests the largest values generally
are combined into a single class so that it is not possible to
distinguish between lognormal and Pareto (Agterberg, 1995).
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Fig. 1b. Pareto of Fig. 1a on lognormal Q-Q plot.

This paper is concerned with combining data from large
regions. The problem of interest is how to explain and model
a regional frequency distribution of element concentration
values that resembles the lognormal but displays a power-
law tail. Two ways to solve this problem are (1) to adopt a
single-process model with an end product that satisfies both
conditions, and (2) to consider the end product to be a mix-
ture of two or more separate processes resulting in lognormal
and Pareto distributions.

Single-process models include the previously mentioned
meteorological models (e.g. beta-lognormal cascades of
Veneziano and Langousis, 2005). Already in the 1980s,
Schertzer and Lovejoy (1985) had pointed out that thep-
model can be regarded as “micro-canonical” version of their
α-model in which the strict condition of local preservation of
mass is replaced by a more general condition of preservation
of mass within wider neighborhoods (preservation of ensem-
ble averages). Cascades of this type can result in pure lognor-
mals and in lognormals with Pareto tails. The applicability
of these approaches to geological processes that took place
within the Earth’s crust remains to be considered. In this
paper, a simple variant of the model of de Wijs that results
in a lognormal with relatively thick upper tail will be investi-
gated. With respect to mixtures of cascades, the most promis-
ing approach consists of superimposing Turcotte’s Pareto-
type models on a lognormal background.

1.2 Lognormality of Trace elements in rocks

One of the basic assumptions in geochemical abundance
models Brinck, 1974; Harris, 1984; Garrett, 1986) is that
trace elements are lognormally distributed. Ahrens (1953)
postulated lognormality as the first law of geochemistry. In
general, it can not be assumed that the element concentra-
tion values for very small blocks of rock collected from a
very large environment satisfy a single lognormal frequency
distribution model. However, the lognormal model often
provides a valid first approximation especially for trace el-
ements. Reasons why the lognormal model may not be ap-
plicable include the following: Concentration values for all
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constituents form a closed number system and this prevents
major constituents from being lognormally distributed. Also,
discrete boundaries (contacts) between different rock types
commonly exist in regional applications and mixtures of two
or more lognormals would occur if rock types have lognor-
mals with different parameters.

Three types of generating mechanisms or explanations
have been suggested for lognormality. The first one is re-
viewed by Aitchison and Brown (1957): processes during
which random increases in value are proportional to value
can result in lognormal distributions, in the same way that
processes subject to conditions underlying the central limit
theorem of mathematical statistics lead to normal distribu-
tions. The second type of explanation was first advocated by
Vistelius (1960): mixtures of populations with mean values
that are proportional to standard deviations can result in pos-
itively skewed distributions that resemble lognormal distri-
butions even if the original populations are normal. Finally,
multiplicative cascade models such as the model of de Wijs
can help to explain lognormality (cf. Agterberg, 2001a and
2007). Allègre and Lewin (1995) provided an overview of
geochemical distributions that are either lognormal or Pareto.

A relatively simple generalization of the lognormal model
is to assume that the concentration values for a chemical ele-
ment in a large region or environment originate from two dif-
ferent lognormal populations representing background and
anomalies, respectively. The largest concentration values
then primarily represent the anomalies. This type of model-
ing either uses lognormal Q-Q plots (Sinclair, 1991), or use
is made of concentration-area (C-A) log-log plots (Cheng et
al., 1994) to distinguish between two or more separate pop-
ulations. Often it can be assumed (Agterberg, 2007) that (a)
the relatively small concentration values (background) rep-
resent a mixture of different populations, and (b) the largest
values satisfy a Pareto distribution with a tail that is thicker
than lognormal.

2 Multiplicative cascade models

2.1 Two simple models

Two relatively simple 2-dimensional multiplicative cascade
models are the model of de Wijs (1951) and Turcotte’s (1997)
“fractal” cascade. These models are graphically illustrated in
Figs. 2–4. In the original model of de Wijs, any block of rock
is divided into two equal parts. The concentration value (ξ )
of a chemical element in the block then can be written as
(1+d)×ξ for one half and (1−d)×ξ for the other half so that
total mass is preserved. The coefficient of dispersiond is in-
dependent of block size. The approach can be modified by
replacingd by a random variable (random-cut model; Agter-
berg, 2007). The multifractal patterns of local concentration
values generated by this cascade and its generalized version
have many local maxima and minima (Fig. 3).
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Fig. 2a.First stages of 2-D multiplicative cascade model of de Wijs.
Overall average concentration value is equal to 1;d is dispersion co-
efficient. Non-Random index matrix corresponds to (4×4) squares
distribution of concentration values.
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Fig. 2b. Turcotte’s variant of model of de Wijs as in Fig. 2a.

Figure 2a illustrates the model of de Wijs: any cell con-
taining a chemical element in 1-, 2-, or 3-dimensional space
with average concentration valueξ set equal to unity is di-
vided into two halves with element concentration values
(1+d)ξ and (1−d)ξ . For the first cell at the beginning of
the process,ξ can be set equal to unity. This implies that
all concentration values are divided by their overall regional
average concentration value (m). The index of dispersion
(d) is independent of cell-size. In 2-D space, two succes-
sive subdivisions into quarters result in 4 and 16 cells with
concentration values. The maximum element concentration
value afterk subdivisions is (1+d)k, and the minimum value
is (1−d)k; k is even in 2-dimensional applications in or-
der to preserve mass but the frequency distribution of all
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Fig. 3. Realization of model of de Wijs (see Fig. 2, left side) in 2-D
for d=0.4 andN=14. Overall average value is equal to 1. Values
greater than 4 were truncated.
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Fig. 4. Four 2-D realizations of Turcotte’s fractal model (Fig. 2b)
for d=0.4 andN=12. Total area was subdivided into four quadrants.
Vertical scale is for 5+log10 (Value).

concentration cannot be distinguished from that arising in 1-
or 3-dimensional applications of this multiplicative cascade
model. In a random cascade, larger and smaller values are
assigned to cells using a discrete random variable.

Multifractal patterns generated by a random cascade have
more than a single maximum. The frequency distribution
of the element concentrations at any stage of this process
is called “logbinomial” because logarithmically transformed
concentration values satisfy a binomial distribution. The log-

binomial converges to a lognormal distribution although its
upper and lower value tails remain weaker than those of the
lognormal (Agterberg, 2007). Notation can be simplified by
using indices that are powers of (1+d) and (1−d), respec-
tively; for example, (1+d)3 (1−d) is written as 31 in the 16-
cell matrix on the left in the next row. If at each stage of
subdivision, the location of higher and lower concentration
cells is determined by a Bernoulli-type random variable, the
arrangement of cells may become as shown in the 16-cell
matrix on the right. Because of its property of self-similarity,
the model of de Wijs was recognized to be a multifractal by
Mandelbrot (1983, 1989) who adopted this approach for ap-
plications to the Earth’s crust (also see Introduction).

Figure 2b also shows Turcotte’s variant of this approach:
after each subdivision, only the half with larger concentration
in further subdivided into halves with concentration values
equal to (1+d)ξ and (1−d)ξ . This simplifies the process as
illustrated for 16 cells in 2-D space. At each stage of this pro-
cess the concentration values have a Pareto-type frequency
distribution. In analogy with Turcotte’s (1997) derivation for
blocks in 3-D space, it can be shown that a fractal dimension
equal toD=2×log2 (1+d) can be defined for this process.
The final element concentration map has only one maximum
value.

Figure 3 shows a logbinomial pattern ford=0.4 andk=14.
Increasing the number of subdivisions for the model of de
Wijs (as in Fig. 2) to 14 resulted in the 128×128 pattern
shown in which values greater than 4 were truncated. The
frequency distribution of all 214 values is logbinomial and ap-
proximately lognormal except in the highest-value and low-
est value tails that are thinner than lognormal. When the
number of subdivisions becomes large, the end product can-
not be distinguished from that of multiplicative cascade mod-
els in which the dispersion indexD is modeled as a contin-
uous random variable with mathematical expectation equal
to 1 instead of the Bernoulli variable allowing the values +d
and –d only (Agterberg, 2007). The lognormal model may
provide good approximations for regional background distri-
butions of trace elements.

Figure 4 is a mosaic of four patterns resulting from Tur-
cotte “fractal” cascades withd=0.4 andk=12; vertical scale
is logarithmic (base 10). Contrary to the multimodal logbi-
nomial patterns, the Turcotte model develops a single peak
only. However, the same cascade could have been operative
in different parts of a study area. If the index of dispersion (d)
remains the same for all cascades, their combined frequency
distribution after many subdivisions for each cascade would
satisfy a single Pareto distribution plotting as a straight-line
with slope determined byd.

2.2 Self-similarity and the multifractal paradox

De Wijs (1951) already derived an equation for the variance
of logarithmically transformed element concentration values.

Nonlin. Processes Geophys., 14, 201–209, 2007 www.nonlin-processes-geophys.net/14/201/2007/
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It can be written in the form:

σ 2
=

k

4
(ln η)2 (1)

whereσ 2 is the logarithmic variance (base e) of the concen-
tration values, andη=(1+d)/(1−d). Equation (1) follows di-
rectly from the well-known equation for the variance of a
binomial distribution withp=1/2 that is equal tok/4, taking
account of the fact that the spacing between ordered values
along the logarithmic scale is equal to lnη.

In principle, the value ofk could be made infinitely large.
According to Eq. (1), the logarithmic variance then also be-
comes infinitely large and the frequency distribution of the
element concentration values would cease to exist. Applica-
tion of the method of moments in multifractal analysis re-
sults in a multifractal spectrum that is a limiting form for
infinitely largek. The frequency distribution corresponding
to this limiting form can not exist in reality because it has
infinitely large variance. In practice, any set of element con-
centration values for very small blocks of rock collected from
a very large environment has a frequency distribution with fi-
nite logarithmic variance.

Suppose that the generating process of subdividing blocks
under the same dispersion index (d) ceases to be operative
for blocks that are larger than the very small blocks used for
chemical analysis. This would imply thatd at the regional
scale does not apply at the local scale. In practical appli-
cations (also see examples later in this section),d locally
becomes either zero or much smaller thand at the regional
scale. Under these conditions, an apparent maximum number
of subdivisionsN (<k) can be estimated. Self-similarity at
scales exceeding a critical lower limit then results in a model
of de Wijs with three parameters:ξ , d, andN.

A multifractal method that can be used for estimatingd
was proposed by Agterberg (2001a, b, 2007). It uses the
method of moments as originally described by Evertsz and
Mandelbrot (1992) and clearly explained in several textbooks
including those by Feder (1988) and Falconer (2003). A brief
summary is as follows. When the mass of a quantity is mea-
sured in cells, power moment sums can be formed by raising
all mass measurements to powersq and summing over all
cells. A property of self-similar multifractals is that power
moment sums are related to cell side according to power laws
with mass exponentsτ (q) (cf. Cheng and Agterberg, 1996).
In two-dimensional applications, each cell mass measure is
the product of cell concentration value and cell area. If the
condition of self-similarity is satisfied, any mass exponent
τ (q) can be estimated as the slope of the best-fitting straight-
line for a specific value ofq. The first derivative ofτ (q) with
respect toq provides an estimate of the so-called singularity
α(q). The singularityα also can be mapped (Cheng, 1999;
Cheng and Agterberg, 2007). Strictly speaking, a cascade
does not result in point-wise convergence to any value ofα

because it performs a random walk at any scale. Instead of

values at points, the local singularities are average values of
α within small cells.

2.3 Estimation of dispersion index (d) for lognormal
“background”

The singularity has its minimum value (αmin) for the cell
with the largest possible concentration value. Validity of the
model of de Wijs for larger concentration values results in:

lim
q→∞

dτ(q)

dq
= αmin = log2

(
η + 1

η

)2

(2)

In 2-dimensional applications, chemical element measures
can be created by multiplying average cell concentration val-
ues by cell area. Raising these measures to relatively high
powersq filters out the influence of smaller concentration
values. Thus our estimate ofd is primarily based on param-
eters estimated from the relatively large concentration val-
ues of an element. The lower-value tails of the observed
frequency distributions could be mixtures of separate pop-
ulations, and the exact nature of these mixtures can be left
undetermined.

If the model of de Wijs is satisfied, the mass exponents
τ (q) become linearly related toq whenq is large and the pa-
rameterd can be estimated from the slope of the resulting
straightline. Together with the estimate of logarithmic vari-
ance this yields an estimate of apparent maximum number
of subdivisionsN when Eq. (1) is used. It is noted thatd
also can be estimated from the multifractal spectrum which
normally is the end product of applications of the method of
moments. However, Eq. (2) may produce better results more
quickly (Agterberg, 2007).

In an application of this approach to glacial till samples
from a 625km by 625km area in southern Saskatchewan,
the lognormal provided good approximations for gold with
σ 2(Au)=5.61, and arsenic withσ 2(Ar)=0.131, respectively
(cf. Agterberg, 2007). Coefficients of dispersion estimated
by Eq. (2) wered(Au)=0.433 andd(Ar)=0.069. Although
the frequency distributions for gold and arsenic in this appli-
cation were greatly different, estimates of apparent numbers
of subdivisions (N) using Eq. (1) were approximately equal
(26.1 and 27.5, respectively). The smallest cell in these ap-
plications would measure approximately 50 m on a side, sig-
nificantly exceeding horizontal area of original till samples.
In this example, the model of de Wijs is valid on a regional
scale with approximately constant coefficient of dispersion
(d) with element concentration maps similar to Fig. 3. How-
ever, in other applications, the largest element concentration
values do not fit in with a lognormal model.

2.4 Accelerated dispersion model

A relatively simple modification of the model of de Wijs that
results in thicker than lognormal frequency distribution tail
is to assume that the coefficient of dispersiond increases as

www.nonlin-processes-geophys.net/14/201/2007/ Nonlin. Processes Geophys., 14, 201–209, 2007
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Fig. 5. Realization of accelerated dispersion model ford0=0.4,
N=14, andp=0.01. Vertical scale is for 4+log10 (Value).

a function of element concentration valueξ . For example,
it could be assumed that the first derivative of a chemical
element’s dispersion coefficient is a linear function ofξ so
that d=d0 exp(p×ξ) wherep is a constant. Settingp=0.01
and re-running the experiment previously resulting in Fig. 3
(d0=0.4;N=14) yielded the pattern for (ξ+4) shown in Fig. 5
where the vertical scale is logarithmic. The logarithmically
transformed concentration values of Fig. 5 are normally dis-
tributed except for the largest values. Figure 6 is a compari-
son of the largest log-concentration values with those arising
when there would be no acceleration of dispersion. Values
with log10 (ξ ) ≈2 are larger than expected in comparison
with patterns such as Fig. 3 resulting from the model of de
Wijs with p=0. Only relatively few very large values emerge
from the approximately lognormal background ifp is small.

The accelerated dispersion model provides a possible ex-
planation for occurrence of anomalously high concentration
values. Applicability of this model in practice remains to be
investigated.

2.5 Pareto distributions

Turcotte’s cascade model is a modification of the preceding
multifractal-generating cascade. Only cells with largest con-
centration value during a previous subdivision are further
subdivided into parts with different element concentration
values. The random pattern then has a single maximum only.
Thus it is assumed that the same type of cascade was oper-
ational atn different random locations generating a pattern
with n maxima. The frequency distribution of the concen-
tration values then remains the same except for enlargement
of all frequencies by the factorn. Element concentrations
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Fig. 6. Comparison of largest logarithmically transformed concen-
tration values (base 10) in experiment of Fig. 5.
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Fig. 7. C-A (Concentration-Area) plot for Turcotte’s fractal model
with d=0.4 andN=14 (Log base 10).

generated by Turcotte’s cascade satisfy a Pareto distribution
which is associated with a fractal instead of a multifractal.
The slopeβ of the straight-line representing this Pareto dis-
tribution on log-log paper satisfiesβ=−1/ log2(1+d). Fig-
ure 7 is a C-A diagram for the Turcotte model withd=0.4 and
N=14. Consequently,β=−2.060.

The following computer simulation experiments illustrate
that an unbiased estimate of the Pareto parameter can be ob-
tained in the hypothetical situation of a study area where
background satisfies the model of de Wijs with overall av-
erage concentration value equal to 0.1 andd=0.3. Suppose
that one or more Turcotte cascades with overall average value
equal to 1.0 andd=0.4 (cf. Fig. 4) are superimposed on this
background. Figure 8 is a C-A diagram for this hypothetical
situation. The pattern in this diagram is approximately linear
with slope of approximately−2. It was obtained by random
sampling of concentration values resulting from the de Wijs
and Turcotte cascades and adding these values together.

Suppose now that the Turcotte cascades were operational
in only 25% of the area. Use of Cheng’s (2003) method
of piecemeal fitting of successive straightline segments in a
C-A diagram indicates that the largest concentration values
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Fig. 8. C-A plot for logbinomial background with meanm=0.1 and
d=0.3 with superimposed Turcotte anomalies withm=1.0 andd=0.4
(Log base 10).
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Fig. 9 
 
 Fig. 9. C-A plot for lognormal background with superimposed Tur-
cotte anomalies as in Fig. 8 but Turcotte anomalies restricted to 25%
of total area (Log base 10).

approximately fall on a straightline with slope equal to−2
as in Figs. 7 and 8. Consequently, the estimated value ofd
is 0.4. These experiments (Figs. 8–9) illustrate that unbiased
estimates of this type can be obtained irrespective of how
many Turcotte cascades there were in the area or how much
of the study area consists of approximately lognormal back-
ground without anomalies. Figure 10 is plot of the frequency
density values for the second experiment. The smaller peak
on the right corresponds to the line-segment for largest con-
centration values in Fig. 9.

2.6 Practical example of dispersion index (d) estimation for
Turcotte’s model

Suppose a measureµ of the amount of a chemical element
in a square cell measuringε km on a side satisfiesµ=c×εα

wherec is a constant, andα is the singularity also known
as Ḧolder exponent (Mandelbrot, 1989; Evertsz and Mandel-
brot, 1992); thenα can be estimated by measuring the slope
of the straight line in a log-log plot ofµ againstε. In this
2-dimensional application of multifractal theory,µ=ξ×ε2

whereξ=c×εα−2 represents average element concentration
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Fig. 10. Frequencies of lognormal-Pareto mixture plotted as C-A
diagram in Fig. 9 (Log base 10).
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Fig. 11. Natural logs of areal frequencies for local singularities of
arsenic in Gejiu area, Yunnan Province, China (after Cheng, 2007;
Cheng and Agterberg, 2007).

value in the cell. If element concentration values for sam-
ples taken at the surface of a study area are realizations of
a stationary random variable with constant population mean,
thenα=2 representing non-singularity. “Singular” locations
(where α<2) may indicate anomalous enrichment of the
chemical element.

Examples of local singularity mapping are given in Cheng
(2007) and Cheng and Agterberg (2007) for various elements
in stream sediments from the Gejiu area, Yunnan Province,
China. Like several other chemical elements, arsenic in these
surficial deposits shows two types of anomalies. The ar-
senic local singularity map for arsenic shows many relatively
small anomalies (whereα<2) across the entire Gejiu area. A
significant fraction of these anomalies is spatially correlated
with occurrences of (mined and unmined) mineral deposits.
The arsenic concentration values are highest in the eastern
part of the area. Together the highest values describe a large
irregularly shaped anomaly that is probably caused by min-
ing activities restricted to this part of the area.

Figures 11 and 12 show frequencies of As local singulari-
ties and As concentration values, respectively. Suppose that
parameters describing the two preceding anomaly types are
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Fig. 12 
 

 
Fig. 12. C-A plot for As in Gejiu area (from Cheng and Agterberg,
2007). Point pattern was automatically subdivided into straightline
segments with statistics in box; A = intercept; B = slope; errors rep-
resent variances of slope estimates; Log base 10; cf. Cheng, 2003).

identified by the subscripts 1 (for local singularity anoma-
lies) and 2 (for the high-concentration anomaly). From
β2=−3.0178 (estimated slope of best-fitting line in Fig. 12),
it follows immediately thatd2(As)=0.258. Fromξ=c×εα−2

with ε=2 km in this application, it follows that estimated
slope of straight-line in Fig. 11 (=−2.6474) provides an esti-
mate ofβ1=−8.7945. Consequently,d1(As)=0.082.

Suppose thatβ is a parameter estimated by the slope of
the best-fitting straight-line on a C-A plot. Then this esti-
mate can be converted into either the fractal dimensionD
(=−2/β) or into the index of dispersiond (=2−D/2

−1) char-
acterizing the non-linear process. In terms of Fig. 2: if a
block with high-concentration value (ξ ) is divided into two
halves, the concentration values of the halves are, on average,
equal to (1+d)×ξ and (1−d)×ξ , respectively. Thus a higher
index of dispersion means stronger spatial variability. The
small anomalies (whereα<2) with d1(As)=0.082 have lower
dispersion index than the broad regional anomaly restricted
to the eastern part of the area withd2(As)=0.258. Several
other elements (tin, copper, silver, gold, cadmium, cobalt,
iron, nickel lead, and zinc) show anomalies similar those for
arsenic (Cheng and Agterberg, 2007). The first type (local
singularities) is useful for exploration because it provides in-
dicators for buried ore-bodies. The second type helps to de-
scribe regional pollution due to mining activities. The shapes
of two kinds of anomalies (1 and 2) are markedly different,
and this probably is the main reason that a clear distinction
could be made between the two underlying enrichment pro-
cesses (proximity to buried mineral deposits and pollution
due to mining activities) in this example of application.

3 Concluding remarks

Multifractal modeling is well established in geophysics par-
ticularly with respect to processes taking place in the atmo-
sphere including cloud formation and rainfall. Cascade dy-

namics play an important role in nonlinear process model-
ing. Many short-term solid-Earth processes including earth-
quakes, landslides and flooding exhibit non-linear character-
istics. Lognormality and power-law behavior also are associ-
ated with mineral deposits (metal and hydrocarbon accumu-
lations) and secondary processes such as inclusion of toxic
and nontoxic elements in stream sediments.

Because of the great variety and irregular exposure of rock
formations it is difficult to apply non-linear process model-
ing to solid-Earth. However, multifractal modeling adds new
tools to conventional approaches in geochemistry and eco-
nomic geology. This paper was primarily concerned with
mixtures of non-linear processes. It was argued that regional
background concentration values of elements may approxi-
mately satisfy a three-parameter model of de Wijs resulting
in lognormality. Anomalous accumulations of metals may
have been superimposed on background later according to
non-linear processes resulting in power-law distributions of
element concentration values.
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