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Abstract. A large number of published and unpublished
measurements of cloud condensation nuclei (CCN) concen-
trations and aerosol optical thickness (AOT) measurements
have been analyzed. AOT measurements were obtained
mostly from the AERONET network, and selected to be col-
located as closely as possible to the CCN investigations. In
remote marine regions, CCN0.4 (CCN at a supersaturation of
0.4%) are around 110 cm−3 and the mean AOT500 (AOT at
500 nm) is 0.057. Over remote continental areas, CCN are al-
most twice as abundant, while the mean AOT500 is ca. 0.075.
(Sites dominated by desert dust plumes were excluded from
this analysis.) Some, or maybe even most of this difference
must be because even remote continental sites are in closer
proximity to pollution sources than remote marine sites. This
suggests that the difference between marine and continental
levels must have been smaller before the advent of anthro-
pogenic pollution.

Over polluted marine and continental regions, the CCN
concentrations are about one order of magnitude higher than
over their remote counterparts, while AOT is about five times
higher over polluted than over clean regions. The average
CCN concentrations from all studies show a remarkable cor-
relation to the corresponding AOT values, which can be ex-
pressed as a power law. This can be very useful for the
parameterization of CCN concentrations in modeling stud-
ies, as it provides an easily measured proxy for this variable,
which is difficult to measure directly. It also implies that, at
least at large scales, the radiative and microphysical effects
of aerosols on cloud physics are correlated and not free to
vary fully independently. While the observed strong empiri-
cal correlation is remarkable, it must still be noted that there
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is about a factor-of-four range of CCN concentrations at a
given AOT, and that there remains considerable room for im-
provement in remote sensing techniques for CCN abundance.

1 Introduction

The concentration of cloud-active particles, especially in the
lower troposphere, has a profound influence on the micro-
physical processes in clouds, and consequently on many as-
pects of weather and climate. These interactions have been
summarized in a number of recent reviews, addressing in par-
ticular the effects of aerosols on climate (Penner et al., 2001;
Lohmann and Feichter, 2005; IPCC, 2007) and on cloud pro-
cesses and precipitation (McFiggans et al., 2006; Rosenfeld,
2006a; IAPSAG, 2007; Andreae and Rosenfeld, 2008). In
addition to their cloud microphysical effects, aerosols also
modulate cloud formation and convective behavior through
their radiative effects, for which aerosol optical thickness
(AOT) is a commonly used metric. AOT has the advantage
of being readily observed by remote sensing, and AOT mea-
surements are now done routinely from space by several sen-
sors (Kaufman et al., 2002; Yu et al., 2003; Kahn et al., 2007;
Kokhanovsky et al., 2007) as well as by ground-based sun-
photometer networks (Holben et al., 2001; Kim et al., 2008).

In order to incorporate the effects of cloud condensa-
tion nuclei (CCN) in meteorological models at all scales,
from large eddy simulation (LES) to global climate models
(GCM), knowledge of the spatial and temporal distribution
of CCN in the atmosphere is essential. This information is,
however, difficult to obtain from observations. In-situ mea-
surements of CCN concentrations only provide very local-
ized and sparse information, while the detection of CCN by
remote sensing has not yet been accomplished. This is due
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to the difference in size ranges important for CCN concen-
trations on one hand, and for light extinction on the other.

The ability of a particle to nucleate a cloud droplet depends
on its size and composition. The latter is now frequently
represented by the hygroscopicity factor,κ, which typically
falls in the range of 0.1–0.9 for ambient aerosols (Petters and
Kreidenweis, 2007; Andreae and Rosenfeld, 2008). At these
values ofκ, particles must have diameters larger than about
40–70 nm in order to activate at the highest supersaturations
commonly found in clouds (up to about 0.6%). This there-
fore represents the lower boundary of the size range contain-
ing CCN-active particles. The upper boundary is effectively
defined by the sharp decrease in the number concentration
of particles as a function of size, so that usually only a mi-
nor fraction of CCN is in the size range above some 200-
300 nm diameter (Seinfeld and Pandis, 1998). The maxi-
mum of the CCN size distribution thus typically falls in the
range of about 70–200 nm. This range is well below the max-
imum in the Mie scattering efficiency function for light with
a wavelength of about 500 nm, which is most commonly used
to represent the aerosol optical thickness (AOT) of the atmo-
spheric column. In contrast, the maximum of the scattering
and extinction efficiency functions often falls near or above
the maximum of the mass size distribution of the aerosol in
the range between 400 and 1000 nm, so that this part of the
size distribution usually has the strongest influence on the
AOT500 values. In regions with high loadings of dust and
seasalt aerosol, the coarse mode (>1µm diameter) may also
contribute strongly to AOT500 (Mulcahy et al., 2008; Remer
et al., 2008).

The disconnect between the parts of the aerosol size spec-
trum dominating the CCN abundance and those dominat-
ing visible light extinction suggests that correlations between
these two variables may not be very strong. Consequently,
the use of remote sensing measurements for the estimation
of CCN abundances has been considered difficult (Gasso
and Hegg, 2003; Ghan et al., 2006; Kapustin et al., 2006;
Rosenfeld, 2006b). Further complications arise from the fact
that column-integrated properties, such as AOT, are not nec-
essarily representative of surface or near-surface properties
such as the concentration of aerosol particles and CCN in
the boundary layer. Variability in the scale height of the
vertical aerosol distribution and the existence of aerosol lay-
ers aloft can introduce substantial variability in the relation-
ship between column and surface properties. Changes in RH
can result in pronounced variations in AOT even while dry
aerosol concentrations and CCN concentrations remain the
same, adding further variability into a potential relationship
between AOT and boundary-layer CCN concentrations.

The motivation for the present study came from a discus-
sion about the choice of variables that would be appropri-
ate as drivers in global models of aerosol effects on clouds
and climate, and the ranges of values that would need to
be considered for these variables. We selected AOT as a
proxy for the radiative effect of aerosols on cloud forma-

tion and the production of convectively available potential
energy (CAPE) at the surface. CCN0.4 was chosen to rep-
resent microphysical effects. As no global compilation of
the available data for these properties was available, and be-
cause a substantial amount of new data for both variables
has recently become available, I decided to make an empiri-
cal investigation of their correlation in collocated (or at least
nearly collocated) data sets. A conceptual analysis of the
combined radiative and microphysical effects of aerosols on
clouds, based in part on the results reported here, has recently
been published (Rosenfeld et al., 2008).

2 Methods

Most AOT values were obtained from the AERONET
database publicly available on the Internet athttp://aeronet.
gsfc.nasa.gov/. These data have the advantage of being
available from a global network of stations with consistent
processing algorithms and quality control (Dubovik et al.,
2000). In most cases, I was able to use Level 2.0 data, which
are fully calibrated and cloud-screened. In some instances,
only Level 1.5 data were available, which have been cloud-
screened, but do not yet have the final calibration applied.
These cases, and the few cases where other sunphotometer
data were used, have been indicated in Tables 1 and 2. I cal-
culated the statistics reported in Tables 1 and 2 based on the
daily average data reported in the AERONET database, in or-
der to avoid introducing bias from variability in the number
of measurements available on individual days. I chose not to
use MODIS AOT data for this analysis because of persisting
uncertainties regarding the absolute accuracy of this data (Li
et al., 2007).

I chose to use AOT values at 500 nm (AOT500), because
they are most commonly available and most frequently used
as a metric for aerosol burdens. When only measurements at
other wavelengths were available, I chose the nearest avail-
able wavelength and made an adjustment using the appropri-
ateÅngstrom exponent.

To represent CCN concentrations, I used the set of parti-
cles that activate at a supersaturation of 0.4%, a value com-
monly used for convective clouds. Many of the data were
taken from the literature, and have been obtained using a
variety of instruments about which details can be found in
the original papers referenced in the Tables. Our own pre-
viously unpublished measurements were obtained with the
static chamber counter described by Frank et al. (2007) and
the DMT continuous-flow counter using the techniques dis-
cussed in Rose et al. (2008). When only data at supersatu-
rations other than 0.4% were available, they were adjusted
to 0.4% using the conventional power law formulation for
the dependence of CCN concentrations on supersaturation
([CCNS ]=[CCN1.0]*Sk). The exponent,k, was either de-
rived from the data, or where this was not possible, I used
default values of 0.5 for continental and 0.4 for marine sites.
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Table 1. CCN0.4, CN, and AOT500 measurements from the Amazon Basin.

Campaign, Time, Season CCN0.4 cm−3 CN cm−3 AOT (500 nm) Location Reference

Clean conditions

CLAIRE-1998 190±130 460±320 0.089±0.020∗ Balbina, Amazonas Roberts et al. (2001);
Feb–Mar 1998, wet 01.92 S, 059.49 W Mar–Jun 2000–2001

LBA-EUSTACH 155±65a 380±160 0.048 Rebio Jarú, Rondonia Guyon et al. (2003)
Apr 1999, wet 10.08 S, 061.93 W

LBA-EUSTACH 230±100a – 0.121±0.033∗ Ji Parańa, Rondonia Williams et al. (2002)
Jan–Mar, Nov 1999, wet 10.88 S, 061.94 W

CLAIRE-2001 190±90 530±430 0.082±0.008∗ Balbina, Amazonas Rissler et al. (2004)
July 2001, late wet 01.92 S, 059.49 W

SMOCC 205±40 500±100 – NW of Cruzeiro do Sul, AM Andreae et al. (2004)
Oct 2002, late dry ∼07 S, 073 W

AMAZE-2008 138±94a 336±228 – N of Manaus S. Gunthe, J. Schneider, unpubl.
Feb–Mar 2008, wet 02.60 S, 060.21 W

AERONET – – 0.093±0.06 Amazon Basin forest Schafer et al. (2008)
1993–2006

Smoky conditions

LBA-EUSTACH Sep–Oct 1999, dry 1000–4000a 2000–8000 0.80±0.24 Rebio Jaŕu, Rondonia 10.08 S, 061.93 W Guyon et al. (2003)
LBA-EUSTACH Sep–Oct 1999, dry 1300–7500a 2500–15000 0.91 Fazenda Nossa Senhora, RO 10.76 S, 062.36 W Artaxo et al. (2002)
LBA-EUSTACH Oct 1999, late dry 650–2000a – 0.90∗ Ji Parańa, Rondonia 10.88 S, 061.94 W Williams et al. (2002)
CLAIRE-2001 Jul 2001, late wet 400–1000 800–2000 0.089±0.023∗ Balbina, Amazonas 01.92 S, 059.49 W Rissler et al. (2004)
SMOCC Sep–Oct 2002, dry 1000–4000 2000–8000 0.95∗ Rondonia and Mato Grosso∼98–13 S, 056–064 W Andreae et al. (2004)
AERONET 1993–2006 – – 0.90±0.63 Southern Amazon Basin forest Schafer et al. (2008)

Smoke plumes

SMOCC Oct 2002, dry 10 000–22 000 20 000–44 000 – Rondonia and Mato Grosso∼98–13 S, 056–064 W Andreae et al. (2004)

∗ Data from the AERONET website. When the AERONET data period differs from the campaign period, it is indicated in the Reference
column. Other AOT data are from on-site measurements.
a CCN0.4 calculated from CN using CCN0.4/CN ratio (see text).

In order to increase the available database, I deduced CCN
concentrations from measurements of aerosol size spectra for
some cases where direct CCN measurements were not avail-
able. For this purpose, I used the lower cutoff diameters
specified in the Comment column in Table 2, chosen based
either on measurements of these cutoff diameters from the
same site or from similar locations, or obtained using appro-
priate values ofκ, and the relationships betweenκ and the
activation diameter given by Petters and Kreidenweis (2007).
Obviously, this introduces additional uncertainty into our es-
timates, which is in each case a function of the accuracy of
the estimate of the cutoff diameter and the shape of the size
distribution. In unfavorable cases, this uncertainty may be
large (up to about 50%). In most cases, however, the max-
imum of the size distributions at our rural and remote sta-
tions was well above the range of possible cutoff diameters
(50–90 nm for the range ofκ and supersaturations consid-
ered here), and therefore the resulting uncertainty is likely
not greater than what one must accept when using literature
data from a great variety of groups and instruments. Since
we are looking only for fairly broad relationships and con-
sider a wide range of datasets and conditions, it is unlikely
that this approach would introduce a systematic bias.

In addition to data sets where corresponding pairs of AOT
and CCN data were available, some values where only one
of the variables was measured have been added to the Tables
for information purposes. Furthermore, condensation nuclei
(CN) concentrations have been provided in the Tables, when
available. These data have been obtained by a variety of in-
struments, with different lower cut-off diameters, and thus
some caution must be exercised when comparing their val-
ues.

3 Results and discussion

For this study, I have separated the available data into four
general regimes, continental-remote, continental-polluted,
marine-remote and marine-polluted. I have excluded the
analysis of dust-dominated regions downwind of the major
dust source regions from our analysis, because there is little
or no collocated CCN and AOT data available, and because
dominance of the coarse mode in these regions precludes a
meaningful relationship between CCN and AOT.

An emphasis on looking at remote regions came from our
interest in estimating the pre-human aerosol loading of the
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Table 2. CCN0.4, CN, and AOT500 measurements from remote and polluted, marine and continental environments. Data are presented as
means and standard deviations (mmm±sss) or medians and quartile ranges [nnn (lll-uuu)]. “Æ:” identifies the AERONET site from which
the AOT data are taken. Where the CCN and AOT data are from different locations, this is indicated in the Position column.

Location, Time CCN0.4 CN CCN0.4/CN AOT500 Comment Position Reference
[cm−3] [cm−3]

Clean conditions, marine

Cape Grim
summer 119±32 570±80 0.21 0.048±0.010 AOT data from CGO station 40.68 S, 144.69 E Gras (1990); J. Gras, unpubl.;
winter 46±11 153±37 0.30 0.015±0.010 Wilson and Forgan (2002)

Southern Ocean, off Tasmania
summer 90±20 266±150 0.34 0.048±0.010 aircraft, baseline ∼41–42 S, 144 E Yum and Hudson (2004)
winter 27±10 210±190 0.13 0.015±0.010 AOT data from CGO station 40.68 S, 144.69 E

S. Indian Ocean 210±140 – – off S. Africa Ross et al. (2003)
Mar–Apr 2001 0.065 (0.048, 0.091)b Æ: Reunion 20.88 S, 055.48 E

S. Trop. Indian Oc. 150±20 361±31 0.42 INDOEX ∼3–8 S,∼072–074 E Hudson and Yum (2002)
Feb/Mar 1999 0.058±0.035b Æ: Reunion 20.88 S, 055.48 E

Trop. S. Pacific 240±90 350±150 0.69 STRATUS 2003/04 ∼11–28 S, 71–90 W Tomlinson et al. (2007)
Nov/Dec 2003/04 0.078 (0.060, 0.010)b Æ: Tahiti 17.58 S, 149.60 W

Trop. N. Pacific 80±50 180±110 0.44 near Hawaii Hudson (1993)
Jul–Aug 1990 0.065±0.026 Æ: Lanai, Jul/Aug 1997–2003 20.73 N, 156.92 W

Temp. S. Pacific 108±44 330±70 0.33 – ACE1 ∼41–51 S, 138–150 E Hudson et al. (1998)
Nov–Dec 1995

Temp. N. Pacific
winter 1988–1990 23 252 0.09 – off Washington ∼47 N, 128 W Hegg et al. (1991)
summer 1989 78 594 0.13

Temp. N. Pacific 55±35 170±80 0.32 – FIRE, below stratus ∼31 N, 122 W Hudson and Frisbie (1991a)
Jun–Jul 1987 0.072 (0.058, 0.096) Æ: San Nicolas Isl. 32.26 N, 119.49 W

Arctic Ocean 54±21 161±125 0.34 – below low cloud ∼76 N, 165 W Yum and Hudson (2001)
May 1998 180±30 395±95 0.46 – no low cloud

Temp. North Atlantic 120±50 – – – little seasonality 53.33 N, 009.90 W Jennings et al. (1998)
Mace Head

N. Atl., Mace Head 81±11 – – – clean marine periods 53.33 N, 009.90 W Reade et al. (2006)
summer 96±4
winter 69±6

Temp. N. Atlantic 155±50 380±150 0.41 – ASTEX ∼30–35 N, 18–25 W Hudson and Xie (1999)
June 1992

Temp. N. Atlantic 190±50 910±160 0.21 ACE-2 ∼32–38 N, 011–013 W Johnson et al. (2000)
4 Jul 1997 0.095±0.018 Æ: Tenerife 28.03 N 016.63 W

Puerto Rico Æ: Cape San Juan
13–14 Dec 2004 108±54 290±100 0.37 0.065±0.020 Dec 2005 18.38 N, 065.62 W Allan et al. (2008)
1–9 Jan 2005 101±42 0.060±0.016 1–9 Jan 2007 G. Frank, unpubl.

Caribbean Sea 93 – – – aircraft, BL ave. ∼17 N, 066 W Squires and Twomey (1966)
Aug 1965

Tropical Atlantic 90±40 320±120 0.28 – Atlantic transect ∼10 N–30 S, 020–040 W Schäfer et al. (1993)
Oct/Nov 1990

Average 107±56 350±200 0.32±0.15 0.057±0.023

a median
b AERONET level 1.5 data
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Table 2. Continued.

Location, Time CCN0.4 CN CCN0.4/CN AOT500 Comment Position Reference
[cm−3] [cm−3]

Clean conditions, continental

Amazon Basin 185±120 440±100 0.41 0.082±0.020 clean conditions Average from Table 1

Laramie, Wyoming
Summer 280±100 6800±3800 0.04 0.117 (0.081–0.179) ∼41 N, 104 W (CCN) Delene and Deshler (2001)
Winter 92±12 3180±1120 0.03 0.069 (0.051–0.106) Æ: Missoula, MT 46.9 N, 114.08 W (Æ)

Yukon Valley 90±10 – – – – ∼66 N, 148 W Hoppel et al. (1973)
Feb 1972

Colorado Plains 280 – – – somewhat polluted ∼40 N, 105 W Squires and Twomey (1966)
Summer 1965

Fort McMurray – – – 0.057 (0.034–0.089) Æ: Fort McMurray 56.75 N, 111.48 W
Canada

Pallas, Finland 152±33 410 0.37 – CN>80 nm, activated particles Komppula et al. (2005)
Apr 2000–Feb 2002

Pallas, Finland 235 810 0.29 – CN>80 nm 67.97 N, 024.12 E Lihavainen et al. (2003)
winter ∼200
summer ∼1200

Hyytiälä, Finland 354a 2125 0.17 – median, CN>65 nm 61.85 N, 024.30 E M. Kulmala, unpubl.
1996–2007

Siberia, ZOTTO 187 283 (173, 446) 0.66 CN>60 nm,σa <2 Mm−1 60.80 N, 089.35 E W. Birmili, J. Heintzenberg, unpubl.
Sep 2006–Sep 2007 (109, 297) 0.081 (0.053-0.120) Æ: Yakutsk 61.66 N, 129.37 E (Æ)

South Africa 137±63 – – S. Highveld, dry season Ross et al. (2003)
1 Sep 2000 0.045±0.013 Æ: Bethlehem 28.25 S, 028.33 E (Æ)

Average 200±90 2010±2370 0.38±0.18 0.075±0.025

a median
b AERONET level 1.5 data

atmosphere, which is of relevance to understanding the hu-
man perturbation (Andreae, 2007a). At the present time,
the most remote, and therefore probably closest to pristine,
continental regions are found in Amazonia and in parts of
northern North America and Siberia. Because of the seasonal
heavy pollution of the Amazonian atmosphere with biomass
smoke, this area also provides the opportunity to study very
clean and highly polluted conditions within the same region.

4 Amazonia

Even in an area as remote as the Amazon Basin, the present-
day aerosol population is influenced by anthropogenic emis-
sions, which are mostly from biomass burning. When the
emission sources are large, as during the regional fire sea-
son, or located nearby, this influence can be readily identi-

fied. On the other hand, emissions arriving by long-range
transport, especially from Africa, can have a significant in-
fluence on the aerosol population over Amazonia, even when
there is little fire activity in the Amazon Basin (Prospero et
al., 1981; Talbot et al., 1990; Swap et al., 1992; Formenti et
al., 2001). For this reason, the CCN and CN concentrations
summarized in Table 1 must always be considered as upper
limits for the pristine values. The first CCN measurements in
Amazonia were obtained during CLAIRE-98 by Roberts et
al. (2001) at Balbina near Manaus. Subsequently, CCN and
CN measurements were made as part of the LBA-EUSTACH
and SMOCC programs (Andreae et al., 2002; Andreae et al.,
2004). In the course of a thorough investigation of the CCN
counter used in the study of Roberts et al. (2001), it was
found that the supersaturations in that study had been over-
estimated (Frank et al., 2007). Therefore, the values were
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Table 2. Continued.

Location, Time CCN0.4 CN CCN0.4/CN AOT500 Comment Position Reference
[cm−3] [cm−3]

Polluted conditions, marine

North Atlantic 630±380 – – – polluted conditions 53.33 N, 009.90 W Jennings et al. (1998)
Mace Head

NW Atlantic, off 1170±700 4420±6160 0.26 NARE 43.85 N, 066.12 W Liu et al. (1996)
Nova Scotia 0.15±0.06 Æ: Keijmkuijk 44.38 N, 065.28 W
Aug–Sep 1993 (Aug–Sep 1998–1999)

Temp. N Atlantic 840±340 1390±550 0.60 – ASTEX ∼30–35 N, 18–25 W Hudson and Xie (1999)
June 1992

Temp. N Atlantic
16–18 Jul 1997 660±200 2270±800 0.29 0.32±0.09 ACE-2 ∼33–40 N, 011–014 W Osborne et al. (2000)
23–24 Jul 1997 830±130 1710±200 0.49 ∼30–38 N, 011–013 W Wood et al. (2000)

Temp. NW Pacific 1570±500 3510±1790 0.45 0.28+0.02 ABC-EAREX 33.29 N, 126.16 W Yum et al. (2007)
Gosan, Korea

Temp. NW Pacific 1670±390 3980±970 0.42 0.38±0.17 Æ: Amnyon 36.54 N, 126.33 E Yum et al. (2005)
Anmyeon Isl., KR
1–22 May 2004

Indian Ocean, NH 1100±100 1810±40 0.61 INDOEX ∼0–4 N,∼072–074 E Hudson and Yum (2002)
Feb/Mar 1999 0.39±0.17 Æ: Kaashidoo 4.96 N, 073.47 E

Average 1060±400 2700±1200 0.44±0.14 0.30±0.10

Polluted conditions, continental

Mace Head, Ireland 370±70 – – – polluted continental Reade et al. (2006)

Amazon, 2500±1500 5000±3000 0.50 0.90±0.30 southern part of Amazon Basin 6–17 S, 45–70 W Average from Table 1
smoky season

Feldberg, near Frankfurt, Germany 2300±1000 4650±1800 0.49 0.30±0.16 20 Jul–11 Aug 2004 freq. nucleation events U. Dusek, unpubl.
1400±800 5700±4700 0.25 0.20±0.13 22 Jun–6 Jul 2005

Æ: Mainz, summer 2004/06 50.00 N, 008.30 E

Hohenpeissenberg 1120±670 3130±2580 0.36 0.10±0.07 CCN0.4=CN(>60 nm) 47.80 N, 011.12 E A. Wiedensohler, unpubl.
Germany 1999–2001, GAW Birmili et al. (2003)
1998–2000 GAW Brief Nr. 9

South Africa 740±460 – – 0.17±0.15 wet and dry seasons ∼−18–30 S, 25–32 E Ross et al. (2003)
1999–2001

Reno, Nevada 1310±580 8790±2000 0.15 – Hudson and Frisbie (1991b)
Dec 1988–May 1990

New Hampshire 1090±350 ∼5000 0.22 rural site Medina et al. (2007)
Aug 2004 0.24±0.21 Æ: Billerica 42.53 N, 71.27 W

North Carolina 930 3400 0.27 Stroud et al. (2007)
Duke Forest, Jul 2003 0.38±0.16 Æ: Walker Branch 35.96 N, 84.29 W

Gosan, Korea 2010±950 5600±3500 0.36 0.35±0.31 ABC-EAREX 33.29 N, 126.16 W Yum et al. (2007)
11 Mar–9 Apr 2005

Anmyeon Isl., KR 3350±980 8310±1780 0.40 0.50±0.24 Æ: Amnyon 36.54 N, 126.33 E Yum et al. (2005)
1–22 May 2004

Beijing, 7200±3000 16 200±8500 0.44 Yufa site D. Rose, unpubl.
10 Aug–9 Sep 2006 0.77±0.55 Æ: Yufa 39.52 N, 116.33 E

Guangzhou Region 7300±3300 16 500±8800 0.44 CN>60 nm 22.60 N, 113.60 E A. Wiedensohler, unpubl.
NE monsoon Xinken site
Sep–Oct 2004 0.80±0.38 Æ: Hong Kong Poly 22.30 N, 114.18 E

Guangdong rural, 9100±4800 18 700±8200 0.49 0.68±0.44 Æ: Backgarden site 23.49 N, 113.04 E D. Rose, unpubl.
SE monsoon, Jul 2006

Average 2900±2800 8400±5500 0.36±0.12 0.45±0.27

a median
b AERONET level 1.5 data
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corrected to a critical activation diameter of 85 nm at a su-
persaturation of 0.4%, corresponding to a CCN0.4/CN ratio
for the CLAIRE-98 data of 0.41. This critical diameter ap-
pears to be very robust for the clean Amazonian aerosol, and
has been found independently in several studies (Rissler et
al., 2004; D. Rose, personal communication, 2008). It has
therefore also been used, where necessary, for the calcula-
tion of CCN0.4 values from CN values in Table 1.

The results show surprisingly little difference between
wet and dry season measurements in clean conditions.
The CLAIRE-98, EUSTACH and AMAZE-08 measure-
ments during the full wet season (190±130, 155±65 and
138±94 cm−3, respectively) are only moderately lower than
the SMOCC-2002 values collected during the full dry season
over the western Amazon (205±40 cm−3). One can therefore
conclude that the natural CCN0.4 concentrations over Ama-
zonia are centered around a value no greater than 180 cm−3,
with a range of about 80–250 cm−3, and with only a mod-
est seasonal range of about 40 cm−3. Again, I emphasize
that even these low values contain some anthropogenic con-
tamination from long-range transport, as shown by the pres-
ence of soot particles and a slightly elevated sulfate content
that could be related to trans-Atlantic transport (Andreae et
al., 1990 and unpublished aerosol composition and SEM data
from the campaigns listed above).

During the burning season, pyrogenic aerosols from tens
of thousands of fires overwhelm the natural aerosol popula-
tion. It is not very meaningful to give average concentrations
for this situation, as the actual concentration at any given
time and place is dictated by the proximity to the fires and the
meteorological conditions, and therefore varies over orders
of magnitude from near-pristine values to those inside fresh
plumes, which can be in the hundreds of thousands per cm−3.
Table 1 lists the ranges of typical concentrations observed
during several campaigns in the smoky season. One finds
that at sites remote from the fires, such as Balbina in north-
ern Amazonas State, CCN0.4 concentrations in the dry sea-
son typically reach up to ca. 1000 cm−3, while in the heavily
impacted states of Mato Grosso and Rondonia, typical con-
centrations are in the range of 1000–4000 cm−3.

Aerosol optical thickness measurements over the Amazon
Basin from the AERONET network have been reviewed by
Schafer et al. (2008). In Table 1 I give the averages from
the cleanest 3 months (April–Juni in the northern part of the
Amazon Basin, February–April in the southern part) to repre-
sent clean conditions, and the average of August and Septem-
ber in the southern part of the Amazon forest to represent
the smoky period. The average values for the clean period
fall near 0.09, while in the smoky period they range around
0.90, and thus show about the same factor-of-ten increase
from clean to smoky conditions as the CCN concentrations.
During some of the cleanest episodes, values as low as 0.05
were observed. The̊Angstrom exponent,̊a, during the clean
periods is relatively low (0.7–1.1), indicating that coarse par-
ticles (primary biogenic material, but also some dust from

long-range transport) contribute significantly to AOT. The re-
sults from the Amazon forest are nearly identical to values
observed at tropical and subtropical marine sites (cf. Table 2
and Fig. 1), such as Lanai (Hawaii) and San Nicolas Island
(California), where AOT500 values of 0.08±0.03 have been
observed, with̊a in the range of 0.6 to 1.3 (Holben et al.,
2001).

During the smoky period,̊a increases to 1.7±0.1 as a re-
sult of the increased importance of the fine mode aerosol.
The single scattering albedo of the smoke aerosol over the
Amazon forest is 0.92±0.01, with excellent agreement be-
tween sunphotometer and in-situ measurements (Schmid et
al., 2006; Schafer et al., 2008).

5 Remote temperate continental regions

Because the large expanses of temperate ecosystems fall into
the same latitude belt as the regions with the highest density
of anthropogenic emissions, it is very difficult to estimate
pristine CCN concentrations and AOT over them. There is a
surprisingly small number of data sets from remote regions
in the temperate zone, and none where CCN and AOT mea-
surements are truly collocated. Furthermore, the direct CCN
measurements must either be taken from older studies, with
sometimes uncertain measurement accuracy, or be deduced
from size distributions. In spite of these problems, a sur-
prisingly consistent picture emerges. In western and north-
ern North America, remote sites tend to have CCN0.4 con-
centrations ranging from about 90 in winter to ca. 280 in
summer. Average AOT500 values typically fall in the 0.06–
0.12 range. The northern European CCN concentrations tend
to be somewhat higher, which is not altogether surprising
considering the likely impact of residual air pollution in this
region (Putaud et al., 2004; Van Dingenen et al., 2004). Un-
fortunately, no AOT data are available from this region.

An area of great potential interest for aerosol studies are
the remote regions of Siberia, where the first measurements
with modern aerosol size spectrometers have recently been
reported (Heintzenberg et al., 2008). A preliminary analysis
of a one-year data set from the ZOTTO tall tower site near
60◦ N, 90◦ E shows an average CCN0.4 concentration (calcu-
lated from CN>60 nm) of about 190 cm−3 during clean pe-
riods (defined as those times when the aerosol absorption co-
efficient is<2 Mm−1, corresponding to an equivalent black
carbon concentration of about<0.2µg m−3). The data show
that CN and light absorption by soot particles are still corre-
lated even at low concentrations, indicating the presence of
a residual pollution component. It is difficult to find corre-
sponding AOT data, as the two nearest AERONET sites are
in Krasnoyarsk and Tomsk, two highly industrialized cities
with strong local pollution sources. The median and quartile
ranges for AOT500 at these sites are 0.163(0.122, 0.219) and
0.138(0.094, 0.209), respectively. A better site to represent
remote values in boreal Siberia may be Yakutsk, which has
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Fig. 1. Relationship between AOT500 and CCN0.4 from investigations where these variables have been measured simultaneously, or where
data from nearby sites at comparable times were available. The error bars reflect the variability of measurements within each study (standard
deviations or quartiles).

a much smaller population and little industry. The median
AOT500 there is 0.081(0.053–0.120), comparable to many
other remote continental sites, but still considerably higher
than at Fort McMurray in northern Canada: 0.057(0.034,
0.089). The only report from the extratropical continental
Southern Hemisphere is from a flight campaign in South
Africa, where CCN0.4 values of 137±63 were measured over
the Highveld region on a clean day (Ross et al., 2003). On
the same day, the AERONET site at Bethlehem, in the center
of the Highveld, measured an AOT500 of 0.045±0.013.

In summary, the mean values of CCN0.4 and AOT500 over
extratropical remote sites are not distinctly different from
those measured over Amazonia, even considering that some
influence from long-range transport of pollution aerosol is
unavoidable in these measurements. For example, more than
half of the sulfate aerosol over remote British Columbia is
from East Asian sources (van Donkelaar et al., 2008). This
implies that pre-anthropogenic CCN0.4 concentrations over
most continental regions were below, maybe even well be-
low, 200 cm−3.

6 Remote marine regions

Remote marine regions, especially in the Southern Hemi-
sphere, are usually considered the least polluted and most
pristine parts of the atmosphere, but it must be remem-
bered that anthropogenic pollution reaches even the remotest

sites. This is, for example, readily seen at the Cape Grim
background station, where aerosols from biomass burning in
Southern Africa are readily detected during the fire season
(Heintzenberg and Bigg, 1990). Nevertheless, remote marine
sites show the lowest number concentrations of aerosol par-
ticles and CCN worldwide. In the winter season, CCN con-
centrations in some areas drop down to a few tens per cm3,
as shown in Table 2 by data from the Southern Ocean (Cape
Grim) and the Northeast Pacific (off Washington State),
while in other areas, e.g., at the Northeast Atlantic coast
(Mace Head) this seasonal cycle is less pronounced. Over
biologically productive ocean regions, such as the tropical
oceans and the temperate regions in summer, CCN0.4 con-
centrations are typically near or above 100 cm−3. This sea-
sonal behavior is related to the biogenic production of marine
aerosols, probably both via the emission of DMS and its oxi-
dation to sulfate, and the release of primary biogenic particles
(Charlson et al., 1987; Andreae and Rosenfeld, 2008). The
reduced seasonality at some sites may be related to the effect
of low levels of anthropogenic pollution, which can make
a significant contribution to the very low aerosol concentra-
tions present at remote oceanic sites in winter (Andreae et
al., 1999, 2003; Reade et al., 2006).

Overall, one finds that CCN concentrations over the
present-day remote oceans are on average about one-half of
those over the present-day remote continents (Table 2), but
with a very broad overlap (Fig. 1). In view of the fact that the
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sources of anthropogenic emissions are all located on land
(with the exception of ship-stack emissions), it must be as-
sumed that this ocean-land difference in CCN concentrations
was substantially lower in pre-human times.

Remote ocean areas also show very low AOT values, in
spite of the relatively high fraction of scattering associated
with the seasalt aerosol (Quinn and Coffman, 1999), and
the high AOTs reported in one study that included very high
wind speeds (Mulcahy et al., 2008). The datasets compiled
in Table 2 yield an average AOT500 of 0.055±0.023, in good
agreement with the “baseline” marine AOT550 of 0.06±0.01
given by Kaufman et al. (2005). Interestingly, the seasonality
of AOT at Cape Grim is opposite to that of seasalt aerosol,
which has its highest concentrations in the winter (Andreae
et al., 1999). This argues against a dominant role of seasalt
in controlling AOT, and suggests that the fine aerosol frac-
tion may dominate both CCN concentration and AOT. The
same conclusion was reached by Vallina et al. (2006) based
on a statistical analysis of the CCN concentrations over the
Southern Ocean and their controlling variables.

7 Polluted continental and marine regions

CCN concentrations and AOT values in polluted regions
show a continuous increase from near-pristine values to ex-
tremely high levels in urban or biomass-burning regions (Ta-
ble 2). In general, polluted marine regions tend to have lower
values (range of study averages: CCN0.4 600–1700 cm−3,
AOT500 0.15–0.39) than continental polluted areas (CCN0.4
370–9100 cm−3, AOT500 0.10–0.90) because they are usu-
ally more distant from sources. This can also be seen at some
coastal sites, such as Amnyeon and Gosan (Korea), which
experience both direct continental flow and inflow of pol-
luted airmasses that have spent up to several days over the
ocean. Thus, the CCN0.4 concentrations in these airmasses,
which in terms of airmass trajectories would be classified as
marine, are in the range conventionally thought of as “con-
tinental”, again putting in question the validity of this clas-
sification (Roberts et al., 2001). On the other hand, some
of the continental sites in North America and Europe (e.g.,
the New Hampshire, North Carolina, and Hohenpeissenberg
sites) show relatively low CCN and AOT values, most likely
as a result of the reductions in pollutant emissions over the
last two decades. The highest values in Table 2 come from
peri-urban regions in China, i.e., from locations just outside
the urban areas of Guangzhou and Beijing. I have not in-
cluded any urban measurements, because it is difficult to ob-
tain representative measurements in such a highly variable
environment, and because this analysis is mainly directed to-
ward the regional to global scale.

8 Relationship between CCN0.4 and AOT500

The scatterplot between CCN0.4 and AOT500 (Fig. 1) shows
a surprisingly tight relationship, which can be fitted with a
power law AOT500=0.0027·[CCN0.4]0.640 with a very high
degree of correlation (r2=0.88). While the deviations of in-
dividual studies from this trend are sometimes large (up to
a factor of three), and obviously deviations for single mea-
surements at one place and time must be expected to be even
greater, this does provide a basis for a parameterization of
CCN concentrations in large-scale regional and global cli-
mate models. Note that in almost all cases the regression line
goes through the error bars of the data. Figure 1 also high-
lights the broad overlap between remote marine and conti-
nental values.

Some further developments to this approach suggest them-
selves. Given that the CCN concentration is more closely
tied to the finer fraction of the aerosol, AOT measurements at
lower wavelengths might provide better correlations than the
commonly used AOT500, which was employed in this study.
Alternatively, instead of AOT500, one might examine correla-
tions between CCN and the aerosol index AI, defined as the
product of AOT and the̊Angstrom exponent, thus provid-
ing another way of weighting the AOT measurement toward
the fine mode. Finally, instead of the use of ground-based
AOT measurements, one could examine the use of products
based on satellite remote sensing, such as the fine mode AOT
product from MODIS (Remer et al., 2005), especially once
the remaining calibration issues in the MODIS products have
been resolved (Remer et al., 2008). These investigations go
beyond the scope of the present study, however, which has
been designed as a first examination of large-scale relation-
ships between potential proxies for the radiative and cloud
microphysical forcings of anthropogenic aerosols.

Figure 2 shows the relationship between CCN0.4 and CN
concentrations. Again, there is a surprisingly good correla-
tion, especially in view of the very different regimes from
which the data are taken and the many different instruments
by which they have been collected. The data in Table 2 sug-
gest a fairly constant CCN0.4/CN ratio of 0.36±0.14 (exclud-
ing the two very low values from Laramie, Wyoming), which
has been plotted as a line in Fig. 2. This relationship reflects
the relatively narrow range of hygroscopicity parameters and
the convergent character of aerosol size distributions typical
of many non-urban regions (Andreae and Rosenfeld, 2008).

9 Summary and conclusions

Analysis of published and unpublished data on AOT500 and
CCN concentration shows that measurements from remote
oceanic and continental regions fall into relatively narrow
ranges. Remote marine CCN0.4 concentrations are typically
near or slightly above 100 cm−3 in biologically productive
regions and seasons, and of the order of a few tens per cm3
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Fig. 2. Scatterplot of CN vs. CCN0.4 based on the data from Table 2. The line represents the mean CCN0.4/CN ratio of 0.36.

in winter. The average AOT500 over the remote oceans is
0.057±0.023, again with lower values in winter. Remote
continental areas have, on average, almost twice as many
CCN, and a mean AOT500 of 0.075±0.025 (Table 2). Some,
or maybe even most of this difference, must be related to the
closer proximity that even remote continental sites have to
pollution sources, underscoring that the difference between
marine and continental levels must have been smaller be-
fore the advent of anthropogenic pollution. Support for this
statement comes from observations in remote regions that
show the presence of residual pollution aerosols even under
quite clean conditions, from analyses of the spatial patterns
of AOT over continents and oceans, and from global aerosol
modeling studies (Andreae, 2007a, b; Andreae and Rosen-
feld, 2008). CCN concentrations over polluted regions are
on average about one order of magnitude greater than over
their remote counterparts, while the AOT500 values over the
polluted regions are about 5 times those over their remote
equivalents (Table 2).

CCN0.4 concentrations and AOT500 values show a surpris-
ing degree of correlation, which can be expressed as a power
law (note that regions dominated by desert dust have been
excluded from this analysis). Given the difficulty of mak-
ing direct CCN measurements, this relationship should be of
great practical value in large-scale studies on the influence of
the various direct and indirect aerosol effects on climate, as it
provides an easily measured proxy for CCN concentrations.
It is obvious, that the use of such a relationship requires a
number of caveats, in particular in relation to the statistical

nature of the relationship, which includes the considerable
variability that must be expected at any given time and place
due to the effects of the vertical structure of the aerosol dis-
tribution, the influence of relative humidity, the presence of
large amounts of mineral dust, and other factors. Various re-
finements to this analysis can be suggested, including the use
of different AOT measurement wavelengths and spaceborne
remote sensing.

As noted in the introduction, this study was motivated
by the desire to explore the range of values typical of var-
ious aerosol regimes in the present-day atmosphere, based
on a compilation of observations, with the intention of using
the results in modeling studies. The analysis presented here
shows that the selected proxies for the microphysical and ra-
diative effects of clouds on aerosols, CCN0.4 and AOT500, do
not vary fully independently of one another. This implies that
the radiative and microphysical effects of aerosols on clouds,
and therefore on climate and precipitation, are correlated and
should not be treated independently of one another, at least
not on larger scales. Further discussion of this conceptual
approach and initial results can be found in the recent paper
by Rosenfeld et al. (2008).
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