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Abstract. The aim of this paper is to test the Multivari-
ate Linear Parametric Models applied to daily rainfall series.
These simple models allow to generate synthetic series pre-
serving both the time correlation (autocorrelation) and the
space correlation (crosscorrelation). To have synthetic daily
series, in such a way realistic and usable, it is necessary
the application of a corrective procedure, removing negative
values and enforcing the no-rain probability. The following
study compares some linear models each other and points out
the roles of autoregressive (AR) and moving average (MA)
components as well as parameter orders and mixed parame-
ters.

1 Introduction

Daily synthetic series are used in several hydrological appli-
cations. In many cases the univariate analysis is not enough,
since rainfall series are affected by strong space correla-
tion and a weak time correlation as well. Therefore in a
rainfall-scenario simulation the multivariate approach is nec-
essary. In this paper, Multivariate Linear Parametric Models
(MLPM) are applied as an extension of the well known Lin-
ear Parametric Models (LPM) (Grimaldi, 2004).

Rainfall series are particularly difficult to model with a
LPM. Usually they are not perfectly linear, non-Gaussian,
and present weak seasonality and a high percentage of zero
values (no-rain days). Despite those limits, simulations ob-
tained with LPM preserve the main statistical characteristics
of the observed series (Grimaldi et al., 2004). The main prob-
lem is the presence of negative values in the synthetic series,
an obvious consequence of stochastic nature of these pro-
cesses that cannot reproduce a sequence of zero-values. In
order to overcome this limit we referred to the corrective pro-
cedure, already applied in Grimaldi et al. (2004), on 20 daily
rainfall series.
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Here follows comparisons among MLPMs. The purpose
is to point out differences among simple and widely used
first-order Vector Autoregressive models, optimal-order Vec-
tor Autoregressive models and general Vector Autoregressive
Moving Average models described in Sect. 2. The present
case study, Sect. 3, also examines the possibility to reduce
the number of the parameters in the modelling.

2 Multivariate linear parametric models

A multivariate stochastic process can be described by vari-
ables characterized by the autocorrelation, in time domain,
and the crosscorrelation in the space-time domain. As in the
univariate case, these correlations can be expressed by means
of parameter linear combinations. The general class of
multivariate linear parametric model is called VARMA(p,q)
(Vector Autoregressive Moving Average, Hall and Nicholls,
1979; Lutkepohl, 1993; Hipel and McLeod, 1994):

yt = ν + A1yt−1 + A2yt−2 + ......... + Apyt−p + ut

+M1ut−1 + M2ut−2 + ... + Mqut−q (1)

whereyt= {y1t , y2t , ..., ykt } is k-dimension vector of vari-
ables at the timet , ν= {ν1, ν2, ..., νk} is a constant vector,
ut= {u1t , u2t , ..., ukt } white-noise vector, and where

Ai =

∣∣∣∣∣∣∣∣
ai11ai12.........ai1k

ai21ai22.........ai2k

.....................

aik1aik2.........aikk

∣∣∣∣∣∣∣∣ i = 1, 2, ..., p,

M i =

∣∣∣∣∣∣∣∣
mi11mi12.........mi1k

mi21mi22.........mi2k

.....................

mik1mik2.........mikk

∣∣∣∣∣∣∣∣ i = 1, 2, ..., q,

are respectively the Autoregressive and the Moving average
coefficient matrices. Since this general expression is usually
characterized by a high number of parameters and a complex
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Figure 1. Seasonal components of  series 1 with classic method  and STL method applied with 
smoothing windows of 175 lags. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Seasonal components of series 1 with classic method and STL method applied with smoothing windows of 175 lags.
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Fig. 2. Autocorrelation Function of series 1(a) and Cross Correlation Function of series 1–2(b). The small graph reproduces the above
functions until 10 lags.

parameter estimation procedure, in literature it is often sim-
plified. The most used expression is the VAR(p) easy to be
built, which develops only the AR component. Sometimes,
even only the first order is considered, VAR(1). Another sim-
plified version is the Contemporaneous ARMA(p,q) models
(CARMA, Hypel and McLeod, 1994), where all the mixed
parameters of both matricesA andM are fixed to zero. This
means that the model can preserve the full autocorrelation,
but the crosscorrelation only at lag 0; so rainfall simulation
will reproduce only the contemporaneous space correlation.

The procedure to build an MLPM is the same as the uni-
variate case (Grimaldi, 2004). It consists of 4 steps (Prelimi-
nary Analysis, Parameter estimation, Checking and Optimal
model choice, Simulation) useful to identify the best model
analysing the observed data and generate synthetic scenarios.
The Preliminary analysis tests the Gaussianity and stationar-
ity on the series. In the first case the Box and Cox transfor-
mations are applied, but this approach could prove to be not
useful to daily rainfall modelling (Grimaldi, 2004). Concern-
ing the Stationarity, the seasonal characteristics are analysed.
The Deseasonalization of single series can be performed fil-

tering seriesyit with the expression

zτ
it =

yτ
it − µiτ

siτ
i = 1, 2, ..., k. (2)

The classic mean (µiτ ) and the standard deviation (siτ )

periodical components are smoothed using the STL method
(Seasonal trend decomposition based on Loess, Grimaldi,
2004). As shown in Fig. 1 this approach is necessary to
remove the high noise due to the daily series scale. In
daily rainfall series the seasonality could be not significant
(Grimaldi et al., 2004, Grimaldi et al., 2004). The Parameter
Estimation step uses several methods, such as Yule-Walker
(Whittle, 1963), Burg algorithm (Trinidade et al., 2002),
OLS (Ordinary Least Square, Lutkepohl, 1993), and MLE
(Maximun Likehood Estimation, Shea 1989; Lutkephol,
1993). The following case study uses Lutkephol’s (Approx-
imate) MLE method. Together with OLS estimation, there
are also methods to reduce the number of the parameters to
be estimated, and obtain the so-called Subset VAR models
(Lutkephol, 1993). The Checking and Optimal model choice
step must check that, for all estimated models, all the residual
series are white noises . This is possible through Portmanteau
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Figure 3. Maximum values of the observed series and of the 50 simulated series. The box-plot 

represents the mean of the maximum values and the 5% and 95% quantiles estimated on 
the 50 synthetic values. The results are obtained: a) without the deseasonalization 

procedure b) with the deseasonalization procedure. 
  

Fig. 3. Maximum values of the observed series and of the 50 simulated series. The box-plot represents the mean of the maximum values and
the 5% and 95% quantiles estimated on the 50 synthetic values. The results are obtained:(a) without the deseasonalization procedure(b)
with the deseasonalization procedure.

Test (Hosking, 1980). Among models positive to this test, the
best one is selected by Automatic Selection Index likeAIC
(Akaike Information Criterion) orSBC(Schwartz Bayesian
Criterion). The last step, Simulation, allows to generate syn-
thetic series starting from the selected optimal model. The
used simulation algorithm is explained in Lutkepohl (1993)
and, as in the univariate case (Grimaldi, 2004), the genera-
tion of innovations is carried out by re-sampling the residu-
als obtained from the observed series. The multivariate case
develops a vectorial sampling, so that the contemporaneous
correlation is preserved.

As introduced in Sect. 1, these models create negative val-
ues in synthetic series, despite their capability to reproduce
the main statistics of the observed series. In order to over-
come this difficulty, the above-mentioned corrective proce-
dure is necessary. Briefly, this procedure consists in: (i)
transferring the abscissa until the negative-value frequency
of the simulated series is equal to the no-rain frequency, (ii)
changing the negative values in zero-values; (iii) increasing
rainy-days values so that enforcing the mean of the observed
series. This procedure does not modify the positive tail of
the distribution and make the synthetic series realistic and
usable.

3 The case study

The present case study analyses five daily rainfall series from
1958 to 1979 (Rudari, 2001) observed in some stations of
Tuscany, a region of Italy . The examined series originally
were lacking in some values and years. The case-study sam-
ple is obtained removing the years without values, interpo-
lating missing values and removing 29 February. The final
sample consists of a lap of 15 years. Figure 2 shows the au-
tocorrelation (ACF) and a crosscorrelation functions (CCF)
of one of the series. As expected there is a weak time cor-
relation and a significant space correlation as well as a very
weak seasonal state.

On the 5 described series the following tests are devel-
oped:

1. A comparison between the modelling with the desea-
sonalization procedure (smoothing window=175) and
the modelling without it.

2. A comparison among different models: Var(1), the sim-
plest and the most used, the optimal Var(p) and the op-
timal mixed Varma(p,q)

3. A comparison between models with different number
of parameters: Complete Var(p) and Subset Var(p) with
the lowest possible number of parameters.

The evaluations were carried out comparing 5 groups of 50
synthetic series, simulated with the different models or pro-
cedures, to those observed ones.

Applying on the 5 series the procedure briefly described
in Sect. 2, both AIC and SBC index suggest Var(2) as opti-
mal model among Vector AR models, and Varma(1,1) among
Vector ARMA models, in particular Portmanteau Test is per-
formed with maximum lag=20 and 5% significant level.

Firstly the test (a) is approached. The seasonal compo-
nents of considered series are very weak (see Figs. 1 and 2)
and in fact, looking at the ACF (Fig. 2), the sinusoid with
period 365 is almost within the 95% confidence bounds. Fig-
ure 3 compares maximum values of the simulated series with
and without the application of the deseasonalization proce-
dure and the observed maximum values. It without signifi-
cant seasonality, the inversion of filter (2) increase the vari-
ance of simulated series.
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Table 1a.Statistical parameters estimated on observed and 50 sim-
ulated series.

mean mean variance variance skewness skewness max value max value
µ σ µ σ µ σ µ σ

1 2,00 33,51 4,70 72,00
2 1,86 41,45 10,54 217,00
3 2,84 68,49 6,27 187,90
4 2,42 42,05 5,01 117,80
5 2,38 37,56 4,26 72,60

5 observed series

1 2,00 0,00 30,93 0,03 4,78 0,00 72,02 1,55
2 1,86 0,00 38,72 0,02 11,20 0,01 217,09 1,60
3 2,84 0,00 64,58 0,07 6,56 0,00 187,88 0,78
4 2,42 0,00 39,75 0,04 5,18 0,00 117,67 0,51
5 2,38 0,00 34,47 0,03 4,37 0,00 72,65 0,79

5 groups of 50 simulated series with a SVAR(1)

1 2,00 0,00 30,57 0,03 4,81 0,00 72,17 1,45
2 1,86 0,00 38,71 0,02 11,19 0,01 216,90 1,09
3 2,84 0,00 64,19 0,10 6,61 0,00 187,92 2,01
4 2,42 0,00 39,43 0,03 5,22 0,00 117,83 0,88
5 2,38 0,00 34,13 0,04 4,39 0,00 72,60 0,87

5 groups of 50 simulated series with a SVAR(2)

1 2,00 0,00 30,07 0,09 4,85 0,00 71,76 1,43
2 1,86 0,00 38,46 0,06 11,29 0,01 217,25 2,67
3 2,84 0,00 63,82 0,07 6,65 0,00 188,19 5,34
4 2,42 0,00 38,90 0,04 5,26 0,00 117,71 0,61
5 2,38 0,00 33,61 0,07 4,42 0,00 72,72 2,27

5 groups of 50 simulated series with a VARMA(1,1)

1 2,00 0,00 30,42 0,03 4,82 0,00 71,82 0,64
2 1,86 0,00 38,51 0,04 11,23 0,00 216,78 0,65
3 2,84 0,00 63,90 0,07 6,62 0,00 188,02 2,44
4 2,42 0,00 39,12 0,04 5,23 0,00 117,74 0,77
5 2,38 0,00 33,91 0,03 4,40 0,00 72,85 1,81

5 groups of 50 simulated series with a VAR(1)

1 2,00 0,00 30,19 0,04 4,84 0,00 72,28 2,23
2 1,86 0,00 38,45 0,04 11,25 0,01 216,89 1,34
3 2,84 0,00 63,74 0,10 6,64 0,00 187,69 2,03
4 2,42 0,00 39,05 0,04 5,25 0,00 117,98 1,69
5 2,38 0,00 33,79 0,05 4,44 0,00 73,48 5,13

5 groups of 50 simulated series with a VAR(2)

In order to compare the simulated and the observed se-
ries in the tests (a) and (b) the following parameters are
mainly investigated: mean, variance, skewness, maximum
values, the sum of the first 5 steps of the ACF, rainfall with
50-, 100-, 200-year return time (defined by standard extreme
value analysis using Gumbel distribution), wet-dry period
transition frequency (frequency ofn consecutive rainy days,
followed and preceded by dry days), distributions on cumula-
tive rainfall of events of lengthn-days, crosscorrelation func-
tion.

Usually the model used in literature is the Var(1). In this
study the optimal model improvements are tested (Var(2) and
Varma(1,1)) without deseasonalization procedure. The Ta-
ble 1 compares the above-described statistical parameters ,
estimated on the observed series and the 50 simulated ones,
Fig. 4 shows an example of comparison between CCF of the
simulated series and the observed series functions, that is
characteristic for all the simulated series; Fig. 5 shows the

Table 1b. Statistical parameters estimated on observed and 50 sim-
ulated series.

Sum of first Sum of first h with h with h with h with h with h with
5 ACF lags 5 ACF lags Tr=50 Tr=50 Tr=100 Tr=100 Tr=200 Tr=200

µ σ µ σ µ σ µ σ

1 0,05 76,81 82,56 88,30
2 0,03 181,02 206,00 230,89
3 0,02 177,99 199,05 220,03
4 0,03 116,72 129,65 142,54
5 0,05 80,82 87,63 94,41

5 observed series

1 0,03 3,2E-05 77,41 3,87 83,70 5,78 89,98 8,16
2 0,01 7,9E-06 179,46 2,44 204,44 3,29 229,33 4,36
3 0,01 6,1E-06 174,44 9,01 195,05 11,51 215,59 14,85
4 0,01 3,6E-06 112,86 3,68 124,91 5,02 136,92 6,70
5 0,01 1,0E-05 81,37 5,23 88,25 7,77 95,09 10,95

5 groups of 50 simulated series with a SVAR(1)

1 0,03 3,3E-05 76,99 3,48 83,15 5,73 89,29 8,64
2 0,01 1,1E-05 179,92 0,89 205,01 1,48 230,01 2,36
3 0,01 8,0E-06 175,00 9,18 195,78 12,70 216,49 17,13
4 0,02 1,7E-05 112,28 5,45 124,14 7,86 135,97 10,84
5 0,02 1,7E-05 82,03 4,82 89,05 6,96 96,05 9,64

5 groups of 50 simulated series with a SVAR(2)

1 0,03 4,1E-05 76,87 4,49 83,07 6,38 89,25 8,75
2 0,02 2,7E-05 179,64 1,89 204,76 2,42 229,78 3,18
3 0,02 1,7E-05 174,80 11,68 195,54 15,95 216,20 21,36
4 0,02 2,1E-05 112,35 2,80 124,32 3,96 136,24 5,47
5 0,03 3,2E-05 81,68 4,46 88,63 6,17 95,55 8,31

5 groups of 50 simulated series with a VARMA(1,1)

1 0,03 2,3E-05 77,17 4,14 83,38 6,58 89,56 9,67
2 0,01 7,3E-06 179,55 0,89 204,60 1,35 229,56 2,05
3 0,01 1,2E-05 174,99 4,32 195,77 6,11 216,48 8,60
4 0,02 2,5E-05 112,65 2,60 124,64 3,87 136,58 5,58
5 0,03 1,7E-05 81,77 3,77 88,67 5,62 95,54 7,99

5 groups of 50 simulated series with a VAR(1)

1 0,03 3,9E-05 77,14 3,47 83,39 5,34 89,61 7,72
2 0,02 1,3E-05 179,13 2,29 204,14 2,84 229,06 3,60
3 0,01 1,1E-05 174,22 13,51 194,81 17,30 215,32 22,00
4 0,02 2,4E-05 112,57 4,89 124,60 6,78 136,60 9,18
5 0,03 4,2E-05 82,25 6,04 89,31 8,69 96,34 11,96

5 groups of 50 simulated series with a VAR(2)

transition frequency and Fig. 6 shows the 5- and 3-days cu-
mulative rainfall events. Observing the results it is possible
to note that the optimal models provide more accurate results
above all those concerning the crosscorrelation values.

Another purpose of this study case regards the number
of parameters. The Vector Ar(p) model is characterized by
p×n2 parameters, for instance a simple Var(2) applied on
5 series needs 50 parameters. To overcome this limit they
can be reduced by fixing no-significant parameters to zero.
Following the T-ratio approach, a SVar(1) with 6 parame-
ters and a SVar(2) with 14 parameters are defined and then
estimated with EGLS method (Lutkepohl, 1993). Looking
at the obtained results in Table 1, Figs. 4, 5 and 6 it is ev-
ident that these simple models statistically lose information
but also that they are able to generate usable daily rainfall
synthetic series.
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Figure 4. Crosscorrelation-matrix representation related to Var(1), Var(2), SVar(1), SVar(2), 

Varma(1,1). Boxes show: (a) 25 values of crosscorrelation matrix at lag = 0; (b) 25 values 
of crosscorrelation matrix at lag = 1 (c) 25 values of crosscorrelation matrix at lag = 2 (d)  
25 values of crosscorrelation matrix at lag = 3. 

 

Fig. 4. Crosscorrelation-matrix representation related to Var(1), Var(2), SVar(1), SVar(2), Varma(1,1). Boxes show:(a) 25 values of
crosscorrelation matrix at lag=0;(b) 25 values of crosscorrelation matrix at lag=1(c) 25 values of crosscorrelation matrix at lag=2(d) 25
values of crosscorrelation matrix at lag=3.

4 Conclusion

In this paper the multivariate linear parametric modelling is
applied on 5 daily rainfall time series. The first aim of the
application is to test this approach then examine the differ-
ences among several models like: Var(1), optimal Var(p) and
Varma(p,q). The described case study shows that this mod-
elling can simulate rainfall time series and that the optimal
models prove to be favourable instead of the simplest Var(1).
The limit of these models is the number of the parameters.
It frequently happens to have cases with 50 or 70 parameters
to estimate. The case study highlights that the Subset Var
models can reduce the number of the parameters keeping the
results good for hydrological application.
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Figure 5, Transition Frequency of 5 days estimated on each of the observed series (black 
point) and on the 50 simulated series using a Var(1) [1], SVar(1) [2] , SVar(2) [3], Var(2) 

[4], Varma(1,1) [5]   

Fig. 5. Transition Frequency of 5 days estimated on each of the
observed series (black point) and on the 50 simulated series using a
Var(1) [1], SVar(1) [2] , SVar(2) [3], Var(2) [4], Varma(1,1) [5].
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Figure 6. Volume box plots of 3- (a) and 5- (b) days events. Each block of six box-plots is 
referred to a series. The box-plots 1,2,3,4 and 5 are referred to the 50 simulated series 

obtained with Var(1) [1], SVar(1) [2] , SVar(2) [3], Var(2) [4], Varma(1,1) [5]. 
The box plot 6 is referred to the observed series. The box-plots are characterized by the 

median, the 25% and 75% interquartile and the outliers. 
 

Fig. 6. Volume box plots of 3-(a) and 5-(b) days events. Each
block of six box-plots is referred to a series. The box-plots 1,2,3,4
and 5 are referred to the 50 simulated series obtained with Var(1)
[1], SVar(1) [2] , SVar(2) [3], Var(2) [4], Varma(1,1) [5]. The box
plot 6 is referred to the observed series. The box-plots are character-
ized by the median, the 25% and 75% interquartile and the outliers.
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