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Abstract. We systematically develop Weyl-Titchmarsh theory for singular differential
operators on arbitrary intervals (a,b) C R associated with rather general differential ex-
pressions of the type

Tf= % (=@l + 1)+ splf +sf1+af ),

where the coefficients p, g, r, s are real-valued and Lebesgue measurable on (a, b), with p # 0,
r >0 a.e. on (a,b),and p~ ', q, r, s € Li,.((a,b);dz), and f is supposed to satisfy

f € ACioc((a, b)), P[fl +sf] € ACioc((a,b)).

In particular, this setup implies that T permits a distributional potential coefficient, including
potentials in H,,!((a,b)).

We study maximal and minimal Sturm-Liouville operators, all self-adjoint restrictions of
the maximal operator Tmax, or equivalently, all self-adjoint extensions of the minimal operator
Tmin, all self-adjoint boundary conditions (separated and coupled ones), and describe the
resolvent of any self-adjoint extension of Tiin. In addition, we characterize the principal
object of this paper, the singular Weyl-Titchmarsh-Kodaira m-function corresponding to
any self-adjoint extension with separated boundary conditions and derive the corresponding
spectral transformation, including a characterization of spectral multiplicities and minimal
supports of standard subsets of the spectrum. We also deal with principal solutions and
characterize the Friedrichs extension of Thin.

Finally, in the special case where 7 is regular, we characterize the Krein-von Neumann
extension of Thin and also characterize all boundary conditions that lead to positivity pre-
serving, equivalently, improving, resolvents (and hence semigroups).
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1. INTRODUCTION

The prime motivation behind this paper is to develop Weyl-Titchmarsh theory for
singular Sturm-Liouville operators on an arbitrary interval (a,b) C R associated with
rather general differential expressions of the type

7 = (=l s+ spls 5]+ af ). (11)

Here the coefficients p, ¢, r, s are real-valued and Lebesgue measurable on (a, b), with
p#0,r >0 ae. on (a,b), and p~t, ¢, 7, s € L _((a,b);dz), and f is supposed to
satisfy
f € ACioc((a,b)), plf' + sf] € ACic((a,b)), (1.2)

with ACoc((a, b)) denoting the set of locally absolutely continuous functions on (a, b).
(The expression fI1I = p[f’ + sf] will subsequently be called the first quasi-derivative
of f.)

One notes that in the general case (1.1), the differential expression is formally
given by

7f= % (=) + [~ s) +ps* +d]1). (1.3)

Moreover, in the special case s = 0 this approach reduces to the standard one, that
is, one obtains,

i = (~f) +af). (14)
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In particular, in the case p = r = 1 our approach is sufficiently general to include
arbitrary distributional potential coefficients from H !((a,b)) = ngcl’Q((a, b)) (as
the term s? can be absorbed in ¢), and thus even in this special case our setup is
slightly more general than the approach pioneered by Savchuk and Shkalikov [140],

who defined the differential expression as

mf=—(f +sf) +slf +sf]—s°f, f[f +5f] € ACioe((a, b)) (1.5)

One observes that in this case ¢ can be absorbed in s by virtue of the transformation
s — s — [*g. Their approach requires the additional condition s? € L. ((a, b); dx).

loc
Moreover, since there are distributions in H,_!((a,b)) which are not measures, the

1
operators discussed here are not a special C(E;CSG of Sturm-Liouville operators with
measure-valued coefficients as discussed, for instance, in [41].

We emphasize that similar differential expressions have already been studied by
Bennewitz and Everitt [21] in 1983 (see also [42, Sect. 1.2]). While some of their
discussion is more general, they restrict their considerations to compact intervals and
focus on the special case of a left-definite setting. An extremely thorough and sys-
tematic investigation, including even and odd higher-order operators defined in terms
of appropriate quasi-derivatives, and in the general case of matrix-valued coefficients
(including distributional potential coefficients in the context of Schrodinger-type oper-
ators) was presented by Weidmann [157] in 1987. In fact, the general approach in [21]
and [157] draws on earlier discussions of quasi-derivatives in Shin [148]-[150], Naimark
[127, Ch. V|, and Zett] [158]. Still, it appears that the distributional coeflicients treated
in [21] did not catch on and subsequent authors referring to this paper mostly focused
on the various left and right-definite aspects developed therein. Similarly, it seems
likely that the extraordinary generality exerted by Weidmann [157] in his treatment
of higher-order differential operators obscured the fact that he already dealt with
distributional potential coefficients back in 1987.

There were actually earlier papers dealing with Schrédinger operators involving
strongly singular and oscillating potentials which should be mentioned in this context,
such as, Baeteman and Chadan [15,16], Combescure [28], Combescure and Ginibre
[27], Pearson [131], Rofe-Beketov and Hristov [134,135], and a more recent contribu-
tion treating distributional potentials by Herczyriski [72].

In addition, the case of point interactions as particular distributional potential
coefficients in Schrodinger operators received enormous attention, too numerous to
be mentioned here in detail. Hence, we only refer to the standard monographs by
Albeverio, Gesztesy, Hpegh-Krohn, and Holden [2] and Albeverio and Kurasov [5],
and some of the more recent developments in Albeverio, Kostenko, and Malamud
[4], Kostenko and Malamud [101, 102]. We also mention the case of discontinuous
Schrodinger operators originally considered by Hald [69], motivated by the inverse
problem for the torsional modes of the earth. For recent development in this direction
we refer to Shahriari, Jodayree Akbarfam, and Teschl [147].

It was not until 1999 that Savchuk and Shkalikov [140] started a new develop-
ment for Sturm-Liouville (resp., Schrédinger) operators with distributional potential
coefficients in connection with areas such as, self-adjointness proofs, spectral and in-
verse spectral theory, oscillation properties, spectral properties in the non-self-adjoint



470 Jonathan Eckhardt, Fritz Gesztesy, Roger Nichols, and Gerald Teschl

context, etc. In addition to the important series of papers by Savchuk and Shkalikov
[140-146], we also mention other groups such as Albeverio, Hryniv, and Mykytyuk [3],
Bak and Shkalikov [17], Ben Amara and Shkalikov [18], Ben Amor and Remling [19],
Davies [32], Djakov and Mityagin [33-36], Eckhardt and Teschl [41], Frayer, Hryniv,
Mykytyuk, and Perry [45], Gesztesy and Weikard [55], Goriunov and Mikhailets
[61,62], Goriunov, Mikhailets, and Pankrashkin [63], Hryniv [73], Kappeler and Méhr
[90], Kappeler, Perry, Shubin, and Topalov [91], Kappeler and Topalov [92], Hryniv
and Mykytyuk [74-81], Hryniv, Mykytyuk, and Perry [82,83], Kato [95], Korotyaev
[99,100], Maz’ya and Shaposhnikova [113, Ch. 11|, Maz’ya and Verbitsky [114-117],
Mikhailets and Molyboga [118-122], Mirzoev and Safanova [123], Mykytyuk and Trush
[126], Sadovnichaya [138,139].

It should be mentioned that some of the attraction in connection with distri-
butional potential coefficients in the Schrédinger operator clearly stems from the
low-regularity investigations of solutions of the Korteweg-de Vries (KdV) equation.
We mention, for instance, Buckmaster and Koch [24], Grudsky and Rybkin [68], Kap-
peler and Mohr [90], Kappeler and Topalov [93,94], and Rybkin [137].

The case of strongly singular potentials at an endpoint and the associated
Weyl-Titchmarsh-Kodaira theory for Schrédinger operators can already be found in
the seminal paper by Kodaira [98]. A gap in Kodaira’s approach was later circum-
vented by Kac [87]. The theory did not receive much further attention until it was
independently rediscovered and further developed by Gesztesy and Zinchenko [56].
This soon led to a systematic development of Weyl-Titchmarsh theory for strongly
singular potentials and we mention, for instance, Eckhardt [37], Eckhardt and Teschl
[40], Fulton [49], Fulton and Langer [50], Fulton, Langer, and Luger [51], Kostenko,
Sakhnovich, and Teschl [103-106], and Kurasov and Luger [109].

In contrast, Weyl-Titchmarsh theory in the presence of distributional potential co-
efficients, especially, in connection with (1.1) (resp., (2.2)) has not yet been developed
in the literature, and it is precisely the purpose of this paper to accomplish just that
under the full generality of Hypothesis 2.1. Applications to inverse spectral theory
will be given in [39)].

It remains to briefly describe the content of this paper: Section 2 develops the ba-
sics of Sturm-Liouville equations under our general hypotheses on p, ¢, 7, s, including
the Lagrange identity and unique solvability of initial value problems. Maximal and
minimal Sturm-Liouville operators are introduced in Section 3, and Weyl’s alternative
is described in Section 4. Self-adjoint restrictions of the maximal operator, or equiv-
alently, self-adjoint extensions of the minimal operator, are the principal subject of
Section 5, and all self-adjoint boundary conditions (separated and coupled ones) are
described in Section 6. The resolvent of all self-adjoint extensions and some of their
spectral properties are discussed in Section 7. The singular Weyl-Titchmarsh-Kodaira
m-function corresponding to any self-adjoint extension with separated boundary con-
ditions is introduced and studied in Section 8, and the corresponding spectral trans-
formation is derived in Section 9. Classical spectral multiplicity results for Schrédinger
operators due to Kac [85,86] (see also Gilbert [59] and Simon [151]) are extended to
our general situation in Section 10. Section 11 deals with various applications of the
abstract theory developed in this paper. More specifically, we prove a simple analogue
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of the classic Sturm separation theorem on the separation of zeros of two real-valued
solutions to the distributional Sturm-Liouville equation (7 —A)u = 0, A € R, and show
the existence of principal solutions under certain sign-definiteness assumptions on the
coefficient p near an endpoint of the basic interval (a,b). When 7— X is non-oscillatory
at an endpoint, we present a sufficient criterion on r and p for 7 to be in the limit-point
case at that endpoint. This condition dates back to Hartman [70] (in the special case
p=r=1,s=0), and was subsequently studied by Rellich [133] (in the case s = 0).
This section concludes with a detailed characterization of the Friedrichs extension of
Ty in terms of (non-)principal solutions, closely following a seminal paper by Kalf
[88] (also in the case s = 0). In Section 12 we characterize the Krein-von Neumann
self-adjoint extension of Ty, by explicitly determining the boundary conditions as-
sociated to it. In our final Section 13, we derive the quadratic form associated to
each self-adjoint extension of Ty, assuming 7 is regular on (a,b). We then combine
this with the Beurling-Deny criterion to present a characterization of all positivity
preserving resolvents (and hence semigroups) associated with self-adjoint extensions
of Tin in the regular case. In particular, this result confirms that the Krein-von
Neumann extension does not generate a positivity preserving resolvent or semigroup.
We actually go a step further and prove that the notions of positivity preserving and
positivity improving are equivalent in the regular case.

We also mention that an entirely different approach to Schrédinger operators
(assumed to be bounded from below) with matrix-valued distributional potentials,
based on supersymmetric considerations, has been developed simultaneously in [38].

Finally, we briefly summarize some of the notation used in this paper: The Hilbert
spaces used in this paper are typically of the form L?((a,b);r(z)dx) with scalar prod-
uct denoted by (-,-), (linear in the first factor), associated norm || - ||2,, and cor-
responding identity operator denoted by I,.. Moreover, L2((a,b);r(z)dz) denotes the
space of square integrable functions with compact support. In addition, we use the
Hilbert space L?(R;du) for an appropriate Borel measure p on R with scalar product
and norm abbreviated by (-,-), and || - ||2,., respectively.

Next, let T be a linear operator mapping (a subspace of) a Hilbert space into
another, with dom (T), ran(7T), and ker(T) denoting the domain, range, and kernel
(i.e., null space) of T. The closure of a closable operator S is denoted by S. The
spectrum, essential spectrum, point spectrum, discrete spectrum, absolutely continu-
ous spectrum, and resolvent set of a closed linear operator in the underlying Hilbert
space will be denoted by o(-), 0ess(+), 0p(); a(-), dac(:), and p(-), respectively. The
Banach spaces of linear bounded, compact, and Hilbert-Schmidt operators in a sepa-
rable complex Hilbert space are denoted by B(+), Boo(+), and Bsy(-), respectively. The
orthogonal complement of a subspace S of the Hilbert space H will be denoted by S*.

The symbol SLo(R) will be used to denote the special linear group of order two
over R, that is, the set of all 2 x 2 matrices with real entries and determinant equal
to one.

At last, we will use the abbreviations “iff” for “if and only if”, “a.e.” for “almost
everywhere”, and “supp” for the support of functions throughout this paper.
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2. THE BASICS ON STURM-LIOUVILLE EQUATIONS

In this section we provide the basics of Sturm-Liouville equations with distributional
potential coefficients.
Throughout this paper we make the following set of assumptions.

Hypothesis 2.1. Suppose (a,b) C R and assume that p, q, 7, s are Lebesgue mea-
surable on (a,b) with p~t, q, r, s € Li ((a,b);dz) and real-valued a.e. on (a,b) with
r>0andp#0 ae. on (a,b).

Assuming Hypothesis 2.1 and introducing the set,
D, = {g € ACioc((a, b)) ‘g[l] = p[g' + sg] € AC\e((a, b))}, (2.1)

the differential expression 7 considered in this paper is of the type,

Tf = % (—(f[”)’ + s 4+ qf) € LL ((a,b);r(x)dx), f €D, (2.2)

The expression
M =plf +sf), feD, (2:3)

will be called the first quasi-derivative of f.
Given some g € L. ((a,b);7(z)dx), the equation (T — z) f = g is equivalent to the
system of ordinary differential equations

(f{”>l B (q :Szr p;) (f{l]) - (;)g) : (2.4)

From this, we immediately get the following existence and uniqueness result.

Theorem 2.2. For each g € Li ((a,b);r(z)dz), z € C, ¢ € (a,b), and dy, ds € C

there is a unique solution f € . of (T —2)f = g with f(c) = dy and fM(c) = dy. If,
in addition, g, di, d2, and z are real-valued, then the solution f is real-valued.

For each f,g € ©, we define the modified Wronski determinant

W(f.9)(x) = f(a)gM(z) — fM(a)g(x), = € (a.b). (2.5)
The Wronskian is locally absolutely continuous with derivative
W(f.9) () = lg(@)(rf)(z) — f(x)(rg)(@)]r(z), =z € (a,b). (2.6)

Indeed, this is a consequence of the following Lagrange identity, which is readily
proved using integration by parts.

Lemma 2.3. For each f, g € ®, and o, B € (a,b) we have

8
/ lg(@)(7f)(2) = f2)(r9) ()] r(x)de = W(],9)(B) = W ([, 9)(a). (2.7)
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As a consequence, one verifies that the Wronskian W (uq,us) of two solutions uy,
ug € D, of (71— z)u = 0 is constant. Furthermore, W (u1, us) # 0 if and only if u, usg
are linearly independent. In fact, the Wronskian of two linearly dependent solutions
vanishes obviously. Conversely, W (uj,u2) = 0 means that for ¢ € (a,b) there is a
K € C such that

Kuy(c) = uz(c) and Ku[ll] (c) = u[21] (o), (2.8)

where we assume, without loss of generality, that u; is a nontrivial solution (i.e.,
not vanishing identically). Now by uniqueness of solutions this implies the linear
dependence of u; and us.

Lemma 2.4. Let z € C, uy, ua be two linearly independent solutions of (1 — z)u =0
and ¢ € (a,b), di,ds € C, g € L ((a,b);r(x)dz). Then there exist c1, ca € C such

that the solution u of (T — 2)f = g with f(c¢) = di and fM(c) = da, is given for each
x € (a,b) by

f () = eren () + eaua(a) + W?Zm) [ vty

[ c (2.9)

B w?ifx12> / uy(t)g(t) r(t)dt,

il z
1 — gl [1] ui (x)
@) = @)+ end @) + s [aa(a(0) (-

) ) (2.10)

- vf@fi) / wr (£)g(t) r(t)dt

If uy, ug is the fundamental system of solutions of (T — z)u = 0 satisfying u1(c) =
u[zl] (¢)=1 and u[ll] (c) = ua(c) =0, then ¢c; = di and ca = da.

We omit the straightforward calculations underlying the proof of Lemma 2.4.
Another important identity for the Wronskian is the well-known Pliicker identity.

Lemma 2.5. For all fi1, fa, f3, f4 € D, one has

0 =W(f1, f)W(f3, fa) + W(f1, f3)W(fa, f2) + W(f1, fa)W(f2, f3)- (2.11)

We say 7 is regular at a, if p~!, ¢, 7, and s are integrable near a. Similarly, we

say 7 is regular at b if these functions are integrable near b. Furthermore, we say 7 is
regular on (a, b) if 7 is regular at both endpoints a and b.

Theorem 2.6. Let 7 be regular at a, z € C, and g € L'((a,c);r(x)dz) for each
¢ € (a,b). Then for every solution f of (t — z)f = g the limits

fla) = lifl f(x) and fB(a) = lifl FU(z) (2.12)
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exist and are finite. For each dy, dy € C there is a unique solution of (1 —2)f =g
with f(a) = dy and fY(a) = dy. Furthermore, if g, dy, do, and z are real, then the
solution is real. Similar results hold for the right endpoint b.

Proof. This theorem is an immediate consequence of the corresponding result for the
equivalent system (2.4). O

Under the assumptions of Theorem 2.6 one also infers that Lemma 2.4 remains
valid even in the case when ¢ = a (resp., ¢ = b).
We now turn to analytic dependence of solutions on the spectral parameter z € C.

Theorem 2.7. Let g € LL ((a,b);r(z)dx), ¢ € (a,b), di,ds € C and for each z € C

loc

let f. be the unique solution of (T — 2)f = g with f(c) = dy and fY(c) = dy. Then
fx(x) and is (x) are entire functions of order /2 in z for each x € (a,b). Moreover,
for each a, B € (a,b) with a < 8 we have

(@) + (@) < CePVEL 2 e(a,8), z€C, (2.13)

for some constants C', B € R.

Proof. The analyticity part follows from the corresponding result for the equivalent
system. For the remaining part, first note that because of Lemma 2.4 it suffices to
consider the case when ¢ vanishes identically. Now if we set for each z € C with |z| > 1

va(@) = 2l £ (@) + IS (@)%, @ € (a,b), (2.14)

an integration by parts shows that for each x € (a,b)

x

ve) = 0(0) — [ 2L OF = [FOF]s(0) e+

+ [ore(£@rT0) (bt a0]de- @219

_ / 2Re (=1 (0 /7(0)) r(1)d.

C

Employing the elementary estimate

(1]
2|fz(x)fz[1](z)| < |Z‘|fz(‘r)|2 + |fz (x)|2 _ Uz(x)’ e (a,b), (216)

Vil 2

we obtain an upper bound for v,:

x

vy (x) <wvy(e) +2 /vz(t) |z|lw(t)dt|, =€ (a,b), (2.17)

c
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where w = |p~!| + |q| + |r| + |s|.- Now an application of the Gronwall lemma yields

[ w(t)dt
! ’, x € (a,b). (2.18)

24/l
v.(z) < wv.(c)e

O

If, in addition to the assumptions of Theorem 2.7, 7 is regular at a and g is

integrable near a, then the limits f,(a) and fzm (a) are entire functions of order 1/2
and the bound in Theorem 2.7 holds for all € [a,5]. Indeed, this follows since

the entire functions f,(z) and f,il] (z), x € (a,c) are locally bounded, uniformly in
x € (a,c). Moreover, in this case the assertions of Theorem 2.7 are valid even if we
take ¢ = a and/or o = a.

3. STURM-LIOUVILLE OPERATORS

In this section, we will introduce operators associated with our differential expression
7 in the Hilbert space L?((a,b);r(x)dr) with scalar product

b
(f. ) = / f@)g@ r(@)de,  f. g€ L2((a,b);r(z)da). (3.1)

First, we define the maximal operator Tiax in L2((a,b);r(z)dz) by

Tomaxf =T7f, (3.2)
f € dom (Thax) = {g € L?((a,b);r(zx)dz) | g € D, Tg € L*((a,b);r(z)dx)} .

In order to obtain a symmetric operator, we restrict the maximal operator Ty,.x to
functions with compact support by

TOf = Tfa

3.3
f € dom (Tp) = {g € dom (Tinax) | g has compact support in (a,b)} . (8:3)

Since 7 is a real differential expression, the operators Ty and T},,x are real with respect
to the natural conjugation in L?((a,b);r(z)dz).

We say some measurable function f lies in L?((a, b); 7(x)dx) near a (resp., near b) if
f liesin L?((a, c); r(x)dx) (resp., in L2((c,b);r(z)dz)) for each ¢ € (a,b). Furthermore,
we say some f € D, lies in dom (T,ax) near a (resp., near b) if f and 7f both lie in
L?((a,b);r(x)dx) near a (resp., near b). One readily verifies that some f € D, lies in
dom (Tjnax) near a (resp., b) if and only if £ lies in dom (Tj,ax) near a (resp., b).

Lemma 3.1. If 7 is reqular at a and f lies in dom (Tyhax) near a, then the limits
f(a) =lim f(z) and () = lim {1 (@) (3.4)

exist and are finite. Similar results hold at b.
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Proof. Under the assumptions of the lemma, 7f lies in L?((a, b); r(z)dz) near a and
since r(z)dz is a finite measure near a we have 7f € L!((a,c);r(z)dz) for each
¢ € (a,b). Hence, the claim follows from Theorem 2.6. O

The following lemma is a consequence of the Lagrange identity.

Lemma 3.2. If f and g lie in dom (Tymax) near a, then the limit
W(£.9)(0) =l W(£.9)(@) (5.5)

exists and is finite. A similar result holds at the endpoint b. If f, g € dom (Tmax),
then

(7f,9)r — (f.79)r = W(£,9)(b) = W(f.9)(a) = W.(f, ). (3.6)

Proof. If f and g lie in dom (Tjhax) near a, the limit « | a of the left-hand side in
equation (2.7) exists. Hence, the limit in the claim exists as well. Now the remaining
part follows by taking the limits a | a and 5 1 b. O

If 7 is regular at a and f and g lie in dom (Tiax) near a, then we clearly have

W(f.9)() = f(a)g¥(a) = fM(a)g(a). (3.7)

In order to determine the adjoint of Ty we will rely on the following lemma (see, e.g.,
[153, Lemma 9.3] or [156, Theorem 4.1]).

Lemma 3.3. Let V' be a vector space over C and Fy,..., F,, F linear functionals
defined on V. Then

F espan{Fy,...,F,} iff n ker(F}) C ker(F). (3.8)
j=1
Theorem 3.4. The operator Ty is densely defined and T§ = Tiax.

Proof. If we set

Ty = {(f1.f2) € L*((a, bir(a)de)’ | Vg € dom (Ty) : (f1, Tog), = (fas9)r}: (39

then from Lemma 3.2 one immediately sees that the graph of Ty,.x is contained in
To . Indeed, for each f € dom (Tiax) and g € dom (T) we infer

(rf.9)r = (F.70)r = mW(£.9)(5) ~EmW(£.)() =0, (310)

since W(f,g) has compact support. Conversely, let fi, fo € L?((a,b);r(z)dz) such
that (f1,Tog)r = (fa2,g)r for each g € dom (Ty) and f be a solution of 7f = fo. In
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order to prove that f; — f is a solution of 7u = 0, we will invoke Lemma 3.3. Therefore,
consider the linear functionals

b
tg) = /(f1(x) — f(@))g(a)r(z)dz, g€ L((a,b);r(x)da), (3.11)

a
b

ti(g) = /Uj(x)g(w)r(x)dw, g9 € L2((a,b);r(z)dx), j =1,2, (3.12)
where u; are two solutions of T7u = 0 with W (uy,u2) = 1 and L?((a,b); 7(z)dz) is the
space of square integrable functions with compact support. For these functionals we
have ker(¢1) Nker(¢3) C ker(¢). Indeed, let g € ker(¢1) Nker(¢z2), then the function

T b
w(z) = u(x) / ws(B)g(t) r(8)dt + us(x) / (g rt)dt, @€ (ab), (3.13)

is a solution of 7u = g by Lemma 2.4 and has compact support since g lies in the
kernels of ¢; and ¢, hence u € dom (Tp). Then the Lagrange identity and the property

Of (fl, fg) yleld

b b
/ [f1(2) = f@)]Tu(@) r(z)de = (ru, fi)r — /WW(I) r(z)dr =

‘ (3.14)

= (u, fa)r — /Tmu(x) r(z)dz =0,

hence g = 7u € ker(¢). Now applying Lemma 3.3 there are c¢;, ¢2 € C such that
b

/ [f1(x) = f(@) + crun (z) + coua(2)]g(2) r(z)de = O (3.15)
for each g € L2((a,b);r(x)dz). Hence, obviously f; € ®, and 7f; = 7f = fo, that
is, f1 € dom (Timax) and Tinaxfi = fo. But this shows that T actually is the graph

of Tiax, which shows that Ty is densely defined with adjoint Tiax. Indeed, if Ty
were not densely defined, there would exist 0 # h € L%((a,b);r(x)dz) N (dom (Tp)) .

Consequently, if (f1, f2) € ﬁ*, then (f1,fo+h) € ZA};*, contradicting the fact that
Ty is the graph of an operator. O

The operator Tj is symmetric by the preceding theorem. The closure Ty, of Ty
is called the minimal operator,

ﬂnin:TO:TE)k*:T*

max-*

(3.16)

In order to determine Ty,;, we need the following lemma on functions in dom (Tipax)-



478 Jonathan Eckhardt, Fritz Gesztesy, Roger Nichols, and Gerald Teschl

Lemma 3.5. If f, lies in dom (Tyax) near a and fy lies in dom (Tiax) near b, then
there exists an f € dom (Tnax) such that f = f, near a and f = f, near b.

Proof. Let uq, us be a fundamental system of 74 = 0 with W(uq,us) = 1 and let
a, f € (a,b), a < 8 such that the functionals

B8
Fi(g) = / uj(@)g(x) r(@)dz, g€ L((a,b);r(z)dz), j = 1,2, (3.17)

are linearly independent. First we will show that there is some u € ©, such that

u(a) = fala), uU(a) = ), w(®)=f(8), M) =r"E). (318)

Indeed, let g € L?((a,b);r(x)dz) and consider the solution u of Tu = g with initial
conditions

u(a) = fo(a) and ull(a) = fH(a). (3.19)

With Lemma 2.4 one sees that u has the desired properties if

(Bl (30 > (A0 cmo) el ) g
Filg) ~\u'(8) —u'(8))  \R1B) - end1(8) — ey (8)) 7
where ¢1, co € C are the constants appearing in Lemma 2.4. But since the functionals

Fy, F» are linearly independent, we may choose g € L?((a,b);r(z)dx) such that this
equation is valid. Now the function f defined by

falx), € (a,a),
fl)=<ulz), =€ (a,pf), (3.21)
fo(z), z€(B,b),
has the claimed properties. O
Theorem 3.6. The minimal operator Ty, is given by
Twinf =7f, [ € dom (Thin) = {g € dom (Trax) | Vh € dom (Tinax) :
W(g,h)(a) = W(g,h)(b) = 0}.
Proof. If f € dom (Trin) = dom (T}h,y) € dom (Tiax), then

0=1(7f,9)r = (f,79)r = W(£,9)(0) = W(f,9)(a), g€ dom(Tmax).  (3:23)

Given some g € dom (Tinax ), there is a g, € dom (Tinayx) such that g; =g in a vicinity of
a and g, = 0 in a vicinity of b. Therefore, W(f, g)(a)=W(f,7a)(a)—=W(f,9a)(a)=0.
Similarly, one obtains W (f, g)(b) = 0 for each g € dom (Tipax)-

Conversely, if f € dom (Tihax) such that for each g € dom (Tyax), W(f,g)(a) =
W(f.9)(b) = 0, then

(rf,9)r = (fr79)r = W(f,9)(b) = W(f,9)(a) =0, (3.24)
hence f € dom (T7,.) = dom (Tinin)- O

(3.22)



Weyl-Titchmarsh theory for Sturm-Liouville operators. . . 479

For regular 7 on (a,b) we may characterize the minimal operator by the boundary
values of the functions f € dom (Tiax) as follows:

Corollary 3.7. If 7 is regular at a and f € dom (Tinax), then
fla) = fM(a) =0 iff Vg € dom (Timax) : W(f, g)(a) = 0. (3.25)

A similar result holds at b.

Proof. The claim follows from W (f, g)(a) = f(a)g!!(a) — f*(a)g(a) and the fact that
one finds g € dom (Tjnax) With prescribed initial values at a. Indeed, one can take g
to coincide with some solution of 74 = 0 near a. O

Next we will show that T),;, always has self-adjoint extensions.

Theorem 3.8. The deficiency indices n(Timin) of the minimal operator Ty, are equal
and at most two, that is,

1(Tinin) = dim (ran ((Tin — 1)) = dim (ran ((Tmin +1)7)) < 2. (3.26)
Proof. The fact that the dimensions are less than two follows from
ran ((Tonin £1)7) = ker((Tmax F1)), (3.27)

because there are at most two linearly independent solutions of (7+i)u = 0. Moreover,
equality is due to the fact that Ty, is real with respect to the natural conjugation in
L?((a,b);r(x)dr). O

4. WEYL’S ALTERNATIVE

We say 7 is in the limit-circle (l.c.) case at a, if for each z € C all solutions of
(1—2)u = 0lie in L%((a,b); 7(z)dz) near a. Furthermore, we say 7 is in the limit-point
(Ip.) case at a if for each z € C there is some solution of (7 — z)u = 0 which does
not lie in L?((a,b);r(z)dz) near a. Similarly, one defines the l.c. and l.p. cases at
the endpoint b. It is clear that 7 is only either in the l.c. or in the l.p. case at some
boundary point. The next lemma shows that 7 indeed is in one of these cases at each
endpoint, which is known as Weyl’s alternative.

Lemma 4.1. If there is a zyp € C such that all solutions of (T — zp)u = 0 lie in
L?((a,b);r(x)dx) near a, then T is in the l.c. case at a. A similar result holds at the
endpoint b.

Proof. Let z € C and u be a solution of (7 — z)u = 0. If u;, up are a fundamental
system of (7 — zo)u = 0 with W (uy,us) = 1, then u; and uy lie in L?((a, b); r(z)dx)
near a by assumption. Therefore, there is some ¢ € (a,b) such that the function
v = |up| + |ug| satisfies

(4.1)

N =

|z — zo] /v(t)2 r(t)dt <
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Since wu is a solution of (7 — zg)u = (2 — zp)u we have for each = € (a,b),

x

u(z) = crur () + coua(z) + (2 — 20) / (u1(z)ug(t) — ur (t)uz(x)) w(t)r(t)dt, (4.2)

for some ¢1, ¢ € C by Lemma 2.4. Hence, with C' = max(|c1], |c2]), one estimates

lu(z)] < Cov(z) + |z — zg|v(ac)/v(t)|u(t)| r(t)dt, =z € (a,c), (4.3)

T

and furthermore, using Cauchy-Schwarz,
()2 < 20%0(x)? + 2|z — 200 (x)2 /v(t)Qr(t)dt/ W@ rtd.  (44)
Now an integration yields for each s € (a,c),

/ ()P (1)t <

c ¢

< 202/v(t)2r(t)dt+2|z—z0\2 /v(t)zr(t)dt /|u(t)\2r(t)dt < (45)

< 202/v(t)2r(t)dt+%/\u(t)ﬁr(t)dt,

a

and therefore,

/|u(t)|2r(t)dt < 4C? /v(t)Qr(t)dt < oo (4.6)

a

Since s € (a,c¢) was arbitrary, this yields the claim. O

In particular, if 7 is regular at an endpoint, then 7 is in the l.c. case there since
each solution of (7 — z)u = 0 has a continuous extension to this endpoint.

With r(Tinin) we denote the set of all points of regular type of Ty, that is, all z € C
such that (T, — 2)~1 is a bounded operator (not necessarily everywhere defined).
Recall that dimran(Ty,i, — 2)* is constant on every connected component of r(Tiuin)
(1156, Theorem 8.1]) and thus dim (ran ((Tinin—2)")) = dim(ker(Tiax—2)) = n(Tin)
for every z € r(Tinin)-

Lemma 4.2. For each z € t(Tin) there is a nontrivial solution of (T —z)u = 0 which
lies in L*((a,b);r(z)dz) near a. A similar result holds at the endpoint b.
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Proof. First assume that 7 is regular at b. If there were no solution of (7 — z)u = 0
which lies in L?((a, b); r(x)dz) near a, we would have ker(Timay — z) = {0} and hence
1n(Tiin) = 0, that is, Tiin = Tmax. But since there is an f € dom (Tiax) with

f(b)=1 and fM(b) =0, (4.7)

this is a contradiction to Theorem 3.6.

For the general case pick some ¢ € (a,b) and consider the minimal operator T, in
L*((a, ¢);r(z)dz) induced by 7|(4,)- Then z is a point of regular type of T.. Indeed,
we can extend each f. € dom (7.) with zero and obtain a function f € dom (Tpmin).
For these functions and some positive constant C,

I(Te = 2) fell L2((@,0)r(@yday = | (Tmin = 2) fllg . = CllFllgr = Cllfell L2((a,0)ir(a)da) -
(4.8)

Now since the solutions of (7|(4,c) — 2)u = 0 are exactly the solutions of (7 — z)u =0
restricted to (a,¢), the claim follows from what we already proved. O

Corollary 4.3. If z € v(Tynin) and 7 is in the l.p. case at a, then there is a unique non-
trivial solution of (T—2)u = 0 (up to scalar multiples ), which lies in L*((a, b); r(x)dz)
near a. A similar result holds at the endpoint b.

Proof. If there were two linearly independent solutions in L?((a, b);r(x)dz) near a, 7
would be l.c. at a. O

Lemma 4.4. 7 is in the l.p. case at a if and only if

W(fa g)(a) = Oa fa g e dom (Tmax) . (49)

T is in the l.c. case at a if and only if there is a f € dom (Thax) such that

W(f, f)(a) =0 and W(f,g)(a) #0 for some g € dom (Tinax) - (4.10)

Similar results hold at the endpoint b.

Proof. Let 7 be in the l.c. case at @ and w1, us be a real fundamental system of Tu = 0
with W(uy,us) = 1. Both, u; and wus lie in dom (Ty,ax) near a. Hence, there are f,
g € dom (Tinax) with f = uy and g = ug near a and f = g = 0 near b. Consequently,
we obtain

W(f,9)(a) = W(ui,uz)(a) =1 and W(f, f)(a) = W(uy,u1)(a) =0,  (4.11)

since uy is real.

Now assume 7 is in the lp. case at a and regular at b. Then dom (Tihax)
is a two-dimensional extension of dom (Tinin), since dim(ker(Tiax — 1)) = 1 by
Corollary 4.3. Let v, w € dom (Tipax) With v = w = 0 in a vicinity of @ and

v(b) = wll(b) =1 and oM (b) = w(b) = 0. (4.12)
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Then
dom (Tipax) = dom (Tinin) + span{v, w}, (4.13)

since v and w are linearly independent modulo dom (7},;,) and they do not lie in
dom (Tinin). Then for each f, g € dom (Thax) there are fy, go € dom (T ) such that
f = foand g = gg in a vicinity of a and therefore,

W(f,9)(a) = W(fo,g0)(a) =0. (4.14)

Now if 7 is not regular at b we pick some ¢ € (a,b). Then for each f € dom (Tax),
fl(a,c) lies in the domain of the maximal operator induced by 7|, ) and the claim
follows from what we already proved. O

Lemma 4.5. Let 7 be in the l.p. case at both endpoints and z € C\R. Then there is
no nontrivial solution of (1 — z)u =0 in L?((a,b);r(z)dz).

Proof. If u € L*((a,b);r(x)dz) is a solution of (7 — z)v = 0, then % is a solution of
(T —Z)w = 0 and both w and @ lie in dom (Tjnax). Now the Lagrange identity yields

B B
W, 7)(8) — W(w,m)(a) = (= — %) / lu(t)|2 7 (£)dt = 2iTm(2) / (b2 7 (1) dt.
’ i (4.15)

If « = a and 8 — b, the left-hand side converges to zero by Lemma 4.4 and the
right-hand side converges to 2iIm(z)||ul|2,-, hence ||ull2,» = 0. O

Theorem 4.6. The deficiency indices of the minimal operator Ty are given by

0, if 7 isl.c. at no boundary point,

—_

n(Tmin) =< 1, if 7 4s l.c. at exactly one boundary point, (4.16)

2, if 7 is l.c. at both boundary points.

Proof. If 7 is in the l.c. case at both endpoints, all solutions of (7 —i)u = 0 lie in
L?((a,b); r(x)dz) and hence in dom (Tiax). Therefore, n(Timin) =dim(ker(Timax—i)) =2.
In the case when 7 is in the l.c. case at exactly one endpoint, there is (up to scalar
multiples) exactly one nontrivial solution of (7 —i)u = 0 in L?((a,b);r(z)dz), by
Corollary 4.3. Now if 7 is in the L.p. case at both endpoints, we have ker(Tiax—1i) = {0}
by Lemma 4.5 and hence n(Tiyin) = 0. O

5. SELF-ADJOINT REALIZATIONS

We are interested in the self-adjoint restrictions of T,.x (or equivalently the
self-adjoint extensions of Ty, ). To this end, recall that we introduced the convenient
short-hand notation

WE(f.9) = W(f,9)(b) — W(f.g)(a), [, g€ dom (Thax)- (5.1)
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Theorem 5.1. Some operator S is a self-adjoint restriction of Tmax if and only if
Sf=r1f, fedom(S)={fedom(Tmax) |Vg € dom (S): Wi(f,g) =0}. (5.2)

Proof. We denote the right-hand side of (5.2) by dom (Sp). First assume S is a
self-adjoint restriction of Tiax. If f € dom (S) then

0= <Tf7 g>r - <f7 Tg>r = Wf(f,ﬁ) (53)
for each g € dom (S) so that f € dom (Sp). Now if f € dom (Sp), then
0=W,(f,9) = (7f,9)r — {f,79)s (5-4)

for each g € dom (5), hence f € dom (S*) = dom (.5).

Conversely, assume dom (S) = dom (Sp). Then S is symmetric since (7f,g), =
(f,Tg), for each f, g € dom (S). Now let f € dom (S*) C dom (T};,,) = dom (Tax),
then

0={(rf,9)r —(f.79)r = Wzlz)(fvg) (5.5)
for each ¢ € dom (5). Hence, f € dom (Sp) = dom (S), and it follows that S is
self-adjoint. O

The aim of this section is to determine all self-adjoint restrictions of Ty,ax. If both
endpoints are in the l.p. case this is an immediate consequence of Theorem 4.6.

Theorem 5.2. If 7 is in the l.p. case at both endpoints then Tyin = Tmax S a
self-adjoint operator.

Next we turn to the case when one endpoint is in the l.c. case and the other one is
in the L.p. case. But before we do this, we need some more properties of the Wronskian.

Lemma 5.3. Let v € dom (Tynax) such that W(v,7)(a) = 0 and suppose there is an
h € dom (Tiax) with W (h,0)(a) # 0. Then for each f, g € dom (Tinax) we have

W (f,v)(a) =0 if and only if W(f,v)(a)=0 (5.6)
and
W(f,0)(a) = W(g,0)(a) =0 implies W(f,g)(a)=0. (5.7)
Similar results hold at the endpoint b.

Proof. Choosing fi = v, fo =7, f3 = h and f4 = h in the Pliicker identity, we infer
that also W(h,v)(a) # 0. Now let f1 = f, fo = v, fs =7 and fy = h, then the Pliicker
identity yields (5.6), whereas f1 = f, fo =g, f3 =7 and f4 = h yields (5.7). O

Theorem 5.4. Suppose T is in the l.c. case at a and in the Lp. case at b. Then
some operator S is a self-adjoint restriction of Tmax if and only if there is a v €
dom (Tinax) \dom (Trin) with W (v,7)(a) = 0 such that

Sf=r1f, fedom(S)={ge€dom(Tmax) |W(g,7)(a)=0}. (5.8)

A similar result holds if T is in the l.c. case at b and in the l.p. case at a.
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Proof. Since n(Twmin) = 1, the self-adjoint extensions of Ty, are precisely the
one-dimensional, symmetric extensions of T,;,,. Hence some operator S is a self-adjoint
extension of Ty, if and only if there is a v € dom (Thax) \dom (Tiin) with
W (v,7)(a) = 0 such that

Sf=rf, fé&dom(S)=dom (Tin)+ span{v}. (5.9)
Hence, we have to prove that
dom (Tin) + span {v} = {g € dom (Thuax) | W(g,7)(a) =0}, (5.10)

The subspace on the left-hand side is included in the right one because of Theorem
3.6 and W(v,7)(a) = 0. On the other hand, if the subspace on the right-hand side
were larger, then it would coincide with dom (T},ax) and, hence, would imply v €
dom (Tmin) . O

Two self-adjoint restrictions are distinct if and only if the corresponding functions
v are linearly independent modulo T},;,. Furthermore, v can always be chosen such
that v is equal to some real solution of (7 — z)u = 0 with z € R in some vicinity of a.
It remains to consider the case when both endpoints are in the l.c. case.

Theorem 5.5. Suppose 7 is in the l.c. case at both endpoints. Then some operator S
is a self-adjoint restriction of Tynax if and only if there are v, w € dom (Tyhax), linearly
independent modulo dom (Tiyin), with

Wb(v,5) = Wh(w, @) = Wl (v, @) =0 (5.11)
such that
Sf=r1f, fedom(S)= {g € dom (Tiax) |W£(g,6) = W(f(g,@) = O} . (5.12)

Proof. Since n(Tmin) = 2 the self-adjoint restrictions of Ti,.x are precisely the
two-dimensional, symmetric extensions of Ty,i,. Hence, an operator S is a self-adjoint
restriction of Tinax if and only if there are v, w € dom (Thax), linearly independent
modulo dom (Tyyin), with (5.11) such that

Sf=r1f, fe&dom(S)=dom (Tinin)+ span {v,w}. (5.13)
Therefore, we have to prove that

dom (Tinin) + span {v, w} = { f € dom (Timax) | W2(f,7) = WE(f, W) = 0} :=D.
(5.14)
Indeed, the subspace on the left-hand side is contained in D by Theorem 3.6 and
(5.11). In order to prove that it is also not larger, consider the linear functionals F,,
F,, on dom (Tinax) defined by

F,(f) = Wf(fﬁ) and F,(f) = Wé’(f,@) for f € dom (Thnax) - (5.15)
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The intersection of the kernels of these functionals is precisely D. Furthermore, these
functionals are linearly independent. Indeed, assume ¢y, c3 € C and ¢1 F,, + co F, = 0,
then for all f € dom (Tihax),

0= 1By (f) + coFu(f) = W (f,0) + caW2(f,0) = W(f, 10+ o). (5.16)
However, by Lemma 3.5 this yields
W(f,c10 + cow)(a) = W(f, 10 + cow)(b) =0 (5.17)

for all f € dom (Tiax) and consequently ¢17 + co@ € dom (Tiyin ). Now since v, w are
linearly independent modulo dom (T i) we infer that ¢; = ¢ = 0 and Lemma 3.3
implies that

ker(Fy,) & ker(F,,) and ker(Fy,) € ker(F,). (5.18)

Hence, there exist f,, f, € dom (Tjax) such that W(f,,v) = W2(f.,w) = 0, but
for which W2 (f,,w) # 0 and W2(f,,v) # 0. Both f, and f,, do not lie in D and are
linearly independent; hence, D is at most a two-dimensional extension of dom (Tjyin)-

O

In the case when 7 is in the l.c. case at both endpoints, we may divide the
self-adjoint restrictions of Ti,.x into two classes. Indeed, we say some operator S
is a self-adjoint restriction of Ty, with separated boundary conditions if it is of the
form

Sf=r1f, fedom(S)={ge€dom(Tmax) |W(g,7)(a) =W(g,w)() =0}, (5.19)
where v, w € dom (Tiax) such that W(v,7)(a) = W(w,w)(b) = 0 but W(h,7)(a) #
0 # W(h,w)(b) for some h € dom (Tyax). Conversely, each operator of this form
is a self-adjoint restriction of Ti,.x by Theorem 5.5 and Lemma 3.5. The remain-

ing self-adjoint restrictions are called self-adjoint restrictions of Ti,.x with coupled
boundary conditions.

6. BOUNDARY CONDITIONS
In this section, let wy, wo € dom (Tinax) With

W(wy,wz)(a) =1 and W(wy,w7)(a) = W(ws,wz)(a) =0, (6.1)
if 7 is in the l.c. case at a and

W(wy,wz)(b) =1 and W(wy,w1)(b) = W(we,wz)(b) =0, (6.2)

if 7 is in the l.c. case at b. We will describe the self-adjoint restrictions of Tiax in
terms of the linear functionals BC}, BC%, BC} and BC? on dom (Tyax), defined by

BC,(f) = W(f,w2)(a) and BCF(f) = W (wx, f)(a) for f € dom (Timax), (6.3)
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if 7 is in the l.c. case at a and
BCy(f) = W(f,wz)(b) and BC{(f) =W (wr, f)(b) for f € dom (Thax), (6.4)

if 7 is in the L.c. case at b.

If 7 is in the l.c. case at some endpoint, functions with (6.1) (resp., with (6.2))
always exist. Indeed, one may take them to coincide near the endpoint with some real
solutions of (7 — z)u = 0 with W(u;,us) =1 for some z € R and use Lemma 3.5.

In the regular case these functionals may take the form of point evaluations of the
function and its quasi-derivative at the boundary point.

Lemma 6.1. Suppose T is reqular at a. Then there are wy, wy € dom (Tinax) with
(6.1) such that the corresponding linear functionals BC} and BC? satisfy

BCL(f) = f(a) and BC%(f) = fM(a) for f € dom (Timax). (6.5)

The analogous result holds at the endpoint b.

Proof. Take wy, we € dom (Tax) to coincide near a with the real solutions uy, ug of
Tu = 0 with

uy(a) = u[21] (a) =1 and u[ll](a) = ug(a) = 0. (6.6)
O
Using the Pliicker identity one easily obtains the equality
W(f,9)(a) = BC,(f)BCq(9) — BCZ(f)BCy(9).  f, g € dom (Tinax) . (6.7)
Then for each v € dom (Tinax) \dom (Tinin) with W(v,%)(a) = 0 and W (h,v)(a) # 0
for some h € dom (Timax), one may show that there is a ¢, € [0, 7) such that
W(£,5)(a) = 0 ift BOM(f) cos(a) — BC2(f)sin(pa) =0, 1 € dom (Thnas) - (6.8)

Conversely, if some ¢, € [0,7) is given, then there exists a v € dom (Tihax), DOt
belonging to dom (Tiin), with W(v,7)(a) = 0 and W(h,v)(a) # 0 for some h €
dom (Tiyax) such that

W(f,)(a) =0 iff BCL(f)cos(ps) — BC2(f)sin(p,) =0, f € dom (Thax). (6.9)
Using this, Theorem 5.4 immediately yields the following characterization of the
self-adjoint restrictions of Tj,.x in terms of the boundary functionals.

Theorem 6.2. Suppose T is in the l.c. case at a and in the l.p. case at b. Then some
operator S is a self-adjoint restriction of Tmax if and only if there is some p, € [0,7)
such that

Sf=r1f,

f € dom (S) = {g € dom (Thax) | BC}(g) cos(a) — BCZ(g) sin(pa) =0} . (6.10)

A similar result holds if T is in the l.c. case at b and in the l.p. case at a.
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Next we will give a characterization of the self-adjoint restrictions of Ty, if 7 is
in the l.c. case at both endpoints.

Theorem 6.3. Suppose T is in the l.c. case at both endpoints. Then some operator
S is a self-adjoint restriction of Tmax if and only if there are matrices B,, By € C?*2
with

rank(B,|By) =2 and B,JB} = By, JB; with J = ((1) 01> , (6.11)
such that
BC! BC}
Sf=r1f, fedom(S)= {g € dom (Thax) | Ba (30’583) =B, (BC%%) } .
(6.12)

Proof. 1f S is a self-adjoint restriction of Tiax, there exist v, w € dom (Tipax), linearly
independent modulo dom (Tiyin ), with

W(v,7) = Wh(w, @) = Wl (v, @) =0, (6.13)
such that
dom (S) = {f € dom (Trnax) | W2(f,0) = W2(f, W) =0} . (6.14)

Let B,, B, € C?*2 be defined by

BC&(@) 7305(@) B 302(5) 7B01(@)
Pa= (BCi(w) —BC;(w)) and By = (BC’g(w) _Bc;f(w)> : (6.15)

Then a simple computation shows that
B,JB! = B,JB; iff Wb(v,7) = Wl (w, @) = W2 (v, @) = 0. (6.16)

In order to prove rank (B,|By) = 2, let ¢1, ¢co € C and

BC2() BC@) )\ [ BCAav+ e
_|=Bém "B | _ [ -BEN an -+ em)

0=c| pezw) | T2 Bctm) | T | BCHev+ ) (6.17)
—BCj (v) —BC}(w) —BC}(c10 + cow)

Hence, the function ¢;v + cow lies in the kernel of BC!, BC%, BC} and BC%, and
therefore, W (c1+cow, f)(a) = 0 and W (c17+cow, f)(b) = 0 for each f € dom (Tiyax)-
This means that ¢;T+cow € dom (Timin) and hence ¢; = ¢ = 0, since T, W are linearly
independent modulo dom (Ti,i, ). This proves that (B,|By) has rank two. Furthermore,
a calculation yields that for f € dom (Tinax)

W (f,7) = WE(f,@) = 0 iff B, (gg;gg) =B, (gg%g) , (6.18)

which proves that S is given as in the claim.
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Conversely, let B,, B, € C?*? with the claimed properties be given. Then there
are v, w € dom (Thax) such that

B, — <BC§(U) —BC}(v)

BC%(w) —BC}(v)
BC2(w) —Bcg(w)> and Bb( 3 7 > (6.19)

BC:(w) —BC}(w)

In order to prove that v and w are linearly independent modulo dom (Ty,in), let c1,
co € C and c1v + cow € dom (Thin), then

BC; (e1v + c3w) BC; (v) BC; (w)
0= _Bci(m+627w) = _BC;(E) - _BO;(E) 6.20
= | Bciamram | T Bcim | T Bow) (6.20)
—BC}(civ + caw) —BCL(v) —BC} (w)

Now the rows of (B,|By) are linearly independent, hence ¢; = ¢o = 0. Since again
B,JB: = ByJB;} ifft W!(v,7) = Wl (w,w) = W!(v,w) = 0, (6.21)

the functions v, w satisfy the assumptions of Theorem 5.5. As above, one infers once
again that for f € dom (Tiax),

BCYHHY _ n (BCHEN o by e cn e o
b (BCi(f) =B pez(y) ) Wald, @) = Walf,w) = 0. (6.22)
Hence, S is a self-adjoint restriction of Tjax by Theorem 5.5. 0

As in the preceding section, if 7 is in the l.c. case at both endpoints, we may divide
the self-adjoint restrictions of Ti,.x into two classes.

Theorem 6.4. Suppose T is in the l.c. case at both endpoints. Then some operator
S is a self-adjoint restriction of Tmax with separated boundary conditions if and only
if there are pq, @y € [0,7) such that

Sf=rf, (6.23)

Bccle(g) COS((pa) - BCg(g) Sin(@a) =0, }

f € dom(S) = {g € dom (Tnax) | Bt (g) cos(pn) — BOZ(g) sin(gy) = 0

Furthermore, S is a self-adjoint restriction of Tmax with coupled boundary conditions
if and only if there are ¢ € [0,7) and R € R?**? with det (R) =1 (i.e., R € SLa(R))
such that

Sf=r1f,

e dom(s) = {o € dom () | (b)) = en (305(7)) ) (6.24)

Proof. Using (6.8) and (6.9) one easily sees that the self-adjoint restrictions of Tiax
with separated boundary conditions are precisely the ones given in (6.23). Hence, we
only have to prove the second claim. Let S be a self-adjoint restriction of Ty, with
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coupled boundary conditions and B,, B, € C2*2 matrices as in Theorem 6.3. Then
by (6.11) either both of them have rank one or both have rank two. In the first case
we have

B,z = ¢} 2w, and Byz = ¢} 2wy, (6.25)

for some cq, cp, wa, wy € C2\{(0,0)}. Since the vectors w, and w;, are linearly inde-
pendent (recall that rank(B,|Bp) = 2) one infers that

BCMN)\ _ . (BCMD)Y . BCMNf)\ . (BCMD)Y
Ba (Bcz<f>> =B (Bd?(f)) it Ba (B(Ji(f)> =B (Bd%(f)) = 0. (6.26)

In particular,
B.JB! = ByJB; iff B,JB: = B,JB; = 0. (6.27)

Now let v € dom (Tipax) With BC2(%) = ¢; and BCL(7) = —ca. A simple calculation

yields

0 = B,JB: = W (w,ws)(a)(BCL(v)BC%(W) — BC?(v) BCL(D))w,wg | =
_ T (6.28)
= W(wy,wsz)(a)W(v,7)(a)w,wg ' .

Hence, W (v,7)(a) = 0 and since (BCL(v), BC2(v)) = (c2,¢1) # 0, v & dom (Tipin)-
Furthermore, for each f € dom (Tinax),

BC;(f) _ 1 2=\ 2 1@11)— N a)w
Ba (Bcf(f)) = (BC}(f)BC2(v) — BC;(f)BC, (0))wa = W(f,0)(@)ws.  (6.29)

Similarly one obtains a function f € dom (Tiax) \dom (Trin) with W(w,w)(d) = 0
and

BCy (f) _
By (BC%( f)) = W(f,w)b)wy, f € dom (Tinax) - (6.30)

However, this shows that S is a self-adjoint restriction with separated boundary con-
ditions. Hence, both matrices, B, and By, have rank two. If we set B = B;lBa, then
B = J(B~1)*J* and therefore, | det(B)| = 1; hence, det(B) = €% for some ¢ € [0, 7).
If we set R = e~ *?B, one infers from the identities

_(bir b2 _ iy 2i6 (0 —1 beo  —bar 0 1\
B_<b21 b22>_J(B A C R A W v L Y B
oo (2 E2)
bor b2 )’
that R € R?*2 with det(R) = 1. Now because for each f € dom (Tyax)

5. (B0 = 5 (B50) i (BGEDY =oon (BGH0), @

(6.31)

S has the claimed representation.



490 Jonathan Eckhardt, Fritz Gesztesy, Roger Nichols, and Gerald Teschl

Conversely, if S is of the form (6.24), then Theorem 6.3 shows that it is a
self-adjoint restriction of Ti,a.x. Now if S were a self-adjoint restriction with separated
boundary conditions, there would exist an f € dom (S) \dom (Tiin ), vanishing in some
vicinity of a. By the boundary condition we would also have BC}(f) = BCZ(f) =0,
that is, f € dom (Tinin)- Hence, S cannot be a self-adjoint restriction with separated
boundary conditions. O

We note that the separated self-adjoint extensions described in (6.23) are always
real (that is, commute with the antiunitary operator of complex conjugation, resp.,
the natural conjugation in L?((a,b);r(x)dz)). The coupled boundary conditions in
(6.24) are real if and only if ¢ = 0 (see also [160, Sect. 4.2]).

7. THE SPECTRUM AND THE RESOLVENT

In this section we will compute the resolvent R, = (S — zI,)~! of a self-adjoint
restriction S of T},.x. First we deal with the case when both endpoints are in the l.c.
case.

Theorem 7.1. Suppose T is in the l.c. case at both endpoints and S is a self-adjoint
restriction of Timax. Then for each z € p(S), the resolvent R, is an integral operator

b
R.g(x) = /Gz(x,y)g(y)r(y)d% @ € (a,b), g € L*((a,b);r(x)dx), (7.1)

with a square integrable kernel G, that is, R, is a Hilbert-Schmidt operator, R, €
Bs (LZ((a,b);r(z)das)). For any two given linearly independent solutions wui, us of
(1 — 2)u = 0, there are coefficients miij (2) € C, i, j € {1,2}, such that the kernel is
given by
2 + ) )
GZ(.’E, y) _ Zé,j:l mz_j(z)ul(x)u] (y)7 Y S (a'v Jf], (72)
2o je1 Mg (2)ui(@)u(y), y € [z,b).

Proof. Let w1, ug be two linearly independent solutions of (7 — z)u = 0 with
W (ui,uz) = 1. If g € L?((a, b); r(x)dx), then R,g is a solution of (7 — 2)f = g which
lies in dom (S). Hence, from Lemma 2.4 we get for suitable constants c¢;, c; € C

xT x

Rog(a) = ua(z) | e + / us(D)g(t) r(t)dt | + us(@) | e — / w (gt rydt | (7.3)

a a

for z € (a,b). Furthermore, since R,g satisfies the boundary conditions, we obtain

G A ey
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for some suitable matrices B,, B, € C2*2 as in Theorem 6.3. Now since g has compact
support, we infer that

(scitha) = (bt Temeilen) = (e 56H) ()=

= M, (2) , (7.5)

as well as

b
c1 u2(t)g(t) r(t)dt | BCH(uy
(ggé(%@) ) +af (t)g(t)r(t) b (u1) N
b
5 (R.g) cl—&-fuz(t)g(t)r(t)dt BC’f(m)

co — fbul(t)g(t) r(t)dt | BC;(uz)
b
o — afm(t)g(t) r(t)dt | BC; (uz) (7.6)

b
_ (BCé(ul) BC};(W)) 1+ {uz(t)g(t)r(t)dt
BCb (Ul) BCb (u2) Co — fu1(t)g(t) T(t)dt

a

b

a [uz(t)g(t) r(t)dt
= MB (02> + Mﬁ, a .
— [ua(t)g(t) r(t)dt
Consequently,
b
c Jua(t)g(t) r(t)dt
(Bl = Ble) (é) =BMs | "y . (7.7)
— [ua(t)g(t) r(t)dt

Now if B, M, — By Mg were not invertible, we would have

@) € C2\{(0,0)} with B,M, (Z;) — B,Mj <§;> , (7.8)

and the function dyu; + dous would be a solution of (7 — z)u = 0 satisfying the
boundary conditions of .S, and consequently would be an eigenvector with eigenvalue z.
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However, this would contradict z € p(S5), and it follows that B, M, — ByMs must be
invertible. Since

b
. ) Jua(t)g(t) r(t)dt
(C;) = (BaMy — ByMg) ™ ByMgs | ¢, , (7.9)
— Jur(t)g(t) r(t)dt

the constants ¢; and ¢y may be written as linear combinations of

b b

/ug(t)g(t) r(t)dt and /ul(t)g(t) r(t)dt, (7.10)

a a

where the coefficients are independent of g. Using equation (7.3) one verifies that
R.g has an integral-representation with a function G, as claimed. The function G, is
square-integrable, since the solutions u; and us lie in L?((a, b); 7(x)dx) by assumption.
Finally, since the operator K, defined

b
K.g(z) = /Gz(x,y)g(y)r(y)dy, x € (a,), g € L*((a,0);r(x)dw),  (7.11)

on L%((a,b);r(x)dz), and the resolvent R, are bounded, the claim follows since they
coincide on a dense subspace. O

Since the resolvent R, is compact, in fact, Hilbert-Schmidt, this implies discrete-
ness of the spectrum.

Corollary 7.2. Suppose T is in the l.c. case at both endpoints and S is a self-adjoint
restriction of Tmax. Then S has purely discrete spectrum, that is, o(S) = o4(S).
Moreover,

> 1 and dim(ker(S —\)) <2, A€ a(S). (7.12)
A€o (S) 1+ A2

If S is a self-adjoint restriction of Ti,.x With separated boundary conditions or if
(at least) one endpoint is in the l.c. case, then the resolvent has a simpler form.

Theorem 7.3. Suppose S is a self-adjoint restriction of Tiax (with separated bound-
ary conditions if T is in the l.c. at both endpoints) and z € p(S). Furthermore, let u,
and up be nontrivial solutions of (T — z)u = 0, such that

satisfies the boundary condition at a if T is in the l.c. case at a, (7.13)
“ | ties in L?((a,b);r(x)dx) near a if T is in the Lp. case at a, '
and
satisfies the boundary condition at b if T is in the l.c. case at b, (7.14)
lies in L*((a,b);r(x)dz) near b if T is in the Lp. case at b. )
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Then the resolvent R, is given by

b
R.g(x) = / Go(2.)9() rW)dy, = € (a,b), g € L*((a,b);r(@)dz),  (7.15)

a

where

G.(z,y) = (7.16)

1 Judup(z), v € (a,z],
W (up, va) | ug(z)up(y), v € [x,b).

Proof. The functions u,, u; are linearly independent; otherwise, they would be eigen-
vectors of S with eigenvalue z. Hence, they form a fundamental system of (7 —z)u = 0.
Now for each f € L?((a,b);r(z)dz) we define a function f, by

T b

£y(@) = W) [ up(a) / ua(D)g () F(£)dt + g (2) / w(t)g(t)r(t)dt | |

x € (a,b). (7.17)

If f € L%((a,b); r(x)dz), then f, is a solution of (t—2)f = g by Lemma 2.4. Moreover,
fq is a scalar multiple of u, near a and a scalar multiple of u, near b. Hence, the
function f, satisfies the boundary conditions of S and therefore, R.g = f,. Now if
g € L?((a,b); r(z)dz) is arbitrary and g, € L2((a,b);r(x)dz) is a sequence with g, —
g as n — 00, we obtain R.g, — R.g since the resolvent is bounded. Furthermore, f,
converges pointwise to f,, hence R.g = f,. O

If 7 is in the Lp. case at some endpoint, then Corollary 4.3 shows that there is
always a, unique up to scalar multiples, nontrivial solution of (7 — z)u = 0, lying in
L?((a,b); r(x)dz) near this endpoint. Also if 7 is in the lc. case at some endpoint,
there exists a, unique up to scalar multiples, nontrivial solution of (7 — z)u = 0,
satisfying the boundary condition at this endpoint. Hence, functions u, and uy, as in
Theorem 7.3 always exist.

Corollary 7.4. If S is a self-adjoint restriction of Tmax (with separated boundary
conditions if T is in the l.c. at both endpoints), then all eigenvalues of S are simple.

Proof. Suppose A € R is an eigenvalue and u; € dom (S) with 7u; = Au; for i = 1,2,
that is, they are solutions of (7—\)u = 0. If 7 is in the 1.p. case at some endpoint, then
clearly the Wronskian W (uy,us) vanishes. Otherwise, since both functions satisty the
same boundary conditions this follows using the Pliicker identity. O

Since the deficiency index of Ty, is finite, the essential spectrum of self-adjoint
realizations is independent of the boundary conditions, that is, all self-adjoint restric-
tions of Tihax have the same essential spectrum (cf., e.g., [156, Theorem 8.18]) We
conclude this section by proving that the essential spectrum of the self-adjoint restric-
tions of Tiyax is determined by the behavior of the coefficients in some arbitrarily small
neighborhood of the endpoints. In order to state this result we need some notation.
Fix some c € (a,b) and denote by 7|, ) (resp., by 7|p)) the differential expression
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on (a,c) (resp., on (¢,b)) corresponding to our coefficients restricted to (a,c) (resp.,
to (c,b)). Furthermore, let S(4,c) (resp., Sic,p)) be some self-adjoint extension of 7|, c)
(resp., of T[(c.p))-

Theorem 7.5. For each ¢ € (a,b) we have

0e (S) =0 (S(ae)) Uae (Siep)) - (7.18)
Proof. If one identifies L?((a,b); r(x)dx) with the orthogonal sum
L*((a,b); r(x)dz) = L*((a, c);r(x)dx) & L*((c,b); r(x)dx), (7.19)
then the operator
Se = Sa,c) ® Sep) (7.20)

is self-adjoint in L?((a,b);r(z)dx). Now the claim follows, since S and S. are both
finite dimensional extensions of the symmetric operator given by

T.f=1f, fé€dom(T.)={g € dom(Tmm)|g(c)=g"(c) =0}. (7.21)
O
An immediate corollary is that the essential spectrum only depends on the be-

havior of the coeflicients in some neighborhood of the endpoints, recovering Weyl’s
splitting method.

Corollary 7.6. For each o, 8 € (a,b) with o <  we have
o.(S) =0, (S(a’a)> Uoe (S(@)b)) . (7.22)

8. THE WEYL-TITCHMARSH-KODAIRA M-FUNCTION

In this section let S be a self-adjoint restriction of Ti,.x (with separated boundary
conditions if 7 is in the lL.c. case at both endpoints). Our aim is to define a singular
Weyl-Titchmarsh-Kodaira function as introduced recently in [41,56], and [103]. To
this end we need a real entire fundamental system 6., ¢, of (7 — z)u = 0 with
W (0., ¢.) = 1, such that ¢, lies in dom (S) near a, that is, ¢, lies in L?((a, b); r(z)dx)
near a and satisfies the boundary condition at a if 7 is in the l.c. case at a.

Hypothesis 8.1. There is a real entire fundamental system 0, ¢, of (1 — z)u =0
with W(60,,¢,) = 1, such that ¢, lies in dom (S) near a.

Under the assumption of Hypothesis 8.1 we may define a function m : p(S) — C
by requiring that the solutions

¥z = 0. +m(2)pz,  z € p(S), (8.1)

lie in dom (S) near b, that is, they lie in L?((a, b); r(z)dz) near b and satisfy the bound-
ary condition at b, if 7 is in the l.c. case at b. This function m is well-defined (use Corol-
lary 4.3 if 7 is in the L.p. case at b) and called the singular Weyl-Titchmarsh-Kodaira
function of S. The solutions 1., z € p(.5), are called the Weyl solutions of S.
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Theorem 8.2. The singular Weyl-Titchmarsh-Kodaira function m is analytic on
p(S) and satisfies

m(z) =m(z), =z € p(S). (8.2)
Proof. Let ¢, d € (a,b) with ¢ < d. From Theorem 7.3 and the equation
Wz, ¢2) = W(b:,02) + m(2)W(dz,02) =1, z € p(S), (8.3)

we obtain for each z € p(S) and x € [, d),

d

Roxoa (@) = s (x / 6. () r(y)dy + 6.(x) / 0 (y) r(y)dy =

= (0.(x) + m(2).(x /rbz y)dy+

. (8.4)
() / 10.(y) + m(2)2 (4)] r(y)dy =
’ d d
— m(2)és(2) / 62 () r(y)dy + / G- (. y) r(y)dy,
where
-~ T _ ¢z(y) z(x)7 Yy )
Geley) {w 0.9), 3>, (&5)
and hence
d d
(RaX(ert): X)) / o-()r(dy | + / / Gz, y)r(y)dy r(z)dz.  (8.6)

The left-hand side of this equation is analytic in p(S) since the resolvent is. Further-
more, the integrals are analytic in p(5) as well, since the integrands are analytic and
locally bounded by Theorem 2.7. Hence, m is analytic if for each zy € p(S), there
exist ¢, d € (a,b) such that

/ 62 () () dy # 0. (8.7)

However, this holds; otherwise, ¢,, would vanish almost everywhere. Moreover, equa-
tion (8.2) is valid since the function

0= + m(z)¢? = [92 + m(z)¢z]a (88)
lies in dom (S) near b by Lemma 5.3. O
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As an immediate consequence of Theorem 8.2 one infers that 1, (z) and wE] (z)
are analytic functions in z € p(S) for each x € (a,b).

Remark 8.3. Suppose ?Z, $, is some other real entire fundamental system of
(1 — 2)u =0 with W(6,,¢.) =1, such that ¢, lies in S near a. Then

0.=e990, — f(2)¢., and ¢. =e"Fp., z€C, (8.9)

for some entire functions f, g with f(z) real and g(z) real modulo ir. The correspond-
ing singular Weyl-Titchmarsh-Kodaira functions are related via

m(z) = e 2@ m(2) +e 9@ f(2), zep(S). (8.10)

In particular, the maximal domain of holomorphy or the structure of poles and sin-
gularities do not change.

We continue with the construction of a real entire fundamental system in the case
when 7 is in the l.c. case at a.

Theorem 8.4. Suppose T is in the l.c. case at a. Then there exists a real entire
fundamental system 0., ¢, of (T — z)u = 0 with W(0,,¢.) = 1, such that ¢, lies in
dom (S) near a,

W(0,,,¢.)(a) =1 and W(0,,,0.,)(a) = W(p.,,b.,)(a) =0, 2z, 20 € C. (8.11)

Proof. Let 0, ¢ be a real fundamental system of 7u = 0 with W (6, ¢) = 1 such that
¢ lies in dom (S) near a. Now fix some ¢ € (a,b) and for each z € C let u, 1, u, 2 be
the fundamental system of

(1 —2z)u=0 with u,1(c) = ugl]z(c) =1 and ui]l (¢) =uz2(c) =0. (8.12)

Then by the existence and uniqueness theorem we have uz; = u,,, ¢ = 1,2. If we
introduce

0.(x) = W(us1,0)(a)us2(x) — W(us2,0)(a)u, 1(z), x € (a,b), (8.13)
O (x) = Wuza, d)(a)uz2(x) — W(use, ¢)(a)us 1(x), x € (a,b), (8.14)

then the functions ¢, lie in dom (S) near a since

W(¢Za ¢)(a) = W(u2,17 ¢)(a)W(Uz,2, ¢)(a) - W(uz,Q, ¢)(a)W(uz1 , ¢)(a) = 0. (8'15)

Furthermore, a direct calculation shows that #z = 6. and ¢z = ¢.. The remaining
equalities follow upon repeatedly using the Pliicker identity. It remains to prove that
the functions W(u, 1, 0)(a), W(u.z2,0)(a), W(u.,1,¢)(a) and W(u, 2, ¢)(a) are entire
in z. Indeed, by the Lagrange identity

c

Wi(uz1,0)(a) =W(uz1,0)(c) — lelfg O(t)u,,1(t) r(t)dt. (8.16)
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Now the integral on the right-hand side is analytic by Theorem 2.7 and in order to
prove that the limit is also analytic we need to show that the integral is bounded as
x | a, locally uniformly in z. But the proof of Lemma 4.1 shows that, for each zy € C,

(&

/ O(t)u. s (Dyr(t) dt| < K / 0(t)[ (t)dt / [tz 1 (D] + [ty 2 (O[] #(B)dE (8.17)

for some constant K € R and all z in some neighborhood of zy. Analyticity of the
other functions is proved similarly. O

If 7 is regular at a, then one may even take 6, ¢, to be the solutions of (7—z)u = 0
with the initial values

0-(a) = ¢ (a) = cos(pa) and - 6(a) = ¢.(a) = sin(pa) (8.18)
for some suitable ¢, € [0, 7).

Corollary 8.5. Suppose T is in the l.c. case at a and 0, ¢, is a real entire funda-
mental system of (1 — z)u = 0 as in Theorem 8.4. Then the corresponding singular
Weyl-Titchmarsh-Kodaira function m is a Nevanlinna-Herglotz function.

Proof. In order to prove the Nevanlinna-Herglotz property, we show that

_ Im(m(2))

0 < [[e=]l3, = m(z) € C\R. (8.19)

Indeed, if 21, 2o € p(S), then

W (W2, 0z,)(a) = W(Bs,,02,)(a) + m(z2)W (0, 02, ) (a)+
+m(2)W(¢z,,02,)(a) + m(z1)m(z2)W(¢z,, ¢2,)(a) =
=m(z2) — m(z1). (8.20)
If 7 is in the L.p. case at b, then furthermore we have W (4., , 1., )(b) = 0, since clearly

Y21y VYzy € dom (Thax). This also holds if 7 is in the l.c. case at b, since then 9., and
1, satisfy the same boundary condition at b. Now the Lagrange identity yields

b
(21 — 22) / Ve (05, (O 70 = Wy, 0) () = Wl p) @) = (o

=m(z1) — m(z2).

In particular, for z € C\R, using m(z) = m(z) as well as ¢z = 0= + m(2)¢z = V.., we
obtain

m(z) —m(z) _ Im(m(z))

b
]2 = / e ()= (t) r(t)dt = ) _ L (522

z2—7Z Im(z)

Since 1, is a nontrivial solution, we furthermore have 0 < ||1,|%. O
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We conclude this section with a mnecessary and sufficient condition for
Hypothesis 8.1 to hold. To this end, for each ¢ € (a,b), let Sg 0 be the self-adjoint
operator associated to T|(,,) with a Dirichlet boundary condition at ¢ and the same

boundary condition as S at a.
Theorem 8.6. The following items (1)—(iil) are equivalent:

(i) Hypothesis 8.1;
(ii) There is a real entire solution ¢, of (T — z)u = 0 which lies in dom (S) near a;

(iii) The spectrum of S(a o) 18 purely discrete for some c € (a,b).

Proof. The proof follows the one for Schrédinger operators given in [103, Lemma 2.2
and Lemma 2.4] step by step. O

9. THE SPECTRAL TRANSFORMATION

In this section let S be a self-adjoint restriction of Ti,.x (with separated boundary
conditions if 7 is in the l.c. case at both endpoints) as in the preceding section.
Furthermore, we assume that there is a real entire fundamental system 6,, ¢, of
(T —2)u =0 with W(6,, ¢.) = 1 such that ¢, lies in dom (S) near a. By m we denote
the corresponding singular Weyl-Titchmarsh-Kodaira function and by v, the Weyl
solutions of S.

Recall that by the spectral theorem, for all functions f, g € L?((a, b);r(x)dx) there
is a unique complex measure Ef , such that

(R.f,g) / _dBp,(N), =€ plS). (9.1)

In order to obtain a spectral transformation we define for each f € L2((a,b);r(z)dx)
the transform of f

b
z) = /qﬁz(x)f(o:) r(z)dz, =ze€C. (9.2)

Next, we will use this to associate a measure with m(z) by virtue of the
Stieltjes-Livsi¢ inversion formula following literally the proof of [103, Lemma 3.3]
(see also [56, Theorem 2.6]).

Lemma 9.1. There is a unique Borel measure p defined via
1 Ao+4
(O ) =i tim [ Ta(m 3+ 32) d (9.3)
A1+6

for each A1, Ao € R with Ay < Ao, such that

dEsy = fgdp, [, g€ L((a,b);r(x)dz). (9.4)
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In particular,

(.19~ | TV ux), = e ots). (9.5)
R

In particular, the preceding lemma shows that the mapping f +— f is an isometry
from L2((a,b);r(x)dz) into L?(R;dp). Indeed, for each f € L2((a,b);r(x)dr) one

infers that
172 = / FOVFON da(x
R

Hence, we may extend this mapping uniquely to an isometric linear operator F from
L?((a,b);r(x)dr) into L?(R; du) by

)= [ 4y =111, (9.6)

R

FfA) = g?; 15%1/@ r(z)dz, XER, fe L*((a,b);r(z)ds), (9.7)

where the limit on the right-hand side is a limit in the Hilbert space L?(R;du). Using
this linear operator F, it is quite easy to extend the result of Lemma 9.1 to functions
f, g € L*((a,b);7(z)dz). In fact, one gets that dE;, = F f Fgdu, that is,

(R.f.g) / M (), =€ plS). (9.8)

We will see below that F is not only isometric, but also onto, that is, ran(F) =
L?(R;dp). In order to compute the inverse and the adjoint of F, we introduce for
each function g € L?(R; du) the transform

i) = [ 6@l du(y), = € (a.b) (9.9)
R
For arbitrary «, 8 € (a,b) with a < 8 we estimate
B B
/ 3@ r(x)dz = / 3(x) / o ()9 (V) dp(N) r(z)da =
« «a Rﬂ
- / oY) / or(@)3(x) r(x)de du(N) < (9.10)
R «@

Nt
8
~—
o
=
8
—
QU
8

W< lsl | [

[e3

< lgll,, |F (X1a.)9)
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Hence, § lies in L?((a,b);r(z)dx) with ||g]|2.» < ||g|l2,, and we may extend this map-
ping uniquely to a bounded linear operator G on L?(R;du) into L?((a,b);r(x)dx).

If F' is a Borel measurable function on R, then we denote by Mg the maximally
defined operator of multiplication with F in L?(R;du).

Lemma 9.2. The operator F is unitary with inverse G.

Proof. First we prove GFf = f for each f € L%((a,b);r(z)dz). Indeed, if f, g €
L2((a,b);r(x)dr), then

(. ghr = / dEy, = / FVTO du(n) =
R R
b

— lim f(A)/m(x)@r(aﬁ)dwdu(A) =

n— oo

—n,n] a (911)

(
b
~ lim_ / i@ / FN () du(\) r(z)de =
a (

—n,n)

= lim <gMX(_nyn]]:f, g>r = <g]:fvg>r

n— oo

Now since L2((a,b);r(x)dz) is dense in L*((a,b);r(x)dz) we infer that GFf = f for
all f € L?((a,b);r(x)dx). In order to prove that G is the inverse of F, it remains
to show that F is surjective, that is, ran(F) = L?(R;du). Therefore, let f, g €
L?((a,b);r(x)dz) and F, G be bounded measurable functions on R. Since Fy , is the
spectral measure of S we get

MaFFE(S)f, Fg)u = (G(S)F(S)f,9)r = (McMpFf, Fg). (9.12)
Now if we set h = F(S) f, then we obtain from this last equation

[ GNFIRFR) — FOVFF)]du(n) = o (9.13)
R

Since this holds for each bounded measurable function G, we infer

FgN) (Fh(A) = F(N)Ff(A) =0, (9.14)
for almost all A € R with respect to p. Furthermore, for each A\g € R we can
find a g € L%((a,b);r(z)dz) such that g # 0 in a vicinity of \g. Hence, we even
have Fh = FFf almost everywhere with respect to p. But this shows that ran(F)
contains all characteristic functions of intervals. Indeed, let Ay € R and choose
f € L2((a,b);r(x)dz) such that f # 0 in a vicinity of Ag. Then for each interval
J, the closure of which is contained in this vicinity, one may choose

)Y ifae
F = {0, if A e R\J, (9.15)

which yields x; = Fh € ran(F). Thus, ran(F) = L*(R;du) follows. O
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Theorem 9.3. The self-adjoint operator S is given by S = F*MqF.
Proof. First note that for each f € L?((a,b);r(x)dx),
f € dom (S) iff /|A|2dEf7f(A) < oo iff /|)\|2|]-'f(>\)|2du()\) <00
R R (9.16)
ifft 7f € dom (Miq) iff f € dom (F*MjqF).

In this case, Lemma 9.1 implies

(Sf.g0 = / ME; () = / AF (N FgNdu(A) = / M FN)Fg(Ndu(N) =
R

) R (9.17)
= (F*MiaFf,9)r, g€ L*((a,b);r(x)dx).
Consequently, F*M;qFf = Sf. O

Now the spectrum can be read off from the boundary behavior of the singular
Weyl-Titchmarsh-Kodaira function m in the usual way (see, e.g., [58] in the classical
context and the recent [103, Corollary 3.5], as well as the references therein).

Corollary 9.4. The spectrum of S is given by

a(S) =supp(u) = {\ € R|0 < limsup Im(m(\ + ie)) }. (9.18)
eJ0
Moreover,
op(S) ={AeR|0< liﬁ)lalm(m(/\ +ie))}, (9.19)
04c(S) = {X € R|0 < limsupIm(m(X +ic)) < oo}oss, (9.20)
el0

where Q" = {AN e R||(A—e, A\ +&)NQ| > 0 for all e > 0}, is the essential closure
of a Borel set 2 CR, and

Y = {A € R| limsupIm(m(X + ie)) = oo} (9.21)
el0

is a minimal support for the singular spectrum (singular continuous plus pure point
spectrum) of S.

Lemma 9.5. If X\ € o(S5) is an eigenvalue, then

p({A}) = llpallzs- (9.22)

Proof. Under this assumptions ¢, is an eigenvector of S and f(\) = (f,d\)r, [ €
L?((a,b);r(x)dr). Consequently,

16715, = Eoron (X)) = For(NFor(Nu({A}) = dalla, n({A}), (9.23)
since E({\}) is the orthogonal projection onto ¢y. O
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Lemma 9.6. For every z € p(S) and all © € (a,b) the transform of the Green’s
function G,(z,-) and its quasi-derivative 6&“(12 (z,-) are given by
(1]
FG.(z,-)(\) = ‘;”7(”3) and FOMG, (z,-)(\) = 22 @ eR. (9.24)

—z A—z'

Proof. First note that G,(z,-) and ag[gllGZ(x, -) both lie in L?((a,b);r(x)dx). Then
using Lemma 9.1, we get for each f € L2((a,b);r(x)dr) and g € L2(R;dp)

>
\
wQ

(Reg.5) = | IO g 5) = / L) ) dpuN) F@) r(w)de. (9.25)

y Palz
Regle) = [ 203 duy) (9.26)
for almost all x € (a,b). Using Theorem 7.3, one verifies

(FG.a ), = (Gl )3 = [ 900 au (9.27)
R

for almost all « € (a,b). Since all three terms are absolutely continuous, this equality
holds for all € (a,b), which proves the first part of the claim. The equality for the
transform of the quasi-derivative follows from

[y
(FONG,(2,-),9), = (OWG.(x,- ), F)r = Rog (@) :/%g@) du(N).  (9.28)
R

O

Lemma 9.7. Suppose T is in the l.c. case at a and 0, ¢, is a real entire fundamental
system as in Theorem 8.4. Then for each z € p(S) the transform of the Weyl solution
¥, 1s given by

1
A=z’

Fip.(N) = A eR. (9.29)

Proof. From Lemma 9.6 we obtain for each x € (a,b)

W (02, ¢)(2)

Fib(z,-)(\) = T, A€R (9.30)
where
i x _ 1/Jz(y)a Yy > z,
V2 (2,y) {m(z)@(y)’ y <. (9.31)

Now the claim follows by letting x | a, using Theorem 8.4. O
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Under the assumptions of Lemma 9.7, m is a Nevanlinna-Herglotz function. Hence,

1 A
m(z) =1 + caz +/ <>\ — 1_’_)\2>du()\), z € C\R, (9.32)
R

where the constants ¢y, ¢y are given by

¢1 = Re(m(i)) and cp = lim miin) > 0. (9.33)

ntoo 17)

Corollary 9.8. If 7 is in the l.c. case at a and 0,, ¢, is a real entire fundamental
system as in Theorem 8.4, then co = 0 in (9.32).

Proof. Taking imaginary parts in (9.32) yields for each z € C\R,

Im(z)
A =2
R

Im(m(z)) = colm(z) + /Im (/\iz) dp(A) = colm(z) + dp(X). (9.34)
R

Using the last identity in conjunction with Lemma 9.7 and (8.19), we obtain

b [ ot ) = D
R

1
Bo= [ opa). 39)
R

O

Remark 9.9. Given another singular Weyl-Titchmarsh-Kodaira function m as in
Remark 8.3, the corresponding spectral measures are related by

dit = e 9dp, (9.36)

where g is the real entire function appearing in Remark 8.3. In particular, the measures
are mutually absolutely continuous and the associated spectral transformations only
differ by a simple rescaling with the positive function e=29.

10. THE SPECTRAL MULTIPLICITY

In the present section we consider the general case where none of the endpoints are
supposed to satisfy the requirements of the previous section. Therefore, let S be a
self-adjoint restriction of Tax (With separated boundary conditions if 7 is in the l.c.
case at both endpoints). In this situation, the spectral multiplicity of S is poten-
tially two and hence we will work with a matrix-valued spectral transformation. The
results in this section extend classical spectral multiplicity results for second-order
Schrodinger operators originally due to Kac [85,86] (see also Gilbert [59] and Simon
[151]) to the general situation discussed in this paper.
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We fix some interior point o € (a,b) and consider the real entire fundamental
system 6, ¢, of solutions of (7 — z)u = 0 with the initial conditions

0. (x0) = ¢l (x0) = cos(pa) and — 011 (z0) = ¢.(0) = sin(pa) (10.1)
for some fixed ¢, € [0, 7). The Weyl solutions are defined by
V2t (2) = 0:(2) £ me(2)d:(2), € (a,b), 2 € C\R, (10.2)
such that for all ¢ € (a,b),
V.. € L*((a,c);r(z)dz) and ¢, € L*((c,b);r(2)dz). (10.3)

Hereby, m4 are the regular Weyl-Titchmarsh-Kodaira functions of the operators S
obtained by restricting S to (a,xo) and (z¢,b) with a boundary condition

f(20) cos(pa) — fM(20) sin(p,) = 0, (10.4)

respectively. One notes that according to Corollary 8.5, m4 are Nevanlinna-Herglotz
functions. One introduces the 2 x 2 Weyl-Titchmarsh-Kodaira matrix

R S

_ ma(z)+m_(z ma(z)+m_(z
M(Z) - lmj(z)fer(z) mtgz)m+(z) , %€ (C\R7 (105)

dmy () Fm-(2)  mymo(2)

and observes that det(M(z)) = —1/4. Moreover, a brief computation shows that the
function M is a matrix-valued Nevanlinna-Herglotz function and thus has a represen-
tation

1 A
A—z 14X

M(z) = Cy + Caz +R/ < ) dQ(N), z e C\R, (10.6)

where C is a self-adjoint matrix, Co a nonnegative matrix, and € is a self-adjoint,
matrix-valued measure which is given by the Stieltjes inversion formula

Ao+48

1
Q((}\l, )\2]) = lim lim — / Im(M()\ + iE))d)\, A, A ER, Ay < Ao (107)
610 €l0 T
A1 +6
It will be shown in Corollary 10.4 that one actually has C5 = 0 in (10.6). Furthermore,
the trace O = Q1,1+ 5 of ) defines a nonnegative measure and the components of
Q are absolutely continuous with respect to 2'*. The respective densities are denoted
by R; j, 1,7 € {1,2}, and are given by

Ris(\) = lim Im(M; ; (A +1ie))

, 10.8
€l0 Im(Ml’l()\—l—ii;‘) +M272()\+i5)) ( )

where the limit exists almost everywhere with respect to Q. One notes that R is
nonnegative and has trace equal to one. In particular, all entries of R are bounded,

0< Rl,l,Rg,g < 1, |R1’2| = |R2’1| < 1/2. (10.9)
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Furthermore, the corresponding Hilbert space L2(R;df?) is associated with the
inner product

2
()= [T a0 = [ 3 FOVR, M50, (1010
R R

i,j=1

where for each f € L?((a,b);r(x)dx), one defines the transform, fof f, as

b
2 J0-(x)f(z) r(x)dx
<f1(z)> o . zeC. (10.11)

f 6.0 f (@) r(e)da

In the following lemma, we will relate the 2 x 2 matrix-valued measure 2 to the
operator-valued spectral measure E of S. If F' is a measurable function on R, we
denote with My the maximally defined operator of multiplication with F' in the
Hilbert space L?(R;dS2).

Lemma 10.1. Assume that f, g € L?((a,b);r(z)dz). Then,

(B((1, 22D 0)r = My, 1y f 000 (10.12)
for all A1, Ao € R with A1 < Ao.
Proof. This follows by evaluating Stone’s formula
A2+0

B(O, Xal) ) = limlim — / Im ((Rysic > )r) dA, (10.13)

A1+

using formula (7.15) for the resolvent together with the Stieltjes inversion formula,
literally following the proof of [56, Theorem 2.12]. O

Lemma 10.1 shows that the transformation defined in (10.11) uniquely extends to
an isometry F from L?((a,b);r(z)dz) into L?(R;dS).

Theorem 10.2. The operator F is unitary with inverse given by

Flg(z) = lim / g(\) (Zi%ﬁ%) dQ(\), g € LA(R;dS), (10.14)

N—o00
[-N,N)

where the limit exists in L*((a,b);r(x)dz). Moreover, one has S = F*M;qF.

Proof. Because of Lemma 10.1, it remains to show that F is onto. Since it is straight-
forward to verify that the integral operator on the right-hand side of (10.14) is
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the adjoint of F, we can equivalently show that ker(F*) = {0}. To this end, let
g € L*(R;dQ)), N € N, and z € p(S). Then

(S—2) / ig@) (Zi((?)) d0(N) = / 9N <Zi((ffc))) (), (10.15)

[-N,N) [-N,N)
since interchanging integration with differentiation can be justified using Fubini’s
theorem. Taking the limit N — oo, one concludes that

1
F'——g=R.Fg, g€ L*R;dQ), (10.16)

By Stone-Weierstrass, one concludes in addition that F*Mpg = F(S)F*g for any
continuous function F' vanishing at infinity, and by a consequence of the spectral
theorem (see, e.g., the last part of [153, Theorem 3.1]), one can further extend this to
characteristic functions of intervals I. Hence, for g € ker(F*) one infers that

/g()\) (Zi%ﬁ%) do(\) = 0 (10.17)
I

for any compact interval I. Moreover, after taking derivatives, one also obtains

/ ey (9%]](””)> () = 0. (10.18)
A (@)

1
Choosing x = z( implies
/g(A) (COS(%)) dQ(N) = /g()\) (_Sin(%)> dQ(\) =0 (10.19)
sin(eq) cos(¢a)
1 1
for any compact interval I, and thus g = 0, as required. O

As in Lemma 9.6, one can determine the transform of the Green’s function upon
employing Theorem 7.3 and equation (10.16).

Lemma 10.3. For every z € p(S) and all x € (a,b) the transform of the Green’s
function G,(x,-) and its quasi-derivative Ma. (x,-) are given by

x e,
oo a0 = 315 (B0) ans 2ot = 52 (B0
A

AeR.  (10.20)

As a consequence, one obtains the following refinement of (10.6).

Corollary 10.4. The matriz Cy in (10.6) is zero.
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Proof. Following the proof of Corollary 9.8, it suffices to show that

Im
I

(M(z)) _ 1 .
m(z) R/ A — 22 dQ(r), € C\R. (10.21)

Therefore, one first concludes from Lemma 10.3 that for every z € C\R,

j G-tan P )y = (ot ) / e (). o

Using (7.16) and (8.19) to evaluate the left-hand side of (10.22), one obtains

b

/ G (o) r(y)dy =

a

1
|W(¢z,+7¢z,—))|2

(e o) [ 102 v+

b
e o) [ 1m0 r(0)dy) = (10.23)

- (ntln) M ()

In a similar manner, one proves corresponding formulas for

<—sin(<,0a)> Tm (M (z)) <COS(9"G)) and

cos(¢q) Im(z) sin(q)

() s ()

establishing the identity (10.21). O

(10.24)

We note that the vanishing of the linear term Cyz in (10.6) is typical in this context
and refer to [8, Ch. 7] and [111] for detailed discussions.

Finally we turn to spectral multiplicities. Therefore, one introduces the measurable
unitary matrix U(\) which diagonalizes R(\), that is,

R(\) =U(N)* (@1(9) gg(())\)> U\, (10.25)

where 0 < p1(A\) < 02(A) < 1 are the eigenvalues of R(A). In addition, one observes
that 01(A) + 02(A) = 1 since tr(R(X)) = 1. The matrix U(\) gives rise to a unitary
operator L?(R; dQ) — L?(R; 01dQ') @& L2(R; 02dQ™) which leaves M;q invariant. From
this observation one immediately obtains the analog of Corollary 9.4.

Corollary 10.5. Introduce the Nevanlinna-Herglotz function

m_(z)m4(z) —1

MP(e) = tr(M(2)) = < =m0

. zeC\R, (10.26)
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associated with the trace measure dQ%. Then the spectrum of S is given by

a(9) = supp(dQ™) = {\ € R|0 < limsup Im(M*t (X +ig))}. (10.27)
el0

Moreover,
op(S) ={AeR|0< ligjlsIm(M“(A +1ie))}, (10.28)
0ae(S) = N €R[0 < limsup Im(M¥" (X + i¢)) < o0}, (10.29)

el0
and
Y5 = {\ € R| limsup Im(M* (A + i¢)) = oo} (10.30)
el0

is a minimal support for the singular spectrum (singular continuous plus pure point
spectrum) of S.

Furthermore, this allows us to investigate the spectral multiplicity of S.

Lemma 10.6. If we define

51 = {A € supp(d2'") | det(R(N) = o1(\)ez(A) = 0}, (10.31)
S = {A € supp(d2'") | det(R(A) = 01(\)e2(A) > 0}, (10.32)

then M;q = Mid x5, © Mid.xs, and the spectral multiplicity of Mid.yy, s one and the
spectral multiplicity of Mid.yy,, s two.

Proof. For fixed A € ¥1 we have either g1(\) =1, 02(A) =0 or p1(A) =0, g2(A) = 1.
In the latter case we can modify U(\) to also switch components and hence we can
assume 01(A) =1, 02(A) = 0 for all A € ¥1. Hence Miq.yy,, is unitarily equivalent to
multiplication with X in L?(R; xx, dQ'). Moreover, since g;xs,dQ" and xx,dQ" are
mutually absolutely continuous, Miq.y,, is unitary equivalent to Miq in the Hilbert
space L?(R; xs, dQ" ). O

Combining (10.5) with (10.8), one concludes that

. Im(my (A +ie))Im(m_ (A + ig)) 1
det(RO)) =l = A e Ot 9 (1 i2))

(10.33)

where the first factor is bounded by 1/4. At this point Lemma 10.6 yields the following
result.

Theorem 10.7. The singular spectrum of S has spectral multiplicity one. The abso-
lutely continuous spectrum of S has multiplicity two on the subset c4c(S+) Noae(S-)
and multiplicity one on 04c(S)\(0ac(St) Noec(S_)). Here St are the restrictions of
S to (a,x0) and (xo,b), respectively.
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Proof. Using the fact that ¥ is a minimal support for the singular part of S one

obtains Sy = Spp, & Ssc = E(X,)S and Sqe = (1 — E(X;))S. Thus, evaluating (10.33)

using (10.30), one infers that the singular part has multiplicity one by Lemma 10.6.
For the absolutely continuous part, one uses that the corresponding sets

Yacr ={AeR|0< lig)l Im(my (A +ig)) < oo} (10.34)

are minimal supports for the absolutely continuous spectra of Sy. Again, the remain-
ing result follows from Lemma 10.6 upon evaluating (10.33). O

11. (NON-)PRINCIPAL SOLUTIONS, BOUNDEDNESS FROM BELOW,
AND THE FRIEDRICHS EXTENSION

In this section we develop various new applications to oscillation theory, establish the
connection between non-oscillatory solutions and boundedness from below of Ty, ex-
tend a limit-point criterion for Ty to our present general assumptions, and characterize
the Friedrichs extension Sz of Tj.

Assuming Hypothesis 2.1, we start by investigating some (non-)oscillatory-type
properties of real-valued solutions u € O, of the distributional Sturm-Liouville equa-
tion

— (um)/ + sull + qu = \ur for fixed A € R. (11.1)

Throughout this section, solutions of (11.1) are always taken to be real-valued,
in accordance with Theorem 2.2. In addition, we occasionally refer to p as being
sign-definite on an interval I C R, by which we mean that p > 0 or p < 0 a.e. on [.

We begin with a Sturm-type separation theorem for the zeros of pairs of linearly
independent real-valued solutions of (11.1).

Theorem 11.1. Assume Hypothesis 2.1 and suppose that u;, j = 1,2, are two linearly
independent real-valued solutions of (11.1) for a fited X € R. If x; € (a,b), j = 1,2,
are two zeros of uy with x1 < xo and p is sign-definite on (x1,x2), then us has at least
one zero in [x1,x2]. If, in addition, T is reqular at the endpoint a and x1 = a, then
us has a zero in [a, x2]. An analogous result holds if T is reqular at the endpoint b.

Proof. Since the Wronskian of two real-valued solutions of (11.1) is a constant (cf.
the discussion after Lemma 2.3),

W (ur, uz) () = uy (2)ul) (z) — ul (@)uz () = ¢, @ € [y, )], (11.2)

for some ¢ € R. If us has no zero in [x1,xs] then the quotient wu;/ug is absolutely
continuous on [z, x| and (11.2) implies

Uy

<)/(x) = forae. z € (v1,22). (11.3)

U2
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Subsequently, integrating the equation in (11.3) from z; to z2 and using ui(x;) =0,
j = 1,2, one obtains

dx
C/W =0. (11.4)

The sign definiteness assumption on p implies the integral appearing in (11.4) is
nonzero, and, consequently, one concludes ¢ = 0. Therefore, 1 and us must be linearly
dependent real-valued solutions of (11.1). The result now follows by contraposition.
To prove the remaining statement, one may simply repeat the above argument,
noting that regularity of 7 at the endpoint a guarantees that the function appearing
in the right hand side of (11.3) is integrable on (a,x3). O

Note also that all zeros are simple in the sense that (nontrivial) solutions must
change sign at a zero.

Lemma 11.2. Assume Hypothesis 2.1 and suppose that u is a nontrivial real-valued
solution of (11.1) for a fired X € R. If xy € (a,b) is a zero and p is sign-definite in a
neighborhood of xo, then u must change sign at x.

Proof. Regarding u/(x) = p(z) " 'ulll(z) — s(x)u(z) as a differential equation for u we

obtain
xr xT

u(z) = &5 / SWpy) () dy,  S(x) = / swydy.  (115)

xo o
Since ulll(z) # 0 (otherwise, u = 0) and ul!! € ACy,c((a,b)), the claim follows. [

Definition 11.3. Suppose Hypothesis 2.1 holds and let A € R. The differential ex-
pression 7 — \ is called oscillatory at a (resp., b) if some solution of (11.1) has infinitely
many zeros accumulating at a (resp., b); otherwise, 7 — A is called non-oscillatory at
a (resp., b).

Under the assumption that 7 — A is non-oscillatory at the endpoint b, and that p is
sign-definite a.e. on (¢, b), the next result establishes the existence of a distinguished
solution which is, in a heuristic sense, “smaller” than any other solution near b. An
analogous result holds if (11.1) is non-oscillatory at a.

Theorem 11.4. Assume Hypothesis 2.1 and let A\ € R be fixed. In addition, sup-
pose that there exists ¢ € (a,b) such that p is sign-definite a.e. on (¢,b). If T — X
is non-oscillatory at b, there exists a real-valued solution ug of (11.1) satisfying the
following properties (i)—(iii) in which uy denotes an arbitrary real-valued solution of
(11.1) linearly independent of ug.

(i) ug and uy satisfy the limiting relation

lim Z?Eg =0. (11.6)
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(i) wp and uy satisfy

' dz b dx
/ P = " / P@lo@? (11.7)

(iii) Suppose xg € (¢, b) strictly exceeds the largest zero, if any, of ug, and ui(xg) # 0.
If ui(zo)/uo(xo) > 0, then uy has no (resp., exactly one) zero in (xg,b) if
W(ug,u1) 2 0 (resp., W(ug,u1) S 0), in the case p 2 0 a.e. on (¢,b). On
the other hand, if u1(xo)/uo(zo) < 0, then uy has no (resp., exactly one) zero in
(20,b) if W(ug,u1) < 0 (resp., Wiug,u1) 2 0) in the case p 2 0 a.e. on (c,b).

Proof. Let u and v denote a pair of linearly independent real-valued solutions of
(11.1). Then their Wronskian is a nonzero constant, say ¢ € R\{0}. If 2y € (¢, b)
strictly exceeds the largest zero, if any, of v, then u/v € ACioc((xo,b)), and one
verifies (as in (11.3)) that

u

()l(x) = forae. z € (w0,b). (11.8)

v p(z)v(z)

In particular, since p is sign definite a.e. on (zg, ), the right-hand side of equation
(11.8) is sign definite a.e. on the same interval; therefore, the function u/v is monotone
on (xg,b). Consequently,

C = 1im ) (11.9)
zTb U(l’)
exists, where C' = £00 is permitted. By renaming u and v, if necessary, one may take
C = 0. Indeed, in the case C = oo in (11.9), one simply interchanges the roles of
the functions v and v. If 0 < |C| < oo, then one replaces the solution u by the linear
combination v — Cv. Choosing ug = u, a real-valued solution u; of (11.1) is linearly
independent of ug if and only if it is of the form u; = coug + c1v with ¢; # 0. In this
case, C' = 0 implies
up () = [c1 + o(1)]v(x), (11.10)
and, consequently, (11.6). This proves item (i).

In order to prove item (ii), we first note a useful consequence of (11.8). To this
end, suppose u and v are real-valued solutions of (11.1) and that z{, strictly exceeds
the largest zero of v, so that (11.8) holds as before. Integrating (11.8) from z, to
x € (zy,b) and using sign-definiteness of p yields

i 1
[ p(@)fo(6)? ]

To prove item (ii), let u; denote a real-valued solution linearly independent of ug
(with ug the solution constructed in item (i)) and choose zg € (¢, b) strictly exceeding
the largest zero of ug and the largest zero of u;. Choosing u = ug and v = u; (resp.,
u=wu; and v = ug) in (11.11), taking the limit « 1 b, and applying (11.6) establishes

u(z)  ufwp)

o) o) | z € (z0,b). (11.11)
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convergence (resp., divergence) of the first (resp., second) integral appearing in (11.7).
This completes the proof of item (ii).

To prove item (iii), we assume the case p > 0 a.e. on (¢, b) for simplicity; the case
p < 0 a.e. on (¢,b) is handled similarly. One infers from (11.6) and (11.8) (with u = u;
and v = ug) that uy /ug is monotonic on (zg,b) and that

lim un ()
zTb "U,o((ﬂ)

= 400, depending on whether W (ug,u1) 2 0 (11.12)

As a result, if uq(zo)/uo(zo) > 0 then u;/up has no (resp., exactly one) zero in
(29,b) in the case W(ug,u;) > 0 (resp., W(ug,u;) < 0). On the other hand, if
u1(xo)/uo(xo) < 0, then ug/ug has no (resp., exactly one) zero in (x,b) in the case
W (ug,u1) < 0 (resp., W(ug,u1) > 0). (All Wronskians are of course constant, hence
we evaluate them at xg.) Item (iii) now follows since the zeros of w; in (xg,b) are
precisely the zeros of uq /ug. O

Evidently, a result analogous to Theorem 11.4 holds if 7 — XA is non-oscillatory
at a. More specifically, one can establish the existence of a distinguished real-valued
solution vy # 0 of (11.1) which satisfies the following analogue to (11.6): If vy is any
real-valued solution of (11.1) linearly independent of vg, then

1m il (:E)
rla U1 (l‘)

=0. (11.13)

Analogues of item (ii) and (iii) of Theorem 11.6 subsequently hold for vy and any
real-valued solution v; linearly independent of vyg.

Definition 11.5. Assume Hypothesis 2.1 and suppose that A\ € R. If 7 — X is
non-oscillatory at ¢ € {a,b}, then a nontrivial real-valued solution ug of (11.1) which
satisfies
uo(z) _
Zoty w(@)
z€(a,b)

(11.14)

for any other linearly independent real-valued solution u; of (11.1) is called a principal
solution of (11.1) at c¢. A real-valued solution of (11.1) linearly independent of a
principal solution at ¢ is called a non-principal solution of (11.1) at c.

If 7 — X is non-oscillatory at ¢ € {a,b}, one verifies that a principal solution at
¢ is unique up to constant multiples. The main ideas for the proof of Theorem 11.4
presented above are taken from [71, Theorem 11.6.4]; the notion of (non-)principal
solutions dates back at least to Hartman [70] and was subsequently also used by
Rellich [133].

If the differential expression 7 — X is non-oscillatory at ¢ € {a, b}, one can use any
nonzero real-valued solution to construct a non-principal solution in a neighborhood
of c¢. The procedure for doing so is the content of our next result. For simplicity, we
consider only the case when 7 — A is non-oscillatory at b. An analogous technique
allows one to construct (non-)principal solutions near a when 7 — X is non-oscillatory
at a.



Weyl-Titchmarsh theory for Sturm-Liouville operators. . . 513

Theorem 11.6. Assume Hypothesis 2.1 and suppose that T — X is non-oscillatory
at b. In addition, suppose that there exists ¢ € (a,b) such that p is sign-definite a.e.
on (¢,b). Let u # 0 be a real-valued solution of (11.1) and let xg € (¢, b) strictly exceed
its last zero. Then

xT

up(z) = u(:ﬁ)/

Zo

dx’

payaeyy © € o) (11.15)

is a non-principal solution of (11.1) on (xg,b). If, on the other hand, u is a
non-principal solution of (11.1), then

b

wo(2) = u(z) [

T

da’
Wa xT € (mo,b), (1116)

is a principal solution of (11.1) on (x0,b). Analogous results hold at a.

Proof. Suppose that u # 0 is a real-valued solution of (11.1) and define u; by (11.15).
Evidently, u; is real-valued and u; € AC)oc((x0,b)). In addition, u; € D, since

x

[1] . 1 1 d.’,E,

o) = ) [t € Alu(@), (L)
zo

and one verifies Tu; = Auy on (xg,b). Moreover, u; is linearly independent of u since

W (u,u1) =1, and w; is not a principal solution on (zg,b) because

x

. up(r) i dx’
111?1} u(z) la:Tb/p(gc’)u(ac’)2 70. (11.18)

Zo

It follows that u is a non-principal solution on (zg,b).

Under the additional assumption that w is a non-principal solution, one again
readily verifies that ug defined by (11.16) is a solution on (x,b), and that wug is
linearly independent of u. Next, we write ug = cotip + c1u on (xo,b), where g is a
principal solution on (zg,b) and cg,c; € R. Then after dividing through by w, one

computes
b

da’ Uo(x)
0=1i — el ) L¢) = 11.19
oth p(@ ) u(z')? Co 1 () +a =c, ( )
xT
and it follows that ug = cotip is a principal solution on (zg,b). O

The following result establishes an intimate connection between non-oscillatory
behavior and the L.p. case for 7 at an endpoint. More specifically, we derive a criterion
for concluding that 7 is in the l.p. case at an endpoint in the situation where 7 — A
is non-oscillatory at the endpoint and p has fixed sign in a neighborhood of the
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endpoint. The proof of this result relies on the existence of principal solutions, as
established in Theorem 11.4, as well as the technique for constructing non-principal
solutions described in Theorem 11.6. This condition is well-known within the context
of traditional three-term Sturm-Liouville differential expressions of the form ou =
r~[—(pu') + qu], where p > 0,7 > 0 a.e. and p~!,7,q € L{. ((a,b)), etc. It was first
derived by Hartman [70] in the particular case p = r = 1 in 1948. Three years later,
Rellich [133] extended the result to the general three-term case under some additional
smoothness assumptions on p,r, and g. These smoothness restrictions, however, are
inessential (see also [52, Lemma C.1]). The following result extends this l.p. criterion

to the general case governed by Hypothesis 2.1.

Theorem 11.7. Assume Hypothesis 2.1 and suppose that there exists ¢ € (a,b) such
that p is sign-definite a.e. on (c,b). In addition, suppose that T — X\ is non-oscillatory
at b for some X € R. If fb Ir(2)/p(x)|"/?dx = oo, then T is in the Lp. case at b. An
analogous result holds at a.

Proof. Since 7 — )\ is non-oscillatory at b, there exists a principal solution, say ug, of
(11.1) by Theorem 11.4. If xq strictly exceeds the largest zero of ug in (¢, b), then by
Theorem 11.6, u; defined by

x

dz’
U1($) = UO(J,')/W, xr € ($0,b)7 (1120)
zo
is a non-principal solution on (zg,b), and as a result,
/ d
T
—_—— < 0. 11.21
lerme: (1121)
xo

Assuming 7 to be in the l.c. case at b, one concludes that

b
/ul(x)zr(x)dx < 0. (11.22)

Zo

Consequently, Holder’s inequality yields the contradiction,

b b 12, o d 1/2
(T €T 1/2 €Z up(x 27" xT)ax 71‘ Q0. .
m/| (a)/p(a)%d s]/ (@)r(@)d /|p<m>u1<m>2 <oo  (1123)

O

Corollary 11.8. Assume Hypothesis 2.1. Suppose T — A\, is non-oscillatory at a
for some Ay € R and that T — Xy is non-oscillatory at b for some Ay € R. If p is
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sign-definite in neighborhoods of a and b (the sign of p may be different in the two
neighborhoods), and

b
[ @@ ae=ce, [ irt@)/pta) s = . (11.24)

then Tiin = Tmax 1S a self-adjoint operator.

Proof. By Theorem 11.7, 7 is in the Lp. case at a and b. The result now follows from
Theorem 5.2. O

Theorem 11.9. Assume Hypothesis 2.1 and that p > 0 a.e. on (a,b). Suppose there
exist Mg, A\p € R such that T — A\, is non-oscillatory at a and T — Ay is non-oscillatory
at b. Then Ty and hence any self-adjoint extension S of the minimal operator Ty s
bounded from below. That is, there exists v4 € R, such that

(u, Suyy > vg(u,u)y, u € dom(S). (11.25)

Proof. Since 7 — A, is non-oscillatory at @ and 7 — A, is non-oscillatory at b, there
exist real-valued solutions fq, fi € ©,\{0} satisfying

(T=Xa)fa=0, (1—X)fp =0 a.e. on (a,b), (11.26)

such that f, does not vanish in a neighborhood, say (a, ¢) of a, and f, does not vanish
in a neighborhood, say (d,b), of b. We may assume that ¢ < d. Note that the solution
fa can have at most finitely many (distinct) zeros in the interval (c,d). For if f,
has infinitely many zeros in (¢, d), then zeros of f, must accumulate at some point
in [¢,d]. Let {c,}52; C (e,d) denote such a sequence of zeros and co € [c,d] with
lim,, 00 ¢n = Coo. Since f, is continuous on [¢, d], the accumulation point ¢ is also
a zero of f,, that is,

falcos) = 0. (11.27)

Let f denote a real-valued solution of (7 — A,)f = 0 linearly independent of f, so
that the Wronskian of f and f, is a nonzero constant

W(f, fa)(css) € R\{0}. (11.28)

By the Sturm separation Theorem 11.1, the zeros of f, and f intertwine. In particular,
Coo must also be a limit point of zeros of f, and by continuity of f on [¢,d],

fless) = 0. (11.29)

However, (11.27) and (11.29) are a contradiction to (11.28), and it follows that f, has
only finitely many zeros in (¢, d).

Let {c,}"=' C (¢c,d), N € N chosen appropriately, denote a listing of the finitely
many (distinct) zeros of f, in (¢,d) with ¢, < ¢py1, 2 <n < N —2 and set ¢; = ¢
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and cy = d. Define the operators Tp (q,¢), To,(
the following manner:

1<n<N-—1,and Ty 44 in

CnyCnt1)?

To,(a,e0) f1 = T f1, (11.30)
f1 € dom (Tp (a,0)) = {9l(a,0) |g € dom (Tyax) , g has compact support in (a,c)},
To (ap)f2 = T f2, (11.31)
fo € dom (To,(d,b)) = {g|(d7b) }g € dom (Tiax) , ¢ has compact support in (d, b)},
To,(cprensr)f3 = T13, (11.32)
f3 € dom (TO,(cn,cn+1)) = {g|(cn,cn+1) |g € dom (Tmax) s Supp(g) C (Cna Cn+1)}7
1<n<N-1.

Obviously, Ty defined by (3.3) is an extension of the direct sum Tp g, defined by
To.e = To,(ae) D To,(cr,e0) D D Lo (en1,en) D Lo, (d0)- (11.33)

Moreover, Ty g C m C Thin, and any self-adjoint extension of Ty, is a self-adjoint
extension of Ty . Since the deficiency indices of T,y are at most 2, it suffices to show
that

To,e is bounded from below. (11.34)

Subsequently, by [156, Corollary 2, p. 247], (11.34) implies that any self-adjoint exten-
sion of Ty ¢ (hence, any self-adjoint extension of Tpn;,) is bounded from below since
the deficiency indices of Tp g are finite (in fact, they are at most 2N + 2). It suffices
to show that the symmetric operators (11.30)—(11.32) are separately bounded from
below; a lower bound for T g is then taken to be the smallest of the lower bounds
for (11.30)—(11.32).

The proof that T (4, and Ty (qp) are bounded from below relies on the
non-oscillatory assumptions on 7 — A, and 7 — Ay, Since (7 — Ay)fa = 0 a.e. on
(a,b) and f, does not vanish on (a,c), one can recover ¢ pointwise a.e. on (a,c) by

N, () @
Jfa(z) Jfa(z)
Let u € dom (TO,(a,c)) be fixed. Using (11.35) in conjunction with the fact that func-

tions in dom (T O,(a,c)) vanish in neighborhoods of @ and ¢ (to freely perform integration
by parts), one computes

q(z) = Aor(z) — s(x) for a.e. z € (a,c). (11.35)

<u7 TO,(a,c)u>L2((a,c);r($)dw) —Aa <U7 U>L2((a,c);r(z)dw)

)
fa(2) (11.36)

N / u'(z)ull(z) + u(@)s(@)ulll (@) — s(@)|u(z)]®
(a.0)

@)
7. (v (z)u(z) + u(z)w' (z)) +

@ @ (@)
o e
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Denoting the integrand on the right-hand side of (11.36) by F,(z) a.e. in (a,c),
algebraic manipulations using the definition of the quasi-derivative yield

fal@)|’
fa(z)

Therefore, the integral appearing in the right-hand side of (11.36) is nonnegative.
Since u € dom (To,(a,c)) is arbitrary, one obtains the lower bound

Fu(z) = p(x)|u'(z) — u(z) >0 for a.e. z € (a,c). (11.37)

(U, T, (a,0)W) L2 ((ac)ir(2)dz) = Aa(Us U L2((are)sr(a)da)s W € AOM(Th (a,c)).  (11.38)

The analogous strategy, using the solution fy, establishes the lower bound for Tj (43),

(u, To,(a,0) W) L2 ((d,b)sr(z)dz) = Ab{Uy W) L2((db)ir(z)da), @ € dom(Tp ap))-  (11.39)

To show that each Ty (¢, c,..), 1 <n < N—1, is semi-bounded from below, one closely
follows the strategy used above to prove semi-boundedness of Tj (4,¢), noting that since
fa is nonvanishing on (¢, cn+1), ¢ can be solved for a.e. on the interval (¢, cpt1)
in the same manner as in (11.35). Then if u € dom (TOV(CT“%H))7 one obtains an
identity which formally reads like (11.36) with the interval (a, ¢) everywhere replaced
by (¢n, cnt1)- Factoring the integrand according to the factorization appearing on the
right-hand side of the equality in (11.37) (this time a.e. on (¢, ¢,+1)), one infers that

<U, TO,(cn,cn+1)u>L2((cn,cn+1);r(z)dz) Z Aa <u7 u>L2((cn,cn+1);r(w)d:c)7

(11.40)
u € dom (TO,(Cn,Cn+1)) ,1<n<N-—-1.

Together, (11.38), (11.39), and (11.40), yield (11.34), and hence (11.25). O

Corollary 11.10. Assume Hypothesis 2.1 and suppose that p > 0 a.e. on (a,b). If T
is regular on (a,b), then Ty and hence every self-adjoint extension of Ty is bounded
from below.

Proof. We claim that the differential expression 7 is non-oscillatory at a. Indeed, if 7
were oscillatory at a, then 7u = 0 has a nontrivial, real-valued solution u, with zeros
accumulating at a. Let v denote a nontrivial, real-valued solution of 7u = 0 linearly
independent of u,. Then Theorem 11.1 implies that v also has zeros accumulating at a.
By Theorem 2.6, u,,v, and their quasi-derivatives have limits at a; by continuity,

lim u,(z) = limwv(z) = 0. (11.41)

zla zla
As a result, the Wronskian of u, and v must satisfy

lim W (ugq, v)(z) = 0, (11.42)
zla
which yields a contradiction since the Wronskian of u, and v equals a fixed, nonzero
constant everywhere in (a,b). Similarly, one shows that 7 is non-oscillatory at b. The
result now follows by applying Theorem 11.9, with, say, A, = A\, = 0. O
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Corollary 11.10, under our present general assumptions, has originally been proved
by Moller and Zettl [124] using a different approach (and for the general even-order
case considered in [157] with a positive leading coefficient).

Corollary 11.11. Assume Hypothesis 2.1 and suppose p is sign-definite a.e. in (a,b).
If T is regular on (a,b) and X € R, then any nontrivial, real-valued solution of Tu = Au
has only finitely many zeros in (a,b).

Proof. By absorbing A into 7, it suffices to consider the case A = 0. A nontrivial,
real-valued function w satisfying 7u = 0 cannot have zeros accumulating at a point in

[a, b]. O
Definition 11.12. Assume Hypothesis 2.1. The operator Ty (defined by (3.3)) is said
to be bounded from below at a if there exists a ¢ € (a,b) and a A\, € R such that

(u, Tou)yr > Ao(u, u)y, u € dom (Tp) such that uw =0 on (c,b). (11.43)

Similarly, T, is said to be bounded from below at b if there exists a d € (a,b) and a
Ap € R such that

(u, Tou)r > Ap{u,u),, u € dom (Tp) such that w =0 on (a,d). (11.44)

Theorem 11.13. Assume Hypothesis 2.1. If Ty is bounded from below at a and p is
sign-definite a.e. near a, then there exists an a € R such that for all A < a, 7 — X is
non-oscillatory at a. A similar result holds if Ty is bounded from below at b.

Proof. By assumption, there exists a ¢ € (a,b) such that each self-adjoint extension
S(a,e) Of T(a,c) With separated boundary conditions in L?((a,c);r(x)dx) is bounded
from below by some a € R. More precisely, this follows from Definition 11.12 and
[156, Corollary 2 on p. 247|. Then for each A < «, the diagonal of the corresponding
Green’s function G 4,0y 1 (2, ), € (a,c) is nonnegative (cf. [84, Lemma on p. 195]).
In fact, since G'(4,),» is continuous on (a,c) x (a,c) one has

G(a,c)7x\(x7 'T) = EIEI%)<(S(a,c) - A)ilfx,a fx,6>L2((a,c);r(w)dm) >0 (1145)

for each z € (a,c), where

z+te -1
foe(y) = / r(t)dt X(@—c,ate)(¥), ¥y € (a,c), €>0. (11.46)
Ir—E&
Indeed, if = € (a, ¢), then by continuity along the diagonal, for any ¢ > 0, there exists
an €(d) > 0 such that
G(a,c),)\(xax) -6 < G(a,c),)\(sa t) < G(mc),)\(xvx) + 67 (1147)
(s,t)e(x—e,x+e)x (x—¢g,x+e), e<e(d).

As a result,

G(a,c),)\(xvx) -0 < <(S(a7c) - A)ilf:c,aa fx,s> < G(a,c)7z\(x7x) + 67

11.48
e <e(d), 6 >0. ( )
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Therefore, one obtains
G(a,c),)\(xax) -6 < hnli%)nf«s(a,c) - A)ilfz,ea fm,s> < G(a,c),)\(xvx) + 57 6> 07
€

(11.49)
and the analogous inequality with “lim inf” replaced by “lim sup”. Subsequently taking
0} 0 yields (11.45).

Now let u, and u. be solutions of (7 — N)u = 0 lying in L?((a,c);r(x)dx) near
a and ¢ respectively and satisfying the boundary conditions there (if any). If u, had
a zero z in (a,c), then y — G(4.¢).2(y,y) would change sign there (note that w, is
nonzero in z since otherwise A would be an eigenvalue of S, ). Hence u, cannot
have a zero in (a,c) which shows that 7 — A is non-oscillatory at a. O

Corollary 11.14. Assume Hypothesis 2.1 and suppose p > 0 a.e. on (a,b). Then Ty is
bounded from below if and only if there exist p € R and functions gq, gp € AC)oc((a, b))

such that gt[ll},gl[jl] € ACic((a,b)), go > 0 near a, g, > 0 near b,

(1]
q > pr — sggi + (g([ll])/ a.e. near a,
[Z] (11.50)
q > pr— s9b_ + (gl[,l])/ a.e. near b.
0

Proof. We first assume in addition that

dx b dx
/P(I)ga(l’)2 _/ p@)g(x)2 0. (11.51)

a

Then for the necessity part of the corollary, Theorem 11.13 permits one to choose g,
and g;, as principal solutions of (7 — p)u = 0 at a and b, respectively, for u less than
a lower bound of Tj. For the sufficiency part, one replaces A, by u, “=" by “>", and
fa by go in (11.35) and (11.36). The endpoint b is handled analogously.

As originally pointed out in [88, Sect. 3] in the context of traditional
Sturm-Liouville operators (i.e., those without distributional potentials), one may re-
place condition (11.51) by the condition that one (resp., both) of the integrals ap-
pearing in (11.51) is (resp., are) convergent. Indeed, the sufficiency proof of Corollary
11.14 is carried out independent of the condition in (11.51). For necessity, Theorem
11.13 permits one to choose g, or g, as a non-principal solution, yielding equality in
(11.50). O

Definition 11.15. Assume Hypothesis 2.1 and let A € R. Two points z1, 23 € (a,b),
1 # X9, are called conjugate points with respect to T — X if there is some nontrivial,
real-valued solution u of (7 — A)u = 0 satisfying u(x;) = u(az) = 0. If no pair of
conjugate points with respect to 7 — A exists, then the differential expression 7 — A is
called disconjugate.

The disconjugacy property has been extensively studied for Sturm-Liouville ex-
pressions with standard L] -coefficients, and in this connection we refer to the mono-
graph by Coppel [29]. The proof of Theorem 11.13 immediately yields the following
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disconjugacy result for the distributional Sturm-Liouville expressions studied through-
out this manuscript.

Corollary 11.16. Assume Hypothesis 2.1, and suppose p > 0 a.e. on (a,b). If Ty is
bounded from below, then there is an « € R such that (1 — \) is disconjugate for every
A < a. If 7 is reqular on (a,b), then there exists a ag € R, such that for A < ay, each
nontrivial solution to (1 — X)u =0 has at most one zero in the closed interval [a,b].

Proof. Repeating the proof of Theorem 11.13 with ¢ = b shows that there is an a € R
such that for each A < « there is a solution of (7 — A)u = 0 which has no zero in (a, b).
Now the claim follows immediately from Theorem 11.1. To prove the final statement,
let o denote a real number (shown to exist in the first part of the corollary) such that
for every A < « there is a solution of (7 —A)u = 0 which has no zeros in (a,b). Now, let
ap = min{a, inf(c(Sp,0))}, where Sy o denotes the Dirichlet extension of Ty, defined
by (6.23) with ¢, = ¢, = 0 and the functionals BC} and BC} chosen such that (cf.
Lemma 6.1)

BCL(g) = g(a), BCL(g) =g(b), g€ dom(Tiax)- (11.52)

If for some A\ < Apin a solution to (7 — A)u = 0, call it ug, has more than one zero,
then necessarily ug(a) = uo(b) = 0, as u has no zeros in (a,b) because A < a.. Con-
sequently, ug is an eigenfunction of Sy with eigenvalue A < inf O'(So)o), an obvious
contradiction. O

We conclude this section with an explicit characterization of the Friedrichs exten-
sion [47] of T (assuming the latter to be bounded from below). Before proceeding with
this characterization, we recall the intrinsic description of the Friedrichs extension Sg
of a densely defined, symmetric operator Sy in a complex, separable Hilbert space H
(with scalar product denoted by (-, )% ), bounded from below, due to Freudenthal [46]
in 1936. Assuming that Sy > Ys, I#, Freudenthal’s characterization describes Sp by

Sru = Sju,
u € dom (Sp) = {v € dom (Sg) | there exists {v;},en C dom (Sp), (11.53)

with lim ||v; —v|l% =0 and ((v; — k), So(v; — k) — O}.
Jj—o0o J,k—o00

Then, as is well-known,

Sk > e, It (11.54)
dom((Sk — s, IH)l/Q) = {v eH ‘ there exists {v;},en C dom (Sp), (11.55)

with lim [|v; —v|l = 0 and ((v; — vk), So(v; — vk))n — O},
j—o0 j,k—o00

and

Sp = Sg‘dom(Sg)ﬁdom((Spf'ysoIH)1/2)' (1156)
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Equations (11.55) and (11.56) are intimately related to the definition of S via
(the closure of) the sesquilinear form generated by Sy as follows: One introduces the
sesquilinear form

s, (f,9) = (f, Sog)n, f,g € dom(qs,) = dom (Sp). (11.57)

Since So > 7, I#, the form gg, is closable and we denote by @g, the closure of
qs,- Then qg, > 74, 1is densely defined and closed. By the first and second rep-
resentation theorem for forms (cf., e.g., [96, Sect. 6.2]), qg, is uniquely associated
with a self-adjoint operator in H. This operator is precisely the Friedrichs extension,
Sg > Vo L3 of Sy, and hence,

as,(f.9) = (f,Srg)n, [ € dom(qs,) =dom((Sp — VSOIH)1/2)7 g € dom (Sf).
(11.58)
The following result describes the Friedrichs extension of Tp (assumed to be
bounded from below) in terms of functions that mimic the behavior of principal so-
lutions near an endpoint. The proof closely follows the treatment by Kalf [88] in the
special case s = 0 a.e. on (a, b). (For more recent results on the Friedrichs extension of
ordinary differential operators we also refer to [112,124,125,128,129,136], and [159].)

Theorem 11.17. Assume Hypothesis 2.1 and suppose p > 0 a.e. on (a,b). If Ty is
bounded from below by vo € R, Ty > oI, which by Corollary 11.14 is equivalent to the

existence of u € R and functions g, and gy, satisfying ga,gb,g([ll],gl[)l] € ACioc((a,b)),
ga > 0 a.e. near a, g, > 0 a.e. near b,

dx b dx
/p(w)ga(fv)2 :/ @@z (11.59)

a

and
(1] [1]y/
q > pr— sgi + M a.e. near a,
a Ya
gm (g[l])/ (11.60)
q> pr— sZb 4 b Lo near b,
9 9

then the Friedrichs extension Sg of Ty is characterized by

!/
g

/pgﬁ <)
Ja

SFf = va
2
dzr < oo, (11.61)

()

f €dom (Sp) = {g € dom (Thnax)

2

dx<oo}.
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In particular,
[y’ (1]
[l
YGa Ga

Proof. Let S denote the operator defined by (11.61) and Sg the Friedrichs extension
of Th. We begin by showing S is symmetric. In order to do this, it suffices to prove S
is densely defined and

(g[ll)’ g[l]
q— ACUEVARTS L |f|2dx<oo,

9b 9b (11.62)
f € dom (SF) .

b
|f|2dx < 0, /

(u,Su), € R, wu e dom(S). (11.63)

Since functions in dom (Tp) are compactly supported one has dom (7p) C dom (S),
which guarantees that S is densely defined. Hence it remains to show (11.63). To this
end, let a < ¢y < dg < b such that g, > 0 on (a, c|, g» > 0 on [dy, b) and consider the
self-adjoint operator S(., 4, on L?((co,do); r(x)dx) induced by 7 with the boundary
conditions

F(co)gl (co) = 1Y (co)galco) = f(do)gl (do) — 1) (do)gs(do) = 0. (11.64)

The proof of Theorem 11.13 shows that the solutions uy of (7 — AMu = 0, A € R,
satisfying the initial conditions uy(co) = ga(co) and u&l] (co) = g([ll} (co), are positive
as long as A lies below the smallest eigenvalue Ao of S(c,.4,) (Which is bounded from
below by assumption). In particular, this guarantees that the eigenfunction wy, is
nonnegative on [cg, dp] and hence even positive since it would change sign at a zero.

As a consequence, the function h defined by

ga(x), HAES (0'7 00)5
, x € [CO,dO]; (11.65)
do)gu(do) " 'gu(x), € (do,b)

is positive on (a,b) and satisfies h € ACjoc((a,b)), K} € ACic((a,b)). Note that in
particular h is a scalar multiple of g, near b and hence (11.59) and (11.60) hold with
g» replaced by h. Now fix some f € dom (S) and let a < ¢ < d < b. In light of the
following analog of Jacobi’s factorization identity,

_ (f[l})’ + s 4 (h[;])/f — 5%}” = —% [ph2 ({L) } a.e. in (a,b), (11.66)

one computes

d — d /
C/ 1) SF@r()ds = — {ph(i) ﬂ j+ / {ph2 (i) o .
+f|2<q (hz])/Jrsh;])}dx, a<ec<d<b,
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so that

o [ st = (- () 4]

Taking P = ph? and v = f/h in the subsequent Lemma 11.18, one infers that

d

)7 a<c<d<b  (11.68)

c

|v()[?
a/wdx < oo, 7€ (ab), (11.69)

where the function H, is defined as in (11.85). We note that H, is well-defined for
any v € (a,b) in light of the fact that 1/p € L ((a,b);dx) and the function h €

AC\oe((a, b)) is strictly positive on any compact subinterval of (a,b). Subsequently,
an application of Holder’s inequality yields

/ P(z)|v(z)v'(z)|

P (@) @< 7€) (11.70)

a

noting that square integrability of P'/2¢/ near z = a is guaranteed by the condition
f € dom (S). Moreover, the integral

dx

_ b 11.71
/ P(.T)HA/(.'I])’ ’y 6 (a7 )’ ( )

diverges logarithmically to infinity, so (11.70) implies
lim inf | Pvo’|(z) = lim inf |ph® f /i (x) =0. (11.72)

zla zla h h
An analogous argument at = b can be used to show
NG

h%nf ph2<£) % (z) = 0. (11.73)

Equations (11.68), (11.72), and (11.73) show that one can choose sequences {cp, fnen
and {d, }nen with a < ¢, < d,, < b, n € N, with ¢, | a, d,, T b, such that

nlLIEOS(7Lf(x)WT(x)dx> =0. (11.74)
On the other hand n .
Eg%(/f(x)Sf(x)r(x)dm) (11.75)

dtb c
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exists. Consequently, (11.74) implies

S(jf(x)Sf(x)r(m)dx) = g%js(jf(x)wr(x)dx) =0. (11.76)

Since f € dom (S) was arbitrary, (11.63) follows.

We now show that S coincides with Sr, the Friedrichs extension of Tj. It suffices
to show Sp C S self-adjointness of S and symmetry of S then yield Sp = S. In turn,
since Sp is a restriction of Tiax (because the self-adjoint extensions of Tj are precisely
the self-adjoint extensions of Thyin, and the latter are self-adjoint restrictions of Tiax),
it suffices to verify the two integral conditions appearing in (11.61) are satisfied for
elements of dom (SF). Freudenthal’s characterization of the domain of the Friedrichs
extension for the present setting is

dom (Sfp) = {f € dom (Tiax) | there exists {f;}52; C dom (7p) such (11.77)
that lim [|f; — fll2+ =0 and j}QELJfJ’ = Ji. To(f5 = fr))r = 0}-

Let f € dom (Sr) and {f;}32; a sequence with the properties in (11.77). Define
fik = fj — fr, 4,k € N, and choose numbers ¢ and d in the interval (a,b) such that
go and g are positive on (a, c] and [d, b), respectively. Then using the identities

/{p*1|u[1}|2+q|u|2}dz = (11.78)

c < w\' 2 g[l] (g([ll])/
()P B i

Ya Ga
B
/{p_1|u[1]|2—|—q|u|2}dm= (11.79)
d

P A ] Y
/{m( ) +|u|2[q+sgb (%)de 6 e (.,
9» 9b

u € dom (Tp) ,

U
Pl °

(1]
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one computes

gl 1]y
+|fjk|2[q+s _ {oa) ]}dm+
Ga Ja

(%)

<fj,va0fj,k>r:/{pgz2z

’ NGE m (Y
+/{p9§ (fjk) + | finl? [q—i—sgb —7(91’ ) }}dm—i—
9 9 9
a (11.80)
[1] 91[;1] )
( al2) 0= (Lol ) @)+
/{p*1|f} +alfisl}de, GkeEN.
On the other hand, choosing v € R such that
g[l]
/ |5, k| dx < < | f5, k|2)( ) — (;b|fj,k|2>(d)+
(11.81)

+/{p—l\f}},l\2+q|fj,k|2}dx, i keN,

the existence of such a v being guaranteed by Lemma A.3 (cf., in particular, (A.34)),
and taking k = |u| + |v|, one obtains
ol

ik eN.

c b

12
) _
(Fies Tofie)r + 6| finll 5, > /ng (fgj’k> d$+/pgb
a
d

a
Moreover, the left-hand side of (11.82) goes to zero as j, k — 0o, and as a result, there
exist functions f, and f3 such that
/ 2
(£) - s
9y

f‘ / 2 b
() ~ fof do = 1w [ bt
Ja J—0o0
d

implying, f. = (9,1 f), fo = (gb_lf)’ a.e. on (a,c) and (d,b), respectively. Conse-

quently, one infers that
/ b /
(L) [a< [ri|(L)
Ya b

/ P2
a

and it follows that f € dom (S). This completes the proof that Sy C S and hence,
Sp=2S5.

)

(11.82)

lim | pg: dz =0, (11.83)

j—o0

2 2

dx < o0, (11.84)
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To prove (11.62), note that in light of the inequalities in (11.60), it suffices to
prove that the positive part of [q - (hm)//h + shm/h] times | f|? is integrable near a
and b for each f € dom (Sp). This follows immediately from (11.67) and (11.73). O

The proof of Theorem 11.17 relied on the following result:

Lemma 11.18 ([89, Lemma 1], [88]). Let P >0, 1/P € L\ ((a,b);dx), and

loc

z € (a,b), v € [a,b]. (11.85)

Hv“):‘j%7

In addition, suppose that v € ACi((a,b)) satisfies PY?v' € L*((a,b);dz).
If H, = oo, then

@ L .
a/P(x)Hg(x)d <00, 7€ (ab), (11.86)

the choice v = b being also possible if Hy, < co.

The conditions on g, and g, in (11.59) are reminiscent of the integral conditions
satisfied by principal solutions to the equation (7 — A\)u = 0, assuming the latter is
non-oscillatory. One can just as well characterize the Friedrichs extension of Ty in
terms of functions g, and g, satisfying the assumptions of Theorem 11.17 but for
which one (or both) of the integrals in (11.59) is convergent (these conditions are
equivalent to Ty being bounded from below, see the proof of Corollary 11.14). In
these cases, the characterization requires a certain boundary condition as our next
result shows.

Theorem 11.19. Assume Hypothesis 2.1 and suppose p > 0 a.e. on (a,b). If Ty is
bounded from below by vy € R, Ty > ~ol,-, which by Corollary 11.14 is equivalent to the
ezistence of u € R and functions g, and gy satisfying ga,gb,ggl],gl[)l] € AC\c((a,b)),

ga >0 a.e. near a, g, > 0 a.e. near b,

dz b dz
/W =0 / OO (11.87)

a

and
(1] (11}
q > pr — SQL + M a.e. near a,
a YGa
gm (g[l])/ (11.88)
q>pr — s + 220 gl near b,

9o 9o
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then the Friedrichs extension Sg of Ty is characterized by

SFf:Tfa

b 12
f €dom (Sp) = {g € dom (Tnax) ’ / pgE (5) dx < o0, (11.89)
b
12 (.73)
/pgg (g) dx < oo, lim g = O}.
Ya zla go(T)
In particular,
[y’ (1] b (11y/ 1]
/'q— 7(9(1 ) +sgi |f|2dz < oo, / q— 7(% ) +39L |f|2dx < oo,
Ga Ja 9 9 (1190)
f € dom(SF).

We omit the obvious case where the roles of a and b are interchanged, but note that
if (11.87) is replaced by

dz b da
/p(:c)ga(x)2 = / @R =% (11.91)

a

one obtains

SFf:Tf7
2

/
f €dom (Sp) = {g € dom (Tinax) ‘ /pgi (g) dx < o0, (11.92)
Ya
b 112
ol (9 _g(z) - g(x) }
= dr < oo, lim =0, lim =0,.
| v <g,,> rla ga(z) ~ Wb gy(a)

Proof. Let S denote the operator defined by (11.89) and Sp the Friedrichs exten-
sion of Ty. To show that S is symmetric, one can follow line-by-line the argument
for (11.63)—(11.68), so that (11.68) remains valid. One can then show that (11.73)
continues to hold under the finiteness assumption in (11.87) (cf., the beginning of the
proof of [88, Remark 3|). Repeating the argument (11.74)—(11.76) then shows that
S is symmetric. In order to conclude S = Sp, it suffices to prove Sp C S. In turn,
it is enough to prove dom (Sp) C dom (S). To this end, let f € dom (Sr). Since
(11.77)—(11.84) can be repeated without alteration, the problem reduces to proving

tim L _ (11.93)

wla go(T)

One takes a sequence {f,}°2; C dom (Tp) with the properties

nh—>H;o | fr. — fll2,, = 0 and . 7171111)100<fn — fo, To(frn — fm))r =0, (11.94)
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and let {fy,}%2, denote a subsequence converging to f pointwise a.e. in (a,b) as
k — oo. Since fn,, f are continuous on (a,b), f,, actually converge pointwise every-
where to f on (a,b) as k — oo.

Then the proof of (11.90) is exactly the same as the corresponding fact (11.62) in
Theorem 11.17.

Next, one chooses ¢ € (a,b) such that g, > 0 on (a, ¢). Using Holder’s inequality

a,nd (11.82) one Ob'alns the es‘lma‘e
pga

fnk e
‘ / PR v ( )
(11.95)

</j§a [ s (o = 301) ) <wo|+f~e>||fnkui,r}, 7€ (a,), k€N,

dx' <

a

Because of (11.94), one obtains

I (37) ? [ da’
— —, z€(a,c), keN, 11.96
9a () pg2 (@) (11.96)
a
with C' >0 a k—independent constant. Writing
[z fnk( )| | (@)
+ , 11.97
1< 00(2) (197

and given € > 0, one ﬁrst chooses an a:(e) € (a, ¢) such that | f, (x)/g9q(x)| < e/2 for
all z € (a,z(¢g)), and then for x € (a,z(¢)) one chooses a k(x,¢) € N such that for all

k> k(z,e), |[f(x) = fu,(x)]/9a(x)| < €/2, resulting in

ICON (11.98)
9a()
whenever © € (a,z(¢)) and k& > k(x,e). Since the left-hand side of (11.98) is
k-independent, (11.93) follows. O

Corollary 11.20. Assume Hypothesis 2.1 and suppose p > 0 a.e. on (a,b). If T is
reqular on (a,b), then the Friedrichs extension Sg of Ty is of the form

Srf=1f,
rf=1f (11.99)
f € dom (SF) = {gedom( nax ’g (b):O}.

Proof. Let g,, g, be the solutions of 74 = 0 with the initial conditions

ga(a) = gp(b) =1 and g ]( ) = glgl] (b) = 0. Since 7 is regular on (a,b) we have for

each g € dom (Trjax)
4 /1'9[”% ggs"
r— [ Z|d Fa— ITa
p ga

!
g
/pgﬁ (> dz = /pga
9a

and similarly for the endpoint b. Now the result follows from Theorem 11.19 and in
particular (11.92). O

2 /
9a9' — 99,

g2

dx < oo, (11.100)
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12. THE KREIN-VON NEUMANN EXTENSION IN THE REGULAR CASE

In this section, we consider the Krein-von Neumann extension Sg of Tg > el,., € > 0.
The operator Sk, like the Friedrichs extension Sg of Ty, is a distinguished, in fact,
extremal nonnegative extension of Tj.

Temporarily returning to the abstract considerations (11.53)—(11.58) in connection
with the Friedrichs extension of Sy, an intrinsic description of the Krein-von Neumann
extension Sk of Sy > 0 has been given by Ando and Nishio [7] in 1970, where Sk has
been characterized by

Sku = Sju,
u € dom (Sk) = {v € dom (S) | there exists {v; }jen C dom (Sp), (12.1)
with lim [|Sov; — S§v|li = 0 and ((v; — vk), So(v; — vi))n — 0 as j,k — oo},
J—00

We recall that A < B for two self-adjoint operators in H if

dom(|A|1/2) 2 dom(|B\1/2) and

12.2
(IA1Y2u, UA|A[Y?u),, < (IBY?u,Up|B|"?u),,, u€ dom(|B|'/?), (12:2)

where Uc denotes the partial isometry in H in the polar decomposition of a densely
defined closed operator C' in H, C = Uc|C|, |C| = (C*C)/2.

The following is a fundamental result to be found in M. Krein’s celebrated 1947
paper [107] (cf. also Theorems 2 and 5-7 in the English summary on page 492).

Theorem 12.1. Assume that Sy is a densely defined, nonnegative operator in H.
Then, among all nonnegative self-adjoint extensions of Sy, there exist two distin-
guished ones, Sk and Sg, which are, respectively, the smallest and largest (in the
sense of order between self-adjoint operators, cf. (12.2)) such extensions. Furthermore,
a nonnegative self-adjoint operator Sisa self-adjoint extension of Sy if and only sz
satisfies

Sk <8< Sp. (12.3)

In particular, (12.3) determines Sk and Sp uniquely.

In addition, if So > ely for some € > 0, one has Sp > ely, and

dom (Sr) = dom (Sp) 4 (Sr) ! ker(Sg), (12.4)
dom (Sg) = dom (Sp) + ker(S5), (12.5)
dom (5*) = dom (Sg) 4 (Sr) ' ker(Sg) + ker(Sg) =

= dom (Sr) + ker(Sp), (12.6)

in particular,
ker(Sx) = ker ((Sx)"/?) = ker(Sg) = ran(So)™. (12.7)
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Here the symbol + represents the direct (though, not direct orthogonal) sum of
subspaces, and the operator inequalities in (12.3) are understood in the sense of (12.2)
and hence they can equivalently be written as

(Sp+aly)™* < (§+ aIH)_l < (Sk +aly)™! for some (and hence for all) a > 0.
(12.8)
In addition to Krein’s fundamental paper [107], we refer to the discussions in
[6,10, 11, 65]. It should be noted that the Krein-von Neumann extension was first
considered by von Neumann [155] in 1929 in the case where Sy is strictly positive,
that is, if Sg > el for some € > 0. (His construction appears in the proof of Theorem
42 on pages 102-103.) However, von Neumann did not isolate the extremal property
of this extension as described in (12.3) and (12.8). M. Krein [107,108] was the first to
systematically treat the general case Sy > 0 and to study all nonnegative self-adjoint
extensions of Sy, illustrating the special role of the Friedrichs extension Sp and the
Krein-von Neumann extension Sy of Sy as extremal cases when considering all non-
negative extensions of Sy. For a recent exhaustive treatment of self-adjoint extensions
of semibounded operators we refer to [9]-[14]. For classical references on the sub-
ject of self-adjoint extensions of semibounded operators (not necessarily restricted
to the Krein-von Neumann extension) we refer to Birman [22, 23], Freudenthal [46],
Friedrichs [47], Grubb [64,66], Krein [108], Straus [152], and Visik [154] (see also the
monographs by Akhiezer and Glazman [1, Sect. 109], Faris [43, Part III], and Grubb
[67, Sect. 13.2]).

Throughout the remainder of this section, we assume that 7 is regular on (a,b)
and that the coefficient p is positive a.e. on (a, b). That is, we shall make the following
assumptions:

Hypothesis 12.2. Assume Hypothesis 2.1 holds with p > 0 a.e. on (a,b) and that T
is regular on (a,b). Equivalently, we suppose that p, q, r, s are Lebesgue measurable
on (a,b) with p=t, q, r, s € L'((a,b);dx) and real-valued a.e. on (a,b) with p, r > 0
a.e. on (a,b).

Assuming Hypothesis 12.2, we now provide a characterization of the Krein-von
Neumann extension, Sk of Ty (resp., Tmin), in the situation where Tj is strictly
positive (in the operator sense). An elucidation along these lines for the case s = 0
a.e. on (a,b) was set forth in [26].

Theorem 12.3. Assume Hypothesis 12.2 and suppose that the associated minimal
operator Ty, 1s strictly positive in the sense that there exists € > 0 such that

<Tminf7 f>T Z 5<fa f>7"a f S dom(Tmin)~ (129)

Then the Krein-von Neumann extension Sk of Tmin is given by (cf. (6.24))
Skf=r1f,
_ g(b) \ _ g(a) (12.10)
f edom(Sk) = {g € dom (Tmax) ‘ ( (b)> = Rk (9[1] a)) [
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where

S ~u3(a) ! SL,(R 12.11
B = T\t @ul ) — el (@) uMpy) €52 021D

Here {“j(')}jzl , are positive solutions of Tu = 0 determined by the conditions

ui(a) =0, wui(b) =1,
ug(a) =1, wug(b) =

Proof. The assumption that Ty,;, is strictly positive implies that 0 is a regular point
of Thin (cf. the paragraph preceding Lemma 4.2), and since the deficiency indices of
Tmin are equal to two (one notes that it is this fact that actually implies the existence
of solutions u;, j = 1,2, satisfying the properties (12.12)), it follows that

(12.12)

dim(ker(Tmax)) =2 (12.13)

and a basis for ker (Tmax) is given by {uj()} In this situation, the Krein-von

j=1,2°
Neumann extension Sk of Tp, is given by (cf. (12.5)),

dom(SK) = dom(Tmin) + ker(TmaX). (12.14)

Alternatively, since Sk is a self-adjoint extension of Ty, its domain can also be
specified by boundary conditions at the endpoint of (a,b) which we characterize next.
If u € dom(Sk ), then in accordance with (12.14),

u(z) = f(x) + crur(x) + coua(z), =z € [a,b), (12.15)

for certain functions f € dom(Tmin) and c¢1,co € C. Since f € dom(Tmin) satisfies

f(a) = fM(a) = f(0) = fM(b) =0, (12.16)
one infers that
u(a) =cy and u(b) =cq. (12.17)
Consequently
ull(z) = fM(z) + u(b)u[ll] (x) + u(a)u[21] (x), x € a,b]. (12.18)

Evaluating separately at © = a and 2 = b, yields the (non-separated) boundary
conditions that v must satisfy;

ulll(a) = u(b)ul!(a) + u(a)uh (),

12.19
ultl(0) = w(b)ul (b) + u(a)ul! (b). i

Since u[ll] (a) # 0 (otherwise, ui(-) = 0 on [a,b]), the boundary condition in (12.19)

may be recast as
(i) = (). e
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with Ry given by (12.11). Moreover, Rx € SLa(R). To see this, first note that the
entries of Ry are real-valued. Additionally, the fact that

— (@) = W (w1 (), ua () = (b) (1221)

implies det (RK) = 1. As aresult, we have shown S C Sr=pr, ¢=0, Where Sr—pr, ¢=0
is the self-adjoint restriction of T}, corresponding to non-separated boundary con-
ditions generated by the matrix Ry and angle ¢ = 0 (cf. (6.24)). On the other hand,
since Sk and Sp=p, ¢—0 are self-adjoint, one obtains the equality Sk = Sr=p, ¢=0-
That is to say, the Krein-von Neumann extension of T, is the self-adjoint exten-
sion corresponding to non-separated boundary conditions generated by R = Rx and
$=0. O
Example 12.4. In the special case when ¢ = 0 a.e. on (a,b), the above calculations
become even more explicit. In this case, we denote the Krein-von Neumann restriction
by SE?) (the superscript (0) indicating that ¢ vanishes a.e. in (a,b)). One may choose
explicit basis vectors {ué.o)(-)}j:L2 for ker (T},

7mstdtac 2tst/dt/
u(lo)(a:) = Coe 10 /p(t)*le L) dt,
. (12.22)
b
— [ s(t)dt — [ s(t)dt
ugo) (r)=e ! —e d ugo)(x), x € [a,b],
where
fbs(t)dt : Qf‘s(t’)dt’ -1
Cp = en [/p(t)_le a dt} > 0. (12.23)
One computes
(0) [1] fs(t)dt
uy (- x) = Cpee ,
() (@) = i oo
1 = [s(t)dt 1
(@)@ == = @) @), @€ lab,
and
[r@Ou® ()] (2) = 0 ae. in (a,b), j = 1,2, (12.25)

where 7(9 denotes the differential expression of (2.2) in the present special case
g = 0 ae. in (a,b). It follows that {uﬁo)(-)}
ker(T*

min

j=12 © dOm(T;;m) forms a basis for
) = ker(Timax). In addition, the equalities in (12.12) are satisfied. With this

pair of basis vectors, one infers that the matrix R = R;g) which parameterizes the
(non-separated) boundary conditions for the Krein-von Neumann extension is

b b t
— [s(t)dt  — [s(t)dt b 2 [ s(t')dt’
2O e = e @ [p@)~te @
X = a . (12.26)
[ s(t)dt

0 ea
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Explicitly, the boundary conditions corresponding to Sé?) read:

b b t b
s(t)d s(t')dt’ -1 — [s(t)d
_ S0 t[/p(t)162af “ tdt} (u(b) — ¢ [0 u),  (227)

a

u € dom(S}?)).

13. POSITIVITY PRESERVING AND IMPROVING RESOLVENTS
AND SEMIGROUPS IN THE REGULAR CASE

In our final section, we prove a criterion for a self-adjoint extension of Ti,;, to generate
a positivity improving resolvent or, equivalently, semigroup. The notion of a positivity
improving resolvent or semigroup proves critical in a study of the smallest eigenvalue of
a self-adjoint restriction, as it guarantees that the lowest eigenvalue is non-degenerate
and possesses a nonnegative eigenfunction. In fact, we will go a step further and prove
that the notions of positivity preserving and positivity improving are equivalent in
the regular case.

The self-adjoint restrictions of T},.x are characterized in terms of the functionals
BCJ and BCY, j = 1,2, in Section 6 (cf. (6.1) and (6.2)), and assuming Hypothesis
12.2 throughout this section, the functionals BCJ and BC’g7 j =1,2 take the form of
point evaluations of functions and their quasi-derivatives at the boundary points of
(a,b) as in Lemma 6.1, that is, BCL(f) = f(a), BC2(f) = fM(a), BCL(f) = f(b),
BCZ(f) = flH(b), f € dom(Tinax). Since under the assumption of Hypothesis 12.2, 7
is in the l.c. case at both endpoints of the interval (a, b), all real self-adjoint restrictions
of Thax are parametrized as described in Theorem 6.4 with ¢ = 0. Hence, we adopt
the following notational convention: S, ., denote the (real) self-adjoint restrictions
of Tiax corresponding to the separated boundary conditions (6.23) in Theorem 6.4,
that is,

Seaiond =71, (13.1)

fedom(S,, ) = {g € dom (Thyax)

g(a) cos(pa) — g1 (a) sin(p,) = 0, }
g(b) cos(ip) — gl (b) sin(pp) =0 f7

and Sy denote the real self-adjoint restrictions of Ti,.x corresponding to the coupled
boundary conditions (6.24) with ¢ = 0 in Theorem 6.4, that is,

SRf = Tfa

f € dom (Sg) = {g € dom (Thyax) ‘ (g[gl(}zg))> =R (g[gl(]ac)o) } (13.2)
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Following [26] and [57], the sesquilinear forms associated to (13.1) and (13.2) are
readily written down and read (cf. Appendix A)

b
8s,...,(£.9) = [ [ple) g @) + o) Flg()]do+

a

+ cot(a) fa)g(a) — cot(s) F(b)g(b),

f.g €dom(Qs,, )= {h € L*((a,b); r(z)dx) | h € AC([a,b)), (13.3)
(rp) 201 € T2((a, 0);r(@)dn) s gron € (0, 7),
b
Q.. (£29) / ) @) (2) + a(2) F@)g ()] d — cot(o) FB9(b),

f.g € dom(Qs, ) = {h € L*((a,b); r(z)dz) | h € AC([a,b]), h(a) =0, (13.4)

(rp)~ 20 € L?((a,b);r(x)dz)}, @b € (0,7),

b
Qs ,(fr9) = / )T (2) + g(2) F@)g ()] dee + cot(pa) Fl@)g(a),

f,9 € dom(Qs,, ) = {h € L*((a,b);r(x)dx) | h € AC([a,b]), h(b) =0, (13.5)

(rp) 20N € L2 ((a,b);r(x)dz)},  @a € (0,7),
b

Qs0,(f59) =/[p(x)’lf“](x)g“](z)+Q(x)f($)g(x)]dx,

f,g € dom(Qs, ) = {h € L*((a,b);r(x)dz) ‘ h € AC([a,b]), h(a) = h(b) =0,

(rp)_l/ghm € LQ((a,b);r(J;)dac)}, (13.6)
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and
b

Qs (f.9) / )T (g () + q() F@)g ()] da—

- E{Rl,lmg(a) — [F(@)g () + f(B)g(a)] + Rg’gmg(b)}’

s

f,9 € dom(Qs,,) = {h € L*((a,b);r(x)dx) | h € AC([a, b)), (13.7)

(rp) 20N € L?((a,b);r(x)dz)}, R #0,
b

sn(£,9) = [ [ple) Ty () + a(a) Fg(a)] o
— Ra1R1,1 f(a)g(a),
f,g9 € dom(Qs,,) = {h € L*((a,b);r(x)dz) | h € AC([a,b]), h(b) = Ry1h(a),
(Tp)fl/ghm € LQ((a,b);r(a:)da:)}, Ry =0. (13.8)

To verify (13.3)—(13.8), it suffices to perform an appropriate integration by parts in
each of these cases (noting that Ry 1Re0 =1 if Ry 2 = 0).

With the sesquilinear forms in hand, we are now prepared to characterize when
self-adjoint restrictions of Ty,.x generate positivity preserving resolvents and semi-
groups. For background literature on positivity preserving semigroups and resolvents,
we refer, for instance, to the monographs [30, Ch. 7], [31, Ch. 13|, [43, Sects. 8,
10], [60, Sect. 3.3], [130, Chs. 2, 3], [132, Sect. XIIL.12|, [156, Sect. 10.5], and to the
extensive list of references in [53].

Let (M, M, u) denote a o-finite, separable measure space associated with a non-
trivial measure (i.e., 0 < u(M) < oo) and L?(M;du) the associated complex, sepa-
rable Hilbert space (cf. [20, Sect. 1.5] and [84, p. 262-263] for additional facts in this
context). Then the set of nonnegative elements 0 < f € L?(M;du) (ie., f(z) > 0
p-a.e.) is a cone in L?(M;dp), closed in the norm and weak topologies.

Definition 13.1. A bounded operator A defined on L?(M;dpu) is called positivity
preserving (resp., positivity improving) if

0+# f e L*(M;du), f >0 p-a.e. implies Af >0 (resp., Af > 0) p-a.e. (13.9)

In the special case where A is a bounded integral operator in L?((a,b);r(z)dz)
with integral kernel denoted by A(-, ), it is well-known that

A is positivity preserving if and only if A(-,:) > 0 dz ® dz-a.e. on (a,b) x (a,b)
(13.10)

(we recall that r > 0 a.e. by Hypothesis 12.2). For an extension of this result to
o-finite, separable measure spaces we refer to [53, Theorem 2.3]. Moreover,

if A(+,+) >0 u® p-a.e., then A is positivity improving. (13.11)
(The converse to (13.11), however, is false, cf. [53, Example 2.6].)
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The following result is fundamental to the theory of positivity preserving operators.

Theorem 13.2 ([132], p. 204, 209). Suppose that S is a semibounded self-adjoint
operator in L?(M;du) with \g = inf(a(S)). Then the following conditions, (i)—(iii),
are equivalent:

(i) e=*9 is positivity preserving for all t > 0.
(ii) (S — AIL?(M;d#))_l is positivity preserving for all A < Xg.
(iii) The Beurling-Deny criterion: [ € dom(|S|1/2) implies |f| € dom(|S|*/?) and
165 = XoTrzaiam) 1 11| 2 arsapey < 105 = AoTezarsa) ' Fl| 2 gy

The next and principal result of this section provides a necessary and sufficient
condition for a (necessarily real) self-adjoint restriction of Tiax (resp., extension of
Tmin) to generate a positivity preserving resolvent and semigroup. We recall that
positivity preserving requires reality preserving and hence it suffices to consider real
self-adjoint extensions of Ty,;,. In fact, we will prove more and show that the notions
of positivity preserving and positivity improving are, in fact, equivalent in the regular
case.

Theorem 13.3. Assume Hypothesis 12.2.

i) In the case of separated boundary conditions, all self-adjoint extensions of Tin

i) In th ted bound diti Il self-adjoint extensi T,
lead to positivity improving semigroups and resolvents. More precisely, for all
Yasop € [0,7), e~ tSeaven s positivity improving for all t > 0, equivalently,
(Spurop — M) 71 is positivity improving for all X < inf(c(Sy, 4, )). In addition,

(Spaipy = M) = (S00 — ML), A <inf(o(Se, 0,)), (13.12)
18 positivity improving, implying the inequality
Grpuron(@,2) > Gro0(z,2') >0, z,2" € a,b], X <inf(c(Sp,,p,))- (13.13)
In particular,
Groo(z,2') >0, 2" € (a,b), X <inf(c(Soyp)). (13.14)

Here G 4, .0,(57), 2 € p(Spu,ep) (resp., G o0(--), 2 € p(So)), denotes the
Green’s function (i.e., the integral kernel of the resolvent) of Sy, ., (resp., of
S0,0)-

(i) In the case of (necessarily real) coupled boundary conditions, e *S® is positivity
preserving for all t > 0, equivalently, (Sg — \I,.)~! is positivity preserving for all
A < inf(o(Sg)), if and only if

either R19 <0, or Ri12 =0 and R11 > 0 (equivalently, R2 2 > 0).  (13.15)

Moreover, e~ 5% s positivity improving for all t > 0 if and only if it is positivity
preserving for all t > 0. Equivalently, (Sg — \I,.)~1 is positivity improving for all



Weyl-Titchmarsh theory for Sturm-Liouville operators. . . 537

A < inf(o(Sg)) if and only if it is positivity preserving for all A < inf(c(Sg)).
In addition,

(Sr — ML)t —(So0 — AL.)"Y, A < inf(o(Sgr)), (13.16)
is positivity improving, implying the inequality
Grr(z,2') > Groo(z,2') >0, z,2’ €[a,b], A < inf(c(Sg)). (13.17)

Here G, gr(-,-), 2 € p(Sr), denotes the Green’s function of Sg.

Proof. Case (i). (Real) Separated Boundary Conditions: Let G o, 0,(,), z €
C\o (S, 4, ), denote the Green’s function for the resolvent of S, ,,. To demonstrate
positivity improving, it suffices to show that

G oo (@,2') >0 for all (z,2') € (a,b) x (a,b), X < inf(c(S,, v, )), (13.18)

employing the fact (13.11). In this context, we note that G o, ., (-, ) is continuous on
[a,b] x [a,b]. To this end, let A < inf(o(S,, ,,)) and let fcg,(X,-), ¢ € {a,b}, denote
Weyl-Titchmarsh solutions of (7 — A\)u = 0 at a and b, respectively, so that

(T =N feo.(A,-)=0ae. in (a,b),

1 (13.19)
feo.(Asc)cos(0c) — fo 5. (A, 0)sin(0c) =0, ¢ € {a,b}.
Then, by Theorem 7.3, one obtains the representation
A A <z<a' <b
G puren (z,2") = ch_blcp Tosgu X2 (X 0), 0 < x,_ = (13.20)
e fa,tpa (Aﬂz/)fb,tpb ()\,II’), a S X S X S ba

where W, . = W (fo.0,(A,+), fa,pa (N, +)) abbreviates the Wronskian of f,, (X, ")
and fq.0, (A, ). We claim that both fp ., (A, -) and f, ., (A, ) are sign-definite on
(a,b). In order to see this, one observes that the Green’s function is nonnegative
along the diagonal:

G oo (x,2) >0, x € (a,b), (13.21)

a fact that has already been used in the proof of Theorem 11.13: Indeed, if (13.21) fails
to hold, then there exists an g € (a,b) such that the inequality G o, e, (z0,Z0) <0
holds. Since G 4, 4, (-, ) is continuous at the point (z¢, o), there exists § > 0 such
that

G (@,2') <0, (z,2") € (xo — 8§, 0 + &) X (xo — 6,20 + §), (13.22)
and one obtains
—1
((Spuier = ALy X(aco—é,xo+6),X(xo—a,x0+5)>r <0. (13.23)

However, (13.23) contradicts the fact that (S, e, —/\L,)_1 > 0. Therefore, inequality
(13.21) has been established.
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Since a nontrivial solution of (7 — A)u = 0 must change signs at a zero in (a,b) (cf.
Lemma 11.2), and linearly independent solutions do not have common zeros, (13.21)
implies that fq ., (), -) and fy 4, (A, ) are sign-definite (i.e., strictly negative or posi-
tive) on (a,b). In particular, since W, . is a constant, Gx o, o, (-, -) is sign-definite,
and the inequality in (13.18) follows from the structure of the Green’s function in
(13.20).

To go beyond mere positivity improving and actually show (13.12) and hence
(13.13) requires additional arguments: For each z € p(So0), let u;(z,-), j = 1,2,
denote solutions to 7u = zu satisfying the conditions

ui(z,a) =0, wui(z,b) =1, (13.24)

We note that for A < inf(c(Sp o)), uj(A,-), j = 1,2, are nonnegative on [a, b].
Then, mimicking the proof of [26, Theorem 3.1 (i)] line by line, and assuming that
wa # 0 and ¢ # 0, one infers that the matrix

(1] (1]
cot(pp) — uy (2,0) —uy(2,b)
D z) = , z€p(S N p(So.0),
faron(2) ( u[ll](z’ a) cot(pa) + u[21](z’ a) P(Spa.0) N P(S0,0)
(13.25)
is invertible and one obtains the following Krein-type resolvent identity,
2
(S@aﬂpb - ZIT)_I - (SO,U - ZIT)_l = Z D@a’tpb ()‘);,Ii <uk(27 ’ )7 ’ >7" uj(z7 : )7
jik=1

2 € p(Se,.0,) N P(So0)- (13.26)
If p, # 0, ¢p = 0, one gets analogously to [26, Theorem 3.1 (ii)] that

dyp,0(2) = cot(pa) + ub (z,a), 2 € p(Sp..0) N p(So0), (13.27)

is nonzero and

(Spa0 —2L:) 7 = (So0 — 21) " —dy, 0(2) N ua(z, ), )rua(z,-),

(13.28)
z € p(Sy,.,0) N p(So0)-
Similarly, if ¢, = 0, ¢, # 0, one obtains as in [26, Theorem 3.1 (iii)] that
do g, (2) = cot (o) —ull(2,0), 2 € p(So.p,) N p(S00), (13.29)
is nonzero and
(SO,sob - ZIT')il = (5070 - ZIT')il - d07tpb (Z)il<u1(§v ' )’ ' >7' ul(za ' )’ (1330)

z € p(S0,4,) M p(S0,0)-
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Next, one observes that (13.24), (13.26), (13.28), and (13.30) imply

GZ,cpa,sob(ava) =Dy, 0, (2)2_,%7 Z,0a,Pb (b,d) = soa,sab(z)l_&a
Grparpn(@,0) = G2 5,0, (b,a) = =Dy, 0, (2)s, % Dsomsob(z)fév (13.31)
¢a 70, oy # 0,
Gzpo0(a,a) = —dp, 0(2) 7,
Grp0,00,0) =G, 0, 0(a,0) =G, 0, 0(b,a) =0, ¢, #0, pp =0, (13.32)
Gzaoy% (b, b) = —dp b (Z) 13
G200, (a,0) = G2 0,5,(a,b) = G, 0,,(b,a) =0, ¢, =0, ¢, #0. (13.33)

) =
Since (Sy, o, — M) 71, A < inf(0(S,, ), is positivity preserving, its integral kernel
is nonnegative a.e. in [a,b] X [a, ] by (13.10). In fact, by continuity, it is nonnegative
everywhere in [a, b] X [a,b]. As a result, returning to the case ¢, # 0, pp # 0, (13.31)
implies

Dtpn,,tpb ()‘) ]1 < 07 ]ak € {132}a A < inf(J(S@a,7Wb))7 (1334)

so that the matrix —D,,, ,, (A) ! is actually positivity preserving as an operator on C?
for each A < inf(o(Sy, »,)). Thus, (13.26) and (13.34) immediately yield the following
inequality for Green’s functions:

2
G pupn (z, 1") - G/\,O,O(‘Ta .17/) = Z Dy, .o, (A);li Uy (A )uk (A, I/) =0,
j k=1
z,2’ € [a,b], A <inf(o(Sy, 4, ))- (13.35)

We note that the final inequality in (13.35) makes use of (13.34) as well as nonnega-
tivity of the functions w;(X,-), j = 1,2, on the interval [a, b]. Another application of
(13.10) then implies that the resolvent difference

(Sparer = M) ™H = (So0 = AL) 7Y, A < inf(0(Sp,.p,)); (13.36)

is positivity preserving. Since (Spo — AlL.)~! is positivity improving for all A <
inf(o(S0,0)) by what was just shown at the beginning of this proof, and S, o, 7 So.0,
[97, Corollary 9| implies that the resolvent difference in (13.36) is actually positivity
improving. In addition, it also implies that (S,, ,, — Al-)~! is positivity improving
for all A < inf(o(S4,,e,))- Inequality (13.13) now directly follows from (13.35). This
completes the case where ¢, # 0 and ¢ # 0.

If po, # 0, ¢p = 0, the resolvent identity (13.28), implies the following Green’s
function relation,

G o 0(m,0") — G o0(z,2') = —dy, 0(2) tua(z, 2)us(2,2'),

13.37
2 € p(Sp..0) N p(Soo), ( )

and consequently,

0 < Girp0(bd) = —qp, 0(N)', A <inf(a(Sy, 0))- (13.38)
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Nonnegativity of ug(A,-) and (13.37), (13.38) imply
Grpo0(@,2") —Groolz,2') >0, =z €la,b], A <inf(c(S,,0)), (13.39)
which by (13.10) is equivalent to the fact that the resolvent difference,
(Spo.0 = M) "H = (So0 — AL) 7Y, A < inf(a(S,, 0))s (13.40)

is positivity preserving. Applying [97, Corollary 9] once again, one obtains the stronger
result that the resolvent difference in (13.40) is positivity improving, and that (S, o—
ML) 7 XN <inf(0(S,, 0)), is positivity improving as well. Inequality (13.13) is just a
restatement of (13.39). This completes the case ¢, # 0, pp = 0.

The case ¢, = 0, ¢p # 0 is completely analogous and hence we skip it.

Case (ii). (Real) Coupled Boundary Conditions: First, we show the conditions in
(13.15) are necessary and sufficient for positivity preserving of e~*% for all ¢ > 0, or
equivalently, positivity preserving of (Sg — AI,.)~! for all A < inf(s(Sg)). We begin
with the proof of sufficiency. To this end, suppose that either R1 2 < 0 or Ri2 =0
and Ry; > 0. In order to show that e~ tS® is positivity preserving for all ¢ > 0, we
will verify the Beurling-Deny criterion Theorem 13.2 (iii). Therefore, we must show
the following condition holds:

f € dom(Qg,) implies | f| € dom(Qg,,) and

Q5u7117D = AsallF1- 1D < Qs (£ 1) = sl P s
where we have set Ag, = inf(c(Sg)).
First, we claim that
f € dom(Qg,) implies |f| € dom(Qs,,) if R12 # 0. (13.42)
Indeed, if f € dom(Qg,,) is fixed, then
f e AC([a,b)) and (rp)~ Y2 € L2((a,b);r(2)dz), (13.43)

and it follows that |f| € AC([a,b]). Moreover, since |f|" coincides a.e. in (a,b) with
the function (cf., e.g., [110, Theorem 6.17])

_ @I RO @RS (@) + S (@)S(f) ()], f(z) # 0,
dy(z) = {0, o) =0, (13.44)

one verifies that |f|l!! coincides a.e. in (a,b) with the function

T = @I RO@RE @ + SO@E @) @) £0

! 0, f@y=0, 7
and, subsequently, the inequality

1) RO @R @) + S @S () @] <

§3‘E(f[1](x)) +S(f £ )2 for a.e. z € {a’ € (a,b) | f(a') # 0}, (13.46)
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implies

LA <[] ae. in (a,b), f € AC([a,b]). (13.47)
The second containment in (13.43) then implies (rp)~'/2|f|N € L?((a,b);r(z)dz),
establishing (13.42) (cf. (13.7)). Thus, it remains to verify inequality (13.41). Since
the terms containing Ag,, in the inequality in (13.41) are equal, it suffices to establish
the following inequality:

Qs (171D < Qsp(f, f)- (13.48)
On the other hand, (13.47) implies

b b

[r@ @ s < [ o)) P (13.49)

a a

and hence by (13.7) when R; > < 0, it suffices to verify the simpler inequality

{2 @I = [T + @]} <o (1550
One computes for the difference in (13.50):
P/ — _
oy @O =R @7 0)] <0. (13.51)

since Ry 2 < 0, by assumption. If R; 5 = 0 and Ry ; > 0, then by (13.8) it only remains
to show that f € dom(Qg,,) implies |f| € dom(Qg,, ), which is indeed guaranteed since
R;; >0, j=1,2, completing the proof of sufficiency.

In order to establish necessity of the conditions R12 < 0 or Ry 2 = 0and R;; > 0,
suppose that e~*% is positivity preserving for all ¢ > 0. Then by the Beurling-Deny
criterion, Theorem 13.2 (iii), condition (13.41) holds. In particular, for R; s # 0,
equation (13.7) and inequality (13.41) imply

b
J e @) = 11w e
a (13.52)

+ o [F@f O] - RE@I)] <0, f € dom(@s,)

If f € dom(Qg,,) is real-valued, then one verifies that |f|[!l = sgn(f)f! a.e. in (a,b),
where sgn(f) equals f/|f] if f # 0 and is zero otherwise, as a special case of (13.45).
Consequently, in the case where f is real-valued, the integral appearing in (13.52)
vanishes, and the inequality reduces to

Ri [1f(a)f(®)| = f(a)f(b)] <0, [ € dom(Qg,) and f real-valued. (13.53)
1,2

Choosing a real-valued function f; € AC([a,b]) such that fél] € AC(la,b]) and
fo(a) fo(b) < 0, one infers that fy € dom(Qg,,). Taking fj as a test function in (13.53),
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one concludes that R; 2 < 0. On the other hand, if Ry > = 0, equation (13.8) yields
that the implication and the inequality (13.41) are satisfied provided the bound-
ary condition h(b) = Ry 1h(a) in dom(Qg, ) holds. This necessitates the condition
R1’1 > 0.

The statement concerning positivity preserving of the resolvents follows from The-
orem 13.2 (iii). This completes the proof that the conditions in (13.15) are necessary
and sufficient for positivity preserving of e “**® for all t > 0, or equivalently, positivity
preserving of (Sg — AI,.)~! for all A < inf(a(Sg)).

It remains to prove the claim that positivity preserving is, in fact, equivalent to
positivity improving in item (ii). The sufficiency claim is clear since any bounded
positivity improving operator is, of course, positivity preserving. Thus, it remains
to prove the necessity claim. To this end, suppose that R € SLo(R) is fixed and
satisfies the conditions in (13.15). Then (Sg — AI.)~! is positivity preserving for all
A < inf(o(SRg)). To establish the necessity claim, it is enough to show (Sg — AI.) ! is
positivity improving for some A < inf(c(Sg)), as positivity improving then extends
to (Sg — AI.)~! for all A < inf((Sg)) and to e"*°% for all ¢t > 0 by [132, Theorem
XIII.44]. In order to do this, we consider separately the cases R1 2 < 0 and Ry =0
(and therefore, Ry o > 0).

First, we consider the case Ry 2 < 0. Then, mimicking the proof of [26, Theorem
3.2 (i)] line by line, one infers that the matrix

Ra 2 (1] —1 (1]
22—y (2,0) = —uy (2,b)
z) = 1.2 1.2 , z2€p(Sr)Np(Soo), 13.54
Qr(2) <Rl,12 V(2 0) 1;1; + (2, 0) p(Sr) N p(S00),  ( )

is invertible and one obtains the following Krein-type resolvent identity,

2

(SR — ZIT)_l — (S0,0 - ZIT)_l = - Z QR()‘);; <uk(zv : )7 ' >T Uj(Z, : )7

Fre (13.55)

z € p(Sr) N p(So,0)-
Subsequently, (13.24) and (13.55) imply

GZ,R(G, a/) = _QR()\)Q_év GZ7R(ba b) = _QR(Z)iL
G..r(a,b) = G, r(b,a) = —Qr(2)13 = —Qr(2)11, (13.56)
z € p(Sr) N p(So,0)-
Since (Sg — AL.)~!, A < inf(0(SR)), is positivity preserving, its integral kernel is

nonnegative a.e. in [a,b] X [a,b] by (13.10). In fact, by continuity, it is nonnegative
everywhere in [a, b] X [a,b]. As a result, (13.56) yields

Qr(N)jx <0, Jj.ke{1,2}, A <inf(o(SRr)), (13.57)
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so that the matrix —Qr(\)~! is actually positivity preserving as an operator on C2
for each A < inf(o(Sg)). Thus, (13.55) and (13.57) immediately yield the following
inequality for Green’s functions:

2
G)\’R(LL',LL'I) - G)\’O’o(l‘,l'/) = — Z QR()\);’; uj()\,x)uk()\7m’) > 07

k=1

z,2’' € [a,b], A < inf(c(Sg)).

(13.58)

We note that the final inequality in (13.58) makes use of (13.57) as well as nonnega-
tivity of the functions u;(X,-), j = 1,2, on the interval [a, b]. Another application of
(13.10) then implies that the resolvent difference

(Sr — ML) "t = (So0 — A)™Y, A <inf(a(Sgr)), (13.59)

is positivity preserving. Again, since (Spo — Al.)~! is positivity improving for all
A < inf(o(Sp0)) by item (i), and Sg # So,0, [97, Corollary 9] implies that the resolvent
difference in (13.59) is actually positivity improving. In addition, it also implies that
(Sg—AIL.)~ 1 is positivity improving for all A < inf(a(Sg)). Inequality (13.17) directly
follows from (13.58). This completes the case where Ry 2 < 0.

The degenerate case where 1 o = 0 and R3 5 > 0 is handled similarly. The primary
difference is that in this case, the Krein-type resolvent identity reads,

(Sr—2L,)"" = (So0 — 2I) " = —qr(2) "ur(z,-), )rur(z,),
e plS)npSeo). 000

where
qr(z) = Rg1Ra2 + R%Qu[;](z, a) + Rz,gu[ll](z, a)— (13.61)
— Ryl (2,0) — ul(2,0), 2 € p(SR) N p(So.0).

is nonzero and
up(z,-) = Raoua(z, ) +ui(z,-), z€ p(Sr)Np(Soo)- (13.62)

The proof of (13.60) follows the proof of [26, Theorem 3.2 (ii)] mutatis mutandis. As a
result of the resolvent identity (13.60), one obtains the following relation for Green’s
functions,

G.r(z,2") — G,o0(z,2") = —qr(2) 'ur(z, 2)up(z,2'), (13.63)
z € p(Sr) N p(So,0);
and consequently,
0 < Gar(b,b) = —qr(N)7*, X <inf(c(SR)). (13.64)

Nonnegativity of the solutions u; (A, - ), j = 1,2, together with the condition Ry o > 0
guarantees that ur(),-) is nonnegative on [a, b]. Hence, (13.63) implies

Grr(z,2') — Groo(z,2') >0, z,2" € [a,b], A < inf(c(SR)), (13.65)
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which is equivalent to the fact that the resolvent difference,
(Sp — ML)t — (So0 — M), X\ <inf(o(SR)), (13.66)

is positivity preserving. Applying [97, Corollary 9] once again, one obtains the
stronger result that the resolvent difference in (13.66) is positivity improving, and
that (Sg — A.)~%, A < inf(0(SRr)), is positivity improving as well. Again, inequality
(13.17) is merely a restatement of (13.65). This completes the case Ry 2 = 0. O

We chose to rely on different strategies of proof of positivity preserving in the
case of separated and coupled boundary conditions to illustrate the different possible
approaches in this context. The principal observation in the proof of Theorem 13.3 in
connection with separated boundary conditions is the statement in (13.21) that the
corresponding Green’s function is nonnegative along the diagonal, and follows from
nonnegativity of the resolvent (in the operator sense) at points below the spectrum
of S, .- A much more general result regarding nonnegativity along the diagonal
of the (continuous) integral kernel associated with a nonnegative integral operator
may be found in [84, Lemma on p. 195] in connection with Mercer’s theorem [84,
Theorem 8.11].

In the particular case where p =r =1, ¢ = s = 0 a.e. on (a,b) in Theorem 13.3,
the positivity preserving result has been derived by Feller [44] (see also [48, p. 147]).
In fact, he considered a more general situation involving a Radon-Nikodym derivative
(i.e., he worked in the context of a measure-valued coefficient). We also mention that
the sign of the Green’s function associated with the periodic Hill equation has been
studied in connection with the existence of so-called comparison principles in [25] (and
the references therein).

The fact that positivity preserving and positivity improving are equivalent notions
in the regular case appears to be a new result.

We conclude with some comments on the Krein-von Neumann extension of Tyin.

Remark 13.4. Given Hypothesis 12.2 and assuming Ty, > €1, for some ¢ > 0, the
fact (12.13), that is, dim(ker(T7%;,)) = 2, together with (12.7), yields a degenerate
ground state 0 € 0,(Sk). Hence, Sk cannot be positivity preserving (cf., e.g., [132,
Theorem XIII.44]). This fact is known under more restrictive assumptions on the
coefficients of 7 (cf. [48, p. 147]). In the particular case ¢ = 0 a.e. on (a,b), this can

directly be read off from Theorem 13.3 since

b b
— [ s(t)dt L2
o= o [ale

a

s(t")dt’
dt >0 (13.67)

LRGN

violates condition (13.15). (In the general case ¢ # 0 a.e. on (a,b) one also has

Ri,2 >0as Rig12 # 0 by (12.11), but now a direct proof of u[11] (0,a) > 0 requires
a lengthy disconjugacy argument).
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A. SESQUILINEAR FORMS IN THE REGULAR CASE

In this appendix we discuss the underlying sesquilinear forms associated with
self-adjoint extensions of T ,;, in the regular case with separated boundary conditions,
closely following the treatment in [54, Appendix A].

The standing assumption throughout this appendix will be the following:

Hypothesis A.1. Assume Hypothesis 2.1 holds with p > 0 a.e. on (a,b) and that T
is regular on (a,b). Equivalently, we suppose that p, q, r, s are Lebesgue measurable
on (a,b) with p=t, q, r, s € L'((a,b);dx) and real-valued a.e. on (a,b) with p, r > 0
a.e. on (a,b).

Our goal is to explore relative boundedness of certain sesquilinear forms in the
Hilbert space L?((a,b);r(x)dz) defined in connection with 7. Assuming Hypothesis
A.1, one may use the function ¢ to define a sesquilinear form in L?((a,b);r(x)dx) as
follows

b
uel1,9) = | T@hata)g(a) da. (A1)

f,g € dom(9,,,) = {h € L*((a,b); r(z)dz) | (lql/m)%h € L*((a,b);r(z)dz)}.

Evidently, 9/, is densely defined and symmetric.
In order to define other sesquilinear forms, we first define two families of operators
indexed by «, 8 € {0,000}, in L?((a,b);r(z)dz), as follows
Aapf =0,
(wf)(z) = [px)r(x)] "2 M () for ae. z € (a,b), (A.2)
fedom(A.p) = {g € L2((a,b);r(x)dx) ’g € AC([a,b]), vg € L2((a,b);r(x)d:£),
g(a) = 0if a = 00, g(b) = 0if B = oo},
AL f =0t
(W )(@) = = [p()r(@)] " (Ip()r@)]2f) Y (@) for ae. x € (a,b), (A.3)
fe dom(Az,B) = {g € L*((a,b);7(x)dz) | (pr)'/2g € AC(la, b)),
vTg € L*((a,b); r(z)dz), ((pr)l/Qg)(a) =0if a =0, ((pr)l/Qg)(b) =0if g = O}.

Here we recall that
Fl(z) = p(z) [f'(z) + s(z)f(z)] for ae. z € (a,b), f € AC([a,b]), (A.4)

denotes the first quasi-derivative of f, whereas the superscript {1} denotes the mod-
ified quasi-derivative of functions in AC([a, b]),

F (@) = pa) [f'(x) — s(z)f(x)] for ae. x € (a,b), f € AC([a,D]). (A.5)
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Lemma A.2. Assume Hypothesis A.1 with ¢ = 0 a.e. in (a,b). Then the following
items (i)-(iv) hold:
(i) Au,p and A;Q are densely defined in L*((a,b);r(z)dz) for all o, B € {0,00}.
(ii) Af 5= AL, and Ay p = (A+ )* for all a, B € {0,00}. In particular, Aag and
A+ﬁ are closed in L*((a,b); ( )dx) for all a,ﬂ € {0,00}.

(ili) A 540 = S¢(157 a, B € {0,00}, where S ﬁ in L?((a,b);r(x)dx) denotes the

operator defined by

S(O)ﬁf_T f7 aaﬁe{07oo}a

fe dom(Sg?B) = {g € L*((a,b);r(z)dz) |g,gm € AC([a, b}) (A.6)

70g € L2((a,b);r(x)dx), (gM)(a) + ag(a) = (¢M)(b) + Bg(b) = 0},
where, by convention, « = oo (resp., f = 00) corresponds to the Dirichlet bound-

ary condition g(a) = 0 (resp., g(b) = 0) and 7% is given by

(0@ = o5 (~EEE) + @) @) + s@p@f @) + s(@)f ()

for a.e. z € (a,b), f, I € AC([a, ]).
(A7)

(iv) The operator S((f) is a self-adjoint restriction of Tmax (equivalently, a self-adjoint
extension of Tynin) for all a, B € {0,00} for ¢ = 0 a.e. on (a,b). In particular,
S((,g?oo is the Friedrichs extension of T for ¢ =0 a.e. on (a,b).

Proof. First of all, define operators K and K as follows
K : L*((a,b); r(x)dz) — dom (Aue ),

r(z")da', (A.8)

r(z')dx'. (A.9)

With these definitions, one readily verifies by direct computation that
(Kg)(a) =0, vKg =g,
((pr)l/QI?g) (a)=0, vtKg=g,

0)

g € L*((a,b); r(x)dx). (A.10)

Furthermore, we denote by Té the minimal operator introduced in (3.3) with ¢ =0

a.e. in (a,b). Then

dom(TéO)) Cdom(Aup), o,B€{0,00}, (A.11)
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rendering A, g densely defined, since for f € dom(7}"),

[ofll2r = s [ /) / d (A12)

employing fl!l € AC([a,b]). In order to prove that A% 4 is densely defined as

well, let f € dom (A(‘{O)J' and set ¢ = K f. Because of v"‘f(go = go for all
go € L?*((a,b); r(x)dz), one concludes that

go € ran(Ag,) if and only if ((pr)/?Kgo)(b) = 0. (A.13)

As a result, one infers that
1

—ms d
ran(AaiO) = {e [+ t} . (A.14)

Next, one computes for arbitrary h € dom(A('{ 0)s

b
gaA(JJro / Aaro (z) r(z)dz =

= - /g(x)[([P(x)r(w)}l/Qh(x))/ — s(@)[p(z)r(2)]'/2h(z)] dz =

= (@) () (@) + / ¢ (@) [p(a)r(x)]/2h(z) dr-+
b a
4 / 0(2)5(2) [p(x)r ()] Y2 h(z) dz = (A.15)

- / (v9) @(e] r(a)ds = [ (0 ) @)ha) () =

/f 2)dz = (f,h), =0,

since by hypothesis, f € dom (Ag,o)l. Thus, we have g € 1ran(Aar’0)J-7 implying
that g = ceJa M9 for some constant ¢ € C. By the definition (A.2) of v, it
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is readily verified that f = vg = 0 a.e. on [a,b]. Thus, dom(AafO), and hence
dom(A;rﬂ) 2 dom(Ag’O), a,B € {0,00}, is dense in L?((a,b);r(z)dx), completing
the proof of item (i).

Regarding item (ii), we only show A} ; = AT ; as the case (A;ﬁ)* = A,p is
handled analogously. Moreover, since Ao oo C Aq, g (this follows by definition of the
operators) implies A}, ; C A%, we only prove A%, = AL _, the other cases follow
from an additional integration by parts. Therefore, first note that A%  C A% as
an integration by parts shows

<f7 A;ro,oog

~
I
~
—~
8
S~—"
—~
c
Jr
<
S~—
—~
8
S~—
=
8
S~—
QU
)
I
|
S
=
—
8
S~—"
L
~
—~
&
—
—
S
2
—
~
DN
<
S—
—
=
N
8
S~—
QU
8
I

b
+ / [p(x)r ()] [f () + s(x) f (2)]g(x)dx = (A.16)

- / p(e)r ()] 2 1 (@) g(@)r (x)de =

a

= (Asorncfr9),, fe€dom(Ax o), g€ dom(AL ).

Hence it remains to show dom(A*oo’oo) C dom(Ajopo). To this end, let f €
dom (A%, ), and set g = I/(\'A(*)o’oof. Then one computes

(A.17)
= / (AL o f) (@) — (vtg)(x)] h(z)r(z)de =0, h € dom(Asooo)-

Consequently, ran (Aoom) is contained in the kernel of the linear functional k —
(k,f — g)r, k € L%*((a,b);r(z)dz). On the other hand, since vKgy = go for all
go € L*((a,b);r(z)dz), one infers that go € ran (A o) if and only if (Kgo)(b) = 0.
As a result,

xs 1
ran (Aos,0c) = {(pr)_l/Qeaf (t)dt} . (A.18)
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On the other hand, (A.17) shows that f — g is orthogonal to ran (Au o), and be-

[ s(t)dt
cause of (A.18), there exists a constant ¢ such that f = g + c(pr)~'/%en It s
fs(t)dt
a simple matter to check that (pr)~—!/2ee € dom (AL ) (in fact, v* applied

[ s(t)dt
to (pr)*l/zcaf is zero). Therefore, by (A.18), f € dom(AZ ), completing the
proof of item (ii).
To prove item (iii), one notes that by item (ii),

dom (A}, 3Aap) = {g € dom(Aap) |vg € dom(A;ﬁ)}, (A.19)

so that, by inspection, one obtains dom(A;ﬁA%B) = dom(Sé%), a,f € {0,00}.
Then for f € dom(Sg?)ﬁ), a simple computation shows A7 ;A gf = vt (vf) = Sg?;gf,
a, B € {0,00}. This completes the proof of item (iii).

Since A, s is densely defined and closed for all a, 8 € {0, 00}, the operator Sg% =
Ay, 5Aa p is self-adjoint and nonnegative (cf., e.g., [96, Theorem V.3.24]). In addition,

S((f)ﬁ is a restriction of Ti,.x, and that Ség?oo is the Friedrichs extension of Ty, (for
g = 0 a.e. on (a,b)) follows from (11.99) and the assumed regularity of 7 on (a,b),
proving item (iv). O

With the operators A, g, a, 3 € {0,00}, in hand, we define the densely defined,
closed, nonnegative sesquilinear form by

Q;O,?H(fa g) = <A06,,3fa Aa,ﬁg>r, fa g S dOIl’l(Q((B?ﬁ) = dOIl’l(Aaﬁ),

A.20
a, B € {0,00}. ( )

The self-adjoint and nonnegative operator in L?((a,b);r(x)dz) uniquely associated
with the sesquilinear form Q((IO’)B, a, € {0,000}, is then given by

A% gAas =8, @, B e {000}, (A.21)

where Sg?}g is the operator defined in (A.6).
Since functions in dom(Qg)ﬁ), a, B € {0,000}, are absolutely continuous on [a, b],
one infers

dom(D((lO,)ﬁ) Cdom (Qq/), «, B €{0,00}. (A.22)

Finally, we define a family of sesquilinear forms, indexed by pairs of real numbers
v,v € R, as follows

QL0(f,9) = vf(a)gla) = vf(b)g(b), f, g € dom (Q57) = AC([a,b]).  (A.23)
In addition, we set

Q% (f.9) =Q50(f.9), QU (f.9) =Q00(f.9), Q% (f,9)=0. (A24)
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Lemma A.3. Assume Hypothesis A.1. Then the following items (i) and (ii) hold:

(i) Qq/r and Qs are relatively form compact (and hence infinitesimally bounded )
with respect to Q(O?)ﬁ for all a, B € {0,000}, that is,

\q/r|1/2( 5 5+ I ) 1/2, |s/r|1/2(5é% +IT)_1/2 € BOO(L2((a7b);r(x)dx)).
(A.25)
In fact, compactness in (A.25) can be replaced by the Hilbert-Schmidt property

(cf. (A.26)).
(ii) For each v, v € R, the sesquilinear form Q

respect to Da’ﬁ for all a, B € {0,00}.

', is infinitesimally bounded with

Proof. In item (i), it clearly suffices to prove the claim for 9/, only since |s| and ¢
satisfy the same assumptions. Let Giolﬂ(-, 1), z € C\R and «, 8 € {0, 00}, denote the

Green’s function for the operator Sé% in (A.21) (known to exist by Theorem 7.1).
Then

la/r|/2 (S0, — 2L) "g/r[V? € Ba(L3((a,0); r(2)da)), =€ C\R

A.26
a, B e {07 00}7 ( :

since

T !
//” NGO, 2P e (o)’ < Oz, B)als (i, (427

(x) r(x’)

for some constant C(z, «, 3), because Gi?;ﬁ(, -) is uniformly bounded on (a, b) x (a, b)
for all a, 8 € {0,000} by (7.2) or (7.16). This completes the proof of item (i).
In order to prove item (ii), fix o, 8 € {0, 00}, and note that for arbitrary ¢ € [a, b]

(ii),
and any function f € dom(QEx ) C dom (Q,,,),

()] = ‘f(ﬂﬁ)2 - 2]f(t)f’(t)dt’ <

b
§U@W+2/V®f@+dﬁWVW+ (A.28)

b

+z/wmumﬂm f € dom(2),).

a
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One infers (after taking the supremum over all ¢ € [a, b], multiplying by r, and inte-
grating w.r.t. « from a to b) for any ¢ > 0,

111 ((a,b)s) <

b

< P17 o 1 F 1B+ 2 / W (ep(1)/2) 21/ (0) + s(0) F(D)]dt-+

a

+29)5/r(f, f) <
b

2 2 [1(4)]?
<72 gy 113, +/<5 J;((tt))| +% |fp((t))| )dt+

a

+ ZQM/T(ﬁ f), fe dom(QgO?)B). (A.29)
Since 0 < p~' € L'((a,b);dx), there exists a dy(¢) > 0 such that [ p(t)~'dt < g
11(5)
with I1(¢) = {z € (a,b) | p(x) < §1(¢)}. Thus,
[ 17 S0 (o)
dt = / dt + / dt <
p(t) (t) p(t)
I (e) (a,b)\I1(¢) (A30)
< SN a5 / F@Fd f e dom(@)).

In addition, since r > 0 a.e. on (a, b), there exists a d2(¢) > 0 such that |I5(e)| < 8618(5)
with Ir(e) = {x € (a,b) | r(x) < da(e)}. Thus,

b
[iswra= [ 1sopas [ isoras
a I>(e) (a,b)\I2(e) (A.31)

ed
< P 12 i + 5 ()||f||2r, f € dom(2)).

Consequently, one obtains from (A.29),

IF 1o ((ayiazmy < 2MPTE 0,00y + 2001 ()02()] T HIFIZ o+

A.32
n EQ(O) £, f) +4D|S‘/T('f’ f), fe dOm(D((L)ﬂ), ( )

By part (i), Q|/» is infinitesimally bounded with respect to ng_)ﬁ. Hence, there exists
n(e) > 0 such that

Qioiye(fo f) < (0)(f,) n©Nf13,, fedom(2)). (A.33)
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As a result, (A.32) implies

112 = (o yaay < 2{\|r||;3<<a oty + 21E61(E)52(0)] 7 + 20() 113, +

A.34
+2eQ0(f,f), f € dom(2l)). (439

b
R

dom(QfL?B) were arbitrary. O

Infinitesimal boundedness of Q%7 with respect to ng’)ﬁ follows since € > 0 and f €

Finally, introducing the densely defined, closed, and lower semibounded sesquilin-
ear forms in L2((a, b); r(z)dz)
Qap(f19) = Q50(f,9) + Quye(£:9) + A5 (£.9), (A.35)
g€ dom(Q(o)) = dom(Ao 0) a,f eR,
Qaoo(f+9) = Q0 (f9) + Qo/n(f:9) + Q561 9): (A.36)
fig¢€ dom(Q(()?io) = dom (A OO) a €R,
Qe 5(£.9) = QLo(F.9) + Q) (£ 9) + 255 (F.9), (A37)
f,g€ dom(Dgg),o) = dom(AOO 0) B €R,
f, g € d0m<Q(og),oo) = dom(Aoo,oo)v
and denoting the uniquely associated self-adjoint, and lower semibounded operator
by Sa.5, o, f € RU {00}, the latter can be explicitly described as follows:

Theorem A.4. Define Q, 5, o, € RU{oo}, by (A.35)—(A.38). Then the uniquely
associated self-adjoint, lower semibounded operator S, 5 in L*((a,b);r(z)dx) is given
by
Sa,ﬂf:Tfa «, /BERU{OO}v
f €dom(Sa ) = {g € L*((a,b);r(z)dz) |g,g[1] € AC(la, b)), (A.39)
g"(a) + ag(a) = g(b) + Bg(b) = 0, g € L*((a, b); r(z)da) },
where, by convention, o = oo (resp., B = o0) corresponds to the Dirichlet boundary
condition g(a) = 0 (resp., g(b) = 0). Moreover, the operator S, g is a self-adjoint

restriction of Tmax (equivalently, a self-adjoint extension of Ty ), in particular, Sso, oo
is the Friedrichs extension Sp of Tmin-

Proof. It suffices to consider the Dirichlet case a = 8 = oo, the other cases being
similar. We denote by S oo the operator defined in (A.39) for @« = f = oo and
by Sso,c0 the unique operator associated with Qs oo. Choose u € dom (Quo,00) and

v E dom(goopc). Then an integration by parts yields

Qoo 00(u,v) = <u,§oo,oov>r. (A.40)
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Thus Seo 00 € Snc.0o by [96, Corollary VI.2.4] and hence S a0 = Sao. 00 SINCE Sag 0o =

Sr is self-adjoint. O
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