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Abstract. We systematically develop Weyl-Titchmarsh theory for singular differential
operators on arbitrary intervals (a, b) ⊆ R associated with rather general differential ex-
pressions of the type

τf =
1

r

(
−
(
p[f ′ + sf ]

)′
+ sp[f ′ + sf ] + qf

)
,

where the coefficients p, q, r, s are real-valued and Lebesgue measurable on (a, b), with p 6= 0,
r > 0 a.e. on (a, b), and p−1, q, r, s ∈ L1

loc((a, b); dx), and f is supposed to satisfy

f ∈ ACloc((a, b)), p[f
′ + sf ] ∈ ACloc((a, b)).

In particular, this setup implies that τ permits a distributional potential coefficient, including
potentials in H−1

loc ((a, b)).
We study maximal and minimal Sturm-Liouville operators, all self-adjoint restrictions of

the maximal operator Tmax, or equivalently, all self-adjoint extensions of the minimal operator
Tmin, all self-adjoint boundary conditions (separated and coupled ones), and describe the
resolvent of any self-adjoint extension of Tmin. In addition, we characterize the principal
object of this paper, the singular Weyl-Titchmarsh-Kodaira m-function corresponding to
any self-adjoint extension with separated boundary conditions and derive the corresponding
spectral transformation, including a characterization of spectral multiplicities and minimal
supports of standard subsets of the spectrum. We also deal with principal solutions and
characterize the Friedrichs extension of Tmin.

Finally, in the special case where τ is regular, we characterize the Krein-von Neumann
extension of Tmin and also characterize all boundary conditions that lead to positivity pre-
serving, equivalently, improving, resolvents (and hence semigroups).
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1. INTRODUCTION

The prime motivation behind this paper is to develop Weyl-Titchmarsh theory for
singular Sturm-Liouville operators on an arbitrary interval (a, b) ⊆ R associated with
rather general differential expressions of the type

τf =
1

r

(
−
(
p[f ′ + sf ]

)′
+ sp[f ′ + sf ] + qf

)
. (1.1)

Here the coefficients p, q, r, s are real-valued and Lebesgue measurable on (a, b), with
p 6= 0, r > 0 a.e. on (a, b), and p−1, q, r, s ∈ L1

loc((a, b); dx), and f is supposed to
satisfy

f ∈ ACloc((a, b)), p[f
′ + sf ] ∈ ACloc((a, b)), (1.2)

with ACloc((a, b)) denoting the set of locally absolutely continuous functions on (a, b).
(The expression f [1] = p[f ′+ sf ] will subsequently be called the first quasi-derivative
of f .)

One notes that in the general case (1.1), the differential expression is formally
given by

τf =
1

r

(
−
(
pf ′
)′

+
[
− (ps)′ + ps2 + q

]
f
)
. (1.3)

Moreover, in the special case s ≡ 0 this approach reduces to the standard one, that
is, one obtains,

τf =
1

r

(
−
(
pf ′
)′

+ qf
)
. (1.4)
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In particular, in the case p = r = 1 our approach is sufficiently general to include
arbitrary distributional potential coefficients from H−1

loc ((a, b)) = W−1,2
loc ((a, b)) (as

the term s2 can be absorbed in q), and thus even in this special case our setup is
slightly more general than the approach pioneered by Savchuk and Shkalikov [140],
who defined the differential expression as

τf = −
(
[f ′ + sf ]

)′
+ s[f ′ + sf ]− s2f, f, [f ′ + sf ] ∈ ACloc((a, b)). (1.5)

One observes that in this case q can be absorbed in s by virtue of the transformation
s → s −

∫ x
q. Their approach requires the additional condition s2 ∈ L1

loc((a, b); dx).
Moreover, since there are distributions in H−1

loc ((a, b)) which are not measures, the
operators discussed here are not a special case of Sturm-Liouville operators with
measure-valued coefficients as discussed, for instance, in [41].

We emphasize that similar differential expressions have already been studied by
Bennewitz and Everitt [21] in 1983 (see also [42, Sect. I.2]). While some of their
discussion is more general, they restrict their considerations to compact intervals and
focus on the special case of a left-definite setting. An extremely thorough and sys-
tematic investigation, including even and odd higher-order operators defined in terms
of appropriate quasi-derivatives, and in the general case of matrix-valued coefficients
(including distributional potential coefficients in the context of Schrödinger-type oper-
ators) was presented by Weidmann [157] in 1987. In fact, the general approach in [21]
and [157] draws on earlier discussions of quasi-derivatives in Shin [148]–[150], Naimark
[127, Ch. V], and Zettl [158]. Still, it appears that the distributional coefficients treated
in [21] did not catch on and subsequent authors referring to this paper mostly focused
on the various left and right-definite aspects developed therein. Similarly, it seems
likely that the extraordinary generality exerted by Weidmann [157] in his treatment
of higher-order differential operators obscured the fact that he already dealt with
distributional potential coefficients back in 1987.

There were actually earlier papers dealing with Schrödinger operators involving
strongly singular and oscillating potentials which should be mentioned in this context,
such as, Baeteman and Chadan [15, 16], Combescure [28], Combescure and Ginibre
[27], Pearson [131], Rofe-Beketov and Hristov [134,135], and a more recent contribu-
tion treating distributional potentials by Herczyński [72].

In addition, the case of point interactions as particular distributional potential
coefficients in Schrödinger operators received enormous attention, too numerous to
be mentioned here in detail. Hence, we only refer to the standard monographs by
Albeverio, Gesztesy, Høegh-Krohn, and Holden [2] and Albeverio and Kurasov [5],
and some of the more recent developments in Albeverio, Kostenko, and Malamud
[4], Kostenko and Malamud [101, 102]. We also mention the case of discontinuous
Schrödinger operators originally considered by Hald [69], motivated by the inverse
problem for the torsional modes of the earth. For recent development in this direction
we refer to Shahriari, Jodayree Akbarfam, and Teschl [147].

It was not until 1999 that Savchuk and Shkalikov [140] started a new develop-
ment for Sturm-Liouville (resp., Schrödinger) operators with distributional potential
coefficients in connection with areas such as, self-adjointness proofs, spectral and in-
verse spectral theory, oscillation properties, spectral properties in the non-self-adjoint
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context, etc. In addition to the important series of papers by Savchuk and Shkalikov
[140–146], we also mention other groups such as Albeverio, Hryniv, and Mykytyuk [3],
Bak and Shkalikov [17], Ben Amara and Shkalikov [18], Ben Amor and Remling [19],
Davies [32], Djakov and Mityagin [33–36], Eckhardt and Teschl [41], Frayer, Hryniv,
Mykytyuk, and Perry [45], Gesztesy and Weikard [55], Goriunov and Mikhailets
[61,62], Goriunov, Mikhailets, and Pankrashkin [63], Hryniv [73], Kappeler and Möhr
[90], Kappeler, Perry, Shubin, and Topalov [91], Kappeler and Topalov [92], Hryniv
and Mykytyuk [74–81], Hryniv, Mykytyuk, and Perry [82, 83], Kato [95], Korotyaev
[99, 100], Maz’ya and Shaposhnikova [113, Ch. 11], Maz’ya and Verbitsky [114–117],
Mikhailets and Molyboga [118–122], Mirzoev and Safanova [123], Mykytyuk and Trush
[126], Sadovnichaya [138,139].

It should be mentioned that some of the attraction in connection with distri-
butional potential coefficients in the Schrödinger operator clearly stems from the
low-regularity investigations of solutions of the Korteweg-de Vries (KdV) equation.
We mention, for instance, Buckmaster and Koch [24], Grudsky and Rybkin [68], Kap-
peler and Möhr [90], Kappeler and Topalov [93,94], and Rybkin [137].

The case of strongly singular potentials at an endpoint and the associated
Weyl-Titchmarsh-Kodaira theory for Schrödinger operators can already be found in
the seminal paper by Kodaira [98]. A gap in Kodaira’s approach was later circum-
vented by Kac [87]. The theory did not receive much further attention until it was
independently rediscovered and further developed by Gesztesy and Zinchenko [56].
This soon led to a systematic development of Weyl-Titchmarsh theory for strongly
singular potentials and we mention, for instance, Eckhardt [37], Eckhardt and Teschl
[40], Fulton [49], Fulton and Langer [50], Fulton, Langer, and Luger [51], Kostenko,
Sakhnovich, and Teschl [103–106], and Kurasov and Luger [109].

In contrast, Weyl-Titchmarsh theory in the presence of distributional potential co-
efficients, especially, in connection with (1.1) (resp., (2.2)) has not yet been developed
in the literature, and it is precisely the purpose of this paper to accomplish just that
under the full generality of Hypothesis 2.1. Applications to inverse spectral theory
will be given in [39].

It remains to briefly describe the content of this paper: Section 2 develops the ba-
sics of Sturm-Liouville equations under our general hypotheses on p, q, r, s, including
the Lagrange identity and unique solvability of initial value problems. Maximal and
minimal Sturm-Liouville operators are introduced in Section 3, and Weyl’s alternative
is described in Section 4. Self-adjoint restrictions of the maximal operator, or equiv-
alently, self-adjoint extensions of the minimal operator, are the principal subject of
Section 5, and all self-adjoint boundary conditions (separated and coupled ones) are
described in Section 6. The resolvent of all self-adjoint extensions and some of their
spectral properties are discussed in Section 7. The singular Weyl-Titchmarsh-Kodaira
m-function corresponding to any self-adjoint extension with separated boundary con-
ditions is introduced and studied in Section 8, and the corresponding spectral trans-
formation is derived in Section 9. Classical spectral multiplicity results for Schrödinger
operators due to Kac [85, 86] (see also Gilbert [59] and Simon [151]) are extended to
our general situation in Section 10. Section 11 deals with various applications of the
abstract theory developed in this paper. More specifically, we prove a simple analogue
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of the classic Sturm separation theorem on the separation of zeros of two real-valued
solutions to the distributional Sturm-Liouville equation (τ−λ)u = 0, λ ∈ R, and show
the existence of principal solutions under certain sign-definiteness assumptions on the
coefficient p near an endpoint of the basic interval (a, b). When τ−λ is non-oscillatory
at an endpoint, we present a sufficient criterion on r and p for τ to be in the limit-point
case at that endpoint. This condition dates back to Hartman [70] (in the special case
p = r = 1, s = 0), and was subsequently studied by Rellich [133] (in the case s = 0).
This section concludes with a detailed characterization of the Friedrichs extension of
T0 in terms of (non-)principal solutions, closely following a seminal paper by Kalf
[88] (also in the case s = 0). In Section 12 we characterize the Krein-von Neumann
self-adjoint extension of Tmin by explicitly determining the boundary conditions as-
sociated to it. In our final Section 13, we derive the quadratic form associated to
each self-adjoint extension of Tmin, assuming τ is regular on (a, b). We then combine
this with the Beurling-Deny criterion to present a characterization of all positivity
preserving resolvents (and hence semigroups) associated with self-adjoint extensions
of Tmin in the regular case. In particular, this result confirms that the Krein-von
Neumann extension does not generate a positivity preserving resolvent or semigroup.
We actually go a step further and prove that the notions of positivity preserving and
positivity improving are equivalent in the regular case.

We also mention that an entirely different approach to Schrödinger operators
(assumed to be bounded from below) with matrix-valued distributional potentials,
based on supersymmetric considerations, has been developed simultaneously in [38].

Finally, we briefly summarize some of the notation used in this paper: The Hilbert
spaces used in this paper are typically of the form L2((a, b); r(x)dx) with scalar prod-
uct denoted by 〈· , ·〉r (linear in the first factor), associated norm ‖ · ‖2,r, and cor-
responding identity operator denoted by Ir. Moreover, L2

c((a, b); r(x)dx) denotes the
space of square integrable functions with compact support. In addition, we use the
Hilbert space L2(R; dµ) for an appropriate Borel measure µ on R with scalar product
and norm abbreviated by 〈· , ·〉µ and ‖ · ‖2,µ, respectively.

Next, let T be a linear operator mapping (a subspace of) a Hilbert space into
another, with dom (T ), ran(T ), and ker(T ) denoting the domain, range, and kernel
(i.e., null space) of T . The closure of a closable operator S is denoted by S. The
spectrum, essential spectrum, point spectrum, discrete spectrum, absolutely continu-
ous spectrum, and resolvent set of a closed linear operator in the underlying Hilbert
space will be denoted by σ(·), σess(·), σp(·), σd(·), σac(·), and ρ(·), respectively. The
Banach spaces of linear bounded, compact, and Hilbert-Schmidt operators in a sepa-
rable complex Hilbert space are denoted by B(·), B∞(·), and B2(·), respectively. The
orthogonal complement of a subspace S of the Hilbert space H will be denoted by S⊥.

The symbol SL2(R) will be used to denote the special linear group of order two
over R, that is, the set of all 2 × 2 matrices with real entries and determinant equal
to one.

At last, we will use the abbreviations “iff” for “if and only if”, “a.e.” for “almost
everywhere”, and “supp” for the support of functions throughout this paper.
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2. THE BASICS ON STURM-LIOUVILLE EQUATIONS

In this section we provide the basics of Sturm-Liouville equations with distributional
potential coefficients.

Throughout this paper we make the following set of assumptions.

Hypothesis 2.1. Suppose (a, b) ⊆ R and assume that p, q, r, s are Lebesgue mea-
surable on (a, b) with p−1, q, r, s ∈ L1

loc((a, b); dx) and real-valued a.e. on (a, b) with
r > 0 and p 6= 0 a.e. on (a, b).

Assuming Hypothesis 2.1 and introducing the set,

Dτ =
{
g ∈ ACloc((a, b))

∣∣ g[1] = p[g′ + sg] ∈ ACloc((a, b))
}
, (2.1)

the differential expression τ considered in this paper is of the type,

τf =
1

r

(
−
(
f [1]
)′

+ sf [1] + qf
)
∈ L1

loc((a, b); r(x)dx), f ∈ Dτ . (2.2)

The expression
f [1] = p[f ′ + sf ], f ∈ Dτ , (2.3)

will be called the first quasi-derivative of f .
Given some g ∈ L1

loc((a, b); r(x)dx), the equation (τ − z)f = g is equivalent to the
system of ordinary differential equations(

f
f [1]

)′
=

(
−s p−1

q − zr s

)(
f
f [1]

)
−
(

0
rg

)
. (2.4)

From this, we immediately get the following existence and uniqueness result.

Theorem 2.2. For each g ∈ L1
loc((a, b); r(x)dx), z ∈ C, c ∈ (a, b), and d1, d2 ∈ C

there is a unique solution f ∈ Dτ of (τ − z)f = g with f(c) = d1 and f [1](c) = d2. If,
in addition, g, d1, d2, and z are real-valued, then the solution f is real-valued.

For each f, g ∈ Dτ we define the modified Wronski determinant

W (f, g)(x) = f(x)g[1](x)− f [1](x)g(x), x ∈ (a, b). (2.5)

The Wronskian is locally absolutely continuous with derivative

W (f, g)′(x) = [g(x)(τf)(x)− f(x)(τg)(x)] r(x), x ∈ (a, b). (2.6)

Indeed, this is a consequence of the following Lagrange identity, which is readily
proved using integration by parts.

Lemma 2.3. For each f , g ∈ Dτ and α, β ∈ (a, b) we have

β∫
α

[g(x)(τf)(x)− f(x)(τg)(x)] r(x)dx = W (f, g)(β)−W (f, g)(α). (2.7)
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As a consequence, one verifies that the Wronskian W (u1, u2) of two solutions u1,
u2 ∈ Dτ of (τ − z)u = 0 is constant. Furthermore, W (u1, u2) 6= 0 if and only if u1, u2

are linearly independent. In fact, the Wronskian of two linearly dependent solutions
vanishes obviously. Conversely, W (u1, u2) = 0 means that for c ∈ (a, b) there is a
K ∈ C such that

Ku1(c) = u2(c) and Ku
[1]
1 (c) = u

[1]
2 (c), (2.8)

where we assume, without loss of generality, that u1 is a nontrivial solution (i.e.,
not vanishing identically). Now by uniqueness of solutions this implies the linear
dependence of u1 and u2.

Lemma 2.4. Let z ∈ C, u1, u2 be two linearly independent solutions of (τ − z)u = 0
and c ∈ (a, b), d1, d2 ∈ C, g ∈ L1

loc((a, b); r(x)dx). Then there exist c1, c2 ∈ C such
that the solution u of (τ − z)f = g with f(c) = d1 and f [1](c) = d2, is given for each
x ∈ (a, b) by

f(x) = c1u1(x) + c2u2(x) +
u1(x)

W (u1, u2)

x∫
c

u2(t)g(t) r(t)dt−

− u2(x)

W (u1, u2)

x∫
c

u1(t)g(t) r(t)dt,

(2.9)

f [1](x) = c1u
[1]
1 (x) + c2u

[1]
2 (x) +

u
[1]
1 (x)

W (u1, u2)

x∫
c

u2(t)g(t) r(t)dt−

− u
[1]
2 (x)

W (u1, u2)

x∫
c

u1(t)g(t) r(t)dt.

(2.10)

If u1, u2 is the fundamental system of solutions of (τ − z)u = 0 satisfying u1(c) =

u
[1]
2 (c) = 1 and u[1]

1 (c) = u2(c) = 0, then c1 = d1 and c2 = d2.

We omit the straightforward calculations underlying the proof of Lemma 2.4.
Another important identity for the Wronskian is the well-known Plücker identity.

Lemma 2.5. For all f1, f2, f3, f4 ∈ Dτ one has

0 = W (f1, f2)W (f3, f4) +W (f1, f3)W (f4, f2) +W (f1, f4)W (f2, f3). (2.11)

We say τ is regular at a, if p−1, q, r, and s are integrable near a. Similarly, we
say τ is regular at b if these functions are integrable near b. Furthermore, we say τ is
regular on (a, b) if τ is regular at both endpoints a and b.

Theorem 2.6. Let τ be regular at a, z ∈ C, and g ∈ L1((a, c); r(x)dx) for each
c ∈ (a, b). Then for every solution f of (τ − z)f = g the limits

f(a) = lim
x↓a

f(x) and f [1](a) = lim
x↓a

f [1](x) (2.12)
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exist and are finite. For each d1, d2 ∈ C there is a unique solution of (τ − z)f = g
with f(a) = d1 and f [1](a) = d2. Furthermore, if g, d1, d2, and z are real, then the
solution is real. Similar results hold for the right endpoint b.

Proof. This theorem is an immediate consequence of the corresponding result for the
equivalent system (2.4).

Under the assumptions of Theorem 2.6 one also infers that Lemma 2.4 remains
valid even in the case when c = a (resp., c = b).

We now turn to analytic dependence of solutions on the spectral parameter z ∈ C.

Theorem 2.7. Let g ∈ L1
loc((a, b); r(x)dx), c ∈ (a, b), d1, d2 ∈ C and for each z ∈ C

let fz be the unique solution of (τ − z)f = g with f(c) = d1 and f [1](c) = d2. Then
fz(x) and f [1]

z (x) are entire functions of order 1/2 in z for each x ∈ (a, b). Moreover,
for each α, β ∈ (a, b) with α < β we have

|fz(x)|+ |f [1]
z (x)| ≤ CeB

√
|z|, x ∈ [α, β], z ∈ C, (2.13)

for some constants C, B ∈ R.

Proof. The analyticity part follows from the corresponding result for the equivalent
system. For the remaining part, first note that because of Lemma 2.4 it suffices to
consider the case when g vanishes identically. Now if we set for each z ∈ C with |z| ≥ 1

vz(x) = |z||fz(x)|2 + |f [1]
z (x)|2, x ∈ (a, b), (2.14)

an integration by parts shows that for each x ∈ (a, b)

vz(x) = vz(c)−
x∫
c

2
[
|z||fz(t)|2 − |f [1]

z (t)|2
]
s(t) dt+

+

x∫
c

2 Re
(
fz(t)f

[1]
z (t)

)[
|z|p(t)−1 + q(t)

]
dt−

−
x∫
c

2 Re
(
zfz(t)f

[1]
z (t)

)
r(t)dt.

(2.15)

Employing the elementary estimate

2|fz(x)f [1]
z (x)| ≤ |z||fz(x)|2 + |f [1]

z (x)|2√
|z|

=
vz(x)√
|z|
, x ∈ (a, b), (2.16)

we obtain an upper bound for vz:

vz(x) ≤ vz(c) + 2

∣∣∣∣∣∣
x∫
c

vz(t)
√
|z|ω(t)dt

∣∣∣∣∣∣ , x ∈ (a, b), (2.17)
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where ω = |p−1|+ |q|+ |r|+ |s|. Now an application of the Gronwall lemma yields

vz(x) ≤ vz(c)e
2
√
|z|
∣∣∣∣ x∫
c

ω(t)dt

∣∣∣∣
, x ∈ (a, b). (2.18)

If, in addition to the assumptions of Theorem 2.7, τ is regular at a and g is
integrable near a, then the limits fz(a) and f

[1]
z (a) are entire functions of order 1/2

and the bound in Theorem 2.7 holds for all x ∈ [a, β]. Indeed, this follows since
the entire functions fz(x) and f

[1]
z (x), x ∈ (a, c) are locally bounded, uniformly in

x ∈ (a, c). Moreover, in this case the assertions of Theorem 2.7 are valid even if we
take c = a and/or α = a.

3. STURM-LIOUVILLE OPERATORS

In this section, we will introduce operators associated with our differential expression
τ in the Hilbert space L2((a, b); r(x)dx) with scalar product

〈f, g〉r =

b∫
a

f(x)g(x) r(x)dx, f, g ∈ L2((a, b); r(x)dx). (3.1)

First, we define the maximal operator Tmax in L2((a, b); r(x)dx) by

Tmaxf = τf, (3.2)

f ∈ dom (Tmax) =
{
g ∈ L2((a, b); r(x)dx)

∣∣ g ∈ Dτ , τg ∈ L2((a, b); r(x)dx)
}
.

In order to obtain a symmetric operator, we restrict the maximal operator Tmax to
functions with compact support by

T0f = τf,

f ∈ dom (T0) = {g ∈ dom (Tmax) | g has compact support in (a, b)} .
(3.3)

Since τ is a real differential expression, the operators T0 and Tmax are real with respect
to the natural conjugation in L2((a, b); r(x)dx).

We say some measurable function f lies in L2((a, b); r(x)dx) near a (resp., near b) if
f lies in L2((a, c); r(x)dx) (resp., in L2((c, b); r(x)dx)) for each c ∈ (a, b). Furthermore,
we say some f ∈ Dτ lies in dom (Tmax) near a (resp., near b) if f and τf both lie in
L2((a, b); r(x)dx) near a (resp., near b). One readily verifies that some f ∈ Dτ lies in
dom (Tmax) near a (resp., b) if and only if f lies in dom (Tmax) near a (resp., b).

Lemma 3.1. If τ is regular at a and f lies in dom (Tmax) near a, then the limits

f(a) = lim
x↓a

f(x) and f [1](a) = lim
x↓a

f [1](x) (3.4)

exist and are finite. Similar results hold at b.
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Proof. Under the assumptions of the lemma, τf lies in L2((a, b); r(x)dx) near a and
since r(x)dx is a finite measure near a we have τf ∈ L1((a, c); r(x)dx) for each
c ∈ (a, b). Hence, the claim follows from Theorem 2.6.

The following lemma is a consequence of the Lagrange identity.

Lemma 3.2. If f and g lie in dom (Tmax) near a, then the limit

W (f, g)(a) = lim
α↓a

W (f, g)(α) (3.5)

exists and is finite. A similar result holds at the endpoint b. If f , g ∈ dom (Tmax),
then

〈τf, g〉r − 〈f, τg〉r = W (f, g)(b)−W (f, g)(a) =: W b
a(f, g). (3.6)

Proof. If f and g lie in dom (Tmax) near a, the limit α ↓ a of the left-hand side in
equation (2.7) exists. Hence, the limit in the claim exists as well. Now the remaining
part follows by taking the limits α ↓ a and β ↑ b.

If τ is regular at a and f and g lie in dom (Tmax) near a, then we clearly have

W (f, g)(a) = f(a)g[1](a)− f [1](a)g(a). (3.7)

In order to determine the adjoint of T0 we will rely on the following lemma (see, e.g.,
[153, Lemma 9.3] or [156, Theorem 4.1]).

Lemma 3.3. Let V be a vector space over C and F1, . . . , Fn, F linear functionals
defined on V . Then

F ∈ span {F1, . . . , Fn} iff
n⋂
j=1

ker(Fj) ⊆ ker(F ). (3.8)

Theorem 3.4. The operator T0 is densely defined and T ∗0 = Tmax.

Proof. If we set

T̃0

∗
=
{

(f1, f2) ∈ L2((a, b); r(x)dx)2
∣∣∀g ∈ dom (T0) : 〈f1, T0g〉r = 〈f2, g〉r

}
, (3.9)

then from Lemma 3.2 one immediately sees that the graph of Tmax is contained in
T̃0

∗
. Indeed, for each f ∈ dom (Tmax) and g ∈ dom (T0) we infer

〈τf, g〉r − 〈f, τg〉r = lim
β↑b

W (f, g)(β)− lim
α↓a

W (f, g)(α) = 0, (3.10)

since W (f, g) has compact support. Conversely, let f1, f2 ∈ L2((a, b); r(x)dx) such
that 〈f1, T0g〉r = 〈f2, g〉r for each g ∈ dom (T0) and f be a solution of τf = f2. In
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order to prove that f1−f is a solution of τu = 0, we will invoke Lemma 3.3. Therefore,
consider the linear functionals

`(g) =

b∫
a

(f1(x)− f(x))g(x) r(x)dx, g ∈ L2
c((a, b); r(x)dx), (3.11)

`j(g) =

b∫
a

uj(x)g(x) r(x)dx, g ∈ L2
c((a, b); r(x)dx), j = 1, 2, (3.12)

where uj are two solutions of τu = 0 with W (u1, u2) = 1 and L2
c((a, b); r(x)dx) is the

space of square integrable functions with compact support. For these functionals we
have ker(`1) ∩ ker(`2) ⊆ ker(`). Indeed, let g ∈ ker(`1) ∩ ker(`2), then the function

u(x) = u1(x)

x∫
a

u2(t)g(t) r(t)dt+ u2(x)

b∫
x

u1(t)g(t) r(t)dt, x ∈ (a, b), (3.13)

is a solution of τu = g by Lemma 2.4 and has compact support since g lies in the
kernels of `1 and `2, hence u ∈ dom (T0). Then the Lagrange identity and the property
of (f1, f2) yield

b∫
a

[f1(x)− f(x)]τu(x) r(x)dx = 〈τu, f1〉r −
b∫
a

f(x)τu(x) r(x)dx =

= 〈u, f2〉r −
b∫
a

τf(x)u(x) r(x)dx = 0,

(3.14)

hence g = τu ∈ ker(`). Now applying Lemma 3.3 there are c1, c2 ∈ C such that

b∫
a

[f1(x)− f(x) + c1u1(x) + c2u2(x)]g(x) r(x)dx = 0 (3.15)

for each g ∈ L2
c((a, b); r(x)dx). Hence, obviously f1 ∈ Dτ and τf1 = τf = f2, that

is, f1 ∈ dom (Tmax) and Tmaxf1 = f2. But this shows that T̃0

∗
actually is the graph

of Tmax, which shows that T0 is densely defined with adjoint Tmax. Indeed, if T0

were not densely defined, there would exist 0 6= h ∈ L2((a, b); r(x)dx) ∩ (dom (T0))⊥.
Consequently, if (f1, f2) ∈ T̃0

∗
, then (f1, f2 + h) ∈ T̃0

∗
, contradicting the fact that

T̃0

∗
is the graph of an operator.

The operator T0 is symmetric by the preceding theorem. The closure Tmin of T0

is called the minimal operator,

Tmin = T0 = T ∗∗0 = T ∗max. (3.16)

In order to determine Tmin we need the following lemma on functions in dom (Tmax).
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Lemma 3.5. If fa lies in dom (Tmax) near a and fb lies in dom (Tmax) near b, then
there exists an f ∈ dom (Tmax) such that f = fa near a and f = fb near b.

Proof. Let u1, u2 be a fundamental system of τu = 0 with W (u1, u2) = 1 and let
α, β ∈ (a, b), α < β such that the functionals

Fj(g) =

β∫
α

uj(x)g(x) r(x)dx, g ∈ L2((a, b); r(x)dx), j = 1, 2, (3.17)

are linearly independent. First we will show that there is some u ∈ Dτ such that

u(α) = fa(α), u[1](α) = f [1]
a (α), u(β) = fb(β), u[1](β) = f

[1]
b (β). (3.18)

Indeed, let g ∈ L2((a, b); r(x)dx) and consider the solution u of τu = g with initial
conditions

u(α) = fa(α) and u[1](α) = f [1]
a (α). (3.19)

With Lemma 2.4 one sees that u has the desired properties if(
F2(g)
F1(g)

)
=

(
u1(β) −u2(β)

u
[1]
1 (β) −u[1]

2 (β)

)−1(
fb(β)− c1u1(β)− c2u2(β)

f
[1]
b (β)− c1u[1]

1 (β)− c2u[1]
2 (β)

)
, (3.20)

where c1, c2 ∈ C are the constants appearing in Lemma 2.4. But since the functionals
F1, F2 are linearly independent, we may choose g ∈ L2((a, b); r(x)dx) such that this
equation is valid. Now the function f defined by

f(x) =


fa(x), x ∈ (a, α),

u(x), x ∈ (α, β),

fb(x), x ∈ (β, b),

(3.21)

has the claimed properties.

Theorem 3.6. The minimal operator Tmin is given by

Tminf = τf, f ∈ dom (Tmin) = {g ∈ dom (Tmax) | ∀h ∈ dom (Tmax) :

W (g, h)(a) = W (g, h)(b) = 0}.
(3.22)

Proof. If f ∈ dom (Tmin) = dom (T ∗max) ⊆ dom (Tmax), then

0 = 〈τf, g〉r − 〈f, τg〉r = W (f, g)(b)−W (f, g)(a), g ∈ dom (Tmax) . (3.23)

Given some g ∈ dom (Tmax), there is a ga ∈ dom (Tmax) such that ga=g in a vicinity of
a and ga = 0 in a vicinity of b. Therefore, W (f, g)(a)=W (f, ga)(a)−W (f, ga)(a)=0.
Similarly, one obtains W (f, g)(b) = 0 for each g ∈ dom (Tmax).

Conversely, if f ∈ dom (Tmax) such that for each g ∈ dom (Tmax), W (f, g)(a) =
W (f, g)(b) = 0, then

〈τf, g〉r − 〈f, τg〉r = W (f, g)(b)−W (f, g)(a) = 0, (3.24)

hence f ∈ dom (T ∗max) = dom (Tmin).
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For regular τ on (a, b) we may characterize the minimal operator by the boundary
values of the functions f ∈ dom (Tmax) as follows:

Corollary 3.7. If τ is regular at a and f ∈ dom (Tmax), then

f(a) = f [1](a) = 0 iff ∀g ∈ dom (Tmax) : W (f, g)(a) = 0. (3.25)

A similar result holds at b.

Proof. The claim follows fromW (f, g)(a) = f(a)g[1](a)−f [1](a)g(a) and the fact that
one finds g ∈ dom (Tmax) with prescribed initial values at a. Indeed, one can take g
to coincide with some solution of τu = 0 near a.

Next we will show that Tmin always has self-adjoint extensions.

Theorem 3.8. The deficiency indices n(Tmin) of the minimal operator Tmin are equal
and at most two, that is,

n(Tmin) = dim
(

ran
(

(Tmin − i)
⊥ ))

= dim
(

ran
(

(Tmin + i)
⊥ )) ≤ 2. (3.26)

Proof. The fact that the dimensions are less than two follows from

ran
(
(Tmin ± i)⊥

)
= ker((Tmax ∓ i)), (3.27)

because there are at most two linearly independent solutions of (τ±i)u = 0. Moreover,
equality is due to the fact that Tmin is real with respect to the natural conjugation in
L2((a, b); r(x)dx).

4. WEYL’S ALTERNATIVE

We say τ is in the limit-circle (l.c.) case at a, if for each z ∈ C all solutions of
(τ−z)u = 0 lie in L2((a, b); r(x)dx) near a. Furthermore, we say τ is in the limit-point
(l.p.) case at a if for each z ∈ C there is some solution of (τ − z)u = 0 which does
not lie in L2((a, b); r(x)dx) near a. Similarly, one defines the l.c. and l.p. cases at
the endpoint b. It is clear that τ is only either in the l.c. or in the l.p. case at some
boundary point. The next lemma shows that τ indeed is in one of these cases at each
endpoint, which is known as Weyl’s alternative.

Lemma 4.1. If there is a z0 ∈ C such that all solutions of (τ − z0)u = 0 lie in
L2((a, b); r(x)dx) near a, then τ is in the l.c. case at a. A similar result holds at the
endpoint b.

Proof. Let z ∈ C and u be a solution of (τ − z)u = 0. If u1, u2 are a fundamental
system of (τ − z0)u = 0 with W (u1, u2) = 1, then u1 and u2 lie in L2((a, b); r(x)dx)
near a by assumption. Therefore, there is some c ∈ (a, b) such that the function
v = |u1|+ |u2| satisfies

|z − z0|
c∫
a

v(t)2 r(t)dt ≤ 1

2
. (4.1)
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Since u is a solution of (τ − z0)u = (z − z0)u we have for each x ∈ (a, b),

u(x) = c1u1(x) + c2u2(x) + (z − z0)

x∫
c

(u1(x)u2(t)− u1(t)u2(x))u(t)r(t)dt, (4.2)

for some c1, c2 ∈ C by Lemma 2.4. Hence, with C = max(|c1|, |c2|), one estimates

|u(x)| ≤ Cv(x) + |z − z0|v(x)

c∫
x

v(t)|u(t)| r(t)dt, x ∈ (a, c), (4.3)

and furthermore, using Cauchy-Schwarz,

|u(x)|2 ≤ 2C2v(x)2 + 2|z − z0|2v(x)2

c∫
x

v(t)2 r(t)dt

c∫
x

|u(t)|2 r(t)dt. (4.4)

Now an integration yields for each s ∈ (a, c),

c∫
s

|u(t)|2r(t)dt ≤

≤ 2C2

c∫
a

v(t)2r(t)dt+ 2|z − z0|2
 c∫
a

v(t)2r(t)dt

2 c∫
s

|u(t)|2r(t)dt ≤

≤ 2C2

c∫
a

v(t)2r(t)dt+
1

2

c∫
s

|u(t)|2r(t)dt,

(4.5)

and therefore,
c∫
s

|u(t)|2r(t)dt ≤ 4C2

c∫
a

v(t)2 r(t)dt <∞. (4.6)

Since s ∈ (a, c) was arbitrary, this yields the claim.

In particular, if τ is regular at an endpoint, then τ is in the l.c. case there since
each solution of (τ − z)u = 0 has a continuous extension to this endpoint.

With r(Tmin) we denote the set of all points of regular type of Tmin, that is, all z ∈ C
such that (Tmin − z)−1 is a bounded operator (not necessarily everywhere defined).
Recall that dim ran(Tmin − z)⊥ is constant on every connected component of r(Tmin)
([156, Theorem 8.1]) and thus dim

(
ran

(
(Tmin−z)⊥

))
= dim(ker(Tmax−z)) = n(Tmin)

for every z ∈ r(Tmin).

Lemma 4.2. For each z ∈ r(Tmin) there is a nontrivial solution of (τ−z)u = 0 which
lies in L2((a, b); r(x)dx) near a. A similar result holds at the endpoint b.
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Proof. First assume that τ is regular at b. If there were no solution of (τ − z)u = 0
which lies in L2((a, b); r(x)dx) near a, we would have ker(Tmax − z) = {0} and hence
n(Tmin) = 0, that is, Tmin = Tmax. But since there is an f ∈ dom (Tmax) with

f(b) = 1 and f [1](b) = 0, (4.7)

this is a contradiction to Theorem 3.6.
For the general case pick some c ∈ (a, b) and consider the minimal operator Tc in

L2((a, c); r(x)dx) induced by τ |(a,c). Then z is a point of regular type of Tc. Indeed,
we can extend each fc ∈ dom (Tc) with zero and obtain a function f ∈ dom (Tmin).
For these functions and some positive constant C,

‖(Tc − z)fc‖L2((a,c);r(x)dx) = ‖(Tmin − z)f‖2,r ≥ C ‖f‖2,r = C ‖fc‖L2((a,c);r(x)dx) .

(4.8)

Now since the solutions of (τ |(a,c) − z)u = 0 are exactly the solutions of (τ − z)u = 0
restricted to (a, c), the claim follows from what we already proved.

Corollary 4.3. If z ∈ r(Tmin) and τ is in the l.p. case at a, then there is a unique non-
trivial solution of (τ−z)u = 0 (up to scalar multiples ), which lies in L2((a, b); r(x)dx)
near a. A similar result holds at the endpoint b.

Proof. If there were two linearly independent solutions in L2((a, b); r(x)dx) near a, τ
would be l.c. at a.

Lemma 4.4. τ is in the l.p. case at a if and only if

W (f, g)(a) = 0, f, g ∈ dom (Tmax) . (4.9)

τ is in the l.c. case at a if and only if there is a f ∈ dom (Tmax) such that

W (f, f)(a) = 0 and W (f, g)(a) 6= 0 for some g ∈ dom (Tmax) . (4.10)

Similar results hold at the endpoint b.

Proof. Let τ be in the l.c. case at a and u1, u2 be a real fundamental system of τu = 0
with W (u1, u2) = 1. Both, u1 and u2 lie in dom (Tmax) near a. Hence, there are f ,
g ∈ dom (Tmax) with f = u1 and g = u2 near a and f = g = 0 near b. Consequently,
we obtain

W (f, g)(a) = W (u1, u2)(a) = 1 and W (f, f)(a) = W (u1, u1)(a) = 0, (4.11)

since u1 is real.
Now assume τ is in the l.p. case at a and regular at b. Then dom (Tmax)

is a two-dimensional extension of dom (Tmin), since dim(ker(Tmax − i)) = 1 by
Corollary 4.3. Let v, w ∈ dom (Tmax) with v = w = 0 in a vicinity of a and

v(b) = w[1](b) = 1 and v[1](b) = w(b) = 0. (4.12)
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Then

dom (Tmax) = dom (Tmin) + span{v, w}, (4.13)

since v and w are linearly independent modulo dom (Tmin) and they do not lie in
dom (Tmin). Then for each f , g ∈ dom (Tmax) there are f0, g0 ∈ dom (Tmin) such that
f = f0 and g = g0 in a vicinity of a and therefore,

W (f, g)(a) = W (f0, g0)(a) = 0. (4.14)

Now if τ is not regular at b we pick some c ∈ (a, b). Then for each f ∈ dom (Tmax),
f |(a,c) lies in the domain of the maximal operator induced by τ |(a,c) and the claim
follows from what we already proved.

Lemma 4.5. Let τ be in the l.p. case at both endpoints and z ∈ C\R. Then there is
no nontrivial solution of (τ − z)u = 0 in L2((a, b); r(x)dx).

Proof. If u ∈ L2((a, b); r(x)dx) is a solution of (τ − z)v = 0, then u is a solution of
(τ − z)w = 0 and both u and u lie in dom (Tmax). Now the Lagrange identity yields

W (u, u)(β)−W (u, u)(α) = (z − z)
β∫
α

|u(t)|2 r(t)dt = 2iIm(z)

β∫
α

|u(t)|2 r(t)dt.

(4.15)

If α → a and β → b, the left-hand side converges to zero by Lemma 4.4 and the
right-hand side converges to 2i Im(z)‖u‖2,r, hence ‖u‖2,r = 0.

Theorem 4.6. The deficiency indices of the minimal operator Tmin are given by

n(Tmin) =


0, if τ is l.c. at no boundary point,
1, if τ is l.c. at exactly one boundary point,
2, if τ is l.c. at both boundary points.

(4.16)

Proof. If τ is in the l.c. case at both endpoints, all solutions of (τ − i)u = 0 lie in
L2((a, b); r(x)dx) and hence in dom (Tmax). Therefore, n(Tmin)=dim(ker(Tmax−i))=2.
In the case when τ is in the l.c. case at exactly one endpoint, there is (up to scalar
multiples) exactly one nontrivial solution of (τ − i)u = 0 in L2((a, b); r(x)dx), by
Corollary 4.3. Now if τ is in the l.p. case at both endpoints, we have ker(Tmax−i) = {0}
by Lemma 4.5 and hence n(Tmin) = 0.

5. SELF-ADJOINT REALIZATIONS

We are interested in the self-adjoint restrictions of Tmax (or equivalently the
self-adjoint extensions of Tmin). To this end, recall that we introduced the convenient
short-hand notation

W b
a(f, g) = W (f, g)(b)−W (f, g)(a), f, g ∈ dom (Tmax) . (5.1)
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Theorem 5.1. Some operator S is a self-adjoint restriction of Tmax if and only if

Sf = τf, f ∈ dom (S) =
{
f ∈ dom (Tmax) | ∀g ∈ dom (S) : W b

a(f, g) = 0
}
. (5.2)

Proof. We denote the right-hand side of (5.2) by dom (S0). First assume S is a
self-adjoint restriction of Tmax. If f ∈ dom (S) then

0 = 〈τf, g〉r − 〈f, τg〉r = W b
a(f, g) (5.3)

for each g ∈ dom (S) so that f ∈ dom (S0). Now if f ∈ dom (S0), then

0 = W b
a(f, g) = 〈τf, g〉r − 〈f, τg〉r (5.4)

for each g ∈ dom (S), hence f ∈ dom (S∗) = dom (S).
Conversely, assume dom (S) = dom (S0). Then S is symmetric since 〈τf, g〉r =

〈f, τg〉r for each f , g ∈ dom (S). Now let f ∈ dom (S∗) ⊆ dom (T ∗min) = dom (Tmax),
then

0 = 〈τf, g〉r − 〈f, τg〉r = W b
a(f, g) (5.5)

for each g ∈ dom (S). Hence, f ∈ dom (S0) = dom (S), and it follows that S is
self-adjoint.

The aim of this section is to determine all self-adjoint restrictions of Tmax. If both
endpoints are in the l.p. case this is an immediate consequence of Theorem 4.6.

Theorem 5.2. If τ is in the l.p. case at both endpoints then Tmin = Tmax is a
self-adjoint operator.

Next we turn to the case when one endpoint is in the l.c. case and the other one is
in the l.p. case. But before we do this, we need some more properties of the Wronskian.

Lemma 5.3. Let v ∈ dom (Tmax) such that W (v, v)(a) = 0 and suppose there is an
h ∈ dom (Tmax) with W (h, v)(a) 6= 0. Then for each f , g ∈ dom (Tmax) we have

W (f, v)(a) = 0 if and only if W (f, v)(a) = 0 (5.6)

and

W (f, v)(a) = W (g, v)(a) = 0 implies W (f, g)(a) = 0. (5.7)

Similar results hold at the endpoint b.

Proof. Choosing f1 = v, f2 = v, f3 = h and f4 = h in the Plücker identity, we infer
that alsoW (h, v)(a) 6= 0. Now let f1 = f , f2 = v, f3 = v and f4 = h, then the Plücker
identity yields (5.6), whereas f1 = f , f2 = g, f3 = v and f4 = h yields (5.7).

Theorem 5.4. Suppose τ is in the l.c. case at a and in the l.p. case at b. Then
some operator S is a self-adjoint restriction of Tmax if and only if there is a v ∈
dom (Tmax) \dom (Tmin) with W (v, v)(a) = 0 such that

Sf = τf, f ∈ dom (S) = {g ∈ dom (Tmax) |W (g, v)(a) = 0} . (5.8)

A similar result holds if τ is in the l.c. case at b and in the l.p. case at a.
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Proof. Since n(Tmin) = 1, the self-adjoint extensions of Tmin are precisely the
one-dimensional, symmetric extensions of Tmin. Hence some operator S is a self-adjoint
extension of Tmin if and only if there is a v ∈ dom (Tmax) \dom (Tmin) with
W (v, v)(a) = 0 such that

Sf = τf, f ∈ dom (S) = dom (Tmin) + span {v} . (5.9)

Hence, we have to prove that

dom (Tmin) + span {v} = {g ∈ dom (Tmax) |W (g, v)(a) = 0} . (5.10)

The subspace on the left-hand side is included in the right one because of Theorem
3.6 and W (v, v)(a) = 0. On the other hand, if the subspace on the right-hand side
were larger, then it would coincide with dom (Tmax) and, hence, would imply v ∈
dom (Tmin).

Two self-adjoint restrictions are distinct if and only if the corresponding functions
v are linearly independent modulo Tmin. Furthermore, v can always be chosen such
that v is equal to some real solution of (τ − z)u = 0 with z ∈ R in some vicinity of a.

It remains to consider the case when both endpoints are in the l.c. case.

Theorem 5.5. Suppose τ is in the l.c. case at both endpoints. Then some operator S
is a self-adjoint restriction of Tmax if and only if there are v, w ∈ dom (Tmax), linearly
independent modulo dom (Tmin), with

W b
a(v, v) = W b

a(w,w) = W b
a(v, w) = 0 (5.11)

such that

Sf = τf, f ∈ dom (S) =
{
g ∈ dom (Tmax) |W b

a(g, v) = W b
a(g, w) = 0

}
. (5.12)

Proof. Since n(Tmin) = 2 the self-adjoint restrictions of Tmax are precisely the
two-dimensional, symmetric extensions of Tmin. Hence, an operator S is a self-adjoint
restriction of Tmax if and only if there are v, w ∈ dom (Tmax), linearly independent
modulo dom (Tmin), with (5.11) such that

Sf = τf, f ∈ dom (S) = dom (Tmin) + span {v, w} . (5.13)

Therefore, we have to prove that

dom (Tmin) + span {v, w} =
{
f ∈ dom (Tmax) |W b

a(f, v) = W b
a(f, w) = 0

}
:= D.

(5.14)
Indeed, the subspace on the left-hand side is contained in D by Theorem 3.6 and
(5.11). In order to prove that it is also not larger, consider the linear functionals Fv,
Fw on dom (Tmax) defined by

Fv(f) = W b
a(f, v) and Fw(f) = W b

a(f, w) for f ∈ dom (Tmax) . (5.15)
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The intersection of the kernels of these functionals is precisely D. Furthermore, these
functionals are linearly independent. Indeed, assume c1, c2 ∈ C and c1Fv + c2Fw = 0,
then for all f ∈ dom (Tmax),

0 = c1Fv(f) + c2Fw(f) = c1W
b
a(f, v) + c2W

b
a(f, w) = W b

a(f, c1v + c2w). (5.16)

However, by Lemma 3.5 this yields

W (f, c1v + c2w)(a) = W (f, c1v + c2w)(b) = 0 (5.17)

for all f ∈ dom (Tmax) and consequently c1v + c2w ∈ dom (Tmin). Now since v, w are
linearly independent modulo dom (Tmin) we infer that c1 = c2 = 0 and Lemma 3.3
implies that

ker(Fv) 6⊆ ker(Fw) and ker(Fw) 6⊆ ker(Fv). (5.18)

Hence, there exist fv, fw ∈ dom (Tmax) such that W b
a(fv, v) = W b

a(fw, w) = 0, but
for which W b

a(fv, w) 6= 0 and W b
a(fw, v) 6= 0. Both fv and fw do not lie in D and are

linearly independent; hence, D is at most a two-dimensional extension of dom (Tmin).

In the case when τ is in the l.c. case at both endpoints, we may divide the
self-adjoint restrictions of Tmax into two classes. Indeed, we say some operator S
is a self-adjoint restriction of Tmax with separated boundary conditions if it is of the
form

Sf = τf, f ∈ dom (S) = {g ∈ dom (Tmax) |W (g, v)(a) = W (g, w)(b) = 0} , (5.19)

where v, w ∈ dom (Tmax) such that W (v, v)(a) = W (w,w)(b) = 0 but W (h, v)(a) 6=
0 6= W (h,w)(b) for some h ∈ dom (Tmax). Conversely, each operator of this form
is a self-adjoint restriction of Tmax by Theorem 5.5 and Lemma 3.5. The remain-
ing self-adjoint restrictions are called self-adjoint restrictions of Tmax with coupled
boundary conditions.

6. BOUNDARY CONDITIONS

In this section, let w1, w2 ∈ dom (Tmax) with

W (w1, w2)(a) = 1 and W (w1, w1)(a) = W (w2, w2)(a) = 0, (6.1)

if τ is in the l.c. case at a and

W (w1, w2)(b) = 1 and W (w1, w1)(b) = W (w2, w2)(b) = 0, (6.2)

if τ is in the l.c. case at b. We will describe the self-adjoint restrictions of Tmax in
terms of the linear functionals BC1

a , BC2
a , BC1

b and BC2
b on dom (Tmax), defined by

BC1
a(f) = W (f, w2)(a) and BC2

a(f) = W (w1, f)(a) for f ∈ dom (Tmax) , (6.3)
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if τ is in the l.c. case at a and

BC1
b (f) = W (f, w2)(b) and BC2

b (f) = W (w1, f)(b) for f ∈ dom (Tmax) , (6.4)

if τ is in the l.c. case at b.
If τ is in the l.c. case at some endpoint, functions with (6.1) (resp., with (6.2))

always exist. Indeed, one may take them to coincide near the endpoint with some real
solutions of (τ − z)u = 0 with W (u1, u2) = 1 for some z ∈ R and use Lemma 3.5.

In the regular case these functionals may take the form of point evaluations of the
function and its quasi-derivative at the boundary point.

Lemma 6.1. Suppose τ is regular at a. Then there are w1, w2 ∈ dom (Tmax) with
(6.1) such that the corresponding linear functionals BC1

a and BC2
a satisfy

BC1
a(f) = f(a) and BC2

a(f) = f [1](a) for f ∈ dom (Tmax) . (6.5)

The analogous result holds at the endpoint b.

Proof. Take w1, w2 ∈ dom (Tmax) to coincide near a with the real solutions u1, u2 of
τu = 0 with

u1(a) = u
[1]
2 (a) = 1 and u

[1]
1 (a) = u2(a) = 0. (6.6)

Using the Plücker identity one easily obtains the equality

W (f, g)(a) = BC1
a(f)BC2

a(g)−BC2
a(f)BC1

a(g), f, g ∈ dom (Tmax) . (6.7)

Then for each v ∈ dom (Tmax) \dom (Tmin) with W (v, v)(a) = 0 and W (h, v)(a) 6= 0
for some h ∈ dom (Tmax), one may show that there is a ϕa ∈ [0, π) such that

W (f, v)(a) = 0 iff BC1
a(f) cos(ϕa)−BC2

a(f) sin(ϕa) = 0, f ∈ dom (Tmax) . (6.8)

Conversely, if some ϕa ∈ [0, π) is given, then there exists a v ∈ dom (Tmax), not
belonging to dom (Tmin), with W (v, v)(a) = 0 and W (h, v)(a) 6= 0 for some h ∈
dom (Tmax) such that

W (f, v)(a) = 0 iff BC1
a(f) cos(ϕa)−BC2

a(f) sin(ϕa) = 0, f ∈ dom (Tmax) . (6.9)

Using this, Theorem 5.4 immediately yields the following characterization of the
self-adjoint restrictions of Tmax in terms of the boundary functionals.

Theorem 6.2. Suppose τ is in the l.c. case at a and in the l.p. case at b. Then some
operator S is a self-adjoint restriction of Tmax if and only if there is some ϕa ∈ [0, π)
such that

Sf = τf,

f ∈ dom (S) =
{
g ∈ dom (Tmax)

∣∣BC1
a(g) cos(ϕa)−BC2

a(g) sin(ϕa) = 0
}
.

(6.10)

A similar result holds if τ is in the l.c. case at b and in the l.p. case at a.
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Next we will give a characterization of the self-adjoint restrictions of Tmax if τ is
in the l.c. case at both endpoints.

Theorem 6.3. Suppose τ is in the l.c. case at both endpoints. Then some operator
S is a self-adjoint restriction of Tmax if and only if there are matrices Ba, Bb ∈ C2×2

with

rank(Ba|Bb) = 2 and BaJB
∗
a = BbJB

∗
b with J =

(
0 −1
1 0

)
, (6.11)

such that

Sf = τf, f ∈ dom (S) =

{
g ∈ dom (Tmax)

∣∣∣∣Ba(BC1
a(g)

BC2
a(g)

)
= Bb

(
BC1

b (g)
BC2

b (g)

)}
.

(6.12)

Proof. If S is a self-adjoint restriction of Tmax, there exist v, w ∈ dom (Tmax), linearly
independent modulo dom (Tmin), with

W b
a(v, v) = W b

a(w,w) = W b
a(v, w) = 0, (6.13)

such that

dom (S) =
{
f ∈ dom (Tmax)

∣∣W b
a(f, v) = W b

a(f, w) = 0
}
. (6.14)

Let Ba, Bb ∈ C2×2 be defined by

Ba =

(
BC2

a(v) −BC1
a(v)

BC2
a(w) −BC1

a(w)

)
and Bb =

(
BC2

b (v) −BC1
b (v)

BC2
b (w) −BC1

b (w)

)
. (6.15)

Then a simple computation shows that

BaJB
∗
a = BbJB

∗
b iff W b

a(v, v) = W b
a(w,w) = W b

a(v, w) = 0. (6.16)

In order to prove rank (Ba|Bb) = 2, let c1, c2 ∈ C and

0 = c1


BC2

a(v)
−BC1

a(v)
BC2

b (v)
−BC1

b (v)

+ c2


BC2

a(w)
−BC1

a(w)
BC2

b (w)
−BC1

b (w)

 =


BC2

a(c1v + c2w)
−BC1

a(c1v + c2w)
BC2

b (c1v + c2w)
−BC1

b (c1v + c2w)

 . (6.17)

Hence, the function c1v + c2w lies in the kernel of BC1
a , BC2

a , BC1
b and BC2

b , and
therefore,W (c1v+c2w, f)(a) = 0 andW (c1v+c2w, f)(b) = 0 for each f ∈ dom (Tmax).
This means that c1v+c2w ∈ dom (Tmin) and hence c1 = c2 = 0, since v, w are linearly
independent modulo dom (Tmin). This proves that (Ba|Bb) has rank two. Furthermore,
a calculation yields that for f ∈ dom (Tmax)

W b
a(f, v) = W b

a(f, w) = 0 iff Ba

(
BC1

a(f)
BC2

a(f)

)
= Bb

(
BC1

b (f)
BC2

b (f)

)
, (6.18)

which proves that S is given as in the claim.
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Conversely, let Ba, Bb ∈ C2×2 with the claimed properties be given. Then there
are v, w ∈ dom (Tmax) such that

Ba =

(
BC2

a(v) −BC1
a(v)

BC2
a(w) −BC1

a(w)

)
and Bb =

(
BC2

b (v) −BC1
b (v)

BC2
b (w) −BC1

b (w)

)
. (6.19)

In order to prove that v and w are linearly independent modulo dom (Tmin), let c1,
c2 ∈ C and c1v + c2w ∈ dom (Tmin), then

0 =


BC2

a(c1v + c2w)
−BC1

a(c1v + c2w)
BC2

b (c1v + c2w)
−BC1

b (c1v + c2w)

 = c1


BC2

a(v)
−BC1

a(v)
BC2

b (v)
−BC1

b (v)

+ c2


BC2

a(w)
−BC1

a(w)
BC2

b (w)
−BC1

b (w)

 . (6.20)

Now the rows of (Ba|Bb) are linearly independent, hence c1 = c2 = 0. Since again

BaJB
∗
a = BbJB

∗
b iff W b

a(v, v) = W b
a(w,w) = W b

a(v, w) = 0, (6.21)

the functions v, w satisfy the assumptions of Theorem 5.5. As above, one infers once
again that for f ∈ dom (Tmax),

Ba

(
BC1

a(f)
BC2

a(f)

)
= Bb

(
BC1

b (f)
BC2

b (f)

)
iff W b

a(f, w) = W b
a(f, w) = 0. (6.22)

Hence, S is a self-adjoint restriction of Tmax by Theorem 5.5.

As in the preceding section, if τ is in the l.c. case at both endpoints, we may divide
the self-adjoint restrictions of Tmax into two classes.

Theorem 6.4. Suppose τ is in the l.c. case at both endpoints. Then some operator
S is a self-adjoint restriction of Tmax with separated boundary conditions if and only
if there are ϕa, ϕb ∈ [0, π) such that

Sf = τf, (6.23)

f ∈ dom (S) =

{
g ∈ dom (Tmax)

∣∣∣∣ BC1
a(g) cos(ϕa)−BC2

a(g) sin(ϕa) = 0,
BC1

b (g) cos(ϕb)−BC2
b (g) sin(ϕb) = 0

}
.

Furthermore, S is a self-adjoint restriction of Tmax with coupled boundary conditions
if and only if there are φ ∈ [0, π) and R ∈ R2×2 with det (R) = 1 (i.e., R ∈ SL2(R))
such that

Sf = τf,

f ∈ dom (S) =

{
g ∈ dom (Tmax)

∣∣∣∣ (BC1
b (g)

BC2
b (g)

)
= eiφR

(
BC1

a(g)
BC2

a(g)

)}
.

(6.24)

Proof. Using (6.8) and (6.9) one easily sees that the self-adjoint restrictions of Tmax

with separated boundary conditions are precisely the ones given in (6.23). Hence, we
only have to prove the second claim. Let S be a self-adjoint restriction of Tmax with
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coupled boundary conditions and Ba, Bb ∈ C2×2 matrices as in Theorem 6.3. Then
by (6.11) either both of them have rank one or both have rank two. In the first case
we have

Baz = c>a zwa and Bbz = c>b zwb (6.25)

for some ca, cb, wa, wb ∈ C2\{(0, 0)}. Since the vectors wa and wb are linearly inde-
pendent (recall that rank(Ba|Bb) = 2) one infers that

Ba

(
BC1

a(f)
BC2

a(f)

)
= Bb

(
BC1

b (f)
BC2

b (f)

)
iff Ba

(
BC1

a(f)
BC2

a(f)

)
= Bb

(
BC1

b (f)
BC2

b (f)

)
= 0. (6.26)

In particular,

BaJB
∗
a = BbJB

∗
b iff BaJB

∗
a = BbJB

∗
b = 0. (6.27)

Now let v ∈ dom (Tmax) with BC2
a(v) = c1 and BC1

a(v) = −c2. A simple calculation
yields

0 = BaJB
∗
a = W (w1, w2)(a)(BC1

a(v)BC2
a(v)−BC2

a(v)BC1
a(v))wawa

> =

= W (w1, w2)(a)W (v, v)(a)wawa
>.

(6.28)

Hence, W (v, v)(a) = 0 and since (BC1
a(v), BC2

a(v)) = (c2, c1) 6= 0, v 6∈ dom (Tmin).
Furthermore, for each f ∈ dom (Tmax),

Ba

(
BC1

a(f)
BC2

a(f)

)
= (BC1

a(f)BC2
a(v)−BC2

a(f)BC1
a(v))wa = W (f, v)(a)wa. (6.29)

Similarly one obtains a function f ∈ dom (Tmax) \dom (Tmin) with W (w,w)(b) = 0
and

Bb

(
BC1

b (f)
BC2

b (f)

)
= W (f, w)(b)wb, f ∈ dom (Tmax) . (6.30)

However, this shows that S is a self-adjoint restriction with separated boundary con-
ditions. Hence, both matrices, Ba and Bb, have rank two. If we set B = B−1

b Ba, then
B = J(B−1)∗J∗ and therefore, |det(B)| = 1; hence, det(B) = e2iφ for some φ ∈ [0, π).
If we set R = e−iφB, one infers from the identities

B =

(
b11 b12

b21 b22

)
= J(B−1)∗J∗ = e2iφ

(
0 −1
1 0

)(
b22 −b21

−b12 b11

)(
0 1
−1 0

)
=

= e2iφ

(
b11 b12

b21 b22

)
,

(6.31)

that R ∈ R2×2 with det(R) = 1. Now because for each f ∈ dom (Tmax)

Ba

(
BC1

a(f)
BC2

a(f)

)
= Bb

(
BC1

b (f)
BC2

b (f)

)
iff
(
BC1

b (f)
BC2

b (f)

)
= eiφR

(
BC1

a(f)
BC2

a(f)

)
, (6.32)

S has the claimed representation.
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Conversely, if S is of the form (6.24), then Theorem 6.3 shows that it is a
self-adjoint restriction of Tmax. Now if S were a self-adjoint restriction with separated
boundary conditions, there would exist an f ∈ dom (S) \dom (Tmin), vanishing in some
vicinity of a. By the boundary condition we would also have BC1

b (f) = BC2
b (f) = 0,

that is, f ∈ dom (Tmin). Hence, S cannot be a self-adjoint restriction with separated
boundary conditions.

We note that the separated self-adjoint extensions described in (6.23) are always
real (that is, commute with the antiunitary operator of complex conjugation, resp.,
the natural conjugation in L2((a, b); r(x)dx)). The coupled boundary conditions in
(6.24) are real if and only if φ = 0 (see also [160, Sect. 4.2]).

7. THE SPECTRUM AND THE RESOLVENT

In this section we will compute the resolvent Rz = (S − zIr)
−1 of a self-adjoint

restriction S of Tmax. First we deal with the case when both endpoints are in the l.c.
case.

Theorem 7.1. Suppose τ is in the l.c. case at both endpoints and S is a self-adjoint
restriction of Tmax. Then for each z ∈ ρ(S), the resolvent Rz is an integral operator

Rzg(x) =

b∫
a

Gz(x, y)g(y) r(y)dy, x ∈ (a, b), g ∈ L2((a, b); r(x)dx), (7.1)

with a square integrable kernel Gz, that is, Rz is a Hilbert-Schmidt operator, Rz ∈
B2

(
L2((a, b); r(x)dx)

)
. For any two given linearly independent solutions u1, u2 of

(τ − z)u = 0, there are coefficients m±ij(z) ∈ C, i, j ∈ {1, 2}, such that the kernel is
given by

Gz(x, y) =

{∑2
i,j=1m

+
ij(z)ui(x)uj(y), y ∈ (a, x],∑2

i,j=1m
−
ij(z)ui(x)uj(y), y ∈ [x, b).

(7.2)

Proof. Let u1, u2 be two linearly independent solutions of (τ − z)u = 0 with
W (u1, u2) = 1. If g ∈ L2

c((a, b); r(x)dx), then Rzg is a solution of (τ − z)f = g which
lies in dom (S). Hence, from Lemma 2.4 we get for suitable constants c1, c2 ∈ C

Rzg(x) = u1(x)

c1 +

x∫
a

u2(t)g(t) r(t)dt

+ u2(x)

c2 − x∫
a

u1(t)g(t) r(t)dt

 (7.3)

for x ∈ (a, b). Furthermore, since Rzg satisfies the boundary conditions, we obtain

Ba

(
BC1

a(Rzg)
BC2

a(Rzg)

)
= Bb

(
BC1

b (Rzg)
BC2

b (Rzg)

)
(7.4)
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for some suitable matrices Ba, Bb ∈ C2×2 as in Theorem 6.3. Now since g has compact
support, we infer that(

BC1
a(Rzg)

BC2
a(Rzg)

)
=

(
c1BC

1
a(u1) + c2BC

1
a(u2)

c1BC
2
a(u1) + c2BC

2
a(u2)

)
=

(
BC1

a(u1) BC1
a(u2)

BC2
a(u1) BC2

a(u2)

)(
c1
c2

)
=

= Mα

(
c1
c2

)
, (7.5)

as well as

(
BC1

b (Rzg)
BC2

b (Rzg)

)
=


(
c1 +

b∫
a

u2(t)g(t) r(t)dt

)
BC1

b (u1)(
c1 +

b∫
a

u2(t)g(t) r(t)dt

)
BC2

b (u1)

+

+


(
c2 −

b∫
a

u1(t)g(t) r(t)dt

)
BC1

b (u2)(
c2 −

b∫
a

u1(t)g(t) r(t)dt

)
BC2

b (u2)

 =

=

(
BC1

b (u1) BC1
b (u2)

BC2
b (u1) BC2

b (u2)

)c1 +
b∫
a

u2(t)g(t) r(t)dt

c2 −
b∫
a

u1(t)g(t) r(t)dt

 =

= Mβ

(
c1
c2

)
+Mβ


b∫
a

u2(t)g(t) r(t)dt

−
b∫
a

u1(t)g(t) r(t)dt

 .

(7.6)

Consequently,

(BaMα −BbMβ)

(
c1
c2

)
= BbMβ


b∫
a

u2(t)g(t) r(t)dt

−
b∫
a

u1(t)g(t) r(t)dt

 . (7.7)

Now if BaMα −BbMβ were not invertible, we would have(
d1

d2

)
∈ C2\{(0, 0)} with BaMα

(
d1

d2

)
= BbMβ

(
d1

d2

)
, (7.8)

and the function d1u1 + d2u2 would be a solution of (τ − z)u = 0 satisfying the
boundary conditions of S, and consequently would be an eigenvector with eigenvalue z.
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However, this would contradict z ∈ ρ(S), and it follows that BaMα −BbMβ must be
invertible. Since

(
c1
c2

)
= (BaMα −BbMβ)

−1
BbMβ


b∫
a

u2(t)g(t) r(t)dt

−
b∫
a

u1(t)g(t) r(t)dt

 , (7.9)

the constants c1 and c2 may be written as linear combinations of
b∫
a

u2(t)g(t) r(t)dt and
b∫
a

u1(t)g(t) r(t)dt, (7.10)

where the coefficients are independent of g. Using equation (7.3) one verifies that
Rzg has an integral-representation with a function Gz as claimed. The function Gz is
square-integrable, since the solutions u1 and u2 lie in L2((a, b); r(x)dx) by assumption.
Finally, since the operator Kz defined

Kzg(x) =

b∫
a

Gz(x, y)g(y) r(y)dy, x ∈ (a, b), g ∈ L2((a, b); r(x)dx), (7.11)

on L2((a, b); r(x)dx), and the resolvent Rz are bounded, the claim follows since they
coincide on a dense subspace.

Since the resolvent Rz is compact, in fact, Hilbert-Schmidt, this implies discrete-
ness of the spectrum.

Corollary 7.2. Suppose τ is in the l.c. case at both endpoints and S is a self-adjoint
restriction of Tmax. Then S has purely discrete spectrum, that is, σ(S) = σd(S).
Moreover, ∑

λ∈σ(S)

1

1 + λ2
<∞ and dim(ker(S − λ)) ≤ 2, λ ∈ σ(S). (7.12)

If S is a self-adjoint restriction of Tmax with separated boundary conditions or if
(at least) one endpoint is in the l.c. case, then the resolvent has a simpler form.

Theorem 7.3. Suppose S is a self-adjoint restriction of Tmax (with separated bound-
ary conditions if τ is in the l.c. at both endpoints) and z ∈ ρ(S). Furthermore, let ua
and ub be nontrivial solutions of (τ − z)u = 0, such that

ua

{
satisfies the boundary condition at a if τ is in the l.c. case at a,
lies in L2((a, b); r(x)dx) near a if τ is in the l.p. case at a,

(7.13)

and

ub

{
satisfies the boundary condition at b if τ is in the l.c. case at b,
lies in L2((a, b); r(x)dx) near b if τ is in the l.p. case at b.

(7.14)
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Then the resolvent Rz is given by

Rzg(x) =

b∫
a

Gz(x, y)g(y) r(y)dy, x ∈ (a, b), g ∈ L2((a, b); r(x)dx), (7.15)

where

Gz(x, y) =
1

W (ub, ua)

{
ua(y)ub(x), y ∈ (a, x],

ua(x)ub(y), y ∈ [x, b).
(7.16)

Proof. The functions ua, ub are linearly independent; otherwise, they would be eigen-
vectors of S with eigenvalue z. Hence, they form a fundamental system of (τ−z)u = 0.
Now for each f ∈ L2((a, b); r(x)dx) we define a function fg by

fg(x) = W (ub, ua)−1

ub(x)

x∫
a

ua(t)g(t) r(t)dt+ ua(x)

b∫
x

ub(t)g(t) r(t)dt

 ,

x ∈ (a, b). (7.17)

If f ∈ L2
c((a, b); r(x)dx), then fg is a solution of (τ−z)f = g by Lemma 2.4. Moreover,

fg is a scalar multiple of ua near a and a scalar multiple of ub near b. Hence, the
function fg satisfies the boundary conditions of S and therefore, Rzg = fg. Now if
g ∈ L2((a, b); r(x)dx) is arbitrary and gn ∈ L2

c((a, b); r(x)dx) is a sequence with gn →
g as n→∞, we obtain Rzgn → Rzg since the resolvent is bounded. Furthermore, fgn
converges pointwise to fg, hence Rzg = fg.

If τ is in the l.p. case at some endpoint, then Corollary 4.3 shows that there is
always a, unique up to scalar multiples, nontrivial solution of (τ − z)u = 0, lying in
L2((a, b); r(x)dx) near this endpoint. Also if τ is in the l.c. case at some endpoint,
there exists a, unique up to scalar multiples, nontrivial solution of (τ − z)u = 0,
satisfying the boundary condition at this endpoint. Hence, functions ua and ub, as in
Theorem 7.3 always exist.

Corollary 7.4. If S is a self-adjoint restriction of Tmax (with separated boundary
conditions if τ is in the l.c. at both endpoints ), then all eigenvalues of S are simple.

Proof. Suppose λ ∈ R is an eigenvalue and ui ∈ dom (S) with τui = λui for i = 1, 2,
that is, they are solutions of (τ−λ)u = 0. If τ is in the l.p. case at some endpoint, then
clearly the Wronskian W (u1, u2) vanishes. Otherwise, since both functions satisfy the
same boundary conditions this follows using the Plücker identity.

Since the deficiency index of Tmin is finite, the essential spectrum of self-adjoint
realizations is independent of the boundary conditions, that is, all self-adjoint restric-
tions of Tmax have the same essential spectrum (cf., e.g., [156, Theorem 8.18]) We
conclude this section by proving that the essential spectrum of the self-adjoint restric-
tions of Tmax is determined by the behavior of the coefficients in some arbitrarily small
neighborhood of the endpoints. In order to state this result we need some notation.
Fix some c ∈ (a, b) and denote by τ |(a,c) (resp., by τ |(c,b)) the differential expression
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on (a, c) (resp., on (c, b)) corresponding to our coefficients restricted to (a, c) (resp.,
to (c, b)). Furthermore, let S(a,c) (resp., S(c,b)) be some self-adjoint extension of τ |(a,c)
(resp., of τ |(c,b)).
Theorem 7.5. For each c ∈ (a, b) we have

σe (S) = σe
(
S(a,c)

)
∪ σe

(
S(c,b)

)
. (7.18)

Proof. If one identifies L2((a, b); r(x)dx) with the orthogonal sum

L2((a, b); r(x)dx) = L2((a, c); r(x)dx)⊕ L2((c, b); r(x)dx), (7.19)

then the operator

Sc = S(a,c) ⊕ S(c,b) (7.20)

is self-adjoint in L2((a, b); r(x)dx). Now the claim follows, since S and Sc are both
finite dimensional extensions of the symmetric operator given by

Tcf = τf, f ∈ dom (Tc) =
{
g ∈ dom (Tmin)

∣∣ g(c) = g[1](c) = 0
}
. (7.21)

An immediate corollary is that the essential spectrum only depends on the be-
havior of the coefficients in some neighborhood of the endpoints, recovering Weyl’s
splitting method.

Corollary 7.6. For each α, β ∈ (a, b) with α < β we have

σe (S) = σe
(
S(a,α)

)
∪ σe

(
S(β,b)

)
. (7.22)

8. THE WEYL-TITCHMARSH-KODAIRA M -FUNCTION

In this section let S be a self-adjoint restriction of Tmax (with separated boundary
conditions if τ is in the l.c. case at both endpoints). Our aim is to define a singular
Weyl-Titchmarsh-Kodaira function as introduced recently in [41, 56], and [103]. To
this end we need a real entire fundamental system θz, φz of (τ − z)u = 0 with
W (θz, φz) = 1, such that φz lies in dom (S) near a, that is, φz lies in L2((a, b); r(x)dx)
near a and satisfies the boundary condition at a if τ is in the l.c. case at a.

Hypothesis 8.1. There is a real entire fundamental system θz, φz of (τ − z)u = 0
with W (θz, φz) = 1, such that φz lies in dom (S) near a.

Under the assumption of Hypothesis 8.1 we may define a function m : ρ(S)→ C
by requiring that the solutions

ψz = θz +m(z)φz, z ∈ ρ(S), (8.1)

lie in dom (S) near b, that is, they lie in L2((a, b); r(x)dx) near b and satisfy the bound-
ary condition at b, if τ is in the l.c. case at b. This functionm is well-defined (use Corol-
lary 4.3 if τ is in the l.p. case at b) and called the singular Weyl-Titchmarsh-Kodaira
function of S. The solutions ψz, z ∈ ρ(S), are called the Weyl solutions of S.
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Theorem 8.2. The singular Weyl-Titchmarsh-Kodaira function m is analytic on
ρ(S) and satisfies

m(z) = m(z), z ∈ ρ(S). (8.2)

Proof. Let c, d ∈ (a, b) with c < d. From Theorem 7.3 and the equation

W (ψz, φz) = W (θz, φz) +m(z)W (φz, φz) = 1, z ∈ ρ(S), (8.3)

we obtain for each z ∈ ρ(S) and x ∈ [c, d),

Rzχ[c,d)(x) = ψz(x)

x∫
c

φz(y) r(y)dy + φz(x)

d∫
x

ψz(y) r(y)dy =

= (θz(x) +m(z)φz(x))

x∫
c

φz(y) r(y)dy+

+ φz(x)

d∫
x

[θz(y) +m(z)φz(y)] r(y)dy =

= m(z)φz(x)

d∫
c

φz(y) r(y)dy +

d∫
c

G̃z(x, y) r(y)dy,

(8.4)

where

G̃z(x, y) =

{
φz(y)θz(x), y ≤ x,
φz(x)θz(y), y ≥ x,

(8.5)

and hence

〈Rzχ[c,d), χ[c,d)〉r = m(z)

 d∫
c

φz(y)r(y)dy

2

+

d∫
c

d∫
c

G̃z(x, y)r(y)dy r(x)dx. (8.6)

The left-hand side of this equation is analytic in ρ(S) since the resolvent is. Further-
more, the integrals are analytic in ρ(S) as well, since the integrands are analytic and
locally bounded by Theorem 2.7. Hence, m is analytic if for each z0 ∈ ρ(S), there
exist c, d ∈ (a, b) such that

d∫
c

φz0(y) r(y)dy 6= 0. (8.7)

However, this holds; otherwise, φz0 would vanish almost everywhere. Moreover, equa-
tion (8.2) is valid since the function

θz +m(z)φz = [θz +m(z)φz], (8.8)

lies in dom (S) near b by Lemma 5.3.
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As an immediate consequence of Theorem 8.2 one infers that ψz(x) and ψ
[1]
z (x)

are analytic functions in z ∈ ρ(S) for each x ∈ (a, b).

Remark 8.3. Suppose θ̃z, φ̃z is some other real entire fundamental system of
(τ − z)u = 0 with W (θ̃z, φ̃z) = 1, such that φ̃z lies in S near a. Then

θ̃z = e−g(z)θz − f(z)φz, and φ̃z = eg(z)φz, z ∈ C, (8.9)

for some entire functions f , g with f(z) real and g(z) real modulo iπ. The correspond-
ing singular Weyl-Titchmarsh-Kodaira functions are related via

m̃(z) = e−2g(z)m(z) + e−g(z)f(z), z ∈ ρ(S). (8.10)

In particular, the maximal domain of holomorphy or the structure of poles and sin-
gularities do not change.

We continue with the construction of a real entire fundamental system in the case
when τ is in the l.c. case at a.

Theorem 8.4. Suppose τ is in the l.c. case at a. Then there exists a real entire
fundamental system θz, φz of (τ − z)u = 0 with W (θz, φz) = 1, such that φz lies in
dom (S) near a,

W (θz1 , φz2)(a) = 1 and W (θz1 , θz2)(a) = W (φz1 , φz2)(a) = 0, z1, z2 ∈ C. (8.11)

Proof. Let θ, φ be a real fundamental system of τu = 0 with W (θ, φ) = 1 such that
φ lies in dom (S) near a. Now fix some c ∈ (a, b) and for each z ∈ C let uz,1, uz,2 be
the fundamental system of

(τ − z)u = 0 with uz,1(c) = u
[1]
z,2(c) = 1 and u

[1]
z,1(c) = uz,2(c) = 0. (8.12)

Then by the existence and uniqueness theorem we have uz,i = uz,i, i = 1, 2. If we
introduce

θz(x) = W (uz,1, θ)(a)uz,2(x)−W (uz,2, θ)(a)uz,1(x), x ∈ (a, b), (8.13)
φz(x) = W (uz,1, φ)(a)uz,2(x)−W (uz,2, φ)(a)uz,1(x), x ∈ (a, b), (8.14)

then the functions φz lie in dom (S) near a since

W (φz, φ)(a) = W (uz,1, φ)(a)W (uz,2, φ)(a)−W (uz,2, φ)(a)W (uz1 , φ)(a) = 0. (8.15)

Furthermore, a direct calculation shows that θz = θz and φz = φz. The remaining
equalities follow upon repeatedly using the Plücker identity. It remains to prove that
the functions W (uz,1, θ)(a), W (uz,2, θ)(a), W (uz,1, φ)(a) and W (uz,2, φ)(a) are entire
in z. Indeed, by the Lagrange identity

W (uz,1, θ)(a) = W (uz,1, θ)(c)− z lim
x↓a

c∫
x

θ(t)uz,1(t) r(t)dt. (8.16)
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Now the integral on the right-hand side is analytic by Theorem 2.7 and in order to
prove that the limit is also analytic we need to show that the integral is bounded as
x ↓ a, locally uniformly in z. But the proof of Lemma 4.1 shows that, for each z0 ∈ C,∣∣∣∣∣∣

c∫
x

θ(t)uz,1(t)r(t) dt

∣∣∣∣∣∣
2

≤ K
c∫
a

|θ(t)|2 r(t)dt
c∫
a

[|uz0,1(t)|+ |uz0,2(t)|]2 r(t)dt (8.17)

for some constant K ∈ R and all z in some neighborhood of z0. Analyticity of the
other functions is proved similarly.

If τ is regular at a, then one may even take θz, φz to be the solutions of (τ−z)u = 0
with the initial values

θz(a) = φ[1]
z (a) = cos(ϕa) and − θ[1]

z (a) = φz(a) = sin(ϕa) (8.18)

for some suitable ϕa ∈ [0, π).

Corollary 8.5. Suppose τ is in the l.c. case at a and θz, φz is a real entire funda-
mental system of (τ − z)u = 0 as in Theorem 8.4. Then the corresponding singular
Weyl-Titchmarsh-Kodaira function m is a Nevanlinna-Herglotz function.

Proof. In order to prove the Nevanlinna-Herglotz property, we show that

0 < ‖ψz‖22,r =
Im(m(z))

Im(z)
, z ∈ C\R. (8.19)

Indeed, if z1, z2 ∈ ρ(S), then

W (ψz1 , ψz2)(a) = W (θz1 , θz2)(a) +m(z2)W (θz1 , φz2)(a)+

+m(z1)W (φz1 , θz2)(a) +m(z1)m(z2)W (φz1 , φz2)(a) =

= m(z2)−m(z1). (8.20)

If τ is in the l.p. case at b, then furthermore we have W (ψz1 , ψz2)(b) = 0, since clearly
ψz1 , ψz2 ∈ dom (Tmax). This also holds if τ is in the l.c. case at b, since then ψz1 and
ψz2 satisfy the same boundary condition at b. Now the Lagrange identity yields

(z1 − z2)

b∫
a

ψz1(t)ψz2(t) r(t)dt = W (ψz1 , ψz2)(b)−W (ψz1 , ψz2)(a) =

= m(z1)−m(z2).

(8.21)

In particular, for z ∈ C\R, using m(z) = m(z) as well as ψz = θz +m(z)φz = ψz, we
obtain

‖ψz‖2r =

b∫
a

ψz(t)ψz(t) r(t)dt =
m(z)−m(z)

z − z
=

Im(m(z))

Im(z)
. (8.22)

Since ψz is a nontrivial solution, we furthermore have 0 < ‖ψz‖2r.



498 Jonathan Eckhardt, Fritz Gesztesy, Roger Nichols, and Gerald Teschl

We conclude this section with a necessary and sufficient condition for
Hypothesis 8.1 to hold. To this end, for each c ∈ (a, b), let SD(a,c) be the self-adjoint
operator associated to τ |(a,c) with a Dirichlet boundary condition at c and the same
boundary condition as S at a.

Theorem 8.6. The following items (i)–(iii) are equivalent:

(i) Hypothesis 8.1;
(ii) There is a real entire solution φz of (τ − z)u = 0 which lies in dom (S) near a;
(iii) The spectrum of SD(a,c) is purely discrete for some c ∈ (a, b).

Proof. The proof follows the one for Schrödinger operators given in [103, Lemma 2.2
and Lemma 2.4] step by step.

9. THE SPECTRAL TRANSFORMATION

In this section let S be a self-adjoint restriction of Tmax (with separated boundary
conditions if τ is in the l.c. case at both endpoints) as in the preceding section.
Furthermore, we assume that there is a real entire fundamental system θz, φz of
(τ − z)u = 0 with W (θz, φz) = 1 such that φz lies in dom (S) near a. By m we denote
the corresponding singular Weyl-Titchmarsh-Kodaira function and by ψz the Weyl
solutions of S.

Recall that by the spectral theorem, for all functions f , g ∈ L2((a, b); r(x)dx) there
is a unique complex measure Ef,g such that

〈Rzf, g〉r =

∫
R

1

λ− z
dEf,g(λ), z ∈ ρ(S). (9.1)

In order to obtain a spectral transformation we define for each f ∈ L2
c((a, b); r(x)dx)

the transform of f

f̂(z) =

b∫
a

φz(x)f(x) r(x)dx, z ∈ C. (9.2)

Next, we will use this to associate a measure with m(z) by virtue of the
Stieltjes-Livšić inversion formula following literally the proof of [103, Lemma 3.3]
(see also [56, Theorem 2.6]).

Lemma 9.1. There is a unique Borel measure µ defined via

µ((λ1, λ2]) = lim
δ↓0

lim
ε↓0

1

π

λ2+δ∫
λ1+δ

Im(m(λ+ iε)) dλ, (9.3)

for each λ1, λ2 ∈ R with λ1 < λ2, such that

dEf,g = f̂ ĝ dµ, f, g ∈ L2
c((a, b); r(x)dx). (9.4)
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In particular,

〈Rzf, g〉r =

∫
R

f̂(λ)ĝ(λ)

λ− z
dµ(λ), z ∈ ρ(S). (9.5)

In particular, the preceding lemma shows that the mapping f 7→ f̂ is an isometry
from L2

c((a, b); r(x)dx) into L2(R; dµ). Indeed, for each f ∈ L2
c((a, b); r(x)dx) one

infers that

‖f̂‖2µ =

∫
R

f̂(λ)f̂(λ) dµ(λ) =

∫
R

dEf,f = ‖f‖22,r. (9.6)

Hence, we may extend this mapping uniquely to an isometric linear operator F from
L2((a, b); r(x)dx) into L2(R; dµ) by

Ff(λ) = lim
α↓a

lim
β↑b

β∫
α

φλ(x)f(x) r(x)dx, λ ∈ R, f ∈ L2((a, b); r(x)dx), (9.7)

where the limit on the right-hand side is a limit in the Hilbert space L2(R; dµ). Using
this linear operator F , it is quite easy to extend the result of Lemma 9.1 to functions
f , g ∈ L2((a, b); r(x)dx). In fact, one gets that dEf,g = Ff Fg dµ, that is,

〈Rzf, g〉r =

∫
R

Ff(λ)Fg(λ)

λ− z
dµ(λ), z ∈ ρ(S). (9.8)

We will see below that F is not only isometric, but also onto, that is, ran(F) =
L2(R; dµ). In order to compute the inverse and the adjoint of F , we introduce for
each function g ∈ L2

c(R; dµ) the transform

ǧ(x) =

∫
R

φλ(x)g(λ) dµ(λ), x ∈ (a, b). (9.9)

For arbitrary α, β ∈ (a, b) with α < β we estimate

β∫
α

|ǧ(x)|2 r(x)dx =

β∫
α

ǧ(x)

∫
R

φλ(x)g(λ) dµ(λ) r(x)dx =

=

∫
R

g(λ)

β∫
α

φλ(x)ǧ(x) r(x)dx dµ(λ) ≤

≤ ‖g‖µ
∥∥F (χ[α,β)ǧ

)∥∥
µ
≤ ‖g‖µ

√√√√√ β∫
α

|ǧ(x)|2 r(x)dx.

(9.10)
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Hence, ǧ lies in L2((a, b); r(x)dx) with ‖ǧ‖2,r ≤ ‖g‖2,µ and we may extend this map-
ping uniquely to a bounded linear operator G on L2(R; dµ) into L2((a, b); r(x)dx).

If F is a Borel measurable function on R, then we denote by MF the maximally
defined operator of multiplication with F in L2(R; dµ).

Lemma 9.2. The operator F is unitary with inverse G.
Proof. First we prove GFf = f for each f ∈ L2((a, b); r(x)dx). Indeed, if f , g ∈
L2
c((a, b); r(x)dx), then

〈f, g〉r =

∫
R

dEf,g =

∫
R

f̂(λ)ĝ(λ) dµ(λ) =

= lim
n→∞

∫
(−n,n]

f̂(λ)

b∫
a

φλ(x)g(x) r(x)dx dµ(λ) =

= lim
n→∞

b∫
a

g(x)

∫
(−n,n]

f̂(λ)φλ(x) dµ(λ) r(x)dx =

= lim
n→∞

〈GMχ(−n,n]
Ff, g〉r = 〈GFf, g〉r.

(9.11)

Now since L2
c((a, b); r(x)dx) is dense in L2((a, b); r(x)dx) we infer that GFf = f for

all f ∈ L2((a, b); r(x)dx). In order to prove that G is the inverse of F , it remains
to show that F is surjective, that is, ran(F) = L2(R; dµ). Therefore, let f , g ∈
L2((a, b); r(x)dx) and F , G be bounded measurable functions on R. Since Ef,g is the
spectral measure of S we get

〈MGFF (S)f,Fg〉µ = 〈G(S)F (S)f, g〉r = 〈MGMFFf,Fg〉µ. (9.12)

Now if we set h = F (S)f , then we obtain from this last equation∫
R

G(λ)Fg(λ)
[
Fh(λ)− F (λ)Ff(λ)

]
dµ(λ) = 0. (9.13)

Since this holds for each bounded measurable function G, we infer

Fg(λ) (Fh(λ)− F (λ)Ff(λ)) = 0, (9.14)

for almost all λ ∈ R with respect to µ. Furthermore, for each λ0 ∈ R we can
find a g ∈ L2

c((a, b); r(x)dx) such that ĝ 6= 0 in a vicinity of λ0. Hence, we even
have Fh = FFf almost everywhere with respect to µ. But this shows that ran(F)
contains all characteristic functions of intervals. Indeed, let λ0 ∈ R and choose
f ∈ L2

c((a, b); r(x)dx) such that f̂ 6= 0 in a vicinity of λ0. Then for each interval
J , the closure of which is contained in this vicinity, one may choose

F (λ) =

{
f̂(λ)−1, if λ ∈ J,
0, if λ ∈ R\J,

(9.15)

which yields χJ = Fh ∈ ran(F). Thus, ran(F) = L2(R; dµ) follows.
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Theorem 9.3. The self-adjoint operator S is given by S = F∗MidF .

Proof. First note that for each f ∈ L2((a, b); r(x)dx),

f ∈ dom (S) iff
∫
R

|λ|2dEf,f (λ) <∞ iff
∫
R

|λ|2|Ff(λ)|2dµ(λ) <∞

iff Ff ∈ dom (Mid) iff f ∈ dom (F∗MidF) .

(9.16)

In this case, Lemma 9.1 implies

〈Sf, g〉r =

∫
R

λdEf,g(λ)=

∫
R

λFf(λ)Fg(λ)dµ(λ) =

∫
R

MidFf(λ)Fg(λ)dµ(λ) =

= 〈F∗MidFf, g〉r, g ∈ L2((a, b); r(x)dx).

(9.17)

Consequently, F∗MidFf = Sf .

Now the spectrum can be read off from the boundary behavior of the singular
Weyl-Titchmarsh-Kodaira function m in the usual way (see, e.g., [58] in the classical
context and the recent [103, Corollary 3.5], as well as the references therein).

Corollary 9.4. The spectrum of S is given by

σ(S) = supp(µ) = {λ ∈ R | 0 < lim sup
ε↓0

Im(m(λ+ iε))}. (9.18)

Moreover,

σp(S) = {λ ∈ R | 0 < lim
ε↓0

εIm(m(λ+ iε))}, (9.19)

σac(S) = {λ ∈ R | 0 < lim sup
ε↓0

Im(m(λ+ iε)) <∞}
ess
, (9.20)

where Ω
ess

= {λ ∈ R | |(λ − ε, λ + ε) ∩ Ω| > 0 for all ε > 0}, is the essential closure
of a Borel set Ω ⊆ R, and

Σs = {λ ∈ R | lim sup
ε↓0

Im(m(λ+ iε)) =∞} (9.21)

is a minimal support for the singular spectrum (singular continuous plus pure point
spectrum ) of S.

Lemma 9.5. If λ ∈ σ(S) is an eigenvalue, then

µ({λ}) = ‖φλ‖−2
2,r . (9.22)

Proof. Under this assumptions φλ is an eigenvector of S and f̂(λ) = 〈f, φλ〉r, f ∈
L2((a, b); r(x)dx). Consequently,

‖φλ‖22,r = Eφλ,φλ({λ}) = Fφλ(λ)Fφλ(λ)µ({λ}) = ‖φλ‖42,r µ({λ}), (9.23)

since E({λ}) is the orthogonal projection onto φλ.
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Lemma 9.6. For every z ∈ ρ(S) and all x ∈ (a, b) the transform of the Green’s
function Gz(x, · ) and its quasi-derivative ∂[1]

x Gz(x, · ) are given by

FGz(x, · )(λ) =
φλ(x)

λ− z
and F∂[1]

x Gz(x, · )(λ) =
φ

[1]
λ (x)

λ− z
, λ ∈ R. (9.24)

Proof. First note that Gz(x, · ) and ∂
[1]
x Gz(x, · ) both lie in L2((a, b); r(x)dx). Then

using Lemma 9.1, we get for each f ∈ L2
c((a, b); r(x)dx) and g ∈ L2

c(R; dµ)

〈Rz ǧ, f〉r =

∫
R

g(λ)f̂(λ)

λ− z
dµ(λ) =

b∫
a

∫
R

φλ(x)

λ− z
g(λ) dµ(λ) f(x) r(x)dx. (9.25)

Hence,

Rz ǧ(x) =

∫
R

φλ(x)

λ− z
g(λ) dµ(λ) (9.26)

for almost all x ∈ (a, b). Using Theorem 7.3, one verifies

〈FGz(x, · ), g〉µ = 〈Gz(x, · ), ǧ〉r =

∫
R

φλ(x)

λ− z
g(λ) dµ(λ) (9.27)

for almost all x ∈ (a, b). Since all three terms are absolutely continuous, this equality
holds for all x ∈ (a, b), which proves the first part of the claim. The equality for the
transform of the quasi-derivative follows from

〈F∂[1]
x Gz(x, · ), g〉µ = 〈∂[1]

x Gz(x, · ), ǧ〉r = Rz ǧ
[1](x) =

∫
R

φ
[1]
λ (x)

λ− z
g(λ) dµ(λ). (9.28)

Lemma 9.7. Suppose τ is in the l.c. case at a and θz, φz is a real entire fundamental
system as in Theorem 8.4. Then for each z ∈ ρ(S) the transform of the Weyl solution
ψz is given by

Fψz(λ) =
1

λ− z
, λ ∈ R. (9.29)

Proof. From Lemma 9.6 we obtain for each x ∈ (a, b)

F ψ̃z(x, · )(λ) =
W (θz, φλ)(x)

λ− z
, λ ∈ R, (9.30)

where

ψ̃z(x, y) =

{
ψz(y), y ≥ x,
m(z)φz(y), y < x.

(9.31)

Now the claim follows by letting x ↓ a, using Theorem 8.4.
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Under the assumptions of Lemma 9.7,m is a Nevanlinna-Herglotz function. Hence,

m(z) = c1 + c2z +

∫
R

(
1

λ− z
− λ

1 + λ2

)
dµ(λ), z ∈ C\R, (9.32)

where the constants c1, c2 are given by

c1 = Re(m(i)) and c2 = lim
η↑∞

m(iη)

iη
≥ 0. (9.33)

Corollary 9.8. If τ is in the l.c. case at a and θz, φz is a real entire fundamental
system as in Theorem 8.4, then c2 = 0 in (9.32).

Proof. Taking imaginary parts in (9.32) yields for each z ∈ C\R,

Im(m(z)) = c2Im(z) +

∫
R

Im

(
1

λ− z

)
dµ(λ) = c2Im(z) +

∫
R

Im(z)

|λ− z|2
dµ(λ). (9.34)

Using the last identity in conjunction with Lemma 9.7 and (8.19), we obtain

c2 +

∫
R

1

|λ− z|2
dµ(λ) =

Im(m(z))

Im(z)
= ‖ψz‖22,r =

∫
R

1

|λ− z|2
dµ(λ). (9.35)

Remark 9.9. Given another singular Weyl-Titchmarsh-Kodaira function m̃ as in
Remark 8.3, the corresponding spectral measures are related by

dµ̃ = e−2gdµ, (9.36)

where g is the real entire function appearing in Remark 8.3. In particular, the measures
are mutually absolutely continuous and the associated spectral transformations only
differ by a simple rescaling with the positive function e−2g.

10. THE SPECTRAL MULTIPLICITY

In the present section we consider the general case where none of the endpoints are
supposed to satisfy the requirements of the previous section. Therefore, let S be a
self-adjoint restriction of Tmax (with separated boundary conditions if τ is in the l.c.
case at both endpoints). In this situation, the spectral multiplicity of S is poten-
tially two and hence we will work with a matrix-valued spectral transformation. The
results in this section extend classical spectral multiplicity results for second-order
Schrödinger operators originally due to Kac [85, 86] (see also Gilbert [59] and Simon
[151]) to the general situation discussed in this paper.
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We fix some interior point x0 ∈ (a, b) and consider the real entire fundamental
system θz, φz of solutions of (τ − z)u = 0 with the initial conditions

θz(x0) = φ[1]
z (x0) = cos(ϕa) and − θ[1]

z (x0) = φz(x0) = sin(ϕa) (10.1)

for some fixed ϕa ∈ [0, π). The Weyl solutions are defined by

ψz,±(x) = θz(x)±m±(z)φz(x), x ∈ (a, b), z ∈ C\R, (10.2)

such that for all c ∈ (a, b),

ψz,− ∈ L2((a, c); r(x)dx) and ψz,+ ∈ L2((c, b); r(x)dx). (10.3)

Hereby, m± are the regular Weyl-Titchmarsh-Kodaira functions of the operators S±
obtained by restricting S to (a, x0) and (x0, b) with a boundary condition

f(x0) cos(ϕa)− f [1](x0) sin(ϕa) = 0, (10.4)

respectively. One notes that according to Corollary 8.5, m± are Nevanlinna-Herglotz
functions. One introduces the 2× 2 Weyl-Titchmarsh-Kodaira matrix

M(z) =

(
− 1
m+(z)+m−(z)

1
2
m−(z)−m+(z)
m+(z)+m−(z)

1
2
m−(z)−m+(z)
m+(z)+m−(z)

m−(z)m+(z)
m+(z)+m−(z)

)
, z ∈ C\R, (10.5)

and observes that det(M(z)) = −1/4. Moreover, a brief computation shows that the
function M is a matrix-valued Nevanlinna-Herglotz function and thus has a represen-
tation

M(z) = C1 + C2z +

∫
R

(
1

λ− z
− λ

1 + λ2

)
dΩ(λ), z ∈ C\R, (10.6)

where C1 is a self-adjoint matrix, C2 a nonnegative matrix, and Ω is a self-adjoint,
matrix-valued measure which is given by the Stieltjes inversion formula

Ω((λ1, λ2]) = lim
δ↓0

lim
ε↓0

1

π

λ2+δ∫
λ1+δ

Im(M(λ+ iε))dλ, λ1, λ2 ∈ R, λ1 < λ2. (10.7)

It will be shown in Corollary 10.4 that one actually has C2 = 0 in (10.6). Furthermore,
the trace Ωtr = Ω1,1 +Ω2,2 of Ω defines a nonnegative measure and the components of
Ω are absolutely continuous with respect to Ωtr. The respective densities are denoted
by Ri,j , i, j ∈ {1, 2}, and are given by

Ri,j(λ) = lim
ε↓0

Im(Mi,j(λ+ iε))

Im(M1,1(λ+ iε) +M2,2(λ+ iε))
, (10.8)

where the limit exists almost everywhere with respect to Ωtr. One notes that R is
nonnegative and has trace equal to one. In particular, all entries of R are bounded,

0 ≤ R1,1, R2,2 ≤ 1, |R1,2| = |R2,1| ≤ 1/2. (10.9)
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Furthermore, the corresponding Hilbert space L2(R; dΩ) is associated with the
inner product

〈f̂ , ĝ〉Ω =

∫
R

f̂(λ)ĝ(λ) dΩ(λ) =

∫
R

2∑
i,j=1

f̂i(λ)Ri,j(λ)ĝj(λ) dΩtr(λ), (10.10)

where for each f ∈ L2
c((a, b); r(x)dx), one defines the transform, f̂ of f , as

f̂(z) =

(
f̂1(z)

f̂2(z)

)
=


b∫
a

θz(x)f(x) r(x)dx

b∫
a

φz(x)f(x) r(x)dx

 , z ∈ C. (10.11)

In the following lemma, we will relate the 2 × 2 matrix-valued measure Ω to the
operator-valued spectral measure E of S. If F is a measurable function on R, we
denote with MF the maximally defined operator of multiplication with F in the
Hilbert space L2(R; dΩ).

Lemma 10.1. Assume that f , g ∈ L2
c((a, b); r(x)dx). Then,

〈E((λ1, λ2])f, g〉r = 〈Mχ(λ1,λ2]
f̂ , ĝ〉Ω (10.12)

for all λ1, λ2 ∈ R with λ1 < λ2.

Proof. This follows by evaluating Stone’s formula

〈E((λ1, λ2])f, g〉r = lim
δ↓0

lim
ε↓0

1

π

λ2+δ∫
λ1+δ

Im (〈Rλ+iεf, g〉r) dλ, (10.13)

using formula (7.15) for the resolvent together with the Stieltjes inversion formula,
literally following the proof of [56, Theorem 2.12].

Lemma 10.1 shows that the transformation defined in (10.11) uniquely extends to
an isometry F from L2((a, b); r(x)dx) into L2(R; dΩ).

Theorem 10.2. The operator F is unitary with inverse given by

F−1g(x) = lim
N→∞

∫
[−N,N)

g(λ)

(
θλ(x)
φλ(x)

)
dΩ(λ), g ∈ L2(R; dΩ), (10.14)

where the limit exists in L2((a, b); r(x)dx). Moreover, one has S = F∗MidF .

Proof. Because of Lemma 10.1, it remains to show that F is onto. Since it is straight-
forward to verify that the integral operator on the right-hand side of (10.14) is
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the adjoint of F , we can equivalently show that ker(F∗) = {0}. To this end, let
g ∈ L2(R; dΩ), N ∈ N, and z ∈ ρ(S). Then

(S − z)
∫

[−N,N)

1

λ− z
g(λ)

(
θλ(x)
φλ(x)

)
dΩ(λ) =

∫
[−N,N)

g(λ)

(
θλ(x)
φλ(x)

)
dΩ(λ), (10.15)

since interchanging integration with differentiation can be justified using Fubini’s
theorem. Taking the limit N →∞, one concludes that

F∗ 1

· − z
g = RzF∗g, g ∈ L2(R; dΩ). (10.16)

By Stone-Weierstrass, one concludes in addition that F∗MF g = F (S)F∗g for any
continuous function F vanishing at infinity, and by a consequence of the spectral
theorem (see, e.g., the last part of [153, Theorem 3.1]), one can further extend this to
characteristic functions of intervals I. Hence, for g ∈ ker(F∗) one infers that∫

I

g(λ)

(
θλ(x)
φλ(x)

)
dΩ(λ) = 0 (10.17)

for any compact interval I. Moreover, after taking derivatives, one also obtains∫
I

g(λ)

(
θ

[1]
λ (x)

φ
[1]
λ (x)

)
dΩ(λ) = 0. (10.18)

Choosing x = x0 implies∫
I

g(λ)

(
cos(ϕa)
sin(ϕa)

)
dΩ(λ) =

∫
I

g(λ)

(
− sin(ϕa)
cos(ϕa)

)
dΩ(λ) = 0 (10.19)

for any compact interval I, and thus g = 0, as required.

As in Lemma 9.6, one can determine the transform of the Green’s function upon
employing Theorem 7.3 and equation (10.16).

Lemma 10.3. For every z ∈ ρ(S) and all x ∈ (a, b) the transform of the Green’s
function Gz(x, · ) and its quasi-derivative ∂[1]

x Gz(x, · ) are given by

FGz(x, · )(λ) =
1

λ− z

(
θλ(x)
φλ(x)

)
and F∂[1]

x Gz(x, · )(λ) =
1

λ− z

(
θ

[1]
λ (x)

φ
[1]
λ (x)

)
,

λ ∈ R. (10.20)

As a consequence, one obtains the following refinement of (10.6).

Corollary 10.4. The matrix C2 in (10.6) is zero.
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Proof. Following the proof of Corollary 9.8, it suffices to show that

Im(M(z))

Im(z)
=

∫
R

1

|λ− z|2
dΩ(λ), z ∈ C\R. (10.21)

Therefore, one first concludes from Lemma 10.3 that for every z ∈ C\R,

b∫
a

|Gz(x0, y)|2 r(y)dy =

(
cos(ϕa)
sin(ϕa)

)∫
R

1

|z − λ|2
dΩ(λ)

(
cos(ϕa)
sin(ϕa)

)
. (10.22)

Using (7.16) and (8.19) to evaluate the left-hand side of (10.22), one obtains

b∫
a

|Gz(x0, y)|2 r(y)dy =
1

|W (ψz,+, ψz,−))|2
(
|ψz,+(x0)|2

x0∫
a

|ψz,−(y)|2 r(y)dy+

+ |ψz,−(x0)|2
b∫

x0

|ψz,+(y)|2 r(y)dy
)

=

=

(
cos(ϕa)
sin(ϕa)

)
Im(M(z))

Im(z)

(
cos(ϕa)
sin(ϕa)

)
.

(10.23)

In a similar manner, one proves corresponding formulas for(
− sin(ϕa)
cos(ϕa)

)
Im(M(z))

Im(z)

(
cos(ϕa)
sin(ϕa)

)
and(

− sin(ϕa)
cos(ϕa)

)
Im(M(z))

Im(z)

(
− sin(ϕa)
cos(ϕa)

)
,

(10.24)

establishing the identity (10.21).

We note that the vanishing of the linear term C2z in (10.6) is typical in this context
and refer to [8, Ch. 7] and [111] for detailed discussions.

Finally we turn to spectral multiplicities. Therefore, one introduces the measurable
unitary matrix U(λ) which diagonalizes R(λ), that is,

R(λ) = U(λ)∗
(
%1(λ) 0

0 %2(λ)

)
U(λ), (10.25)

where 0 ≤ %1(λ) ≤ %2(λ) ≤ 1 are the eigenvalues of R(λ). In addition, one observes
that %1(λ) + %2(λ) = 1 since tr(R(λ)) = 1. The matrix U(λ) gives rise to a unitary
operator L2(R; dΩ)→ L2(R; %1dΩtr)⊕L2(R; %2dΩtr) which leaves Mid invariant. From
this observation one immediately obtains the analog of Corollary 9.4.

Corollary 10.5. Introduce the Nevanlinna-Herglotz function

M tr(z) = tr(M(z)) =
m−(z)m+(z)− 1

m+(z) +m−(z)
, z ∈ C\R, (10.26)



508 Jonathan Eckhardt, Fritz Gesztesy, Roger Nichols, and Gerald Teschl

associated with the trace measure dΩtr. Then the spectrum of S is given by

σ(S) = supp(dΩtr) = {λ ∈ R | 0 < lim sup
ε↓0

Im(M tr(λ+ iε))}. (10.27)

Moreover,

σp(S) = {λ ∈ R | 0 < lim
ε↓0

εIm(M tr(λ+ iε))}, (10.28)

σac(S) = {λ ∈ R | 0 < lim sup
ε↓0

Im(M tr(λ+ iε)) <∞}
ess
, (10.29)

and

Σs = {λ ∈ R | lim sup
ε↓0

Im(M tr(λ+ iε)) =∞} (10.30)

is a minimal support for the singular spectrum (singular continuous plus pure point
spectrum) of S.

Furthermore, this allows us to investigate the spectral multiplicity of S.

Lemma 10.6. If we define

Σ1 = {λ ∈ supp(dΩtr) |det(R(λ)) = %1(λ)%2(λ) = 0}, (10.31)

Σ2 = {λ ∈ supp(dΩtr) |det(R(λ)) = %1(λ)%2(λ) > 0}, (10.32)

then Mid = Mid·χΣ1
⊕Mid·χΣ2

and the spectral multiplicity of Mid·χΣ1
is one and the

spectral multiplicity of Mid·χΣ2
is two.

Proof. For fixed λ ∈ Σ1 we have either %1(λ) = 1, %2(λ) = 0 or %1(λ) = 0, %2(λ) = 1.
In the latter case we can modify U(λ) to also switch components and hence we can
assume %1(λ) = 1, %2(λ) = 0 for all λ ∈ Σ1. Hence Mid·χΣ1

is unitarily equivalent to
multiplication with λ in L2(R;χΣ1

dΩtr). Moreover, since %jχΣ2
dΩtr and χΣ2

dΩtr are
mutually absolutely continuous, Mid·χΣ2

is unitary equivalent to Mid in the Hilbert
space L2(R;χΣ1

dΩtrI2).

Combining (10.5) with (10.8), one concludes that

det(R(λ)) = lim
ε↓0

Im(m+(λ+ iε))Im(m−(λ+ iε))

|m+(λ+ iε) +m−(λ+ iε)|2
1

Im(M tr(λ+ iε))2
, (10.33)

where the first factor is bounded by 1/4. At this point Lemma 10.6 yields the following
result.

Theorem 10.7. The singular spectrum of S has spectral multiplicity one. The abso-
lutely continuous spectrum of S has multiplicity two on the subset σac(S+)∩ σac(S−)
and multiplicity one on σac(S)\(σac(S+) ∩ σac(S−)). Here S± are the restrictions of
S to (a, x0) and (x0, b), respectively.
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Proof. Using the fact that Σs is a minimal support for the singular part of S one
obtains Ss = Spp ⊕ Ssc = E(Σs)S and Sac = (1− E(Σs))S. Thus, evaluating (10.33)
using (10.30), one infers that the singular part has multiplicity one by Lemma 10.6.

For the absolutely continuous part, one uses that the corresponding sets

Σac,± = {λ ∈ R | 0 < lim
ε↓0

Im(m±(λ+ iε)) <∞} (10.34)

are minimal supports for the absolutely continuous spectra of S±. Again, the remain-
ing result follows from Lemma 10.6 upon evaluating (10.33).

11. (NON-)PRINCIPAL SOLUTIONS, BOUNDEDNESS FROM BELOW,
AND THE FRIEDRICHS EXTENSION

In this section we develop various new applications to oscillation theory, establish the
connection between non-oscillatory solutions and boundedness from below of T0, ex-
tend a limit-point criterion for T0 to our present general assumptions, and characterize
the Friedrichs extension SF of T0.

Assuming Hypothesis 2.1, we start by investigating some (non-)oscillatory-type
properties of real-valued solutions u ∈ Dτ of the distributional Sturm-Liouville equa-
tion

−
(
u[1]
)′

+ su[1] + qu = λur for fixed λ ∈ R. (11.1)

Throughout this section, solutions of (11.1) are always taken to be real-valued,
in accordance with Theorem 2.2. In addition, we occasionally refer to p as being
sign-definite on an interval I ⊆ R, by which we mean that p > 0 or p < 0 a.e. on I.

We begin with a Sturm-type separation theorem for the zeros of pairs of linearly
independent real-valued solutions of (11.1).

Theorem 11.1. Assume Hypothesis 2.1 and suppose that uj, j = 1, 2, are two linearly
independent real-valued solutions of (11.1) for a fixed λ ∈ R. If xj ∈ (a, b), j = 1, 2,
are two zeros of u1 with x1 < x2 and p is sign-definite on (x1, x2), then u2 has at least
one zero in [x1, x2]. If, in addition, τ is regular at the endpoint a and x1 = a, then
u2 has a zero in [a, x2]. An analogous result holds if τ is regular at the endpoint b.

Proof. Since the Wronskian of two real-valued solutions of (11.1) is a constant (cf.
the discussion after Lemma 2.3),

W (u1, u2)(x) = u1(x)u
[1]
2 (x)− u[1]

1 (x)u2(x) = c, x ∈ [x1, x2], (11.2)

for some c ∈ R. If u2 has no zero in [x1, x2] then the quotient u1/u2 is absolutely
continuous on [x1, x2] and (11.2) implies(

u1

u2

)′
(x) = − c

p(x)u2(x)2
for a.e. x ∈ (x1, x2). (11.3)
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Subsequently, integrating the equation in (11.3) from x1 to x2 and using u1(xj) = 0,
j = 1, 2, one obtains

c

x2∫
x1

dx

p(x)u2(x)2
= 0. (11.4)

The sign definiteness assumption on p implies the integral appearing in (11.4) is
nonzero, and, consequently, one concludes c = 0. Therefore, u1 and u2 must be linearly
dependent real-valued solutions of (11.1). The result now follows by contraposition.

To prove the remaining statement, one may simply repeat the above argument,
noting that regularity of τ at the endpoint a guarantees that the function appearing
in the right hand side of (11.3) is integrable on (a, x2).

Note also that all zeros are simple in the sense that (nontrivial) solutions must
change sign at a zero.

Lemma 11.2. Assume Hypothesis 2.1 and suppose that u is a nontrivial real-valued
solution of (11.1) for a fixed λ ∈ R. If x0 ∈ (a, b) is a zero and p is sign-definite in a
neighborhood of x0, then u must change sign at x0.

Proof. Regarding u′(x) = p(x)−1u[1](x)− s(x)u(x) as a differential equation for u we
obtain

u(x) = e−S(x)

x∫
x0

eS(y)p(y)−1u[1](y) dy, S(x) =

x∫
x0

s(y) dy. (11.5)

Since u[1](x0) 6= 0 (otherwise, u ≡ 0) and u[1] ∈ ACloc((a, b)), the claim follows.

Definition 11.3. Suppose Hypothesis 2.1 holds and let λ ∈ R. The differential ex-
pression τ−λ is called oscillatory at a (resp., b) if some solution of (11.1) has infinitely
many zeros accumulating at a (resp., b); otherwise, τ − λ is called non-oscillatory at
a (resp., b).

Under the assumption that τ−λ is non-oscillatory at the endpoint b, and that p is
sign-definite a.e. on (c, b), the next result establishes the existence of a distinguished
solution which is, in a heuristic sense, “smaller” than any other solution near b. An
analogous result holds if (11.1) is non-oscillatory at a.

Theorem 11.4. Assume Hypothesis 2.1 and let λ ∈ R be fixed. In addition, sup-
pose that there exists c ∈ (a, b) such that p is sign-definite a.e. on (c, b). If τ − λ
is non-oscillatory at b, there exists a real-valued solution u0 of (11.1) satisfying the
following properties (i)–(iii) in which u1 denotes an arbitrary real-valued solution of
(11.1) linearly independent of u0.

(i) u0 and u1 satisfy the limiting relation

lim
x↑b

u0(x)

u1(x)
= 0. (11.6)
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(ii) u0 and u1 satisfy∫ b dx

|p(x)|u1(x)2
<∞ and

∫ b dx

|p(x)|u0(x)2
=∞. (11.7)

(iii) Suppose x0 ∈ (c, b) strictly exceeds the largest zero, if any, of u0, and u1(x0) 6= 0.
If u1(x0)/u0(x0) > 0, then u1 has no (resp., exactly one) zero in (x0, b) if
W (u0, u1) ≷ 0 (resp., W (u0, u1) ≶ 0), in the case p ≷ 0 a.e. on (c, b). On
the other hand, if u1(x0)/u0(x0) < 0, then u1 has no (resp., exactly one) zero in
(x0, b) if W (u0, u1) ≶ 0 (resp., W (u0, u1) ≷ 0) in the case p ≷ 0 a.e. on (c, b).

Proof. Let u and v denote a pair of linearly independent real-valued solutions of
(11.1). Then their Wronskian is a nonzero constant, say c ∈ R\{0}. If x0 ∈ (c, b)
strictly exceeds the largest zero, if any, of v, then u/v ∈ ACloc((x0, b)), and one
verifies (as in (11.3)) that(

u

v

)′
(x) = − c

p(x)v(x)2
for a.e. x ∈ (x0, b). (11.8)

In particular, since p is sign definite a.e. on (x0, b), the right-hand side of equation
(11.8) is sign definite a.e. on the same interval; therefore, the function u/v is monotone
on (x0, b). Consequently,

C = lim
x↑b

u(x)

v(x)
(11.9)

exists, where C = ±∞ is permitted. By renaming u and v, if necessary, one may take
C = 0. Indeed, in the case C = ±∞ in (11.9), one simply interchanges the roles of
the functions u and v. If 0 < |C| <∞, then one replaces the solution u by the linear
combination u − Cv. Choosing u0 = u, a real-valued solution u1 of (11.1) is linearly
independent of u0 if and only if it is of the form u1 = c0u0 + c1v with c1 6= 0. In this
case, C = 0 implies

u1(x) =
x↑b

[c1 + o(1)]v(x), (11.10)

and, consequently, (11.6). This proves item (i).
In order to prove item (ii), we first note a useful consequence of (11.8). To this

end, suppose u and v are real-valued solutions of (11.1) and that x′0 strictly exceeds
the largest zero of v, so that (11.8) holds as before. Integrating (11.8) from x′0 to
x ∈ (x′0, b) and using sign-definiteness of p yields

x∫
x′0

dt

|p(t)|v(t)2
=

1

|c|

∣∣∣∣u(x)

v(x)
− u(x′0)

v(x′0)

∣∣∣∣, x ∈ (x′0, b). (11.11)

To prove item (ii), let u1 denote a real-valued solution linearly independent of u0

(with u0 the solution constructed in item (i)) and choose x0 ∈ (c, b) strictly exceeding
the largest zero of u0 and the largest zero of u1. Choosing u = u0 and v = u1 (resp.,
u = u1 and v = u0) in (11.11), taking the limit x ↑ b, and applying (11.6) establishes
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convergence (resp., divergence) of the first (resp., second) integral appearing in (11.7).
This completes the proof of item (ii).

To prove item (iii), we assume the case p > 0 a.e. on (c, b) for simplicity; the case
p < 0 a.e. on (c, b) is handled similarly. One infers from (11.6) and (11.8) (with u = u1

and v = u0) that u1/u0 is monotonic on (x0, b) and that

lim
x↑b

u1(x)

u0(x)
= ±∞, depending on whether W (u0, u1) ≷ 0 (11.12)

As a result, if u1(x0)/u0(x0) > 0 then u1/u0 has no (resp., exactly one) zero in
(x0, b) in the case W (u0, u1) > 0 (resp., W (u0, u1) < 0). On the other hand, if
u1(x0)/u0(x0) < 0, then u1/u0 has no (resp., exactly one) zero in (x0, b) in the case
W (u0, u1) < 0 (resp., W (u0, u1) > 0). (All Wronskians are of course constant, hence
we evaluate them at x0.) Item (iii) now follows since the zeros of u1 in (x0, b) are
precisely the zeros of u1/u0.

Evidently, a result analogous to Theorem 11.4 holds if τ − λ is non-oscillatory
at a. More specifically, one can establish the existence of a distinguished real-valued
solution v0 6= 0 of (11.1) which satisfies the following analogue to (11.6): If v1 is any
real-valued solution of (11.1) linearly independent of v0, then

lim
x↓a

v0(x)

v1(x)
= 0. (11.13)

Analogues of item (ii) and (iii) of Theorem 11.6 subsequently hold for v0 and any
real-valued solution v1 linearly independent of v0.

Definition 11.5. Assume Hypothesis 2.1 and suppose that λ ∈ R. If τ − λ is
non-oscillatory at c ∈ {a, b}, then a nontrivial real-valued solution u0 of (11.1) which
satisfies

lim
x→c
x∈(a,b)

u0(x)

u1(x)
= 0 (11.14)

for any other linearly independent real-valued solution u1 of (11.1) is called a principal
solution of (11.1) at c. A real-valued solution of (11.1) linearly independent of a
principal solution at c is called a non-principal solution of (11.1) at c.

If τ − λ is non-oscillatory at c ∈ {a, b}, one verifies that a principal solution at
c is unique up to constant multiples. The main ideas for the proof of Theorem 11.4
presented above are taken from [71, Theorem 11.6.4]; the notion of (non-)principal
solutions dates back at least to Hartman [70] and was subsequently also used by
Rellich [133].

If the differential expression τ − λ is non-oscillatory at c ∈ {a, b}, one can use any
nonzero real-valued solution to construct a non-principal solution in a neighborhood
of c. The procedure for doing so is the content of our next result. For simplicity, we
consider only the case when τ − λ is non-oscillatory at b. An analogous technique
allows one to construct (non-)principal solutions near a when τ − λ is non-oscillatory
at a.
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Theorem 11.6. Assume Hypothesis 2.1 and suppose that τ − λ is non-oscillatory
at b. In addition, suppose that there exists c ∈ (a, b) such that p is sign-definite a.e.
on (c, b). Let u 6= 0 be a real-valued solution of (11.1) and let x0 ∈ (c, b) strictly exceed
its last zero. Then

u1(x) = u(x)

x∫
x0

dx′

p(x′)u(x′)2
, x ∈ (x0, b), (11.15)

is a non-principal solution of (11.1) on (x0, b). If, on the other hand, u is a
non-principal solution of (11.1), then

u0(x) = u(x)

b∫
x

dx′

p(x′)u(x′)2
, x ∈ (x0, b), (11.16)

is a principal solution of (11.1) on (x0, b). Analogous results hold at a.

Proof. Suppose that u 6= 0 is a real-valued solution of (11.1) and define u1 by (11.15).
Evidently, u1 is real-valued and u1 ∈ ACloc((x0, b)). In addition, u1 ∈ Dτ since

u
[1]
1 (x) =

1

u(x)
+ u[1](x)

x∫
x0

dx′

p(x′)u(x′)2
∈ ACloc((x0, b)), (11.17)

and one verifies τu1 = λu1 on (x0, b). Moreover, u1 is linearly independent of u since
W (u, u1) = 1, and u1 is not a principal solution on (x0, b) because

lim
x↑b

u1(x)

u(x)
= lim

x↑b

x∫
x0

dx′

p(x′)u(x′)2
6= 0. (11.18)

It follows that u1 is a non-principal solution on (x0, b).
Under the additional assumption that u is a non-principal solution, one again

readily verifies that u0 defined by (11.16) is a solution on (x0, b), and that u0 is
linearly independent of u. Next, we write u0 = c0ũ0 + c1u on (x0, b), where ũ0 is a
principal solution on (x0, b) and c0, c1 ∈ R. Then after dividing through by u, one
computes

0 = lim
x↑b

b∫
x

dx′

p(x′)u(x′)2
= c0 lim

x↑b

ũ0(x)

u(x)
+ c1 = c1, (11.19)

and it follows that u0 = c0ũ0 is a principal solution on (x0, b).

The following result establishes an intimate connection between non-oscillatory
behavior and the l.p. case for τ at an endpoint. More specifically, we derive a criterion
for concluding that τ is in the l.p. case at an endpoint in the situation where τ − λ
is non-oscillatory at the endpoint and p has fixed sign in a neighborhood of the
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endpoint. The proof of this result relies on the existence of principal solutions, as
established in Theorem 11.4, as well as the technique for constructing non-principal
solutions described in Theorem 11.6. This condition is well-known within the context
of traditional three-term Sturm-Liouville differential expressions of the form τ0u =
r−1[−(pu′)′ + qu], where p > 0, r > 0 a.e. and p−1, r, q ∈ L1

loc((a, b)), etc. It was first
derived by Hartman [70] in the particular case p = r = 1 in 1948. Three years later,
Rellich [133] extended the result to the general three-term case under some additional
smoothness assumptions on p, r, and q. These smoothness restrictions, however, are
inessential (see also [52, Lemma C.1]). The following result extends this l.p. criterion
to the general case governed by Hypothesis 2.1.

Theorem 11.7. Assume Hypothesis 2.1 and suppose that there exists c ∈ (a, b) such
that p is sign-definite a.e. on (c, b). In addition, suppose that τ − λ is non-oscillatory
at b for some λ ∈ R. If

∫ b |r(x)/p(x)|1/2dx = ∞, then τ is in the l.p. case at b. An
analogous result holds at a.

Proof. Since τ − λ is non-oscillatory at b, there exists a principal solution, say u0, of
(11.1) by Theorem 11.4. If x0 strictly exceeds the largest zero of u0 in (c, b), then by
Theorem 11.6, u1 defined by

u1(x) = u0(x)

x∫
x0

dx′

p(x′)u0(x′)2
, x ∈ (x0, b), (11.20)

is a non-principal solution on (x0, b), and as a result,

b∫
x0

dx

|p(x)|u1(x)2
<∞. (11.21)

Assuming τ to be in the l.c. case at b, one concludes that

b∫
x0

u1(x)2r(x)dx <∞. (11.22)

Consequently, Hölder’s inequality yields the contradiction,

b∫
x0

|r(x)/p(x)|1/2dx ≤
∣∣∣∣
b∫

x0

u1(x)2r(x)dx

∣∣∣∣1/2∣∣∣∣
b∫

x0

dx

|p(x)|u1(x)2

∣∣∣∣1/2 <∞. (11.23)

Corollary 11.8. Assume Hypothesis 2.1. Suppose τ − λa is non-oscillatory at a
for some λa ∈ R and that τ − λb is non-oscillatory at b for some λb ∈ R. If p is
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sign-definite in neighborhoods of a and b (the sign of p may be different in the two
neighborhoods), and∫

a

|r(x)/p(x)|1/2dx =∞,
∫ b

|r(x)/p(x)|1/2dx =∞, (11.24)

then Tmin = Tmax is a self-adjoint operator.

Proof. By Theorem 11.7, τ is in the l.p. case at a and b. The result now follows from
Theorem 5.2.

Theorem 11.9. Assume Hypothesis 2.1 and that p > 0 a.e. on (a, b). Suppose there
exist λa, λb ∈ R such that τ − λa is non-oscillatory at a and τ − λb is non-oscillatory
at b. Then T0 and hence any self-adjoint extension S of the minimal operator Tmin is
bounded from below. That is, there exists γ

S
∈ R, such that

〈u, Su〉r ≥ γS 〈u, u〉r, u ∈ dom (S) . (11.25)

Proof. Since τ − λa is non-oscillatory at a and τ − λb is non-oscillatory at b, there
exist real-valued solutions fa, fb ∈ Dτ\{0} satisfying

(τ − λa)fa = 0, (τ − λb)fb = 0 a.e. on (a, b), (11.26)

such that fa does not vanish in a neighborhood, say (a, c) of a, and fb does not vanish
in a neighborhood, say (d, b), of b. We may assume that c < d. Note that the solution
fa can have at most finitely many (distinct) zeros in the interval (c, d). For if fa
has infinitely many zeros in (c, d), then zeros of fa must accumulate at some point
in [c, d]. Let {cn}∞n=1 ⊂ (c, d) denote such a sequence of zeros and c∞ ∈ [c, d] with
limn→∞ cn = c∞. Since fa is continuous on [c, d], the accumulation point c∞ is also
a zero of fa, that is,

fa(c∞) = 0. (11.27)

Let f denote a real-valued solution of (τ − λa)f = 0 linearly independent of fa so
that the Wronskian of f and fa is a nonzero constant

W (f, fa)(c∞) ∈ R\{0}. (11.28)

By the Sturm separation Theorem 11.1, the zeros of fa and f intertwine. In particular,
c∞ must also be a limit point of zeros of f , and by continuity of f on [c, d],

f(c∞) = 0. (11.29)

However, (11.27) and (11.29) are a contradiction to (11.28), and it follows that fa has
only finitely many zeros in (c, d).

Let {cn}N−1
n=2 ⊂ (c, d), N ∈ N chosen appropriately, denote a listing of the finitely

many (distinct) zeros of fa in (c, d) with cn < cn+1, 2 ≤ n ≤ N − 2, and set c1 = c
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and cN = d. Define the operators T0,(a,c), T0,(cn,cn+1), 1 ≤ n ≤ N − 1, and T0,(d,b) in
the following manner:

T0,(a,c)f1 = τf1, (11.30)

f1 ∈ dom
(
T0,(a,c)

)
=
{
g|(a,c)

∣∣ g ∈ dom (Tmax) , g has compact support in (a, c)
}
,

T0,(d,b)f2 = τf2, (11.31)

f2 ∈ dom
(
T0,(d,b)

)
=
{
g|(d,b)

∣∣ g ∈ dom (Tmax) , g has compact support in (d, b)
}
,

T0,(cn,cn+1)f3 = τf3, (11.32)

f3 ∈ dom
(
T0,(cn,cn+1)

)
=
{
g|(cn,cn+1)

∣∣ g ∈ dom (Tmax) , supp(g) ⊂ (cn, cn+1)
}
,

1 ≤ n ≤ N − 1.

Obviously, T0 defined by (3.3) is an extension of the direct sum T0,⊕ defined by

T0,⊕ = T0,(a,c) ⊕ T0,(c1,c2) ⊕ · · · ⊕ T0,(cN−1,cN ) ⊕ T0,(d,b). (11.33)

Moreover, T0,⊕ ⊂ T0,⊕ ⊂ Tmin, and any self-adjoint extension of Tmin is a self-adjoint
extension of T0,⊕. Since the deficiency indices of Tmin are at most 2, it suffices to show
that

T0,⊕ is bounded from below. (11.34)

Subsequently, by [156, Corollary 2, p. 247], (11.34) implies that any self-adjoint exten-
sion of T0,⊕ (hence, any self-adjoint extension of Tmin) is bounded from below since
the deficiency indices of T0,⊕ are finite (in fact, they are at most 2N + 2). It suffices
to show that the symmetric operators (11.30)–(11.32) are separately bounded from
below; a lower bound for T0,⊕ is then taken to be the smallest of the lower bounds
for (11.30)–(11.32).

The proof that T0,(a,c) and T0,(d,b) are bounded from below relies on the
non-oscillatory assumptions on τ − λa and τ − λb. Since (τ − λa)fa = 0 a.e. on
(a, b) and fa does not vanish on (a, c), one can recover q pointwise a.e. on (a, c) by

q(x) = λar(x)− s(x)
f

[1]
a (x)

fa(x)
+

(
f

[1]
a

)′
(x)

fa(x)
for a.e. x ∈ (a, c). (11.35)

Let u ∈ dom
(
T0,(a,c)

)
be fixed. Using (11.35) in conjunction with the fact that func-

tions in dom
(
T0,(a,c)

)
vanish in neighborhoods of a and c (to freely perform integration

by parts), one computes

〈u, T0,(a,c)u〉L2((a,c);r(x)dx) − λa〈u, u〉L2((a,c);r(x)dx)

=

∫
(a,c)

{
u′(x)u[1](x) + u(x)s(x)u[1](x)− s(x)|u(x)|2 f

[1]
a (x)

fa(x)
−

− f
[1]
a (x)

fa

(
u′(x)u(x) + u(x)u′(x)

)
+
f

[1]
a (x)f ′a(x)|u(x)|2

fa(x)2

}
dx.

(11.36)
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Denoting the integrand on the right-hand side of (11.36) by Fu(x) a.e. in (a, c),
algebraic manipulations using the definition of the quasi-derivative yield

Fu(x) = p(x)

∣∣∣∣u′(x)− u(x)
f ′a(x)

fa(x)

∣∣∣∣2 ≥ 0 for a.e. x ∈ (a, c). (11.37)

Therefore, the integral appearing in the right-hand side of (11.36) is nonnegative.
Since u ∈ dom

(
T0,(a,c)

)
is arbitrary, one obtains the lower bound

〈u, T0,(a,c)u〉L2((a,c);r(x)dx) ≥ λa〈u, u〉L2((a,c);r(x)dx), u ∈ dom(T0,(a,c)). (11.38)

The analogous strategy, using the solution fb, establishes the lower bound for T0,(d,b),

〈u, T0,(d,b)u〉L2((d,b);r(x)dx) ≥ λb〈u, u〉L2((d,b);r(x)dx), u ∈ dom(T0,(d,b)). (11.39)

To show that each T0,(cn,cn+1), 1 ≤ n ≤ N−1, is semi-bounded from below, one closely
follows the strategy used above to prove semi-boundedness of T0,(a,c), noting that since
fa is nonvanishing on (cn, cn+1), q can be solved for a.e. on the interval (cn, cn+1)
in the same manner as in (11.35). Then if u ∈ dom

(
T0,(cn,cn+1)

)
, one obtains an

identity which formally reads like (11.36) with the interval (a, c) everywhere replaced
by (cn, cn+1). Factoring the integrand according to the factorization appearing on the
right-hand side of the equality in (11.37) (this time a.e. on (cn, cn+1)), one infers that

〈u, T0,(cn,cn+1)u〉L2((cn,cn+1);r(x)dx) ≥ λa〈u, u〉L2((cn,cn+1);r(x)dx),

u ∈ dom
(
T0,(cn,cn+1)

)
, 1 ≤ n ≤ N − 1.

(11.40)

Together, (11.38), (11.39), and (11.40), yield (11.34), and hence (11.25).

Corollary 11.10. Assume Hypothesis 2.1 and suppose that p > 0 a.e. on (a, b). If τ
is regular on (a, b), then T0 and hence every self-adjoint extension of Tmin is bounded
from below.

Proof. We claim that the differential expression τ is non-oscillatory at a. Indeed, if τ
were oscillatory at a, then τu = 0 has a nontrivial, real-valued solution ua with zeros
accumulating at a. Let v denote a nontrivial, real-valued solution of τu = 0 linearly
independent of ua. Then Theorem 11.1 implies that v also has zeros accumulating at a.
By Theorem 2.6, ua, v, and their quasi-derivatives have limits at a; by continuity,

lim
x↓a

ua(x) = lim
x↓a

v(x) = 0. (11.41)

As a result, the Wronskian of ua and v must satisfy

lim
x↓a

W (ua, v)(x) = 0, (11.42)

which yields a contradiction since the Wronskian of ua and v equals a fixed, nonzero
constant everywhere in (a, b). Similarly, one shows that τ is non-oscillatory at b. The
result now follows by applying Theorem 11.9, with, say, λa = λb = 0.
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Corollary 11.10, under our present general assumptions, has originally been proved
by Möller and Zettl [124] using a different approach (and for the general even-order
case considered in [157] with a positive leading coefficient).

Corollary 11.11. Assume Hypothesis 2.1 and suppose p is sign-definite a.e. in (a, b).
If τ is regular on (a, b) and λ ∈ R, then any nontrivial, real-valued solution of τu = λu
has only finitely many zeros in (a, b).

Proof. By absorbing λ into τ , it suffices to consider the case λ = 0. A nontrivial,
real-valued function u satisfying τu = 0 cannot have zeros accumulating at a point in
[a, b].

Definition 11.12. Assume Hypothesis 2.1. The operator T0 (defined by (3.3)) is said
to be bounded from below at a if there exists a c ∈ (a, b) and a λa ∈ R such that

〈u, T0u〉r ≥ λa〈u, u〉r, u ∈ dom (T0) such that u ≡ 0 on (c, b). (11.43)

Similarly, T0 is said to be bounded from below at b if there exists a d ∈ (a, b) and a
λb ∈ R such that

〈u, T0u〉r ≥ λb〈u, u〉r, u ∈ dom (T0) such that u ≡ 0 on (a, d). (11.44)

Theorem 11.13. Assume Hypothesis 2.1. If T0 is bounded from below at a and p is
sign-definite a.e. near a, then there exists an α ∈ R such that for all λ < α, τ − λ is
non-oscillatory at a. A similar result holds if T0 is bounded from below at b.

Proof. By assumption, there exists a c ∈ (a, b) such that each self-adjoint extension
S(a,c) of τ(a,c) with separated boundary conditions in L2((a, c); r(x)dx) is bounded
from below by some α ∈ R. More precisely, this follows from Definition 11.12 and
[156, Corollary 2 on p. 247]. Then for each λ < α, the diagonal of the corresponding
Green’s function G(a,c),λ(x, x), x ∈ (a, c) is nonnegative (cf. [84, Lemma on p. 195]).
In fact, since G(a,c),λ is continuous on (a, c)× (a, c) one has

G(a,c),λ(x, x) = lim
ε→0
〈(S(a,c) − λ)−1fx,ε, fx,ε〉L2((a,c);r(x)dx) ≥ 0 (11.45)

for each x ∈ (a, c), where

fx,ε(y) =

 x+ε∫
x−ε

r(t)dt

−1

χ(x−ε,x+ε)(y), y ∈ (a, c), ε > 0. (11.46)

Indeed, if x ∈ (a, c), then by continuity along the diagonal, for any δ > 0, there exists
an ε(δ) > 0 such that

G(a,c),λ(x, x)− δ ≤ G(a,c),λ(s, t) ≤ G(a,c),λ(x, x) + δ,

(s, t) ∈ (x− ε, x+ ε)× (x− ε, x+ ε), ε < ε(δ).
(11.47)

As a result,

G(a,c),λ(x, x)− δ ≤ 〈(S(a,c) − λ)−1fx,ε, fx,ε〉 ≤ G(a,c),λ(x, x) + δ,

ε < ε(δ), δ > 0.
(11.48)
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Therefore, one obtains

G(a,c),λ(x, x)− δ ≤ lim inf
ε↓0
〈(S(a,c) − λ)−1fx,ε, fx,ε〉 ≤ G(a,c),λ(x, x) + δ, δ > 0,

(11.49)
and the analogous inequality with “lim inf” replaced by “ lim sup”. Subsequently taking
δ ↓ 0 yields (11.45).

Now let ua and uc be solutions of (τ − λ)u = 0 lying in L2((a, c); r(x)dx) near
a and c respectively and satisfying the boundary conditions there (if any). If ua had
a zero x in (a, c), then y 7→ G(a,c),λ(y, y) would change sign there (note that uc is
nonzero in x since otherwise λ would be an eigenvalue of S(a,c)). Hence ua cannot
have a zero in (a, c) which shows that τ − λ is non-oscillatory at a.

Corollary 11.14. Assume Hypothesis 2.1 and suppose p > 0 a.e. on (a, b). Then T0 is
bounded from below if and only if there exist µ ∈ R and functions ga, gb ∈ ACloc((a, b))

such that g[1]
a , g

[1]
b ∈ ACloc((a, b)), ga > 0 near a, gb > 0 near b,

q ≥ µr − sg
[1]
a

ga
+
(
g[1]
a

)′ a.e. near a,
q ≥ µr − s

g
[1]
b

gb
+
(
g

[1]
b

)′ a.e. near b. (11.50)

Proof. We first assume in addition that∫
a

dx

p(x)ga(x)2
=

∫ b dx

p(x)gb(x)2
=∞. (11.51)

Then for the necessity part of the corollary, Theorem 11.13 permits one to choose ga
and gb as principal solutions of (τ − µ)u = 0 at a and b, respectively, for µ less than
a lower bound of T0. For the sufficiency part, one replaces λa by µ, “=” by “≥”, and
fa by ga in (11.35) and (11.36). The endpoint b is handled analogously.

As originally pointed out in [88, Sect. 3] in the context of traditional
Sturm-Liouville operators (i.e., those without distributional potentials), one may re-
place condition (11.51) by the condition that one (resp., both) of the integrals ap-
pearing in (11.51) is (resp., are) convergent. Indeed, the sufficiency proof of Corollary
11.14 is carried out independent of the condition in (11.51). For necessity, Theorem
11.13 permits one to choose ga or gb as a non-principal solution, yielding equality in
(11.50).

Definition 11.15. Assume Hypothesis 2.1 and let λ ∈ R. Two points x1, x2 ∈ (a, b),
x1 6= x2, are called conjugate points with respect to τ − λ if there is some nontrivial,
real-valued solution u of (τ − λ)u = 0 satisfying u(x1) = u(x2) = 0. If no pair of
conjugate points with respect to τ − λ exists, then the differential expression τ − λ is
called disconjugate.

The disconjugacy property has been extensively studied for Sturm-Liouville ex-
pressions with standard L1

loc-coefficients, and in this connection we refer to the mono-
graph by Coppel [29]. The proof of Theorem 11.13 immediately yields the following
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disconjugacy result for the distributional Sturm-Liouville expressions studied through-
out this manuscript.

Corollary 11.16. Assume Hypothesis 2.1, and suppose p > 0 a.e. on (a, b). If T0 is
bounded from below, then there is an α ∈ R such that (τ −λ) is disconjugate for every
λ < α. If τ is regular on (a, b), then there exists a α0 ∈ R, such that for λ < α0, each
nontrivial solution to (τ − λ)u = 0 has at most one zero in the closed interval [a, b].

Proof. Repeating the proof of Theorem 11.13 with c = b shows that there is an α ∈ R
such that for each λ < α there is a solution of (τ−λ)u = 0 which has no zero in (a, b).
Now the claim follows immediately from Theorem 11.1. To prove the final statement,
let α denote a real number (shown to exist in the first part of the corollary) such that
for every λ < α there is a solution of (τ−λ)u = 0 which has no zeros in (a, b). Now, let
α0 = min{α, inf(σ(S0,0))}, where S0,0 denotes the Dirichlet extension of Tmin defined
by (6.23) with ϕa = ϕb = 0 and the functionals BC1

a and BC1
b chosen such that (cf.

Lemma 6.1)

BC1
a(g) = g(a), BC1

b (g) = g(b), g ∈ dom
(
Tmax

)
. (11.52)

If for some λ < λmin a solution to (τ − λ)u = 0, call it u0, has more than one zero,
then necessarily u0(a) = u0(b) = 0, as u has no zeros in (a, b) because λ < α. Con-
sequently, u0 is an eigenfunction of S0,0 with eigenvalue λ < inf σ

(
S0,0

)
, an obvious

contradiction.

We conclude this section with an explicit characterization of the Friedrichs exten-
sion [47] of T0 (assuming the latter to be bounded from below). Before proceeding with
this characterization, we recall the intrinsic description of the Friedrichs extension SF
of a densely defined, symmetric operator S0 in a complex, separable Hilbert space H
(with scalar product denoted by (·, ·)H), bounded from below, due to Freudenthal [46]
in 1936. Assuming that S0 ≥ γS0

IH, Freudenthal’s characterization describes SF by

SFu = S∗0u,

u ∈ dom (SF ) =
{
v ∈ dom (S∗0 )

∣∣∣ there exists {vj}j∈N ⊂ dom (S0) , (11.53)

with lim
j→∞

‖vj − v‖H = 0 and ((vj − vk), S0(vj − vk))H −→
j,k→∞

0
}
.

Then, as is well-known,

SF ≥ γS0
IH, (11.54)

dom
(
(SF − γS0

IH)1/2
)

=
{
v ∈ H

∣∣∣ there exists {vj}j∈N ⊂ dom (S0) , (11.55)

with lim
j→∞

‖vj − v‖H = 0 and ((vj − vk), S0(vj − vk))H −→
j,k→∞

0
}
,

and
SF = S∗0 |dom(S∗0)∩dom((SF−γS0

IH)1/2). (11.56)
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Equations (11.55) and (11.56) are intimately related to the definition of SF via
(the closure of) the sesquilinear form generated by S0 as follows: One introduces the
sesquilinear form

qS0
(f, g) = (f, S0g)H, f, g ∈ dom (qS0

) = dom (S0) . (11.57)

Since S0 ≥ γ
S0
IH, the form qS0 is closable and we denote by qS0 the closure of

qS0
. Then qS0

≥ γ
S0

is densely defined and closed. By the first and second rep-
resentation theorem for forms (cf., e.g., [96, Sect. 6.2]), qS0

is uniquely associated
with a self-adjoint operator in H. This operator is precisely the Friedrichs extension,
SF ≥ γS0

IH, of S0, and hence,

qS0
(f, g) = (f, SF g)H, f ∈ dom (qS0

) = dom
(
(SF − γS0

IH)1/2
)
, g ∈ dom (SF ) .

(11.58)
The following result describes the Friedrichs extension of T0 (assumed to be

bounded from below) in terms of functions that mimic the behavior of principal so-
lutions near an endpoint. The proof closely follows the treatment by Kalf [88] in the
special case s = 0 a.e. on (a, b). (For more recent results on the Friedrichs extension of
ordinary differential operators we also refer to [112,124,125,128,129,136], and [159].)

Theorem 11.17. Assume Hypothesis 2.1 and suppose p > 0 a.e. on (a, b). If T0 is
bounded from below by γ0 ∈ R, T0 ≥ γ0Ir, which by Corollary 11.14 is equivalent to the
existence of µ ∈ R and functions ga and gb satisfying ga, gb, g

[1]
a , g

[1]
b ∈ ACloc((a, b)),

ga > 0 a.e. near a, gb > 0 a.e. near b,∫
a

dx

p(x)ga(x)2
=

∫ b dx

p(x)gb(x)2
=∞, (11.59)

and

q ≥ µr − sg
[1]
a

ga
+

(
g

[1]
a

)′
ga

a.e. near a,

q ≥ µr − s
g

[1]
b

gb
+

(
g

[1]
b

)′
gb

a.e. near b,

(11.60)

then the Friedrichs extension SF of T0 is characterized by

SF f = τf,

f ∈ dom (SF ) =

{
g ∈ dom (Tmax)

∣∣∣∣ ∫
a

pg2
a

∣∣∣∣( g

ga

)′∣∣∣∣2dx <∞, (11.61)

∫ b

pg2
b

∣∣∣∣( g

gb

)′∣∣∣∣2dx <∞}.
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In particular,∫
a

∣∣∣∣q −
(
g

[1]
a

)′
ga

+ s
g

[1]
a

ga

∣∣∣∣|f |2dx <∞, ∫ b ∣∣∣∣q −
(
g

[1]
b

)′
gb

+ s
g

[1]
b

gb

∣∣∣∣|f |2dx <∞,
f ∈ dom (SF ) .

(11.62)

Proof. Let S denote the operator defined by (11.61) and SF the Friedrichs extension
of T0. We begin by showing S is symmetric. In order to do this, it suffices to prove S
is densely defined and

〈u, Su〉r ∈ R, u ∈ dom (S) . (11.63)

Since functions in dom (T0) are compactly supported one has dom (T0) ⊂ dom (S),
which guarantees that S is densely defined. Hence it remains to show (11.63). To this
end, let a < c0 < d0 < b such that ga > 0 on (a, c0], gb > 0 on [d0, b) and consider the
self-adjoint operator S(c0,d0) on L2((c0, d0); r(x)dx) induced by τ with the boundary
conditions

f(c0)g[1]
a (c0)− f [1](c0)ga(c0) = f(d0)g

[1]
b (d0)− f [1](d0)gb(d0) = 0. (11.64)

The proof of Theorem 11.13 shows that the solutions uλ of (τ − λ)u = 0, λ ∈ R,
satisfying the initial conditions uλ(c0) = ga(c0) and u

[1]
λ (c0) = g

[1]
a (c0), are positive

as long as λ lies below the smallest eigenvalue λ0 of S(c0,d0) (which is bounded from
below by assumption). In particular, this guarantees that the eigenfunction uλ0

is
nonnegative on [c0, d0] and hence even positive since it would change sign at a zero.
As a consequence, the function h defined by

h(x) =


ga(x), x ∈ (a, c0),

uλ0(x), x ∈ [c0, d0],

uλ0
(d0)gb(d0)−1gb(x), x ∈ (d0, b)

(11.65)

is positive on (a, b) and satisfies h ∈ ACloc((a, b)), h[1] ∈ ACloc((a, b)). Note that in
particular h is a scalar multiple of gb near b and hence (11.59) and (11.60) hold with
gb replaced by h. Now fix some f ∈ dom (S) and let a < c < d < b. In light of the
following analog of Jacobi’s factorization identity,

−
(
f [1]
)′

+ sf [1] +
(h[1])′

h
f − sh

[1]

h
f = − 1

h

[
ph2

(
f

h

)′]′
a.e. in (a, b), (11.66)

one computes

d∫
c

f(x)Sf(x)r(x)dx = −
[
ph2

(
f

h

)′
f

h

]∣∣∣∣d
c

+

d∫
c

{
ph2

∣∣∣∣(fh
)′∣∣∣∣2+

+ |f |2
(
q −

(
h[1]
)′

h
+ s

h[1]

h

)}
dx, a < c < d < b,

(11.67)
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so that

=
( d∫
c

f(x)Sf(x)r(x)dx

)
= =

(
−
[
ph2

(
f

h

)′
f

h

]∣∣∣∣d
c

)
, a < c < d < b. (11.68)

Taking P = ph2 and v = f/h in the subsequent Lemma 11.18, one infers that∫
a

|v(x)|2

P (x)Hγ(x)
dx <∞, γ ∈ (a, b), (11.69)

where the function Hγ is defined as in (11.85). We note that Hγ is well-defined for
any γ ∈ (a, b) in light of the fact that 1/p ∈ L1

loc((a, b); dx) and the function h ∈
ACloc((a, b)) is strictly positive on any compact subinterval of (a, b). Subsequently,
an application of Hölder’s inequality yields∫

a

P (x)
∣∣v(x)v′(x)

∣∣
P (x)Hγ(x)

dx <∞, γ ∈ (a, b), (11.70)

noting that square integrability of P 1/2v′ near x = a is guaranteed by the condition
f ∈ dom (S). Moreover, the integral∫

a

dx

P (x)Hγ(x)
, γ ∈ (a, b), (11.71)

diverges logarithmically to infinity, so (11.70) implies

lim inf
x↓a

∣∣Pvv′∣∣(x) = lim inf
x↓a

∣∣∣∣ph2

(
f

h

)′
f

h

∣∣∣∣(x) = 0. (11.72)

An analogous argument at x = b can be used to show

lim inf
x↑b

∣∣∣∣ph2

(
f

h

)′
f

h

∣∣∣∣(x) = 0. (11.73)

Equations (11.68), (11.72), and (11.73) show that one can choose sequences {cn}n∈N
and {dn}n∈N with a < cn < dn < b, n ∈ N, with cn ↓ a, dn ↑ b, such that

lim
n→∞

=
( dn∫
cn

f(x)Sf(x)r(x)dx

)
= 0. (11.74)

On the other hand

lim
c↓a
d↑b

=
( d∫
c

f(x)Sf(x)r(x)dx

)
(11.75)
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exists. Consequently, (11.74) implies

=
( b∫
a

f(x)Sf(x)r(x)dx

)
= lim

c↓a
d↑b

=
( d∫
c

f(x)Sf(x)r(x)dx

)
= 0. (11.76)

Since f ∈ dom (S) was arbitrary, (11.63) follows.
We now show that S coincides with SF , the Friedrichs extension of T0. It suffices

to show SF ⊂ S; self-adjointness of SF and symmetry of S then yield SF = S. In turn,
since SF is a restriction of Tmax (because the self-adjoint extensions of T0 are precisely
the self-adjoint extensions of Tmin, and the latter are self-adjoint restrictions of Tmax),
it suffices to verify the two integral conditions appearing in (11.61) are satisfied for
elements of dom (SF ). Freudenthal’s characterization of the domain of the Friedrichs
extension for the present setting is

dom (SF ) =
{
f ∈ dom (Tmax)

∣∣∣ there exists {fj}∞j=1 ⊂ dom (T0) such (11.77)

that lim
j→∞

‖fj − f‖2,r = 0 and lim
j,k→∞

〈fj − fk, T0(fj − fk)〉r = 0
}
.

Let f ∈ dom (SF ) and {fj}∞j=1 a sequence with the properties in (11.77). Define
fj,k = fj − fk, j, k ∈ N, and choose numbers c and d in the interval (a, b) such that
ga and gb are positive on (a, c] and [d, b), respectively. Then using the identities

c∫
α

{
p−1
∣∣u[1]

∣∣2 + q|u|2
}
dx = (11.78)

=
g

[1]
a

ga
|u|2
∣∣∣∣c
α

+

c∫
α

{
pg2
a

∣∣∣∣( u

ga

)′∣∣∣∣2 + |u|2
[
q + s

g
[1]
a

ga
−
(
g

[1]
a

)′
ga

]}
dx, α ∈ [a, c],

β∫
d

{
p−1
∣∣u[1]

∣∣2 + q|u|2
}
dx = (11.79)

=
g

[1]
b

gb
|u|2
∣∣∣∣β
d

+

β∫
d

{
pg2
b

∣∣∣∣( ugb
)′∣∣∣∣2 + |u|2

[
q + s

g
[1]
b

gb
−
(
g

[1]
b

)′
gb

]}
dx, β ∈ [d, b],

u ∈ dom (T0) ,
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one computes

〈fj,k, T0fj,k〉r =

c∫
a

{
pg2
a

∣∣∣∣(fj,kga
)′∣∣∣∣2 + |fj,k|2

[
q + s

g
[1]
a

ga
−
(
g

[1]
a

)′
ga

]}
dx+

+

b∫
d

{
pg2
b

∣∣∣∣(fj,kgb
)′∣∣∣∣2 + |fj,k|2

[
q + s

g
[1]
b

gb
−
(
g

[1]
b

)′
gb

]}
dx+

+

(
g

[1]
a

ga
|fj,k|2

)
(c)−

(
g

[1]
b

gb
|fj,k|2

)
(d)+

+

d∫
c

{
p−1
∣∣f [1]
j,k

∣∣2 + q|fj,k|2
}
dx, j, k ∈ N.

(11.80)

On the other hand, choosing ν ∈ R such that

ν

d∫
c

r
∣∣fj,k∣∣2dx ≤ (g[1]

a

ga
|fj,k|2

)
(c)−

(
g

[1]
b

gb
|fj,k|2

)
(d)+

+

d∫
c

{
p−1
∣∣f [1]
j,k

∣∣2 + q|fj,k|2
}
dx, j, k ∈ N,

(11.81)

the existence of such a ν being guaranteed by Lemma A.3 (cf., in particular, (A.34)),
and taking κ = |µ|+ |ν|, one obtains

〈fj,k, T0fj,k〉r + κ
∥∥fj,k∥∥2

2,r
≥

c∫
a

pg2
a

∣∣∣∣(fj,kga
)′∣∣∣∣2dx+

b∫
d

pg2
b

∣∣∣∣(fj,kgb
)′∣∣∣∣2dx,
j, k ∈ N.

(11.82)

Moreover, the left-hand side of (11.82) goes to zero as j, k →∞, and as a result, there
exist functions fa and fb such that

lim
j→∞

c∫
a

pg2
a

∣∣∣∣(fjga
)′
− fa

∣∣∣∣2dx = lim
j→∞

b∫
d

pg2
b

∣∣∣∣(fjgb
)′
− fb

∣∣∣∣2dx = 0, (11.83)

implying, fa = (g−1
a f)′, fb = (g−1

b f)′ a.e. on (a, c) and (d, b), respectively. Conse-
quently, one infers that∫

a

pg2
a

∣∣∣∣( f

ga

)′∣∣∣∣2dx <∞, ∫ b

pg2
b

∣∣∣∣( fgb
)′∣∣∣∣2dx <∞, (11.84)

and it follows that f ∈ dom (S). This completes the proof that SF ⊆ S and hence,
SF = S.
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To prove (11.62), note that in light of the inequalities in (11.60), it suffices to
prove that the positive part of

[
q−

(
h[1]
)′
/h+ sh[1]/h

]
times |f |2 is integrable near a

and b for each f ∈ dom (SF ). This follows immediately from (11.67) and (11.73).

The proof of Theorem 11.17 relied on the following result:

Lemma 11.18 ([89, Lemma 1], [88]). Let P > 0, 1/P ∈ L1
loc((a, b); dx), and

Hγ(x) =

∣∣∣∣
x∫
γ

dt

P (t)

∣∣∣∣, x ∈ (a, b), γ ∈ [a, b]. (11.85)

In addition, suppose that v ∈ ACloc((a, b)) satisfies P 1/2v′ ∈ L2((a, b); dx).
If Ha =∞, then ∫

a

|v(x)|2

P (x)H2
γ(x)

dx <∞, γ ∈ (a, b), (11.86)

the choice γ = b being also possible if Hb <∞.

The conditions on ga and gb in (11.59) are reminiscent of the integral conditions
satisfied by principal solutions to the equation (τ − λ)u = 0, assuming the latter is
non-oscillatory. One can just as well characterize the Friedrichs extension of T0 in
terms of functions ga and gb satisfying the assumptions of Theorem 11.17 but for
which one (or both) of the integrals in (11.59) is convergent (these conditions are
equivalent to T0 being bounded from below, see the proof of Corollary 11.14). In
these cases, the characterization requires a certain boundary condition as our next
result shows.

Theorem 11.19. Assume Hypothesis 2.1 and suppose p > 0 a.e. on (a, b). If T0 is
bounded from below by γ0 ∈ R, T0 ≥ γ0Ir, which by Corollary 11.14 is equivalent to the
existence of µ ∈ R and functions ga and gb satisfying ga, gb, g

[1]
a , g

[1]
b ∈ ACloc((a, b)),

ga > 0 a.e. near a, gb > 0 a.e. near b,

∫
a

dx

p(x)ga(x)2
<∞,

∫ b dx

p(x)gb(x)2
=∞, (11.87)

and

q ≥ µr − sg
[1]
a

ga
+

(
g

[1]
a

)′
ga

a.e. near a,

q ≥ µr − s
g

[1]
b

gb
+

(
g

[1]
b

)′
gb

a.e. near b,

(11.88)
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then the Friedrichs extension SF of T0 is characterized by

SF f = τf,

f ∈ dom (SF ) =

{
g ∈ dom (Tmax)

∣∣∣∣ ∫ b

pg2
b

∣∣∣∣( g

gb

)′∣∣∣∣2dx <∞, (11.89)∫
a

pg2
a

∣∣∣∣( g

ga

)′∣∣∣∣2dx <∞, lim
x↓a

g(x)

ga(x)
= 0

}
.

In particular,∫
a

∣∣∣∣q −
(
g

[1]
a

)′
ga

+ s
g

[1]
a

ga

∣∣∣∣|f |2dx <∞, ∫ b ∣∣∣∣q −
(
g

[1]
b

)′
gb

+ s
g

[1]
b

gb

∣∣∣∣|f |2dx <∞,
f ∈ dom (SF ) .

(11.90)

We omit the obvious case where the roles of a and b are interchanged, but note that
if (11.87) is replaced by∫

a

dx

p(x)ga(x)2
<∞,

∫ b dx

p(x)gb(x)2
<∞, (11.91)

one obtains

SF f = τf,

f ∈ dom (SF ) =

{
g ∈ dom (Tmax)

∣∣∣∣ ∫
a

pg2
a

∣∣∣∣( g

ga

)′∣∣∣∣2dx <∞, (11.92)

∫ b

pg2
b

∣∣∣∣( g

gb

)′∣∣∣∣2dx <∞, lim
x↓a

g(x)

ga(x)
= 0, lim

x↑b

g(x)

gb(x)
= 0

}
.

Proof. Let S denote the operator defined by (11.89) and SF the Friedrichs exten-
sion of T0. To show that S is symmetric, one can follow line-by-line the argument
for (11.63)–(11.68), so that (11.68) remains valid. One can then show that (11.73)
continues to hold under the finiteness assumption in (11.87) (cf., the beginning of the
proof of [88, Remark 3]). Repeating the argument (11.74)–(11.76) then shows that
S is symmetric. In order to conclude S = SF , it suffices to prove SF ⊆ S. In turn,
it is enough to prove dom (SF ) ⊆ dom (S). To this end, let f ∈ dom (SF ). Since
(11.77)–(11.84) can be repeated without alteration, the problem reduces to proving

lim
x↓a

|f(x)|
ga(x)

= 0. (11.93)

One takes a sequence {fn}∞n=1 ⊂ dom (T0) with the properties

lim
n→∞

‖fn − f‖2,r = 0 and lim
n,m→∞

〈fn − fm, T0(fn − fm)〉r = 0, (11.94)
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and let {fnk}∞k=1 denote a subsequence converging to f pointwise a.e. in (a, b) as
k →∞. Since fnk , f are continuous on (a, b), fnk actually converge pointwise every-
where to f on (a, b) as k →∞.

Then the proof of (11.90) is exactly the same as the corresponding fact (11.62) in
Theorem 11.17.

Next, one chooses c ∈ (a, b) such that ga > 0 on (a, c). Using Hölder’s inequality
and (11.82), one obtains the estimate∣∣∣∣fnk(x)

ga(x)

∣∣∣∣2 =

∣∣∣∣
x∫
a

1

p1/2ga
p1/2ga

(
fnk
ga

)′
dx′
∣∣∣∣2 ≤

x∫
a

dx′

pg2
a

x∫
a

pg2
a

∣∣∣∣(fnkg2
a

)′∣∣∣∣2dx′ ≤
≤

x∫
a

dx′

pg2
a

[
(fnk , (T0 − γ0Ir)fnk)r + (|γ0|+ κ)‖fnk

∥∥2

2,r

]
, x ∈ (a, c), k ∈ N.

(11.95)

Because of (11.94), one obtains∣∣∣∣fnk(x)

ga(x)

∣∣∣∣2 ≤ C
x∫
a

dx′

pg2
a

, x ∈ (a, c), k ∈ N, (11.96)

with C > 0 a k-independent constant. Writing∣∣∣∣ f(x)

ga(x)

∣∣∣∣ ≤ ∣∣∣∣f(x)− fnk(x)

ga(x)

∣∣∣∣+

∣∣∣∣fnk(x)

ga(x)

∣∣∣∣, (11.97)

and given ε > 0, one first chooses an x(ε) ∈ (a, c) such that |fnk(x)/ga(x)| ≤ ε/2 for
all x ∈ (a, x(ε)), and then for x ∈ (a, x(ε)) one chooses a k(x, ε) ∈ N such that for all
k ≥ k(x, ε), |[f(x)− fnk(x)]/ga(x)| ≤ ε/2, resulting in∣∣∣∣ f(x)

ga(x)

∣∣∣∣ ≤ ε (11.98)

whenever x ∈ (a, x(ε)) and k ≥ k(x, ε). Since the left-hand side of (11.98) is
k-independent, (11.93) follows.

Corollary 11.20. Assume Hypothesis 2.1 and suppose p > 0 a.e. on (a, b). If τ is
regular on (a, b), then the Friedrichs extension SF of T0 is of the form

SF f = τf,

f ∈ dom (SF ) =
{
g ∈ dom (Tmax)

∣∣ g(a) = g(b) = 0
}
.

(11.99)

Proof. Let ga, gb be the solutions of τu = 0 with the initial conditions
ga(a) = gb(b) = 1 and g

[1]
a (a) = g

[1]
b (b) = 0. Since τ is regular on (a, b) we have for

each g ∈ dom (Tmax)∫
a

pg2
a

∣∣∣∣( g

ga

)′∣∣∣∣2dx =

∫
a

pg2
a

∣∣∣∣gag′ − gg′ag2
a

∣∣∣∣2dx =

∫
a

1

p

∣∣∣∣g[1]ga − gg[1]
a

g2
a

∣∣∣∣dx <∞, (11.100)

and similarly for the endpoint b. Now the result follows from Theorem 11.19 and in
particular (11.92).
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12. THE KREIN-VON NEUMANN EXTENSION IN THE REGULAR CASE

In this section, we consider the Krein-von Neumann extension SK of T0 ≥ εIr, ε > 0.
The operator SK , like the Friedrichs extension SF of T0, is a distinguished, in fact,
extremal nonnegative extension of T0.

Temporarily returning to the abstract considerations (11.53)–(11.58) in connection
with the Friedrichs extension of S0, an intrinsic description of the Krein-von Neumann
extension SK of S0 ≥ 0 has been given by Ando and Nishio [7] in 1970, where SK has
been characterized by

SKu = S∗0u,

u ∈ dom (SK) =
{
v ∈ dom (S∗0 )

∣∣ there exists {vj}j∈N ⊂ dom (S0) , (12.1)

with lim
j→∞

‖S0vj − S∗0v‖H = 0 and ((vj − vk), S0(vj − vk))H → 0 as j, k →∞
}
.

We recall that A ≤ B for two self-adjoint operators in H if

dom
(
|A|1/2

)
⊇ dom

(
|B|1/2

)
and(

|A|1/2u, UA|A|1/2u
)
H ≤

(
|B|1/2u, UB |B|1/2u

)
H, u ∈ dom

(
|B|1/2

)
,

(12.2)

where UC denotes the partial isometry in H in the polar decomposition of a densely
defined closed operator C in H, C = UC |C|, |C| = (C∗C)1/2.

The following is a fundamental result to be found in M. Krein’s celebrated 1947
paper [107] (cf. also Theorems 2 and 5–7 in the English summary on page 492).

Theorem 12.1. Assume that S0 is a densely defined, nonnegative operator in H.
Then, among all nonnegative self-adjoint extensions of S0, there exist two distin-
guished ones, SK and SF , which are, respectively, the smallest and largest (in the
sense of order between self-adjoint operators, cf. (12.2)) such extensions. Furthermore,
a nonnegative self-adjoint operator S̃ is a self-adjoint extension of S0 if and only if S̃
satisfies

SK ≤ S̃ ≤ SF . (12.3)

In particular, (12.3) determines SK and SF uniquely.

In addition, if S0 ≥ εIH for some ε > 0, one has SF ≥ εIH, and

dom (SF ) = dom (S0) u (SF )−1 ker(S∗0 ), (12.4)
dom (SK) = dom (S0) u ker(S∗0 ), (12.5)

dom (S∗) = dom (S0) u (SF )−1 ker(S∗0 ) u ker(S∗0 ) =

= dom (SF ) u ker(S∗0 ), (12.6)

in particular,
ker(SK) = ker

(
(SK)1/2

)
= ker(S∗0 ) = ran(S0)⊥. (12.7)
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Here the symbol u represents the direct (though, not direct orthogonal) sum of
subspaces, and the operator inequalities in (12.3) are understood in the sense of (12.2)
and hence they can equivalently be written as

(SF + aIH)−1 ≤
(
S̃ + aIH

)−1 ≤ (SK + aIH)−1 for some (and hence for all ) a > 0.
(12.8)

In addition to Krein’s fundamental paper [107], we refer to the discussions in
[6, 10, 11, 65]. It should be noted that the Krein-von Neumann extension was first
considered by von Neumann [155] in 1929 in the case where S0 is strictly positive,
that is, if S0 ≥ εIH for some ε > 0. (His construction appears in the proof of Theorem
42 on pages 102–103.) However, von Neumann did not isolate the extremal property
of this extension as described in (12.3) and (12.8). M. Krein [107,108] was the first to
systematically treat the general case S0 ≥ 0 and to study all nonnegative self-adjoint
extensions of S0, illustrating the special role of the Friedrichs extension SF and the
Krein-von Neumann extension SK of S0 as extremal cases when considering all non-
negative extensions of S0. For a recent exhaustive treatment of self-adjoint extensions
of semibounded operators we refer to [9]–[14]. For classical references on the sub-
ject of self-adjoint extensions of semibounded operators (not necessarily restricted
to the Krein-von Neumann extension) we refer to Birman [22, 23], Freudenthal [46],
Friedrichs [47], Grubb [64,66], Krein [108], S̆traus [152], and Vĭsik [154] (see also the
monographs by Akhiezer and Glazman [1, Sect. 109], Faris [43, Part III], and Grubb
[67, Sect. 13.2]).

Throughout the remainder of this section, we assume that τ is regular on (a, b)
and that the coefficient p is positive a.e. on (a, b). That is, we shall make the following
assumptions:

Hypothesis 12.2. Assume Hypothesis 2.1 holds with p > 0 a.e. on (a, b) and that τ
is regular on (a, b). Equivalently, we suppose that p, q, r, s are Lebesgue measurable
on (a, b) with p−1, q, r, s ∈ L1((a, b); dx) and real-valued a.e. on (a, b) with p, r > 0
a.e. on (a, b).

Assuming Hypothesis 12.2, we now provide a characterization of the Krein-von
Neumann extension, SK of T0 (resp., Tmin), in the situation where T0 is strictly
positive (in the operator sense). An elucidation along these lines for the case s = 0
a.e. on (a, b) was set forth in [26].

Theorem 12.3. Assume Hypothesis 12.2 and suppose that the associated minimal
operator Tmin is strictly positive in the sense that there exists ε > 0 such that

〈Tminf, f〉r ≥ ε〈f, f〉r, f ∈ dom
(
Tmin

)
. (12.9)

Then the Krein-von Neumann extension SK of Tmin is given by (cf. (6.24))

SKf = τf,

f ∈ dom (SK) =

{
g ∈ dom (Tmax)

∣∣∣∣ ( g(b)
g[1](b)

)
= RK

(
g(a)
g[1](a)

)}
,

(12.10)
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where

RK =
1

u
[1]
1 (a)

(
−u[1]

2 (a) 1

u
[1]
1 (a)u

[1]
2 (b)− u[1]

1 (b)u
[1]
2 (a) u

[1]
1 (b)

)
∈ SL2(R). (12.11)

Here
{
uj(·)

}
j=1,2

are positive solutions of τu = 0 determined by the conditions

u1(a) = 0, u1(b) = 1,

u2(a) = 1, u2(b) = 0.
(12.12)

Proof. The assumption that Tmin is strictly positive implies that 0 is a regular point
of Tmin (cf. the paragraph preceding Lemma 4.2), and since the deficiency indices of
Tmin are equal to two (one notes that it is this fact that actually implies the existence
of solutions uj , j = 1, 2, satisfying the properties (12.12)), it follows that

dim
(
ker
(
Tmax

))
= 2 (12.13)

and a basis for ker
(
Tmax

)
is given by

{
uj(·)

}
j=1,2

. In this situation, the Krein-von
Neumann extension SK of Tmin is given by (cf. (12.5)),

dom
(
SK
)

= dom
(
Tmin

)
u ker

(
Tmax

)
. (12.14)

Alternatively, since SK is a self-adjoint extension of Tmin, its domain can also be
specified by boundary conditions at the endpoint of (a, b) which we characterize next.
If u ∈ dom

(
SK
)
, then in accordance with (12.14),

u(x) = f(x) + c1u1(x) + c2u2(x), x ∈ [a, b], (12.15)

for certain functions f ∈ dom
(
Tmin

)
and c1, c2 ∈ C. Since f ∈ dom

(
Tmin

)
satisfies

f(a) = f [1](a) = f(b) = f [1](b) = 0, (12.16)

one infers that
u(a) = c2 and u(b) = c1. (12.17)

Consequently

u[1](x) = f [1](x) + u(b)u
[1]
1 (x) + u(a)u

[1]
2 (x), x ∈ [a, b]. (12.18)

Evaluating separately at x = a and x = b, yields the (non-separated) boundary
conditions that u must satisfy;

u[1](a) = u(b)u
[1]
1 (a) + u(a)u

[1]
2 (a),

u[1](b) = u(b)u
[1]
1 (b) + u(a)u

[1]
2 (b).

(12.19)

Since u[1]
1 (a) 6= 0 (otherwise, u1(·) ≡ 0 on [a, b]), the boundary condition in (12.19)

may be recast as (
u(b)
u[1](b)

)
= RK

(
u(a)
u[1](a)

)
, (12.20)
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with RK given by (12.11). Moreover, RK ∈ SL2(R). To see this, first note that the
entries of RK are real-valued. Additionally, the fact that

− u[1]
1 (a) = W

(
u1(·), u2(·)

)
= u

[1]
2 (b) (12.21)

implies det
(
RK
)

= 1. As a result, we have shown SK ⊆ SR=RK ,φ=0, where SR=RK ,φ=0

is the self-adjoint restriction of Tmax corresponding to non-separated boundary con-
ditions generated by the matrix RK and angle φ = 0 (cf. (6.24)). On the other hand,
since SK and SR=RK ,φ=0 are self-adjoint, one obtains the equality SK = SR=RK ,φ=0.
That is to say, the Krein-von Neumann extension of Tmin is the self-adjoint exten-
sion corresponding to non-separated boundary conditions generated by R = RK and
φ = 0.

Example 12.4. In the special case when q = 0 a.e. on (a, b), the above calculations
become even more explicit. In this case, we denote the Krein-von Neumann restriction
by S(0)

K (the superscript (0) indicating that q vanishes a.e. in (a, b)). One may choose
explicit basis vectors

{
u

(0)
j (·)

}
j=1,2

for ker
(
T ∗min

)
:

u
(0)
1 (x) = C0e

−
x∫
a

s(t)dt
x∫
a

p(t)−1e
2
t∫
a

s(t′)dt′

dt,

u
(0)
2 (x) = e

−
x∫
a

s(t)dt
− e
−

b∫
a

s(t)dt
u

(0)
1 (x), x ∈ [a, b],

(12.22)

where

C0 := e

b∫
a

s(t)dt
[ b∫
a

p(t)−1e
2
t∫
a

s(t′)dt′

dt

]−1

> 0. (12.23)

One computes

(
u

(0)
1 (·)

)[1]
(x) = C0e

x∫
a

s(t)dt
,

(
u

(0)
2 (·)

)[1]
(x) = −e

−
b∫
a

s(t)dt(
u

(0)
1 (·)

)[1]
(x), x ∈ [a, b],

(12.24)

and [
τ (0)u

(0)
j (·)

]
(x) = 0 a.e. in (a, b), j = 1, 2, (12.25)

where τ (0) denotes the differential expression of (2.2) in the present special case
q = 0 a.e. in (a, b). It follows that

{
u

(0)
j (·)

}
j=1,2

⊂ dom
(
T ∗min

)
forms a basis for

ker
(
T ∗min

)
= ker

(
Tmax

)
. In addition, the equalities in (12.12) are satisfied. With this

pair of basis vectors, one infers that the matrix R = R
(0)
K which parameterizes the

(non-separated) boundary conditions for the Krein-von Neumann extension is

R
(0)
K =

e
−

b∫
a

s(t)dt
e
−

b∫
a

s(t)dt b∫
a

p(t)−1e
2
t∫
a

s(t′)dt′

dt

0 e

b∫
a

s(t)dt

 . (12.26)
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Explicitly, the boundary conditions corresponding to S(0)
K read:

u[1](b) = e

b∫
a

s(t)dt
u[1](a) =

= e
2
b∫
a

s(t)dt
[ b∫
a

p(t)−1e
2
t∫
a

s(t′)dt′

dt

]−1(
u(b)− e

−
b∫
a

s(t)dt
u(a)

)
, (12.27)

u ∈ dom
(
S

(0)
K

)
.

13. POSITIVITY PRESERVING AND IMPROVING RESOLVENTS
AND SEMIGROUPS IN THE REGULAR CASE

In our final section, we prove a criterion for a self-adjoint extension of Tmin to generate
a positivity improving resolvent or, equivalently, semigroup. The notion of a positivity
improving resolvent or semigroup proves critical in a study of the smallest eigenvalue of
a self-adjoint restriction, as it guarantees that the lowest eigenvalue is non-degenerate
and possesses a nonnegative eigenfunction. In fact, we will go a step further and prove
that the notions of positivity preserving and positivity improving are equivalent in
the regular case.

The self-adjoint restrictions of Tmax are characterized in terms of the functionals
BCja and BCjb , j = 1, 2, in Section 6 (cf. (6.1) and (6.2)), and assuming Hypothesis
12.2 throughout this section, the functionals BCja and BCjb , j = 1, 2 take the form of
point evaluations of functions and their quasi-derivatives at the boundary points of
(a, b) as in Lemma 6.1, that is, BC1

a(f) = f(a), BC2
a(f) = f [1](a), BC1

b (f) = f(b),
BC2

b (f) = f [1](b), f ∈ dom
(
Tmax

)
. Since under the assumption of Hypothesis 12.2, τ

is in the l.c. case at both endpoints of the interval (a, b), all real self-adjoint restrictions
of Tmax are parametrized as described in Theorem 6.4 with φ = 0. Hence, we adopt
the following notational convention: Sϕa,ϕb denote the (real) self-adjoint restrictions
of Tmax corresponding to the separated boundary conditions (6.23) in Theorem 6.4,
that is,

Sϕa,ϕbf = τf, (13.1)

f ∈ dom (Sϕa,ϕb) =

{
g ∈ dom (Tmax)

∣∣∣∣ g(a) cos(ϕa)− g[1](a) sin(ϕa) = 0,
g(b) cos(ϕb)− g[1](b) sin(ϕb) = 0

}
,

and SR denote the real self-adjoint restrictions of Tmax corresponding to the coupled
boundary conditions (6.24) with φ = 0 in Theorem 6.4, that is,

SRf = τf,

f ∈ dom (SR) =

{
g ∈ dom (Tmax)

∣∣∣∣ ( g(b)
g[1](b)

)
= R

(
g(a)
g[1](a)

)}
.

(13.2)
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Following [26] and [57], the sesquilinear forms associated to (13.1) and (13.2) are
readily written down and read (cf. Appendix A)

QSϕa,ϕb
(f, g) =

b∫
a

[
p(x)−1f [1](x)g[1](x) + q(x)f(x)g(x)

]
dx+

+ cot(ϕa)f(a)g(a)− cot(ϕb)f(b)g(b),

f, g ∈ dom(QSϕa,ϕb
) =

{
h ∈ L2((a, b); r(x)dx)

∣∣h ∈ AC([a, b]), (13.3)

(rp)−1/2h[1] ∈ L2((a, b); r(x)dx)
}
, ϕa, ϕb ∈ (0, π),

QS0,ϕb
(f, g) =

b∫
a

[
p(x)−1f [1](x)g[1](x) + q(x)f(x)g(x)

]
dx− cot(ϕb)f(b)g(b),

f, g ∈ dom(QS0,ϕb
) =

{
h ∈ L2((a, b); r(x)dx)

∣∣h ∈ AC([a, b]), h(a) = 0, (13.4)

(rp)−1/2h[1] ∈ L2((a, b); r(x)dx)
}
, ϕb ∈ (0, π),

QSϕa,0
(f, g) =

b∫
a

[
p(x)−1f [1](x)g[1](x) + q(x)f(x)g(x)

]
dx+ cot(ϕa)f(a)g(a),

f, g ∈ dom(QSϕa,0
) =

{
h ∈ L2((a, b); r(x)dx)

∣∣h ∈ AC([a, b]), h(b) = 0, (13.5)

(rp)−1/2h[1] ∈ L2((a, b); r(x)dx)
}
, ϕa ∈ (0, π),

QS0,0
(f, g) =

b∫
a

[
p(x)−1f [1](x)g[1](x) + q(x)f(x)g(x)

]
dx,

f, g ∈ dom(QSϕa,0
) =

{
h ∈ L2((a, b); r(x)dx)

∣∣h ∈ AC([a, b]), h(a) = h(b) = 0,

(rp)−1/2h[1] ∈ L2((a, b); r(x)dx)
}
, (13.6)
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and

QSR(f, g) =

b∫
a

[
p(x)−1f [1](x)g[1](x) + q(x)f(x)g(x)

]
dx−

− 1

R1,2

{
R1,1f(a)g(a)−

[
f(a)g(b) + f(b)g(a)

]
+R2,2f(b)g(b)

}
,

f, g ∈ dom(QSR) =
{
h ∈ L2((a, b); r(x)dx)

∣∣h ∈ AC([a, b]), (13.7)

(rp)−1/2h[1] ∈ L2((a, b); r(x)dx)
}
, R1,2 6= 0,

QSR(f, g) =

b∫
a

[
p(x)−1f [1](x)g[1](x) + q(x)f(x)g(x)

]
dx−

−R2,1R1,1f(a)g(a),

f, g ∈ dom(QSR) =
{
h ∈ L2((a, b); r(x)dx)

∣∣h ∈ AC([a, b]), h(b) = R1,1h(a),

(rp)−1/2h[1] ∈ L2((a, b); r(x)dx)
}
, R1,2 = 0. (13.8)

To verify (13.3)–(13.8), it suffices to perform an appropriate integration by parts in
each of these cases (noting that R1,1R2,2 = 1 if R1,2 = 0).

With the sesquilinear forms in hand, we are now prepared to characterize when
self-adjoint restrictions of Tmax generate positivity preserving resolvents and semi-
groups. For background literature on positivity preserving semigroups and resolvents,
we refer, for instance, to the monographs [30, Ch. 7], [31, Ch. 13], [43, Sects. 8,
10], [60, Sect. 3.3], [130, Chs. 2, 3], [132, Sect. XIII.12], [156, Sect. 10.5], and to the
extensive list of references in [53].

Let (M,M, µ) denote a σ-finite, separable measure space associated with a non-
trivial measure (i.e., 0 < µ(M) ≤ ∞) and L2(M ; dµ) the associated complex, sepa-
rable Hilbert space (cf. [20, Sect. 1.5] and [84, p. 262–263] for additional facts in this
context). Then the set of nonnegative elements 0 ≤ f ∈ L2(M ; dµ) (i.e., f(x) ≥ 0
µ-a.e.) is a cone in L2(M ; dµ), closed in the norm and weak topologies.

Definition 13.1. A bounded operator A defined on L2(M ; dµ) is called positivity
preserving (resp., positivity improving) if

0 6= f ∈ L2(M ; dµ), f ≥ 0 µ-a.e. implies Af ≥ 0 (resp., Af > 0) µ-a.e. (13.9)

In the special case where A is a bounded integral operator in L2((a, b); r(x)dx)
with integral kernel denoted by A(·, ·), it is well-known that

A is positivity preserving if and only if A(·, ·) ≥ 0 dx⊗ dx-a.e. on (a, b)× (a, b)
(13.10)

(we recall that r > 0 a.e. by Hypothesis 12.2). For an extension of this result to
σ-finite, separable measure spaces we refer to [53, Theorem 2.3]. Moreover,

if A(·, ·) > 0 µ⊗ µ-a.e., then A is positivity improving. (13.11)

(The converse to (13.11), however, is false, cf. [53, Example 2.6].)
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The following result is fundamental to the theory of positivity preserving operators.

Theorem 13.2 ([132], p. 204, 209). Suppose that S is a semibounded self-adjoint
operator in L2(M ; dµ) with λ0 = inf(σ(S)). Then the following conditions, (i)–(iii),
are equivalent:

(i) e−tS is positivity preserving for all t ≥ 0.
(ii)

(
S − λIL2(M ;dµ)

)−1 is positivity preserving for all λ < λ0.
(iii) The Beurling-Deny criterion: f ∈ dom

(
|S|1/2

)
implies |f | ∈ dom

(
|S|1/2

)
and∥∥(S − λ0IL2(M ;dµ))

1/2|f |
∥∥
L2(M ;dµ)

≤
∥∥(S − λ0IL2(M ;dµ))

1/2f
∥∥
L2(M ;dµ)

.

The next and principal result of this section provides a necessary and sufficient
condition for a (necessarily real) self-adjoint restriction of Tmax (resp., extension of
Tmin) to generate a positivity preserving resolvent and semigroup. We recall that
positivity preserving requires reality preserving and hence it suffices to consider real
self-adjoint extensions of Tmin. In fact, we will prove more and show that the notions
of positivity preserving and positivity improving are, in fact, equivalent in the regular
case.

Theorem 13.3. Assume Hypothesis 12.2.

(i) In the case of separated boundary conditions, all self-adjoint extensions of Tmin

lead to positivity improving semigroups and resolvents. More precisely, for all
ϕa, ϕb ∈ [0, π), e−tSϕa,ϕb is positivity improving for all t ≥ 0, equivalently,
(Sϕa,ϕb − λIr)−1 is positivity improving for all λ < inf(σ(Sϕa,ϕb)). In addition,

(Sϕa,ϕb − λIr)−1 − (S0,0 − λIr)−1, λ < inf(σ(Sϕa,ϕb)), (13.12)

is positivity improving, implying the inequality

Gλ,ϕa,ϕb(x, x
′) ≥ Gλ,0,0(x, x′) ≥ 0, x, x′ ∈ [a, b], λ < inf(σ(Sϕa,ϕb)). (13.13)

In particular,

Gλ,0,0(x, x′) > 0, x, x′ ∈ (a, b), λ < inf(σ(S0,0)). (13.14)

Here Gz,ϕa,ϕb(·, ·), z ∈ ρ(Sϕa,ϕb) (resp., Gz,0,0(·, ·), z ∈ ρ(S0,0)), denotes the
Green’s function (i.e., the integral kernel of the resolvent ) of Sϕa,ϕb (resp., of
S0,0).

(ii) In the case of (necessarily real ) coupled boundary conditions, e−tSR is positivity
preserving for all t ≥ 0, equivalently, (SR−λIr)−1 is positivity preserving for all
λ < inf(σ(SR)), if and only if

either R1,2 < 0, or R1,2 = 0 and R1,1 > 0 (equivalently, R2,2 > 0). (13.15)

Moreover, e−tSR is positivity improving for all t ≥ 0 if and only if it is positivity
preserving for all t ≥ 0. Equivalently, (SR−λIr)−1 is positivity improving for all
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λ < inf(σ(SR)) if and only if it is positivity preserving for all λ < inf(σ(SR)).
In addition,

(SR − λIr)−1 − (S0,0 − λIr)−1, λ < inf(σ(SR)), (13.16)

is positivity improving, implying the inequality

Gλ,R(x, x′) ≥ Gλ,0,0(x, x′) ≥ 0, x, x′ ∈ [a, b], λ < inf(σ(SR)). (13.17)

Here Gz,R(·, ·), z ∈ ρ(SR), denotes the Green’s function of SR.

Proof. Case (i). (Real ) Separated Boundary Conditions: Let Gz,ϕa,ϕb(·, ·), z ∈
C\σ(Sϕa,ϕb), denote the Green’s function for the resolvent of Sϕa,ϕb . To demonstrate
positivity improving, it suffices to show that

Gλ,ϕa,ϕb(x, x
′) > 0 for all (x, x′) ∈ (a, b)× (a, b), λ < inf(σ(Sϕa,ϕb)), (13.18)

employing the fact (13.11). In this context, we note that Gz,ϕa,ϕb(·, ·) is continuous on
[a, b]× [a, b]. To this end, let λ < inf(σ(Sϕa,ϕb)) and let fc,θc(λ, · ), c ∈ {a, b}, denote
Weyl-Titchmarsh solutions of (τ − λ)u = 0 at a and b, respectively, so that

(τ − λ)fc,θc(λ, · ) = 0 a.e. in (a, b),

fc,θc(λ, c) cos(θc)− f [1]
c,θc

(λ, c) sin(θc) = 0, c ∈ {a, b}.
(13.19)

Then, by Theorem 7.3, one obtains the representation

Gλ,ϕa,ϕb(x, x
′) = W−1

ϕb,ϕa

{
fa,ϕa(λ, x)fb,ϕb(λ, x

′), a ≤ x ≤ x′ ≤ b,
fa,ϕa(λ, x′)fb,ϕb(λ, x), a ≤ x′ ≤ x ≤ b,

(13.20)

where Wϕb,ϕa = W
(
fb,ϕb(λ, · ), fa,ϕa(λ, · )

)
abbreviates the Wronskian of fb,ϕb(λ, · )

and fa,ϕa(λ, · ). We claim that both fb,ϕb(λ, · ) and fa,ϕa(λ, · ) are sign-definite on
(a, b). In order to see this, one observes that the Green’s function is nonnegative
along the diagonal:

Gλ,ϕa,ϕb(x, x) ≥ 0, x ∈ (a, b), (13.21)

a fact that has already been used in the proof of Theorem 11.13: Indeed, if (13.21) fails
to hold, then there exists an x0 ∈ (a, b) such that the inequality Gλ,ϕa,ϕb(x0, x0) < 0
holds. Since Gλ,ϕa,ϕb(·, ·) is continuous at the point (x0, x0), there exists δ > 0 such
that

Gλ,ϕa,ϕb(x, x
′) < 0, (x, x′) ∈ (x0 − δ, x0 + δ)× (x0 − δ, x0 + δ), (13.22)

and one obtains 〈(
Sϕa,ϕb − λIr

)−1
χ(x0−δ,x0+δ), χ(x0−δ,x0+δ)

〉
r
< 0. (13.23)

However, (13.23) contradicts the fact that
(
Sϕa,ϕb−λIr

)−1 ≥ 0. Therefore, inequality
(13.21) has been established.
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Since a nontrivial solution of (τ −λ)u = 0 must change signs at a zero in (a, b) (cf.
Lemma 11.2), and linearly independent solutions do not have common zeros, (13.21)
implies that fa,ϕa(λ, · ) and fb,ϕb(λ, · ) are sign-definite (i.e., strictly negative or posi-
tive) on (a, b). In particular, since Wϕb,ϕa is a constant, Gλ,ϕa,ϕb(·, ·) is sign-definite,
and the inequality in (13.18) follows from the structure of the Green’s function in
(13.20).

To go beyond mere positivity improving and actually show (13.12) and hence
(13.13) requires additional arguments: For each z ∈ ρ(S0,0), let uj(z, · ), j = 1, 2,
denote solutions to τu = zu satisfying the conditions

u1(z, a) = 0, u1(z, b) = 1,

u2(z, a) = 1, u2(z, b) = 0.
(13.24)

We note that for λ < inf(σ(S0,0)), uj(λ, · ), j = 1, 2, are nonnegative on [a, b].
Then, mimicking the proof of [26, Theorem 3.1 (i)] line by line, and assuming that

ϕa 6= 0 and ϕb 6= 0, one infers that the matrix

Dϕa,ϕb(z) =

(
cot(ϕb)− u[1]

1 (z, b) −u[1]
2 (z, b)

u
[1]
1 (z, a) cot(ϕa) + u

[1]
2 (z, a)

)
, z ∈ ρ(Sϕa,ϕb) ∩ ρ(S0,0),

(13.25)
is invertible and one obtains the following Krein-type resolvent identity,

(Sϕa,ϕb − zIr)−1 − (S0,0 − zIr)−1 = −
2∑

j,k=1

Dϕa,ϕb(λ)−1
j,k 〈uk(z, · ), · 〉r uj(z, · ),

z ∈ ρ(Sϕa,ϕb) ∩ ρ(S0,0). (13.26)

If ϕa 6= 0, ϕb = 0, one gets analogously to [26, Theorem 3.1 (ii)] that

dϕa,0(z) = cot(ϕa) + u
[1]
2 (z, a), z ∈ ρ(Sϕa,0) ∩ ρ(S0,0), (13.27)

is nonzero and

(Sϕa,0 − zIr)−1 = (S0,0 − zIr)−1 − dϕa,0(z)−1〈u2(z, · ), · 〉r u2(z, · ),
z ∈ ρ(Sϕa,0) ∩ ρ(S0,0).

(13.28)

Similarly, if ϕa = 0, ϕb 6= 0, one obtains as in [26, Theorem 3.1 (iii)] that

d0,ϕb(z) = cot(ϕb)− u[1]
1 (z, b), z ∈ ρ(S0,ϕb) ∩ ρ(S0,0), (13.29)

is nonzero and

(S0,ϕb − zIr)−1 = (S0,0 − zIr)−1 − d0,ϕb(z)
−1〈u1(z, · ), · 〉r u1(z, · ),
z ∈ ρ(S0,ϕb) ∩ ρ(S0,0).

(13.30)
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Next, one observes that (13.24), (13.26), (13.28), and (13.30) imply

Gz,ϕa,ϕb(a, a) = −Dϕa,ϕb(z)
−1
2,2, Gz,ϕa,ϕb(b, b) = −Dϕa,ϕb(z)

−1
1,1,

Gz,ϕa,ϕb(a, b) = Gz,ϕa,ϕb(b, a) = −Dϕa,ϕb(z)
−1
2,1 = −Dϕa,ϕb(z)

−1
1,2, (13.31)

ϕa 6= 0, ϕb 6= 0,

Gz,ϕa,0(a, a) = −dϕa,0(z)−1,

Gz,ϕa,0(b, b) = Gz,ϕa,0(a, b) = Gz,ϕa,0(b, a) = 0, ϕa 6= 0, ϕb = 0, (13.32)

Gz,0,ϕb(b, b) = −d0,ϕb(z)
−1,

Gz,0,ϕb(a, a) = Gz,0,ϕb(a, b) = Gz,0,ϕb(b, a) = 0, ϕa = 0, ϕb 6= 0. (13.33)

Since (Sϕa,ϕb −λIr)−1, λ < inf(σ(Sϕa,ϕb)), is positivity preserving, its integral kernel
is nonnegative a.e. in [a, b]× [a, b] by (13.10). In fact, by continuity, it is nonnegative
everywhere in [a, b]× [a, b]. As a result, returning to the case ϕa 6= 0, ϕb 6= 0, (13.31)
implies

Dϕa,ϕb(λ)−1
j,k ≤ 0, j, k ∈ {1, 2}, λ < inf(σ(Sϕa,ϕb)), (13.34)

so that the matrix −Dϕa,ϕb(λ)−1 is actually positivity preserving as an operator on C2

for each λ < inf(σ(Sϕa,ϕb)). Thus, (13.26) and (13.34) immediately yield the following
inequality for Green’s functions:

Gλ,ϕa,ϕb(x, x
′)−Gλ,0,0(x, x′) = −

2∑
j,k=1

Dϕa,ϕb(λ)−1
j,k uj(λ, x)uk(λ, x′) ≥ 0,

x, x′ ∈ [a, b], λ < inf(σ(Sϕa,ϕb)). (13.35)

We note that the final inequality in (13.35) makes use of (13.34) as well as nonnega-
tivity of the functions uj(λ, · ), j = 1, 2, on the interval [a, b]. Another application of
(13.10) then implies that the resolvent difference

(Sϕa,ϕb − λIr)−1 − (S0,0 − λIr)−1, λ < inf(σ(Sϕa,ϕb)), (13.36)

is positivity preserving. Since (S0,0 − λIr)
−1 is positivity improving for all λ <

inf(σ(S0,0)) by what was just shown at the beginning of this proof, and Sϕa,ϕb 6= S0,0,
[97, Corollary 9] implies that the resolvent difference in (13.36) is actually positivity
improving. In addition, it also implies that (Sϕa,ϕb − λIr)−1 is positivity improving
for all λ < inf(σ(Sϕa,ϕb)). Inequality (13.13) now directly follows from (13.35). This
completes the case where ϕa 6= 0 and ϕb 6= 0.

If ϕa 6= 0, ϕb = 0, the resolvent identity (13.28), implies the following Green’s
function relation,

Gz,ϕa,0(x, x′)−Gz,0,0(x, x′) = −dϕa,0(z)−1u2(z, x)u2(z, x′),

z ∈ ρ(Sϕa,0) ∩ ρ(S0,0),
(13.37)

and consequently,

0 ≤ Gλ,ϕa,0(b, b) = −qϕa,0(λ)−1, λ < inf(σ(Sϕa,0)). (13.38)
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Nonnegativity of u2(λ, · ) and (13.37), (13.38) imply

Gλ,ϕa,0(x, x′)−Gλ,0,0(x, x′) ≥ 0, x, x′ ∈ [a, b], λ < inf(σ(Sϕa,0)), (13.39)

which by (13.10) is equivalent to the fact that the resolvent difference,

(Sϕa,0 − λIr)−1 − (S0,0 − λIr)−1, λ < inf(σ(Sϕa,0)), (13.40)

is positivity preserving. Applying [97, Corollary 9] once again, one obtains the stronger
result that the resolvent difference in (13.40) is positivity improving, and that (Sϕa,0−
λIr)

−1, λ < inf(σ(Sϕa,0)), is positivity improving as well. Inequality (13.13) is just a
restatement of (13.39). This completes the case ϕa 6= 0, ϕb = 0.

The case ϕa = 0, ϕb 6= 0 is completely analogous and hence we skip it.
Case (ii). (Real ) Coupled Boundary Conditions: First, we show the conditions in
(13.15) are necessary and sufficient for positivity preserving of e−tSR for all t ≥ 0, or
equivalently, positivity preserving of (SR − λIr)−1 for all λ < inf(σ(SR)). We begin
with the proof of sufficiency. To this end, suppose that either R1,2 < 0 or R1,2 = 0
and R1,1 > 0. In order to show that e−tSR is positivity preserving for all t ≥ 0, we
will verify the Beurling-Deny criterion Theorem 13.2 (iii). Therefore, we must show
the following condition holds:

f ∈ dom(QSR) implies |f | ∈ dom(QSR) and
QSR(|f |, |f |)− λSR〈|f |, |f |〉r ≤ QSR(f, f)− λSR〈f, f〉r,

(13.41)

where we have set λSR = inf(σ(SR)).
First, we claim that

f ∈ dom(QSR) implies |f | ∈ dom(QSR) if R1,2 6= 0. (13.42)

Indeed, if f ∈ dom(QSR) is fixed, then

f ∈ AC([a, b]) and (rp)−1/2f [1] ∈ L2((a, b); r(x)dx), (13.43)

and it follows that |f | ∈ AC([a, b]). Moreover, since |f |′ coincides a.e. in (a, b) with
the function (cf., e.g., [110, Theorem 6.17])

df (x) =

{
|f(x)|−1

[
<(f)(x)<(f)′(x) + =(f)(x)=(f)′(x)

]
, f(x) 6= 0,

0, f(x) = 0,
(13.44)

one verifies that |f |[1] coincides a.e. in (a, b) with the function

d̃f (x) =

{
|f(x)|−1

[
<(f)(x)<

(
f [1]
)
(x) + =(f)(x)=

(
f [1]
)
(x)
]
, f(x) 6= 0,

0, f(x) = 0,
(13.45)

and, subsequently, the inequality∣∣∣|f(x)|−1
[
<(f)(x)<

(
f [1]
)
(x) + =(f)(x)=

(
f [1]
)
(x)
]∣∣∣2 ≤

≤ <
(
f [1](x)

)2
+ =

(
f [1](x)

)2 for a.e. x ∈ {x′ ∈ (a, b) | f(x′) 6= 0}, (13.46)
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implies ∣∣|f |[1]
∣∣ ≤ ∣∣f [1]

∣∣ a.e. in (a, b), f ∈ AC([a, b]). (13.47)

The second containment in (13.43) then implies (rp)−1/2|f |[1] ∈ L2((a, b); r(x)dx),
establishing (13.42) (cf. (13.7)). Thus, it remains to verify inequality (13.41). Since
the terms containing λSR in the inequality in (13.41) are equal, it suffices to establish
the following inequality:

QSR(|f |, |f |) ≤ QSR(f, f). (13.48)

On the other hand, (13.47) implies

b∫
a

p(x)−1
∣∣|f |[1](x)

∣∣2dx ≤ b∫
a

p(x)−1
∣∣f [1](x)

∣∣2dx, (13.49)

and hence by (13.7) when R1,2 < 0, it suffices to verify the simpler inequality

1

R1,2

{
2|f(a)||f(b)| −

[
f(a)f(b) + f(a)f(b)

]}
≤ 0. (13.50)

One computes for the difference in (13.50):

2

R1,2

[
|f(a)f(b)| − <

(
f(a)f(b)

)]
≤ 0, (13.51)

since R1,2 < 0, by assumption. If R1,2 = 0 and R1,1 > 0, then by (13.8) it only remains
to show that f ∈ dom(QSR) implies |f | ∈ dom(QSR), which is indeed guaranteed since
Rj,j > 0, j = 1, 2, completing the proof of sufficiency.

In order to establish necessity of the conditions R1,2 < 0 or R1,2 = 0 and R1,1 > 0,
suppose that e−tSR is positivity preserving for all t ≥ 0. Then by the Beurling-Deny
criterion, Theorem 13.2 (iii), condition (13.41) holds. In particular, for R1,2 6= 0,
equation (13.7) and inequality (13.41) imply

b∫
a

p(x)−1
[∣∣|f |[1](x)

∣∣2 − ∣∣f [1](x)
∣∣2]dx+

+
2

R1,2

[
|f(a)f(b)| − <

(
f(a)f(b)

)]
≤ 0, f ∈ dom(QSR).

(13.52)

If f ∈ dom(QSR) is real-valued, then one verifies that |f |[1] = sgn(f)f [1] a.e. in (a, b),
where sgn(f) equals f/|f | if f 6= 0 and is zero otherwise, as a special case of (13.45).
Consequently, in the case where f is real-valued, the integral appearing in (13.52)
vanishes, and the inequality reduces to

2

R1,2

[
|f(a)f(b)| − f(a)f(b)

]
≤ 0, f ∈ dom(QSR) and f real-valued. (13.53)

Choosing a real-valued function f0 ∈ AC([a, b]) such that f [1]
0 ∈ AC([a, b]) and

f0(a)f0(b) < 0, one infers that f0 ∈ dom(QSR). Taking f0 as a test function in (13.53),
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one concludes that R1,2 < 0. On the other hand, if R1,2 = 0, equation (13.8) yields
that the implication and the inequality (13.41) are satisfied provided the bound-
ary condition h(b) = R1,1h(a) in dom(QSR) holds. This necessitates the condition
R1,1 > 0.

The statement concerning positivity preserving of the resolvents follows from The-
orem 13.2 (iii). This completes the proof that the conditions in (13.15) are necessary
and sufficient for positivity preserving of e−tSR for all t ≥ 0, or equivalently, positivity
preserving of (SR − λIr)−1 for all λ < inf(σ(SR)).

It remains to prove the claim that positivity preserving is, in fact, equivalent to
positivity improving in item (ii). The sufficiency claim is clear since any bounded
positivity improving operator is, of course, positivity preserving. Thus, it remains
to prove the necessity claim. To this end, suppose that R ∈ SL2(R) is fixed and
satisfies the conditions in (13.15). Then (SR − λIr)−1 is positivity preserving for all
λ < inf(σ(SR)). To establish the necessity claim, it is enough to show (SR−λIr)−1 is
positivity improving for some λ < inf(σ(SR)), as positivity improving then extends
to (SR − λIr)−1 for all λ < inf(σ(SR)) and to e−tSR for all t ≥ 0 by [132, Theorem
XIII.44]. In order to do this, we consider separately the cases R1,2 < 0 and R1,2 = 0
(and therefore, R2,2 > 0).

First, we consider the case R1,2 < 0. Then, mimicking the proof of [26, Theorem
3.2 (i)] line by line, one infers that the matrix

QR(z) =

(
R2,2

R1,2
− u[1]

1 (z, b) −1
R1,2
− u[1]

2 (z, b)
−1
R1,2

+ u
[1]
1 (z, a)

R1,1

R1,2
+ u

[1]
2 (z, a)

)
, z ∈ ρ(SR) ∩ ρ(S0,0), (13.54)

is invertible and one obtains the following Krein-type resolvent identity,

(SR − zIr)−1 − (S0,0 − zIr)−1 = −
2∑

j,k=1

QR(λ)−1
j,k 〈uk(z, · ), · 〉r uj(z, · ),

z ∈ ρ(SR) ∩ ρ(S0,0).

(13.55)

Subsequently, (13.24) and (13.55) imply

Gz,R(a, a) = −QR(λ)−1
2,2, Gz,R(b, b) = −QR(z)−1

1,1,

Gz,R(a, b) = Gz,R(b, a) = −QR(z)−1
1,2 = −QR(z)−1

2,1, (13.56)

z ∈ ρ(SR) ∩ ρ(S0,0).

Since (SR − λIr)
−1, λ < inf(σ(SR)), is positivity preserving, its integral kernel is

nonnegative a.e. in [a, b] × [a, b] by (13.10). In fact, by continuity, it is nonnegative
everywhere in [a, b]× [a, b]. As a result, (13.56) yields

QR(λ)−1
j,k ≤ 0, j, k ∈ {1, 2}, λ < inf(σ(SR)), (13.57)
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so that the matrix −QR(λ)−1 is actually positivity preserving as an operator on C2

for each λ < inf(σ(SR)). Thus, (13.55) and (13.57) immediately yield the following
inequality for Green’s functions:

Gλ,R(x, x′)−Gλ,0,0(x, x′) = −
2∑

j,k=1

QR(λ)−1
j,k uj(λ, x)uk(λ, x′) ≥ 0,

x, x′ ∈ [a, b], λ < inf(σ(SR)).

(13.58)

We note that the final inequality in (13.58) makes use of (13.57) as well as nonnega-
tivity of the functions uj(λ, · ), j = 1, 2, on the interval [a, b]. Another application of
(13.10) then implies that the resolvent difference

(SR − λIr)−1 − (S0,0 − λIr)−1, λ < inf(σ(SR)), (13.59)

is positivity preserving. Again, since (S0,0 − λIr)
−1 is positivity improving for all

λ < inf(σ(S0,0)) by item (i), and SR 6= S0,0, [97, Corollary 9] implies that the resolvent
difference in (13.59) is actually positivity improving. In addition, it also implies that
(SR−λIr)−1 is positivity improving for all λ < inf(σ(SR)). Inequality (13.17) directly
follows from (13.58). This completes the case where R1,2 < 0.

The degenerate case where R1,2 = 0 and R2,2 > 0 is handled similarly. The primary
difference is that in this case, the Krein-type resolvent identity reads,

(SR − zIr)−1 − (S0,0 − zIr)−1 = −qR(z)−1〈uR(z, · ), · 〉r uR(z, · ),
z ∈ ρ(SR) ∩ ρ(S0,0),

(13.60)

where

qR(z) = R2,1R2,2 +R2
2,2u

[1]
2 (z, a) +R2,2u

[1]
1 (z, a)−

−R2,2u
[1]
2 (z, b)− u[1]

1 (z, b), z ∈ ρ(SR) ∩ ρ(S0,0),
(13.61)

is nonzero and

uR(z, · ) = R2,2u2(z, · ) + u1(z, · ), z ∈ ρ(SR) ∩ ρ(S0,0). (13.62)

The proof of (13.60) follows the proof of [26, Theorem 3.2 (ii)] mutatis mutandis. As a
result of the resolvent identity (13.60), one obtains the following relation for Green’s
functions,

Gz,R(x, x′)−Gz,0,0(x, x′) = −qR(z)−1uR(z, x)uR(z, x′),

z ∈ ρ(SR) ∩ ρ(S0,0),
(13.63)

and consequently,

0 ≤ Gλ,R(b, b) = −qR(λ)−1, λ < inf(σ(SR)). (13.64)

Nonnegativity of the solutions uj(λ, · ), j = 1, 2, together with the condition R2,2 > 0
guarantees that uR(λ, · ) is nonnegative on [a, b]. Hence, (13.63) implies

Gλ,R(x, x′)−Gλ,0,0(x, x′) ≥ 0, x, x′ ∈ [a, b], λ < inf(σ(SR)), (13.65)
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which is equivalent to the fact that the resolvent difference,

(SR − λIr)−1 − (S0,0 − λIr)−1, λ < inf(σ(SR)), (13.66)

is positivity preserving. Applying [97, Corollary 9] once again, one obtains the
stronger result that the resolvent difference in (13.66) is positivity improving, and
that (SR − λIr)−1, λ < inf(σ(SR)), is positivity improving as well. Again, inequality
(13.17) is merely a restatement of (13.65). This completes the case R1,2 = 0.

We chose to rely on different strategies of proof of positivity preserving in the
case of separated and coupled boundary conditions to illustrate the different possible
approaches in this context. The principal observation in the proof of Theorem 13.3 in
connection with separated boundary conditions is the statement in (13.21) that the
corresponding Green’s function is nonnegative along the diagonal, and follows from
nonnegativity of the resolvent (in the operator sense) at points below the spectrum
of Sϕa,ϕb . A much more general result regarding nonnegativity along the diagonal
of the (continuous) integral kernel associated with a nonnegative integral operator
may be found in [84, Lemma on p. 195] in connection with Mercer’s theorem [84,
Theorem 8.11].

In the particular case where p = r = 1, q = s = 0 a.e. on (a, b) in Theorem 13.3,
the positivity preserving result has been derived by Feller [44] (see also [48, p. 147]).
In fact, he considered a more general situation involving a Radon-Nikodym derivative
(i.e., he worked in the context of a measure-valued coefficient). We also mention that
the sign of the Green’s function associated with the periodic Hill equation has been
studied in connection with the existence of so-called comparison principles in [25] (and
the references therein).

The fact that positivity preserving and positivity improving are equivalent notions
in the regular case appears to be a new result.

We conclude with some comments on the Krein-von Neumann extension of Tmin.

Remark 13.4. Given Hypothesis 12.2 and assuming Tmin ≥ εIr for some ε > 0, the
fact (12.13), that is, dim

(
ker
(
T ∗min

))
= 2, together with (12.7), yields a degenerate

ground state 0 ∈ σp(SK). Hence, SK cannot be positivity preserving (cf., e.g., [132,
Theorem XIII.44]). This fact is known under more restrictive assumptions on the
coefficients of τ (cf. [48, p. 147]). In the particular case q = 0 a.e. on (a, b), this can
directly be read off from Theorem 13.3 since

R
(0)
K,1,2 = e

−
b∫
a

s(t)dt
b∫
a

p(t)−1e
2
t∫
a

s(t′)dt′

dt > 0 (13.67)

violates condition (13.15). (In the general case q 6= 0 a.e. on (a, b) one also has
RK,1,2 > 0 as RK,1,2 6= 0 by (12.11), but now a direct proof of u[1]

1 (0, a) > 0 requires
a lengthy disconjugacy argument).
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A. SESQUILINEAR FORMS IN THE REGULAR CASE

In this appendix we discuss the underlying sesquilinear forms associated with
self-adjoint extensions of Tmin in the regular case with separated boundary conditions,
closely following the treatment in [54, Appendix A].

The standing assumption throughout this appendix will be the following:

Hypothesis A.1. Assume Hypothesis 2.1 holds with p > 0 a.e. on (a, b) and that τ
is regular on (a, b). Equivalently, we suppose that p, q, r, s are Lebesgue measurable
on (a, b) with p−1, q, r, s ∈ L1((a, b); dx) and real-valued a.e. on (a, b) with p, r > 0
a.e. on (a, b).

Our goal is to explore relative boundedness of certain sesquilinear forms in the
Hilbert space L2((a, b); r(x)dx) defined in connection with τ . Assuming Hypothesis
A.1, one may use the function q to define a sesquilinear form in L2((a, b); r(x)dx) as
follows

Qq/r(f, g) =

b∫
a

f(x)q(x)g(x) dx, (A.1)

f, g ∈ dom(Qq/r) =
{
h ∈ L2((a, b); r(x)dx)

∣∣ (|q|/r)1/2h ∈ L2((a, b); r(x)dx)
}
.

Evidently, Qq/r is densely defined and symmetric.
In order to define other sesquilinear forms, we first define two families of operators

indexed by α, β ∈ {0,∞}, in L2((a, b); r(x)dx), as follows

Aα,βf = υf,

(υf)(x) = [p(x)r(x)]−1/2f [1](x) for a.e. x ∈ (a, b), (A.2)

f ∈ dom (Aα,β) =
{
g ∈ L2((a, b); r(x)dx)

∣∣ g ∈ AC([a, b]), υg ∈ L2((a, b); r(x)dx),

g(a) = 0 if α =∞, g(b) = 0 if β =∞
}
,

A+
α,βf = υ+f,

(υ+f)(x) = −[p(x)r(x)]−1
(
[p(x)r(x)]1/2f

){1}
(x) for a.e. x ∈ (a, b), (A.3)

f ∈ dom
(
A+
α,β

)
=
{
g ∈ L2((a, b); r(x)dx)

∣∣ (pr)1/2g ∈ AC([a, b]),

υ+g ∈ L2((a, b); r(x)dx),
(
(pr)1/2g

)
(a) = 0 if α = 0,

(
(pr)1/2g

)
(b) = 0 if β = 0

}
.

Here we recall that

f [1](x) = p(x)
[
f ′(x) + s(x)f(x)

]
for a.e. x ∈ (a, b), f ∈ AC([a, b]), (A.4)

denotes the first quasi-derivative of f , whereas the superscript {1} denotes the mod-
ified quasi-derivative of functions in AC([a, b]),

f{1}(x) = p(x)
[
f ′(x)− s(x)f(x)

]
for a.e. x ∈ (a, b), f ∈ AC([a, b]). (A.5)
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Lemma A.2. Assume Hypothesis A.1 with q = 0 a.e. in (a, b). Then the following
items (i)–(iv) hold:

(i) Aα,β and A+
α,β are densely defined in L2((a, b); r(x)dx) for all α, β ∈ {0,∞}.

(ii) A∗α,β = A+
α,β and Aα,β = (A+

α,β)∗ for all α, β ∈ {0,∞}. In particular, Aα,β and
A+
α,β are closed in L2((a, b); r(x)dx) for all α, β ∈ {0,∞}.

(iii) A∗α,βAα,β = S
(0)
α,β, α, β ∈ {0,∞}, where S

(0)
α,β in L2((a, b); r(x)dx) denotes the

operator defined by

S
(0)
α,βf = τ (0)f, α, β ∈ {0,∞},

f ∈ dom
(
S

(0)
α,β

)
=
{
g ∈ L2((a, b); r(x)dx)

∣∣ g, g[1] ∈ AC([a, b]), (A.6)

τ (0)g ∈ L2((a, b); r(x)dx),
(
g[1]
)
(a) + αg(a) =

(
g[1]
)
(b) + βg(b) = 0

}
,

where, by convention, α =∞ (resp., β =∞) corresponds to the Dirichlet bound-
ary condition g(a) = 0 (resp., g(b) = 0) and τ (0) is given by

(τ (0)f)(x) =
1

r(x)

(
−
(
p(x)[f ′(x) + s(x)f(x)]

)′
+ s(x)p(x)[f ′(x) + s(x)f(x)]

)
for a.e. x ∈ (a, b), f, f [1] ∈ AC([a, b]).

(A.7)

(iv) The operator S(0)
α,β is a self-adjoint restriction of Tmax (equivalently, a self-adjoint

extension of Tmin) for all α, β ∈ {0,∞} for q = 0 a.e. on (a, b). In particular,
S

(0)
∞,∞ is the Friedrichs extension of Tmin for q = 0 a.e. on (a, b).

Proof. First of all, define operators K and K̂ as follows

K : L2((a, b); r(x)dx)→ dom (A∞,0) ,

g 7→ e
−
x∫
a

s(t)dt
x∫
a

g(x′)e

x′∫
a

s(t)dt

[p(x′)r(x′)]1/2
r(x′)dx′, (A.8)

K̂ : L2((a, b); r(x)dx)→ dom
(
A+

0,∞
)
,

g 7→ −[p(x)r(x)]−1/2e

x∫
a

s(t)dt
x∫
a

g(x′)e
−
x′∫
a

s(t)dt
r(x′)dx′. (A.9)

With these definitions, one readily verifies by direct computation that

(Kg)(a) = 0, υKg = g,(
(pr)1/2K̂g

)
(a) = 0, υ+K̂g = g,

g ∈ L2((a, b); r(x)dx). (A.10)

Furthermore, we denote by T (0)
0 the minimal operator introduced in (3.3) with q = 0

a.e. in (a, b). Then

dom
(
T

(0)
0

)
⊂ dom (Aα,β) , α, β ∈ {0,∞}, (A.11)
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rendering Aα,β densely defined, since for f ∈ dom
(
T

(0)
0

)
,

‖vf‖2,r = max
x∈[a,b]

∣∣f [1](x)
∣∣2 b∫
a

dx

p(x)
<∞, (A.12)

employing f [1] ∈ AC([a, b]). In order to prove that A+
α,β is densely defined as

well, let f ∈ dom
(
A+

0,0

)⊥ and set g = Kf . Because of v+K̂g0 = g0 for all
g0 ∈ L2((a, b); r(x)dx), one concludes that

g0 ∈ ran(A+
0,0) if and only if

(
(pr)1/2K̂g0

)
(b) = 0. (A.13)

As a result, one infers that

ran(A+
0,0) =

{
e
−
x∫
a

s(t)dt
}⊥

. (A.14)

Next, one computes for arbitrary h ∈ dom(A+
0,0),

〈g,A+
0,0h〉r =

b∫
a

g(x)(A+
0,0h)(x) r(x)dx =

= −
b∫
a

g(x)
[(

[p(x)r(x)]1/2h(x)
)′ − s(x)[p(x)r(x)]1/2h(x)

]
dx =

= −g(x)
(
(pr)1/2h

)
(x)

∣∣∣∣b
a

+

b∫
a

g′(x)[p(x)r(x)]1/2h(x) dx+

+

b∫
a

g(x)s(x)[p(x)r(x)]1/2h(x) dx =

=

b∫
a

[p(x)r(x)]−1/2p(x)[g′(x) + s(x)g(x)]h(x) r(x)dx =

=

b∫
a

(vg)(x)h(x) r(x)dx =

b∫
a

(vKf)(x)h(x) r(x)dx =

=

b∫
a

f(x)h(x) r(x)dx = 〈f, h〉r = 0,

(A.15)

since by hypothesis, f ∈ dom
(
A+

0,0

)⊥. Thus, we have g ∈ ran(A+
0,0)⊥, implying

that g = c e−
∫ x
a
s(t)dt for some constant c ∈ C. By the definition (A.2) of v, it
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is readily verified that f = vg = 0 a.e. on [a, b]. Thus, dom(A+
0,0), and hence

dom(A+
α,β) ⊇ dom(A+

0,0), α, β ∈ {0,∞}, is dense in L2((a, b); r(x)dx), completing
the proof of item (i).

Regarding item (ii), we only show A∗α,β = A+
α,β as the case

(
A+
α,β

)∗
= Aα,β is

handled analogously. Moreover, since A∞,∞ ⊆ Aα,β (this follows by definition of the
operators) implies A∗α,β ⊆ A∗∞,∞, we only prove A∗∞,∞ = A+

∞,∞, the other cases follow
from an additional integration by parts. Therefore, first note that A+

∞,∞ ⊆ A∗∞,∞ as
an integration by parts shows

〈
f,A+

∞,∞g
〉
r

=

b∫
a

f(x)(υ+g)(x)r(x)dx = −
b∫
a

p(x)−1f(x)
(
(pr)1/2g

){1}
(x)dx =

= −
b∫
a

f(x)

[(
(pr)1/2g

)′
(x)− s(x)

(
(pr)1/2g

)
(x)

]
dx =

= −f(x)
(
(pr)1/2g

)
(x)
∣∣b
a
+

+

b∫
a

[p(x)r(x)]1/2[f ′(x) + s(x)f(x)]g(x)dx =

=

b∫
a

[p(x)r(x)]1/2

p(x)r(x)
p(x)[f ′(x) + s(x)f(x)]g(x)r(x)dx =

=

b∫
a

[p(x)r(x)]−1/2f [1](x)g(x)r(x)dx =

=
〈
A∞,∞f, g

〉
r
, f ∈ dom

(
A∞,∞

)
, g ∈ dom

(
A+
∞,∞

)
.

(A.16)

Hence it remains to show dom
(
A∗∞,∞

)
⊆ dom

(
A+
∞,∞

)
. To this end, let f ∈

dom
(
A∗∞,∞

)
, and set g = K̂A∗∞,∞f . Then one computes

b∫
a

(f(x)− g(x))(A∞,∞h)(x)r(x)dx =

=

b∫
a

[(
A∗∞,∞f

)
(x)− (υ+g)(x)

]
h(x)r(x)dx = 0, h ∈ dom

(
A∞,∞

)
.

(A.17)

Consequently, ran
(
A∞,∞

)
is contained in the kernel of the linear functional k 7→

〈k, f − g〉r, k ∈ L2((a, b); r(x)dx). On the other hand, since υKg0 = g0 for all
g0 ∈ L2((a, b); r(x)dx), one infers that g0 ∈ ran

(
A∞,∞

)
if and only if (Kg0)(b) = 0.

As a result,

ran
(
A∞,∞

)
=
{

(pr)−1/2e

x∫
a

s(t)dt}⊥
. (A.18)



Weyl-Titchmarsh theory for Sturm-Liouville operators. . . 549

On the other hand, (A.17) shows that f − g is orthogonal to ran
(
A∞,∞

)
, and be-

cause of (A.18), there exists a constant c such that f = g + c(pr)−1/2e

x∫
a

s(t)dt
. It is

a simple matter to check that (pr)−1/2e

x∫
a

s(t)dt
∈ dom

(
A+
∞,∞

)
(in fact, υ+ applied

to (pr)−1/2e

x∫
a

s(t)dt
is zero). Therefore, by (A.18), f ∈ dom

(
A+
∞,∞

)
, completing the

proof of item (ii).
To prove item (iii), one notes that by item (ii),

dom
(
A∗α,βAα,β

)
=
{
g ∈ dom

(
Aα,β

) ∣∣ υg ∈ dom
(
A+
α,β

)}
, (A.19)

so that, by inspection, one obtains dom
(
A∗α,βAα,β

)
= dom

(
S

(0)
α,β

)
, α, β ∈ {0,∞}.

Then for f ∈ dom
(
S

(0)
α,β

)
, a simple computation shows A∗α,βAα,βf = υ+(υf) = S

(0)
α,βf ,

α, β ∈ {0,∞}. This completes the proof of item (iii).
Since Aα,β is densely defined and closed for all α, β ∈ {0,∞}, the operator S(0)

α,β =
A∗α,βAα,β is self-adjoint and nonnegative (cf., e.g., [96, Theorem V.3.24]). In addition,
S

(0)
α,β is a restriction of Tmax, and that S(0)

∞,∞ is the Friedrichs extension of Tmin (for
q = 0 a.e. on (a, b)) follows from (11.99) and the assumed regularity of τ on (a, b),
proving item (iv).

With the operators Aα,β , α, β ∈ {0,∞}, in hand, we define the densely defined,
closed, nonnegative sesquilinear form by

Q
(0)
α,β(f, g) = 〈Aα,βf,Aα,βg〉r, f, g ∈ dom

(
Q

(0)
α,β

)
= dom

(
Aα,β

)
,

α, β ∈ {0,∞}.
(A.20)

The self-adjoint and nonnegative operator in L2((a, b); r(x)dx) uniquely associated
with the sesquilinear form Q

(0)
α,β , α, β ∈ {0,∞}, is then given by

A∗α,βAα,β = S
(0)
α,β , α, β ∈ {0,∞}, (A.21)

where S(0)
α,β is the operator defined in (A.6).

Since functions in dom
(
Q

(0)
α,β

)
, α, β ∈ {0,∞}, are absolutely continuous on [a, b],

one infers
dom

(
Q

(0)
α,β

)
⊂ dom

(
Qq/r

)
, α, β ∈ {0,∞}. (A.22)

Finally, we define a family of sesquilinear forms, indexed by pairs of real numbers
γ, ν ∈ R, as follows

Qa,b
γ,ν(f, g) = νf(a)g(a)− γf(b)g(b), f, g ∈ dom

(
Qa,b
γ,ν

)
= AC([a, b]). (A.23)

In addition, we set

Qa,b
∞,ν(f, g) = Qa,b

0,ν(f, g), Qa,b
γ,∞(f, g) = Qa,b

γ,0(f, g), Qa,b
∞,∞(f, g) = 0. (A.24)
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Lemma A.3. Assume Hypothesis A.1. Then the following items (i) and (ii) hold:

(i) Qq/r and Q|s|/r are relatively form compact (and hence infinitesimally bounded )

with respect to Q
(0)
α,β for all α, β ∈ {0,∞}, that is,

|q/r|1/2
(
S

(0)
α,β + Ir

)−1/2
, |s/r|1/2

(
S

(0)
α,β + Ir

)−1/2 ∈ B∞
(
L2((a, b); r(x)dx)

)
.

(A.25)
In fact, compactness in (A.25) can be replaced by the Hilbert-Schmidt property
(cf. (A.26)).

(ii) For each γ, ν ∈ R, the sesquilinear form Qa,b
γ,ν is infinitesimally bounded with

respect to Q
(0)
α,β for all α, β ∈ {0,∞}.

Proof. In item (i), it clearly suffices to prove the claim for Qq/r only since |s| and q
satisfy the same assumptions. Let G(0)

z,α,β(·, ·), z ∈ C\R and α, β ∈ {0,∞}, denote the
Green’s function for the operator S(0)

α,β in (A.21) (known to exist by Theorem 7.1).
Then

|q/r|1/2
(
S

(0)
α,β − zIr

)−1|q/r|1/2 ∈ B2

(
L2((a, b); r(x)dx)

)
, z ∈ C\R,

α, β ∈ {0,∞},
(A.26)

since

b∫
a

b∫
a

|q(x)|
r(x)

∣∣G(0)
z,α,β(x, x′)

∣∣2 |q(x′)|
r(x′)

r(x)dx r(x′)dx′ ≤ C(z, α, β)‖q‖2L1((a,b);dx), (A.27)

for some constant C(z, α, β), because G(0)
z,α,β(·, ·) is uniformly bounded on (a, b)×(a, b)

for all α, β ∈ {0,∞} by (7.2) or (7.16). This completes the proof of item (i).
In order to prove item (ii), fix α, β ∈ {0,∞}, and note that for arbitrary c ∈ [a, b]

and any function f ∈ dom
(
Q

(0)
α,β

)
⊂ dom (Qγ,ν),

|f(c)|2 =

∣∣∣∣f(x)2 − 2

x∫
c

f(t)f ′(t)dt

∣∣∣∣ ≤
≤ |f(x)|2 + 2

b∫
a

∣∣f(t)f ′(t) + s(t)f(t)2
∣∣dt+

+ 2

b∫
a

|s(t)||f(t)|2dt, f ∈ dom
(
Q

(0)
α,β

)
.

(A.28)
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One infers (after taking the supremum over all c ∈ [a, b], multiplying by r, and inte-
grating w.r.t. x from a to b) for any ε > 0,

‖f‖2L∞((a,b);dx) ≤

≤ ‖r‖−1
L1((a,b);dx)‖f‖

2
2,r + 2

b∫
a

|f(t)|
(εp(t)/2)1/2

(εp(t)/2)1/2|f ′(t) + s(t)f(t)|dt+

+ 2Q|s|/r(f, f) ≤

≤ ‖r‖−1
L1((a,b);dx)‖f‖

2
2,r +

b∫
a

(
2

ε

|f(t)|2

p(t)
+
ε

2

∣∣f [1](t)
∣∣2

p(t)

)
dt+

+ 2Q|s|/r(f, f), f ∈ dom
(
Q

(0)
α,β

)
. (A.29)

Since 0 < p−1 ∈ L1((a, b); dx), there exists a δ1(ε) > 0 such that
∫

I1(ε)

p(t)−1 dt ≤ ε
8

with I1(ε) = {x ∈ (a, b) | p(x) < δ1(ε)}. Thus,

b∫
a

|f(t)|2

p(t)
dt =

∫
I1(ε)

|f(t)|2

p(t)
dt+

∫
(a,b)\I1(ε)

|f(t)|2

p(t)
dt ≤

≤ ε

8
‖f‖2L∞((a,b);dx) +

1

δ1(ε)

b∫
a

|f(t)|2dt, f ∈ dom
(
Q

(0)
α,β

)
.

(A.30)

In addition, since r > 0 a.e. on (a, b), there exists a δ2(ε) > 0 such that |I2(ε)| ≤ εδ1(ε)
8

with I2(ε) = {x ∈ (a, b) | r(x) < δ2(ε)}. Thus,

b∫
a

|f(t)|2 dt =

∫
I2(ε)

|f(t)|2 dt+

∫
(a,b)\I2(ε)

|f(t)|2 dt ≤

≤ εδ1(ε)

8
‖f‖2L∞((a,b);dx) +

1

δ2(ε)
‖f‖22,r, f ∈ dom

(
Q

(0)
α,β

)
.

(A.31)

Consequently, one obtains from (A.29),

‖f‖2L∞((a,b);dx) ≤ 2
{
‖r‖−1

L1((a,b);dx) + 2[εδ1(ε)δ2(ε)]−1
}
‖f‖22,r+

+ εQ
(0)
α,β(f, f) + 4Q|s|/r(f, f), f ∈ dom

(
Q

(0)
α,β

)
.

(A.32)

By part (i), Q|s|/r is infinitesimally bounded with respect to Q
(0)
α,β . Hence, there exists

η(ε) > 0 such that

Q|s|/r(f, f) ≤ ε

4
Q

(0)
α,β(f, f) + η(ε)‖f‖22,r, f ∈ dom

(
Q

(0)
α,β

)
. (A.33)
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As a result, (A.32) implies

‖f‖2L∞((a,b);dx) ≤ 2
{
‖r‖−1

L1((a,b);dx) + 2[εδ1(ε)δ2(ε)]−1 + 2η(ε)
}
‖f‖22,r+

+ 2εQ
(0)
α,β(f, f), f ∈ dom

(
Q

(0)
α,β

)
.

(A.34)

Infinitesimal boundedness of Qa,b
γ,ν with respect to Q

(0)
α,β follows since ε > 0 and f ∈

dom
(
Q

(0)
α,β

)
were arbitrary.

Finally, introducing the densely defined, closed, and lower semibounded sesquilin-
ear forms in L2((a, b); r(x)dx)

Qα,β(f, g) = Q
(0)
0,0(f, g) + Qq/r(f, g) + Qa,b

α,β(f, g), (A.35)

f, g ∈ dom
(
Q

(0)
0,0

)
= dom

(
A0,0

)
, α, β ∈ R,

Qα,∞(f, g) = Q
(0)
0,∞(f, g) + Qq/r(f, g) + Qa,b

α,0(f, g), (A.36)

f, g ∈ dom
(
Q

(0)
0,∞
)

= dom
(
A0,∞

)
, α ∈ R,

Q∞,β(f, g) = Q
(0)
∞,0(f, g) + Qq/r(f, g) + Qa,b

0,β(f, g), (A.37)

f, g ∈ dom
(
Q

(0)
∞,0
)

= dom
(
A∞,0

)
, β ∈ R,

Q∞,∞(f, g) = Q(0)
∞,∞(f, g) + Qq/r(f, g), (A.38)

f, g ∈ dom
(
Q(0)
∞,∞

)
= dom

(
A∞,∞

)
,

and denoting the uniquely associated self-adjoint, and lower semibounded operator
by Sα,β , α, β ∈ R ∪ {∞}, the latter can be explicitly described as follows:

Theorem A.4. Define Qα,β, α, β ∈ R ∪ {∞}, by (A.35)–(A.38). Then the uniquely
associated self-adjoint, lower semibounded operator Sα,β in L2((a, b); r(x)dx) is given
by

Sα,βf = τf, α, β ∈ R ∪ {∞},
f ∈ dom

(
Sα,β

)
=
{
g ∈ L2((a, b); r(x)dx)

∣∣ g, g[1] ∈ AC([a, b]), (A.39)

g[1](a) + αg(a) = g[1](b) + βg(b) = 0, τg ∈ L2((a, b); r(x)dx)
}
,

where, by convention, α = ∞ (resp., β = ∞) corresponds to the Dirichlet boundary
condition g(a) = 0 (resp., g(b) = 0). Moreover, the operator Sα,β is a self-adjoint
restriction of Tmax (equivalently, a self-adjoint extension of Tmin), in particular, S∞,∞
is the Friedrichs extension SF of Tmin.

Proof. It suffices to consider the Dirichlet case α = β = ∞, the other cases being
similar. We denote by Ŝ∞,∞ the operator defined in (A.39) for α = β = ∞ and
by S∞,∞ the unique operator associated with Q∞,∞. Choose u ∈ dom (Q∞,∞) and
v ∈ dom

(
Ŝ∞,∞

)
. Then an integration by parts yields

Q∞,∞(u, v) =
〈
u, Ŝ∞,∞v

〉
r
. (A.40)
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Thus Ŝ∞,∞ ⊆ S∞,∞ by [96, Corollary VI.2.4] and hence Ŝ∞,∞ = S∞,∞ since Ŝ∞,∞ =
SF is self-adjoint.
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