
Nonlinear Processes in Geophysics (2003) 10: 139–149
Nonlinear Processes
in Geophysics
c© European Geosciences Union 2003
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Abstract. Non-equilibrium quasi-stationary states result-
ing from curvature driven interchange instabilities and drift-
wave instabilities in a low beta, weakly ionized, magnetized
plasma are investigated in the context of laboratory experi-
ments in a toroidal configuration. Analytic modelling, nu-
merical simulations and experimental results are discussed
with emphasis on identifying the unstable modes and under-
standing the physics of anomalous particle and energy fluxes
and their linkage to self-organized pressure profiles.

1 Introduction

Since K. Birkeland’s pioneering terrella experiments during
the first two decades of the 20th century (Rypdal and Brundt-
land, 1998) laboratory experiments have been carried out to
study processes that are assumed to be essential for the global
dynamics of the solar-terrestrial system. Birkeland’s experi-
ments attempted to model the global system itself, but it has
later been shown that it is impossible to scale all relevant
physical parameters down to laboratory dimensions (Block,
1967). Many laboratory physicists believe that the scaling
problem might invalidate laboratory simulations of global
space systems, but insist that there is still a strong case for
laboratory investigation of micro-processes. Experiments of
this type should be carefully designed to admit quiescent
equilibrium states, which then can be tuned to onset of in-
stability and turbulence. In this way the linear physics can be
fully tested, and linear and non-linear evolution of instabili-
ties can be studied and compared to theoretical predictions.
Examples of experimental devices that have served this pur-
pose are Q-machines (Motley, 1975), where the resistive drift
waves were first discovered, and certain large linear devices
(Gekelman, 1999), which have facilitated fundamental stud-
ies of Alfvénic phenomena.
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One should bear in mind, however, that this experimen-
tal focus on the linear dynamics and the transition from sta-
ble to unstable equilibria does not let us study all aspects
of the complex dynamics that typically govern space sys-
tems, nor is it suitable for studying all relevant instabilities.
One example is a class of low-frequency instabilities in mag-
netized plasma called interchange instabilities. Such insta-
bilities excite field-aligned structures (flute modes) and are
driven by a pressure gradient opposing either either a gravity
force or a centrifugal force due to magnetic field curvature.
They are important in ionospheric dynamics, manifested for
instance in the so-called equatorial spread F irregularities,
which take their name from the spreading of ionograms ob-
tained from equatorial locations (Hysell, 2000). Spread F is
now known to be caused by interchange instabilities driven
by the steep density gradient in the night-time equatorial F-
region. Although only the bottomside F-region is linearly
unstable, the nonlinear stage of the instability leads to pen-
etration of plumes through the F peak and well into the top
side. In this manner the instabilities lead to strong transport
and mixing which is of fundamentally nonlinear nature.

Gravity is unimportant in laboratory plasmas, so the study
of these phenomena requires a curved magnetic field, while
the quiescent laboratory plasmas require a straight field. The
problem is that the bending of a simple straight magnetic
field not only creates a loss of stability, but also a loss of
MHD-equilibrium. In toroidal magnetic confinement devices
equilibrium is restored by the introduction of a magnetic ro-
tational transform, but this modification also suppresses the
interchange instabilities. Thus, neither the quiescent linear
devices, nor the toroidal confinement devices are suitable for
studying such phenomena.

The philosophy underlying the study of quiescent config-
urations for gaining understanding of space systems is based
on an implicit assumption that the time-averaged state neces-
sarily corresponds to an MHD-equilibrium. However, nat-
ural plasmas are often found in quasi-stationary states for
which the time-averaged state is not an equilibrium. Such
plasmas develop strong stationary or fluctuating flows, and
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force balance is maintained only by inclusion of inertial
and/or friction forces. The simplest experimental configura-
tion for studying such plasma states is the simple magnetized
torus (Rypdal et. al., 1994), a configuration where a plasma is
immersed in an externally generated toroidal magnetic field
without the rotational transform that is necessary for MHD
equilibrium and stability.

At this point it may be necessary to make some comments
on the notions of equilibrium and stability. Strictly speaking
instabilities can only develop on the background of an equi-
librium situation, and the notion of instability has no mean-
ing if an equilibrium does not exist. Nevertheless, plasma
instabilities are often identified in a system with fluctuations,
even when the equilibrium state from which the unstable per-
turbations grow cannot be uniquely defined. What is identi-
fied is theinstability mechanismand the fluctuation modes,
which may persist also in the nonlinearly saturated state. It
will be shown in this paper that a stationary flow can result
from the same mechanism that drives the growth of a par-
ticular unstable perturbation of an equilibrium state. It is
a matter of definition whether such a flow should be con-
ceived as a particular saturated state of the instability or a
stationary and stable equilibrium flow. We prefer the former
definition, because the stationary flow states and the quasi-
stationary turbulent states are all governed by the same phys-
ical mechanisms. We call a state quasi-stationary if the fluc-
tuating density, temperature and fluid velocity are consider-
ably smaller than their time-averaged values, and if the fluc-
tuations are stationary in the sense that the ensemble mean
and auto-correlation are independent of time. In this case it
is meaningful to think of the time-averages of these quanti-
ties as background profiles.

In a non-equilibrium state the plasma production mecha-
nism and the boundary conditions in general force the plasma
system to accomodate fluxes of matter, energy and entropy
which cannot be maintained in a quiescent state. The classi-
cal turbulent transport paradigm could be described as fol-
lows: Imposed fluxes universally give rise to gradients in
configuration- and/or velocity-space, or to stretching and
twisting of magnetic field lines. Such gradients or distor-
tions provide the free energy that feed plasma instabilities,
and the resulting fluctuations give rise to the transport neces-
sary to maintain the imposed fluxes. The linear growth rate
of the instability normally increases monotonically with in-
creasing gradient, and often there is an instability threshold
in the sense that instability occurs only when the gradient
exceeds a certain value. For a given imposed flux the gra-
dient is given by the negative feedback loop; increased gra-
dient → increased growth rate→ higher fluctuation levels
→ increased anomalous transport→ reduced gradient. If
there is no threshold, the relaxed gradient depends strongly
on the magnitude of the imposed flux. In the presence of an
instability threshold, however, the gradients will usually re-
main close to this threshold. This concept of a critical gradi-
ent is very useful, although somewhat over-simplified, since
the stability of the system may depend on the global pro-
file of plasma parameters, not only on local gradients. In

this picture the growth of the unstable modes could in princi-
ple saturate before they reach nonlinear levels because of the
flattening of the profiles, in analogy with the plateau forma-
tion of the particle velocity in quasilinear theory of velocity-
space instabilities. The quasilinear picture of turbulence im-
plies the existence of a characteristic spatial scale (i.e. the
wavelength of the most unstable mode), which appears in
the anomalous transport coefficient, and the dynamics of the
quasilinear transport is a diffusion process. The quasilin-
ear transport paradigm has been challenged by observations
from a variety of nonequilibrium quasistationary plasmas in-
dicating absence of characteristic scales of the fluctuations.
The scale invariance is often manifested in the power-law be-
haviour of Fourier energy density spectra of the turbulence.
Power-law spectraS(f ) ∼ f−γ at low frequencies have
been observed in signals from magnetic confinement plas-
mas and space plasmas like those in planetary magnetotails
and various astrophysical objects. Such spectra are asso-
ciated with an algebraic tail in the autocorrelation function
C(τ) ∼ τ γ−1. If γ > 0, the integral

∫
∞

0 C(τ) dτ diverges,
and the fluctuations are said to exhibit long-range correla-
tions.

The paper is organized as follows. In Sect. 2 we describe
the main cross field transport mechanisms for plasma and
charge in a low beta and weakly ionized plasma with curved
magnetic field, and the physics that determines the plasma
potential profile in a hot cathode toroidal discharge is out-
lined. Section 3 contains a systematic derivation of a reduced
fluid model which contains all the essential physics describ-
ing the source driven non-equilibrium quasi-stationary state
of such a plasma. A discussion of the (lack of) equilibrium
for the simple toroidal plasma configuration and the implica-
tions for the resulting plasma state is given in Sect. 4. Sec-
tion 5 starts with a summary of known results of local lin-
ear stability analysis for flute interchange modes and drift
waves, followed by some results of global two-dimensional
(2-D) numerical simulations of the model derived in Sect. 3
in the flute mode limit. Stationary and quasi-stationary (tur-
bulent) flow states are identified and the existence of criti-
cal (resilient) pressure profiles are demonstrated numerically
as well as experimentally. In Sect. 5 we also present flute
mode simulations in a slab geometry. Here critical profiles
are demonstrated very clearly, and shown to correspond to
a linear stability threshold. The plasma potential and elec-
tron density fluctuations are shown to be approximately in
anti-phase, which is unfavourable for plasma transport. Sec-
tion 6 briefly describe some experimental results on fluctu-
ations and transport which have been discussed in more de-
tailed in a recent publication (Ratynskaia et al., 2002). These
results are contrasted with the simulations of Sect. 5, and the
role of flute modes and drift waves are discussed.

2 Physics of the simple torus

A valuable supplement to the study of anomalous transport
in fusion magnetic confinement devices are experiments on
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low frequency instabilities and turbulent transport conducted
in cold, magnetized plasma where electrostatic probes can be
operated as the main diagnostic. As mentioned in Sect. 1 a
configuration that allows excitation of interchange instabili-
ties is the simple torus configuration (Rypdal et. al., 1994).
This device is simpler than fusion devices in most respects.
The magnetic geometry is purely toroidal, simplifying the
modelling considerably. Plasma beta is very low, justifying
an elecrostatic description of all phenomena. The ions are
very cold, allowing us to neglect ion pressure. The electrons
are also quite cold, and not very dense, so probes can be used
as a diagnostic also in the core plasma. And the device is op-
erated in a steady state mode, so device operation represents
no limit to the amount of data that can be aqcuired from the
experiment.

The plasma in this geometry is most conveniently de-
scribed in cylindrical cordinates(R, ϕ, z), wherez is the co-
ordinate along the major torus axis,R is the distance from
this axis, andϕ is the azimuthal (toroidal) angle. By conven-
tion we chose the azimuthal unit vector to be in the opposite
direction of the magnetic field, i.e.B = −(B0R0/R)ϕ̂.

2.1 Basic concepts of anomalous transport

In a low beta plasma the time-averaged cross-field anomalous
particle flux density0⊥ = 〈nv⊥〉 is due to electrostatic os-
cillations in plasma densityn and electric fieldE = −∇⊥φ.
The latter gives rise to fluctuations in the plasma drift ve-
locity v⊥ ≈ vE = ∇⊥φ × ϕ̂/B which follows from Ohm’s
law ∇⊥φ = v × B for a perfectly conducting medium. The
plasma betaβ = µ0p/B

2 is of order 10−5 in these exper-
iments, so the total magnetic field can accurately be repre-
sented by the fieldB = −(B0R0/R)ϕ̂ generated by the ex-
ternal field coils. In Sect. 5 it is shown that in this config-
uration the electrostatic interchange instability generates ei-
ther a stationary flow in the form of a double vortex which
transports plasma from the center to the wall by passive ad-
vection, or a fluctuating state dominated by poloidally ro-
tating, electrostatic field-aligned vortices. In the fluctuat-
ing state the vortex dynamics is responsible for a major part
the radial mass transport as well as important contributions
to the cross-field current. At an arbitrary location in the
toroidal plasma column let us consider the flux component
along the minor radius,0x = 〈nvx〉, wherevx = Ey/B is
the E × B velocity in this direction. HereEy = −∂yφ is
the electric field component in the poloidal direction. By
Fourier expandingn and φ in the y-coordinate, we find
for the flux density averaged over the poloidal coordinate
0x0 = −(2/B)

∑
k>0 k〈|nkφ

∗

k |〉 sinα(nφ)k , whereα(nφ)k =

arg〈nkφ
∗

k 〉 is the cross-phase betweennk andφk. Essential
for the transport is the average phase difference betweennk
andvk = ikφk/B for the Fourier components of the fields.
One observes that the turbulent flux is proportional to the sine
of the cross-phase, and hence it vanishes ifnk andφk are ex-
actly in phase, or exactly in antiphase. Cross-field currents
can be diamagnetic, inertial, or collisional, as can be shown

by writing the one-fluid momentum equation in the form

j × B = ∇p + ρ
dv
dt

+ ρνinv . (1)

Equation (1) shows that the sources of a cross-field current
densityj are forces due to gradients in the pressurep, inertial
forces due to accelerations, and friction forces due to an ion-
neutral collision frequencyνin. Thus, by taking the cross-
product of Eq. (1) byB, the perpendicular current density
can be written asj⊥ = jp + jm + j ν , wherejp = B−1

∇p ×

ϕ̂, jm = B−1ρ dtv × ϕ̂, andj ν = B−1νinρ v × ϕ̂.
It will be shown in Sect. 3.1 that for a wide range of plasma

parameters we can invoke the quasineutral approximation,
which imples that∇ · j = 0 even for the instantaneous current
density. Thus, an approximate evolution equation is

∇ ·
(
jm + jp + j ν

)
= −∇ · j q . (2)

If v is approximated by theE × B velocity vE , Eq. (2) is
an evolution equation for the plasma potentialφ(x, t). For
axisymmetric perturbations (flute mode turbulence) the term
on the right hand side of Eq. (2) vanishes, while for for drift
modes it depends on the parallel electron conductivity and
the parallel wave numberkq. In Sect. 3.4 we present a closed
model suitable for numerical simulation, consisting of this
evolution equation coupled with the mass continuity equation
and an equation of state.

If the plasma is in a state of stationary turbulence, the time-
averaged current〈jp〉 is found by the substitutionp → 〈p〉

in the definition ofjp, 〈jm〉 by the substitutionρdtv → ∇ ·

〈ρvv〉, and〈j ν〉 by the substitutionρv → 〈ρv〉. The averaged
inertia current〈jm〉 can be considered to be driven by the dy-
namic stress dyadTm = 〈ρvv〉. In the drift-approximation,
wherev in Tm is approximated byvE , the inertial current can
be recognized as the current arising from the ion polarization
drift. The dynamic stress tensor has a contribution from the
average flowTm0 = 〈ρ〉〈v〉〈v〉 and a contribution from the
fluctuations in the flow, the latter is known as the Reynolds
stressTR = Tm − Tm0. In a poloidally rotating plasma the
resulting stress (the centrifugal force) gives rise to a poloidal
inertia current, and only the Reynolds stress can give rise to
a radial component. The currentj ν driven by the ion-neutral
collisions can also be modified by the drift-approximation
v ≈ vE to yield j ν ≈ −σP∇⊥φ, whereσp = ρνin/B

2 is
known as the Pedersen conductivity. In a two-fluid model
this current arises from the perpendicular ion mobility due to
ion-neutral collisions.

From Eq. (2) we can draw some important conclusions
about the nature of the time-averaged plasma state. In the
presence of a stationary, turbulent flow, the charge continuity
equation yields∇ · 〈j⊥ + j q〉 = 0. If the time-averaged state
is axisymmetric, we have that∇ · 〈j q〉 = ∂ϕ〈jq〉 = 0, hence
the time-average of Eq. (2) takes the form

2

BR

∂〈p〉

∂z
= ∇ ·

(
B × ∇ · Tm

B2

)
− νin∇ ·

(
〈ρ∇⊥φ〉

B2

)
. (3)

For a static situation (v = 0) both terms on the right hand
side in Eq. (3) vanish, so equilibrium is possible only if
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∂z〈p〉 = 0. This means that a magnetostatic equilibrium
with p = 0 on the boundaries cannot exist. An equilibrium
in the sense of a stationary, or stationary turbulent, flow can
only be provided by the currents〈jm〉 and〈j ν〉 due to inertial
stress and/or the collisional friction. The charge accumula-
tion from these currents is represented by the two terms on
the right hand side of Eq. (3). It will be shown in Sect. 4
that global charge- or force-balance can only be obtained if
plasma currents are allowed to close along the vessel walls
or a poloidal limiter.

2.2 Potential profile and poloidal rotation

The insights presented here have evolved from experiments
on plasma discharges in the simple torus “Blaamann” (Ryp-
dal et. al., 1994). A standard method of plasma production in
a simple torus is by electron emission from a hot negatively
biased cathode located near the center line (minor axis) of the
toroidal plasma column. This implies that negative charge is
injected in a toroidal magnetic flux tube far from the bound-
ing walls. The charge accumulating in this flux tube can only
be compensated by a cross-field electric current flowing in-
wards from the wall. Rypdal et al. (1996) have shown that the
contribution to the total current from the pressure force and
the inertial force from the stationary flow vanishes, hence
the discharge current must be anomalous for low neutral gas
pressures (< 10−2 Pa) (Rypdal et al., 1997), but may be due
to ion-neutral collisions for high pressures.

In the experiments a negative potential well is formed with
nearly circular equipotentials in a poloidal cross-section, and
the potential minimum is located where the flux tube through
the cathode intersects this poloidal cross-section plane. The
potential well gives rise to a poloidal plasma rotation with a
strongly sheared flow in certain regions. This suggests that a
radial electric field, and hence a poloidal flowvE = ∇φ ×

ϕ̂/B is neccessary to maintain the cross-field current. In the
straight cylinder limit (R → ∞), and a cylinder-symmetric,
laminar poloidal flow,vθ = ∂rφ/B, jp and jm are poloidal
andj ν is radial. Let us represent the charge injected from the
cathode as a source term in the charge continuity equation,
∇ · j ν = S(r), so thatI (r) = −2π

∫ r
0 S(r

′)r ′ dr ′ > 0 is the
current directed towards the cylinder axis per unit length of
the cylinder. The expression forj ν can then be integrated to
yield

φ(r) = −
B2

2πνin

∫ a

r

I dr ′

ρ(r ′)r ′
, (4)

where we have assumedφ(a) = 0 at the wallr = a. If
we assume thatS is localized to the cylinder axis, i.e. if
S(r) = (2πr)−1δ(r), thenI (r) = I0 for all r > 0, whereI0
is the discharge current per unit length of the cylinder. The
potential profile calculated from Eq. (4) agrees very well with
the one measured experimentally when electron density mea-
surements (needed to estimateρ(r ′)) are made by cylindrical
Langmuir probes employing kinetic theory for the electron
saturation current in a magnetized plasma (Demidov et al.,
1999). This actually serves as a validation of this method

of electron density measurement, which yields values more
than 3 times higher than results based on the conventional
Langmuir formula for unmagnetized plasmas.

In the real experiment the charge source is also usually a
plasma source, since the injected electron also gives rise to
ionization. The average number of ionizations per injected
electron depends on the discharge voltage. Numerical sim-
ulations described in Sect. 5.2 confirm the relaxed potential
profiles described by Eq. (4), and they also show that the on-
axis plasma density grows linearly due to inefficient radial
plasma transport, until the radial density scale-length exceeds
some kind of threshold. At this threshold the plasma goes
turbulent, and the averaged density gradient remains close to
this threshold during the subsequent evolution.

3 Fluid models

The global properties of toroidal plasmas are usually studied
within the framework of the MHD-model, while the phenom-
ena associated with plasma transport frequently is studied
within the electrostatic approximation. In very low beta plas-
mas (in the typical simple torus experimentsβ ∼ 10−5) the
electrostatic approximation is always valid. The phenomena
we deal with in this paper, plasma equilibrium, flute modes
and drift waves, can all be described within the framework
of a one-fluid model, although the standard approach is to
use a two-fluid model. The former has some appeal, since
a formulation in terms of a one-fluid flow and a charge flow
(current density) links the electrostatic field directly to the
charge continuity equation, and the contributions from ion-
ization and charge injection due to electrons emitted from a
hot cathode are naturally represented as source terms in these
equations.

3.1 The full one-fluid model

By addition of the momentum equations for electrons and
ions in a weakly ionized plasma we find a slightly general-
ized version of Eq. (1),

ρ
dv
dt

= −∇p + j × B + %E − ρνv − ρ
me

mi
νen

∇pe × B
enB2

.(5)

Here v = (mivi + meve)/(mi + me) is the one-fluid ve-
locity, whereve andvi are the electron and ion fluid veloc-
ities, andme andmi the corresponding masses. The quan-
tity p = pe + pi = nTe + nTi is the total scalar pressure
and% is the charge density. The effect of collisions between
electron and ions with neutrals are expressed through the
collision frequenciesνen and νin, and we have introduced
the effective collision frequencyν = νin(1 + εn), where
εn = meνen/miνin is the ratio between electron and ion
mobilities which is of order 10−1 for a Helium plasma, and
of order 10−2 for Argon. In standard one-fluid formulation
the remaining information in the momentum equations is ex-
pressed in Ohm’s law. For our purpose we express this most
conveniently by employing the ion momentum equation to
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obtain Ohm’s law perpendicular to the magnetic field. By as-
sumingve⊥ ∼ vi⊥, implying vi⊥ = v⊥[1 +O(me/mi)], the
perpendicular Ohm’s law takes the form

E⊥ + v⊥ × B = η⊥j +
mi

e

(
d

dt
+ νin

)
v⊥ +

∇pi

en
, (6)

and assuming thatveq � viq, implying veq ≈ −jq/en, we
get from the electron momentum equation the parallel Ohm’s
law;

Eq = ηjq −
∇qpe
en

. (7)

Hereη⊥ = (me/e
2n)νei⊥ is the perpendicular Spitzer resis-

tivity, and η = (me/e
2n)(νei + νen). The remaining fluid

equations are the mass continuity equation and the energy
equation,

∂ρ

∂t
+ ∇ · (ρv) = 0 , (8)

d

dt

(
pρ−γ

)
= 0 . (9)

We have chosen to represent the energy equation by the adi-
abatic equation of state (9), but other closures are of course
possible.

We shall invoke the quasi-neutral approximation, which
amounts to neglecting the electric force on space charge%E
in Eq. (5) and the displacement current in Ampère-Maxwell’s
law, the latter being equivalent to neglecting∂%/∂t in the
equation∂%/∂t + ∇ · j = 0. In Goldston and Ruther-
ford (1995) it is shown that this approximation is valid if
χ−1

≡ ε0B
2/ρ = λ2

D/ρ
2
s � 1, whereχ is the effective

electric susceptibility of the plasma,λD is the Debye length,
andρs is the ion Larmor radius with electron temperature.
This condition is valid for most magnetized laboratory and
space plasmas.

Another approximation we shall make to simplify the dis-
cussion is to assume cold ions, so that the ion pressurepi can
be neglected compared to the electron pressure, and we can
putpe ≈ p in Eqs. (5) and (7). For typical experimental con-
ditions, however, the ion pressure term on the right hand side
of Eq. (6) is not negligible compared to the other terms on
the right hand side, and it will be treated on the same footing
as these terms in the following.

3.2 The drift expansion

The drift expansion can be invoked if the terms on the right
hand side of Eq. (6) are small compared to each of the terms
on the on the left hand side, implying thatv⊥ ≈ vE . This
is true if the temporal and perpendicular spatial scales of the
phenomena in question are given byω andk, and we have
thatω, k⊥v⊥, andνin are all much smaller than the ion cy-
clotron frequencyωci = eB/mi . In addition we require that
∇⊥pi/enE⊥ ∼ Ti/eφ and ηj⊥/E⊥ ∼ (Te/eφ)(νei/ωce)

are both small compared with unity. For the typical sim-
ple torus experimentω/ωci ∼ νin/ωci ∼ 10−2. The ratios

k⊥v⊥/ωci andTi/eφ can of course also be determined from
the experiments, but there are also some theoretical leads to
estimate them. The ion-neutral collisions (charge exhange)
(νin ∼ 5 × 104 s−1) tend to cool the ions towards the neu-
tral gas temperature. However, after a charge exchange col-
lision theE × B mechanism accelerates ions to thevE ve-
locity within one gyroperiod, and these velocities are ran-
domized due to collisions with charged particles. The re-
sult is a drifting Maxwellian ion fluid with thermal velocity
vT i ≡ (Ti/mi)

1/2
∼ vE ∼ k⊥φ/B. If we define the fi-

nite ion Larmor radius parameter asδi ≡ k⊥ρi , this implies
that k⊥v⊥/ωci ∼ Ti/eφ ∼ δi . The ratio(Te/eφ)(νei/ωce)
is much smaller thanδi under all conditions of experimental
interest, so perpendicular electron resistivity can safely be
neglected. In our laboratory experiments we haveδi ∼ 10−2

for the dominant wavenumbers, hence the leading terms on
the right hand side in Eq. (6) are those of orderδi . When
δi � 1 Eq. (6) can be solved by iteration, which yields

v⊥ = vE + v(1)
⊥

+O(δ2
i vT i) , (10)

wherevE is of ordervT i andv(1)
⊥

= vm + vpi + vν is of
orderδivT i . Herevm = (Bωci)

−1DtE⊥ is the inertia drift
(ion polarization drift),vpi = (enB2)−1B × ∇pi is the ion
diamagnetic drift, andvν = (Bωci)

−1νinE⊥ is the collisional
ion drift giving rise to the cross-field Pedersen current. Note
that we have introduced here the notationDt ≡ ∂t + vE · ∇.

3.3 The electrostatic model

The electrostatic model assumes that the induced electric
field is small compared to the electrostatic component, the
ratio of these components being of the order(ω/kv)β. For
typical simple torus parametersω/kv ∼ 1 andβ ∼ 10−5,
so the electric field is electrostatic. A complete set of equa-
tions can the be constructed from Eqs. (5)–(9), and the charge
continuity equation by replacingE by −∇φ. By invoking
the quasineutral approximation, the term%E in Eq. (5) is
neglected, and the charge continuity equation, which fol-
lows from the divergence of Ampere’s law, takes the form
∇⊥ · j⊥ = −∇qjq. The parallel currentjq = j · B/B gives
an important contribution to the charge budget if the modes
dominating the low frequency fluctuations are drift waves
(these have a finite parallel wavenumber so that∇qjq ∼

kqjq). Since in these cases heat conduction along the field
lines may smear out the temperature perturbations, it could
be appropriate to replace Eq. (9) with an isothermal equation
of statep = c2

sρ, wherec2
s ≡ Te/mi is the (constant) ion-

acoustic velocity. The ES model constitutes a complete set
of equations for the fields,v, j , φ, ρ, andp.

3.4 Drift expansion in the electrostatic model

Invoking the drift expansion iteration in Eq. (6) gave us
Eq. (10) for the fluid velocity. Replacingv⊥ by the lowest
order driftvE in Eq. (5) yields

j⊥ = jp + (jm + j ν) [1 +O(δi)] + j (D)e , (11)
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The inertia driven currentjm = (e/mi)ρvm has been slightly
redefined by replacingv⊥ by vE , and similarly the Pedersen
currentj ν = (1 + εn) (e/mi)ρvν has been generalized by in-
cluding the effect of electron mobility, The last term,j (D)e =

(νen/ωceB)∇p, represents the current due to electron diffu-
sion from collisions with neutrals, and is of orderεn com-
pared tojν . Normally, therefore, this term is of the same or-
der as those of orderδi which have already been neglected in
the iteration scheme. In order to include the effects of mag-
netic field curvature, let us consider a toroidal field in cylin-
der coordinates(R, ϕ, z). We assumeB = −(B0R0/R)ϕ̂,
and we have∇ · vE = −(2/RB)(∂φ/∂z), wherez is the di-
rection along the major torus axis andR is the distance from
this axis. Furthermore, by introducing the inverse aspect ra-
tio εA = a/R0, wherea is the minor radius andR0 the major
radius of the torus, we obtain

∇ · (ρv(1)
⊥
) = −

1

Bωci
∇⊥ · [ρ(Dt + νin)∇⊥φ] +O(εA, δi), (12)

∇ · j⊥ = −
2

RB

∂p

∂z
−

1

B2
∇⊥ · [ρDt∇⊥φ] +

Sn

B2
+O(εA, δi), (13)

whereSn = −(1 + εn)νin∇⊥ · (ρ∇⊥φ) + (νenB/ωce)∇
2p

represents the charge accumulation from currents driven by
collisions with neutrals. From Eq. (7) we have, assuming
constantTe along field lines,

∇qjq = −
Te

ηe
∇

2
q

(
eφ

Te
− ln ρ

)
. (14)

Using Eqs. (13), and (14) in the charge continuity equation,
we find

∇ · (ρDt∇⊥φ) = −
2B

R

∂p

∂z
−
TeB

2

ηe
∇

2
q

(
eφ

Te
− ln ρ

)
+ Sn. (15)

Using Eq. (10) the mass continuity equation (8) can be writ-
ten asDtρ = −ρ∇ · vE − ∇ · (ρv(1)

⊥
), which by means of

Eqs. (12) and (15) reduces to

Dtρ =
2

RB

(
ρ
∂φ

∂z
−
mi

e

∂p

∂z

)
−
miTe

ηe2
∇

2
q

(
eφ

Te
− ln ρ

)
+ Rn, (16)

whereRn = (νen/ωceB)
[
(mi/e)∇

2
⊥
p − ∇⊥ · (ρ∇⊥φ)

]
. In

the limit of εA → 0 the first terms on the right in Eqs. (15)
and (16) vanish, hence to first order in the small parameter
εA these terms represent the effect of toroidicity.

If drift-waves are not excited, the plasma perturbations are
“flute-like” and an isothermal assumption is generally not
justified. In this case Eqs. (15) and (16) should be com-
plemented with an energy equation, describing the evolu-
tion of Te. Often it is appropriate to neglect heat conduc-
tion in this energy equation, leaving us with the adiabatic
equation of state, Eq. (9), which combined with the mass
conservation equation (8) takes the form(∂t + v · ∇)p =

−γp∇ · v. By means of Eq. (10) this can be written as

Dtp = −γp∇ · vE − γp∇ · v(1)
⊥

− v(1)
⊥

· ∇p, which reduces
to

Dtp =
2γp

RB

∂φ

∂z
+

γp

Bωci
Dt∇

2
⊥
φ

+
1

Bωci
∇⊥p ·Dt∇⊥φ +Qn, (17)

whereQn = (νin/ωciB)(∇⊥p · ∇⊥φ + γp∇
2
⊥
φ). The drift

approximation has allowed us to reduce the numbers of equa-
tions and variables from nine in the full electrostatic model
to the three Eqs. (15)–(17) in the three scalar variablesφ, p,
andρ. This represents a considerable simplification, which
is important for the feasibility of numerical simulations as
well as for interpretation of simulations and experiments.

For numerical computation Eqs. (15)–(17) have been for-
mulated in the cylindrical coordinates. Only axisymmetric
perturbations (flute modes) are considered (∂/∂ϕ = 0) so
the problem reduces to 2D on a poloidal cross section of
the plasma. The resulting equations are solved numerically
by means of a finite difference scheme on a square 0.3 m
× 0.3 m, and the major radius isR0 = 0.6 m (εA = 0.25).
A source term in charge, mass and pressure simulates the
effect of emissive cathode located at the center of the cross
section. The spatial distribution of the source intensity is a
2-D circularly symmetric Gaussian with standard deviation
0.03 m. Dirichlet boundary contition have been imposed
(φ = % = 0, ρ = ρb = const.), and the effect of a cir-
cular poloidal limiter near the wall has been modelled as a
sink that removes excessive charge and plasma in the limiter
region.

Simulations with the geometry described above will be re-
ferred to asglobal. This model describes the experimental
situation quite realistically, but since a finite difference code
is employed, the code is slow and spatial resolution and accu-
racy are rather poor. More accurate and faster codes can be
obtained by employing a slab geometry, implementing pe-
riodic boundary conditions in thez-direction. This scheme
still assumes a plasma source along a vertical (alongz) strip
in the center of the slab (aroundR = R0) and a sink (limiter)
at R = R0 ± a. This model retains the effect of magnetic
field curvature, but charge injection from the source will lead
to vertical sheared flow instead of a poloidal rotation. Al-
though theselocal simulations cannot realistically describe
the global features of the laboratory experiment, they are
more easily linked to analytic theories for the interchange in-
stabilitiy. Some results from both classes of simulations will
be presented in Sect. 5.

4 The problem of equilibrium

In plasma physics the concept of equilibrium has many dif-
ferent meanings, which sometimes leads to some confusion.
Full thermodynamic equilibrium is rarely attained because
of the long time scales involved in the relaxation of energy
between electrons and ions. In magnetically confined plas-
mas the time-averaged forces on a fluid element balance each
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other, i.e. the plasma exhibits an MHD equilibrium. If the
plasma does not attain a stable equilibrium of this type, it
is assumed that the fluid is subject to rapid expansion due
to the pressure forces and only weak pressure gradients can
persist. This picture, however, is too crude to cover all inter-
esting laboratory and astrophysical plasmas. Even in the ab-
sence of MHD equilibrium magnetic fields can provide con-
siderable confinement compared to a field free expansion, al-
though the optimal confinement required in magnetic fusion
plasmas cannot be obtained. This is the case with the simple
torus configuration, where the magnetic field effectively pre-
vents expansion along the minor radius, but expansion along
the major radius can only be prevented if wall currents are
part of the plasma current system.

4.1 Analysis of charge balance

If the wall of the vacuum vessel were electrically insulat-
ing, plasma currents in thez direction due to gradient and
curvature drift of electrons (assume cold ions) would lead
to charge accumulation of opposite sign on the top and bot-
tom vessel wall. Note that this currentjB = (−2p/BR)ẑ
due to guiding center drifts is related to the current density
due to fluid drifts through the relationjp = jB + jM , where
jM = ∇ × (pB/B2) is the magnetization current. The latter,
however, does not contribute to charge accumulation on the
wall. Note also thatjB is equivalent to a current due to grav-
itational drift from a centrifugal accelerationgc = 2Te/Rmi .
The charge accumulation leads to a polarization electric field
and to an oppositely directedjm = ρdtE/B

2. The sur-
face charge density is given bydtσ = jB + jm, and since
E = −σ/ε0, we getdtE = (ρgc/ε0B)− (ρ/ε0)B

2 dtE, and
hence the electric drift along the major radius becomes

vR =
E

B
=

gc

1 + χ−1
t ≈ gc t , (18)

whereχ−1
= ε0B

2/Mn is much smaller than unity for most
laboratory plasmas of interest. Conventional wisdom is that
this “free fall” of the plasma in the centrifugal force field
makes the simple torus plasma essentially unconfined by the
magnetic field. As the reasoning above indicates, however,
this is not necessarily true if charge accumulation is pre-
vented by a conducting boundary, i.e. if the vertical plasma
currrent is closed by a wall current. Such a wall current im-
plies that there is a Lorentz force on the wall, and hence
(by Newton’s 3. law) that the vacuum vessel can act on the
plasma by a force different from the kinetic pressure due to
direct wall contact.

4.2 Analysis of force balance

The reasoning above is quite typical for the electrostatic
model. The centrifugal force provides a non-solenoidal cur-
rent density, and the charge continuity equation requires
an additional inertia driven current density which implies a
growing electric field and a corresponding accelerated drift
velocity. It is also possible to show the same by considering

directly the force balance, and without assuming low beta
and the electrostatic approximation. Consider for simplicity
a slab like plasma∂φ = ∂z = 0. Assume that we have walls
atR = R1 andR = R2, and let us separate the currents in
thez-direction into plasma currentsjpl and wall currentsjw,

j = jpl +
I
(1)
w

2πR1
δ(R − R1)+

I
(2)
w

2πR2
δ(R − R2) , (19)

whereI (1,2)w are the currents in the inner and outer wall, re-
spectively. Assume that the plasma currents and the wall
currents constitute a closed circuit (no external circuit), i.e.
that Ipl + Iw = 0, whereIpl = 2π

∫
jplR dR and Iw =

I
(1)
w + I

(2)
w . From theR-components of Amp̀ere’s law and

the momentum equation we get

dp

dR
= jplB = (jw − j)B = jwB −

B

µ0R

d

dR
(RB) . (20)

Multiplication of this equation byR2, and integration over
the closed interval[R1, R2] including the wall current sheets,
yields

2
∫ R2

R1

pR dR =

[
R2p

]R2

R1
+
R0B0

2π
Iw . (21)

Here we have integrated by parts and used thatIpl + Iw =

0 ⇒ B1R1 = B2R2 = R0B0, whereB0 is the magnetic
field generated by the external field coils atR = R0. Equa-
tion (21) shows that the internal plasma pressure can be bal-
anced by kinetic pressure due to wall contact or by forces
due to wall currents. The latter is of course preferable if one
wants to confine the plasma. Let us consider a pressure pro-
file that peaks near the centerR0 = (R1+R2)/2 and is zero at
the left and right boundaries. The diamagnetic current den-
sity jp = −B−1dp/dr is in the negativêz-direction to the
left of the peak, and in the postive direction to the right. Let
I
(1)
pl < 0 andI (2)pl > 0 be the plasma currents to the left and

right of the peak, respectively. IfεA = a/R0 � 1, we have
that |I (1)pl | ≈ |I

(2)
pl | ∼ 4πR0〈p〉/B0, where〈p〉 is the spa-

tially averaged pressure. On the other hand Eq. (21) shows
that |Iw| = 4πa〈p〉/B0, henceIw ∼ εAI

(1,2)
pl . This shows

that for a large aspect ratio torus (εA � 1) the wall current is
a small fraction of the current circulating in the plasma.

Even though the global charge/force balance can be at-
tained by wall currents, local balance cannot generally be at-
tained in a stationary plasma without flow. Without collisions
and flow the total current density is diamagnetic,j⊥ = jp,
and we find that∇ · j⊥ = −(2/BR)∂zp. If the pressure
profile is peaked at the center of the plasma, and there is no
charge injection, there will be accumulation of charge of op-
posite charge at the lower and upper part of the vacuum ves-
sel, and hence anE × B-flow along the major radius close to
the equatorial plane. Local balance, and hence a static equi-
librium, can only be attainded in the special case of a slab
configuration,∂zp = 0.

Global simulations of the more general case of a pressure
profile peaked at the center also in thez-direction show that
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most of the plasma flows back close to the lower and up-
per wall, setting up a stationary double vortex flow where
the plasma produced in the center is transported to the lim-
iter region by advection along the major radius. This shows
the existence of stationary flows where the charge accumu-
lation due tojp is compensated by the inertial currentjm
and the Pedersen currentj ν . The flow equilibria from these
simulations agree quite well with our experimental equilib-
ria for microwave (ECR) plasma (Rypdal et al., 1997) or for
some hot cathode discharges in heavy ion plasma (Paulsen
et al., 2000). For more typical hot cathode discharges one
has a deep concentric potential well which implies a sheared
poloidal rotation of the plasma. As will be discussed in the
next section this rotating state is always fluctuating, because
only anomalous mechanisms can provide the necessary ra-
dial plasma transport.

5 Instabilities and critical gradients

5.1 Instabilities and thresholds

A local stability analysis of flute modes and drift waves in
a slab with magnetic field of radius of curvatureR0 and ex-
ponential density profilen ∼ exp[(R0 − R)/Ln] has been
performed by Garcia (2001). For a plasma without a sheared
flow, flute modes (kq = 0) are unstable only on the outside
density slope, where the density gradient points in the oppo-
site direction of the radius of curvature of the magnetic field.
The instability condition for a mode with vertical wavenum-
berkz andkR = 0 isε ≡ R0/2Ln > 1+ρ2

s k
2
z/4, whereLn is

the density gradient scale length andρs = cs/ωci is the Lar-
mor radius of an ion with electron temperature. Smallerkz
are more unstable than larger, but since the smallest possible
wavenumber in a slab with vertical extentLz is kz = 2π/Lz,
the instability condition becomesLn < Lthr , where

Lthr =
R0

2(1 + π2ρ2
s /L

2
z)

≈
R0

2
. (22)

At the thresholdLn = Lthr the smallest possible wavenum-
ber is marginally stable and all higher wavenumbers are lin-
early stable. Stable and marginally stable flute-modes have
α
(nφ)
k = π .
The threshold for the flute interchange instability is due to

the stabilizing effect of the compression term−ρ∇ · vE =

(2ρ/RB)∂zφ on the right hand side of the mass continuity
equation (17). This term, and the corresponding threshold,
is due to magnetic field curvature and does not occur in the
gravitational interchange instability.

While flute modes are driven unstable by field curvature
on the weak field side (i.e. on the outside slope) of the torus
cross section, drift waves do not require field curvature for
instability, and can be unstable both on the outside and inside
slopes. However, on the outside slope the compression term
creates the same threshold as for flute modes.
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Fig. 1. Time evolution of potential minimumφ0 for Hydrogen dis-
charge (full line) and Argon discharge (broken line).
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Fig. 2. Time evolution ofnmax/n0 for Hydrogen discharge (full
line) and Argon discharge (broken line).

For drift-waves the growth rate and cross phaseα
(nφ)
k de-

pend on the parameter

ψ = k2
qLnρs

ωce

νe

(1 + k2
zρ

2
s )

2

k3
zρ

3
s

, (23)

the maximum growth rate ocurring atψ ≈ 1. In the hy-
drodynamic limitψ � 1 one finds thatα(nφ)k → π/4,
nk/n0 � eφk/Te, and the growth rateγk ∝ k2

q/νe. In the

adiabatic limitψ � 1 we haveα(nφ)k → 0,nk/n0 ≈ eφk/Te,
andγk ∝ νe/k

2
q . The smallest possible parallel wavenumber

in the toroidal geometry iskq = 1/R0. For the experimen-
tal parameters of the Blaamann device the maximum growth
rate (ψ ≈ 1) occurs forkzρz ≈ 1, i.e. for perpendicular
wave-lengthsλ⊥ ≈ 2 cm. Most of the power is in larger
wave-lengths (k2

zρ
2
s � 1), corresponding to the adiabatic re-

gimeψ � 1.
The results quoted here are valid for a situation without

a shear flow. Studies of the gravitational instability indicate
that velocity shear should increase the stability threshold, an
some results exist also for curvature driven flute eigenmodes
in a slab geometry with prescribed velocity profiles (Mahajan
et al., 1997). The relevance of these results to the toroidal
geometry is not clear, however.
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Fig. 3. Time averaged equidensity contours (left) and equipotential
contours (right) for global simulations of Hydrogen discharge (top)
and Argon discharge (bottom). The equipotential contours represent
flow surfaces for theE × B-flow and show closed flow surfaces
through the source region for the Hydrogen discharge, but open flow
surfaces for the Argon discharge, allowing for passive advection of
plasma frome source to wall in the latter case.

5.2 Global simulations and experimental profiles

Global simulations of poloidally rotating plasmas in the flute
limit (kq = 0) typically show two transient time scales, one
short for the formation of the potential structure and one
longer for saturation of the density growth. The latter is ba-
sically the particle confinement time. During a time of order
ν−1
in ∼ 0.1 ms after onset of the sources the growth of the po-

tential well has saturated. This saturation is shown for a Hy-
drogen discharge by the full curve in Fig. 1, and for an Argon
discharge with higher plasma density by the broken curve.
The potential well for Hydrogen is about 40 V deep, giving
rise to flow surfaces which are closed around the source. For
Argon the well depth is less than 1 V, giving rise to a situa-
tion with open averaged flow surfaces traversing the source
region, allowing stationary convective transport. Flow sur-
faces for the two cases are shown in Fig. 3.

Figure 2 shows that the density continues to grow for
0.5 ms in the Hydrogen case and for around 5 ms in the Ar-
gon case. The slower growth in the Argon simulation is due
to the fact that the initial background electron number den-
sity n0 was set 10 times higher than for Hydrogen, while the
ionization source was the same. This means that it takes 10
times longer to build up the same density scale lengthLn
(or equivalently the same ratio,nmax/n0, wherenmax is the
maximal number density over the cross section of the plasma
column).
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Fig. 4. Measured electron pressure profiles profiles for different
values of the discharge voltage,Vdis = 100,200,300, 400 V. Ion-
ization source is roughly proportional toVdis .

A technical feature of the simulations shown here is that an
initial, spatially homogeneous number densityn0 has been
chosen, and the limiter is modelled in such a way that the
density in the limiter region never deviates much from this
value. In practice this means thatn = n0 works as a bound-
ary condition. An interesting empirical observation from
many simulations is that the time-average〈nmax〉/n0 seems
to saturate at a value around 2.4 for the turbulent states with
closed flow surfaces, and around 2.0 for the quiescent states
with stationary flow along open surfaces.

It could be tempting to interpret the universality of the
scale lengthLn for turbulent states as the manifestation of a
linear stability threshold, and that these states are marginally
stable flow equilibria. Marginal stability, however, requires
the existence of neighbouring stable states. In the simulation
of turbulent states, however, the contribution to∇ · jm from
the turbulent stress is a significant contribution to the charge
balance, and this indicates that the time-averaged concentric
flow states are not equilibria, and thus cannot correspond to
marginal stability. Thus, it is conceivable that the univer-
sal value ofLn is a characteristic property of the nonlinear
saturated states in this geometric configuration rather than a
manifestation of a linear stability threshold.

Experimental electron pressure profiles for different mag-
nitudes of the plasma source (discharge voltage) are shown
in Fig. 4. The radial profile on the outside slope seems to
be close to exponential, and the scale length is nearly in-
dependent of the source strength. The pressure gradient is
almost ten times steeper than that corresponding to the lin-
ear instability threshold in a plasma without shear flow given
by Eq. (22), but agrees well with the gradient scale length
observed in the global simulations.
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Fig. 5. Electron density profiles from local simulations without
charge source for plasma source of strength 1, 10, and 100, respec-
tively.

5.3 Local simulations

Criticality of gradients are observed more clearly in local
simulations in slab geometry, where sources and limiters are
vertical strips (inz-direction), and we have periodic bound-
ary conditions in this direction. This provides a faster code,
but cannot provide poloidal rotation of the plasma. On the
other hand, this geometry provides the existence of an equi-
librium, which gives clearer meaning to the concept of sta-
bility.

Without charge source the density gradient on the outside
slope is very close to (slightly above) the one correspond-
ing to the linear stability threshold, and this feature is very
insensitive to the source strength. Radial profiles for differ-
ent source strengths (but without sheared flows) are shown
in Fig. 5. The profiles on the outside slope are nearly expo-
nential andLn is almost independent of the source and very
close to the linear thresholdLthr = R0/2.

Spatial spectral analysis of the turbulent particle flux
shows that the largest scales (smallest wavenumbers) are re-
sponsible for most of the total flux. The cross phaseα

(nφ)
k is

somewhat aboveπ (α(nφ)k = π yields zero anomalous flux),
and power spectra are scale invariant (have power-law depen-
dence∼ f−α). Slab simulations with charge source yields
a potential well and sheared flow in thez-direction. Like
the non-slab simulations the saturated gradient now becomes
much steeper than the linear threshold for unsheared flow.
The velocity shear brings the cross-phaseα(nφ)k very close
to π , i.e. very unfavourable for transport, hence requiring
stronger fluctuations to sustain a given flux. With a realistic
ion-neutral collision frequency introduced in the model, no
self-generated zonal flows appear in these simulations. How-
ever, if the realistic dissipation terms are replaced with only a
diffusion term in the mass continuity equation, zonal sheared
flows develop in the absence of a charge source. These flows
effectively quench the instability until a stationary, nonturbu-
lent state appears with a purely diffusive density profile.

6 Experimental results on fluctuations and transport

A challenging diagnostic problem in the context of cross-
field anomalous transport is to perform accurate local mea-
surements of instantaneous particle and energy density
fluxes. The basic problem is the following: Suppose thez-
axis of a cartesian coordinate system is directed along the
ambient magnetic field and we want to measure the anoma-
lous flux in the thex-direction. Then simultaneous measure-
ments of instantaneous values of electron densityn, electric
field Ey and electron temperatureTe are necessary to ob-
tain the anomalous cross-field flux densities. If the dominant
modes have cross-phasesαnφ(ω) close to 0 orπ , the respec-
tive fluxes (which are proportional to sinαnφ) become very
sensitive to errors in the measurements ofαnφ . Such errors
will arise for instance if one does not succeed in eliminat-
ing the influence ofT̃e on the measurements of̃Vp and ñ.
A method to deal with this problem in the context of Lang-
muir probe measurements was developed by Ratynskaia et al.
(2000a,b), and measurements of fluctuations, cross-phases
and anomalous fluxes for the simple torus configuration have
recently been published by Ratynskaia et al. (2002). The
conclusion of these measurements are that flute modes dom-
inate all fluctuations on the outer density slope (on the weak
field side), while drift waves might dominate density and po-
tential fluctuations on the inner slope, where flute modes are
locally stable. Weak flute modes coexist with the drift waves
on the inside slope, manifested through weak temperature
fluctuations. The flute mode spectrum exhibits a peak which
is due to large scale poloidally rotating structures, probably
associated with the lowest poloidal wavenumber (m = 1).
This is the fastest growing mode according to linear theory
for flute interchange instability, but if the gradient is at the
threshold for this instability, it also is the only linearly unsta-
ble mode. If this is the case, the higher wave-numbers (cor-
responding to the power-law spectrum at higher frequencies)
are nonlinearly driven trough a turbulent cascade. The flux
measurements show that the large scale flute mode structures
play a substantial role in both particle and energy transport
on the outside. On the inside only drift waves contribute to
particle transport, while the coupling between temperature
fluctuations in flute modes and electric field fluctuations in
drift waves yields the major contribution to the energy trans-
port.

7 Conclusions

The plasma parameters of many small scale magnetized lab-
oratory devices require mathematical models for description
of the low frequency dynamics which are remarkably simi-
lar to those employed for description for ionospheric inter-
change turbulence and field-aligned irregularities. Our elec-
trostatic model derived in Sect. 3.4 (Eqs. 15–17) are general-
izations of the model for ionospheric turbulence derived by
Huba et al. (1985) and applied to this problem by Hassam
et al. (1985). On the other hand this model is also a gener-
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alization of generic models for drift wave turbulence, which
has been applied to ionospheric problems as well as labora-
tory plasmas, including edge turbulence in magnetic confine-
ment devices.

The numerical and experimental studies of plasma poten-
tial profiles and potential fluctuations show the existence of
both quiet stationary flow states with slow flow along open
flow surfaces, and of turbulent flow states with a fast mean
poloidal flow. The transition between these types of states
has so far not been studied systematically. Time-averaged
density (or pressure) profiles indicate the existence of criti-
cal profiles in the sense that the gradient scale lengths attain
characteristic values that are resilient to variation of the im-
posed fluxes or other discharge parameters. The absence of
a static or stationary flow equilibrium state close to the time-
averaged states observed in global simulations and experi-
ments indicates that this resiliency is not simply a manifesta-
tion of a linear stability threshold. Further study is required
before the true nature of the critical profiles is properly un-
derstood.

Experimental identification of the turbulent modes and
measurement of anomalous particle and energy flux densities
were briefly reported in Sect. 6. The modes on the weak field
side (outside) were identified as electrostatic flute modes, and
hence driven by the interchange instability. On the strong
field side these modes are stable, and measurements of cross-
phases between density and electric field fluctuations, and of
dispersion characteristics (phase velocity), indicate that drift
waves dominate the density and electric field fluctuations in
this region. The possible role of drift waves indicates that
parallel electron dynamics should be included in the numeri-
cal models, and that 3-D simulation may reveal new physics.

Flux measurements show that both the large scale coher-
ent structures and the power-law part of the turbulent wave-
number spectrum contribute to the total anomalous fluxes.
Flute modes and drift waves may both play a role in the trans-
port.
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