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Abstract: Program comprehension and reverse engineering are two large domains 
of computer science that have one common goal – analysis of existing programs 
and understanding their behaviour. In present, methods of source-code analysis are 
well established and used in practice by software engineers. On the other hand, 
analysis of executable code is a more challenging task that is not fully covered by 
existing tools. Furthermore, methods of retargetable executable-code analysis are 
rare because of their complexity. In this paper, we present a complex 
platform-independent toolchain for executable-code analysis that supports both 
static and dynamic analysis. This toolchain, developed within the Lissom project, 
exploits several previously designed methods and it can be used for debugging 
user’s applications as well as malware analysis, etc. The main contribution of this 
paper is to interconnect the existing methods and illustrate their usage on the 
real-world scenarios. Furthermore, we introduce a concept of a new retargetable 
method – the hybrid analysis. It can eliminate the shortcomings of the static and 
dynamic analysis in future. 
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1 INTRODUCTION 

As E. W. Dijkstra said years ago: “If debugging is the process of removing bugs, then programming 
must be the process of putting them in.”. Moreover, software development is getting more tricky since 
applications are being developed for a wide range of target platforms (computers running x86(-64) 
processors, smart devices with ARM multi-cores, consumer electronics with smaller chips, etc.) where 
the toolchain (e.g. compiler, disassemble, simulator) can be incomplete or not properly tested (e.g. 
automatically generated compiler, experimental target-specific optimizations), especially for the newly 
created platforms such as application-specific instruction-set processors (ASIPs). 

With this diversity of target architectures and operating systems, it is not easy to properly analyze and 
debug your code because it is highly probable that the appropriate analytical tool do not support such 
particular target platform. 

Roughly speaking, analysis of the source code is easier since it is more or less platform independent. 
Only the basic information about the target architecture (e.g. bit-width, endianity) is usually enough. 
As an example we can mention Coverity SAVE [14] that can be used for retargetable source code 
verification. However, there are two major scenarios where source-code analysis cannot be used. 

(1) Analysis of applications distributed in the form of executable files (abbreviated as 
executables in the following text) without source codes. This kind of analysis is useful for 
malware analysis, testing of the third-party commercial software, etc. 

(2) Whenever we need to examine executable versions of our own software, e.g. testing 
automatically generated compiler used for application’s compilation, validation of the code 
optimized after compilation (optimizing linkers, postpass code optimization tools like AbsInt 
[5], etc.). Within this analysis, source code is available as well as additional information like 
symbols or debugging information. 

In the following text, we present a complex retargetable framework for executable-code analysis, 
which is capable of both static and dynamic analysis. This framework was successfully implemented 
and tested within the Lissom project [10]. 

The motivation of this paper is to demonstrate both approaches on the real-world scenarios described 
in the previous paragraph. Furthermore, we highlight their drawbacks and we present their 
enhancement – the hybrid analysis. This approach combines advantages of the current methods but it 
is not implemented yet. 

The paper is organized as follows. Section 2 discusses the state of the art of executable-code analysis. 
The description of the retargetable approach developed within the Lissom project is given in Section 3. 
Afterwards, we evaluate our methods of static and dynamic analysis on the real-world scenarios in 
Section 4. In Section 5, we introduce a new type of analysis, the hybrid analysis, and examples of its 
usage. Finally, Section 6 contains conclusion of this paper and discussion about the future research. 
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2 STATE OF THE ART 

In this section, we discuss the state of the art of executable-code analysis. In present, we can find 
several common executable file formats – UNIX ELF, WinPE, Mac OS-X Mach-O, etc. These files 
may contain debugging information in one of the modern existing standards – DWARF or Microsoft 
PDB, for more details about theses formats and their processing see [7]. 

In order to support their accurate and comfortable analysis, it is important to provide appropriate tools. 
We can find two basic groups of tools – static and dynamic. 

(1) Static executable-code analysis examines applications without their execution and it is usually 
focused on the program transformation from a machine code into a human-readable form of 
representation. The most common tools are disassemblers, which produce assembly code, or the more 
modern decompilers producing a high-level language (HLL) code (C, Java, etc.). Static analysis can 
also perform control-flow and data-flow checking, see [6] for more details. 

(2) Dynamic analysis executes the application and it analyses its behavior during the run-time. The 
execution can be done either on the target architecture (e.g. remote debugging) or via simulation or 
emulation. Profilers, simulators, and debuggers are the most often used tools within this category. 

The platform-specific analysis of executables is a partially solved problem, because implementation of 
such tool is a straightforward task [8, 15]. The existing toolchains usually contain both dynamic and 
static tools. For example the GNU Compiler Collection together with the Binutils package contains  
a profiler, disassembler, and debugger. Another example is the Microsoft Visual Studio. Nevertheless, 
program decompilation is still rare because even platform-dependent decompilers are hard to create [2, 
3].  

The retargetable analysis (i.e. the target architecture can be easily changed) is a more challenging task. 
We can find several projects focused on a rapid ASIP design that supports quality dynamic analysis 
(i.e. simulation and debugging of the ASIP’s applications), but with a very limited static analysis (only 
the disassemblers are supported in general). All of these projects exploit its own architecture 
description language (ADL), which has been developed within the project, for the toolchain 
generation.  

For example, the xADL project, developed at the Vienna University of Technology, supports 
generation of three types of simulators, but the support of debugging and static-analysis is missing. In 
other projects (ArchC, Sim-nML, EXPRESSION, LISA, etc), the situation is very similar – they 
support various types of automatically-generated simulators and debuggers, but the static analysis  
is very limited [8]. 

In past, there were only two attempts to create a retargetable decompiler – the PILER 
System (1976) [1] and the Boomerang project (2007) [16]. However, none of them was entirely 
completed and they are no longer actively developed. 
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3 RETARGETABLE STATIC AND DYNAMIC EXECUTABLE-CODE 
ANALYSIS 

Our solution is developed as a part of the Lissom project located at Brno University of Technology 
[10]. The project is primarily focused on the design and development of the new ASIPs, their 
applications, and their interconnection within large Multiprocessor Systems-on-Chips (MPSoC). 

A complete toolchain is developed within this project. It is automatically generated based on the target 
architecture description. The ISAC architecture description language [10] is used for this purpose. 
Each ISAC processor model consists of several parts. In the resource part, processor resources, such as 
registers or memories, are declared. In the operation part, processor instruction set with behavior of 
instructions is specified. The assembler and coding sections capture the format of instructions in the 
assembly and machine language, respectively. Behavior section is used for description of the 
instruction semantics via the ANSI C code, see Fig. 1 for illustration. 

 

Fig. 1. Example of a simple processor description in the ISAC language. 

Size of the ISAC models varies based on the architecture’s complexity; see Tab. 1 several examples. 
The RISC (Reduced Instruction Set Computer) architectures (MIPS, ARM, SPARC, etc.) are usually 
easier to describe than CISC (Complex Instruction Set Computer), such as Intel x86. ISAC is also 
capable to describe VLIW (Very Long Instruction Word) architectures (VEX, ADI Blackfin, etc.) as 
well as the highly-parallel architectures like multi-core processors, or multiprocessor systems on chip 
(MPSoC) [12]. 

 

 MIPS ARM VEX x86 
Lines of ISAC code 3300 3400 1500 7000 
Lines of auxiliary C code 1500 2000 800 2600 
Total 4800 5400 2300 9600 

 
Tab. 1. Complexity of the ISAC models for different architecture types. 

RESOURCES {                    // HW resources 
  PC REGISTER bit[32] pc;      // program counter 
  REGISTER bit[32] gpregs[16]; // register file 
  RAM bit[32] memory {...};    // memory, etc.  
} 
 
// instruction set description 
OPERATION op_sub { 
    INSTANCE gpregs ALIAS {rd, rs, rt}; 
    ASSEMBLER { "SUB" rd "," rs "," rt }; 
    CODING { 0b1111 rs rt rd }; 
    // instruction’s behavior description 
    BEHAVIOR { regs[rd] = regs[rt] - regs[rs]; } 
} 
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The ISAC models are used for an automatic toolchain generation, e.g. C compiler, assembler, and 
analytical tools – decompiler, debugger, and simulators, see Fig. 2. 

 

Fig. 2. Tools automatically generated based on the ISAC models. 

In present, three main types of simulators are supported – interpreted, compiled, and translated.  
The interpreted simulator performs constant fetching, decoding, and executing instructions from 
memory. This approach is relatively slow but it is independent on the simulated application. On the 
contrary, the compiled simulator is dependent on a particular application because it is generated based 
on its content. However, it is faster than the former one because the repetitive tasks (e.g. fetching, 
decoding) are pre-computed during simulator creation. Finally, the translated simulator further 
enhances the concept of the compiled simulator via usage of debugging information [7]. Based on this 
information, we are able to extract information about the basic blocks (BB) contained within the 
application. Afterwards, the translated simulator is capable to execute instructions within the same BB 
in a burst mode (e.g. it is possible to skip several checks for these instructions). Therefore, its speed is 
even higher than the compiled simulator. However, the presence of debugging information  
is mandatory in this case. 

Each simulator type suites for a different usage, see [12, 13] for details. The debugger allows dynamic 
analysis on the different levels (e.g. microarchitecture, instruction level, and source-level) [8]. The 
first two levels do not need any additional information, while the source-level debugger needs 
debugging information.  

The retargetable decompiler is depicted in Fig. 3. At first, the input binary executable is transformed 
into an internal COFF representation. Afterwards, such file is processed in the front-end part, which is 
partially automatically generated based on the ISAC model. This phase decodes machine-code 
instructions into the LLVM IR representation [9], which is used as an internal code representation  
of decompiled applications in the remaining decompilation phases. In the middle-end part, this LLVM 
IR code is heavily optimized using optimization passes. Finally, the resulting HLL code is emitted in 
the back-end part. Currently, the Python-like language and the C language are supported. In present, 
the retargetable decompiler allows decompilation of MIPS, ARM, and Intel x86 executables. The 
detailed description can be found in [3, 4]. 
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Fig. 3. Retargetable decompiler developed within the Lissom project. 

4 STATIC AND DYNAMIC ANALYSIS IN A REAL-WORLD 
SCENARIOS 

In this section, we present several scenarios of a retargetable executable-code analysis. We use the 
previously described tools for the static and dynamic analysis of these executables. 

For evaluation, we use a MIPS architecture that is described using the ISAC language on the 
instruction-accurate level. MIPS is a 32-bit RISC processor architecture. The processor description is 
based on the MIPS32 Release 2 specification [11]. 

Several open-source applications and algorithms from benchmarking test-suites were used for testing. 
The Minimalist PSPSDK compiler (v 4.3.5) was used for their compilation into the MIPS-ELF 
executables. Different versions of optimizations were used. The testing was performed on Intel Core2 
Quad with 2.8 GHz, 4 GB RAM running a Linux-based 64-bit operating system. The gcc (v4.6) 
compiler with optimizations enabled was used for the creation of all tools. 

4.1 ONLY THE EXECUTABLE AVAILABLE 

In this situation, we only have a naked (stripped) executable. Neither additional information nor its 
source code is available. This is the usual scenario of the third-party-software distribution or malware. 
Dynamic analysis can be done using interpreted or compiled simulation. The average speeds  
of interpreted and compiled simulators for MIPS are 27MHz and 55MHz, respectively [12]. 
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In the scenario of the interpreted simulation, the simulator is automatically generated based on the 
target architecture model in ISAC (i.e. MIPS model). This simulator is capable to simulate the input 
application instruction by instruction. According to the description in Section 3, the compiled 
simulator needs to be generated for this particular input file. No additional information (e.g. debugging 
information) is necessary for creation and usage of these two simulators. 

On the other hand, the translated simulator is not available, since we do not have information about 
basic blocks of the original program. Debugging is also limited to the instruction level. The source-
level debugging is disabled because the debugging information is also unavailable. 

Decompilation of the input binary executable is always possible, no matter if the source code or 
debugging information is present. The input application is analyzed and the target architecture, file 
format, and operating system are detected in preprocessing phase at first. In the same phase, we try to 
detect the originally used compiler using the signature-based detection. This is useful in later phases 
for generation of a more accurate code. The final step of the preprocessing phase is the conversion into 
the COFF format as described in Section 3. 

Afterwards, the front-end phase is automatically generated based on the detected target architecture 
using the appropriate ISAC model. The machine code stored in the COFF file is transformed into its 
semantics representation in the LLVM IR format using the instruction decoder. In the next-step, the 
front-end performs several static analyses over the LLVM IR code, e.g. detection of functions, 
removal of statically-linked code, control-flow analysis, recovery of data types [3]. The final phase of 
front-end is the generation of the proper LLVM IR code that is passed to the middle-end. 

Middle-end is responsible for code reduction and elimination of unneeded parts via several built-in 
optimization passes. Finally, the results, still in the LLVM IR form, are processed in the back-end part. 
It tries to detect and reconstruct the HLL constructions, such as loops, function calls, switch 
statements, etc. 

However, the output can be further enhanced using debugging information for the better readability 
(e.g. variable and function names, position of code, source-code names, etc.), see the next scenario for 
details. 

4.2 EXECUTABLE WITH DEBUGGING INFORMATION 

This situation is less common, but still plausible, e.g. distribution of beta-versions of applications to 
testers. Debugging information can be exploited for generating translated simulator that can achieve 
higher speeds (up to 120 MHz, in average 113MHz [12]). The simulation speed drop off in debugging 
mode is about 1-12% based on the number of breakpoints and their positions within machine-code [8]. 

In theory, source-level debugging is allowed because debugging information is available (e.g. 
mapping of code to the HLL statements, locations of variables); however, the source code is 
unavailable and therefore, it is not possible to visualise the run-time information to the user. This  
is one of the limitations of the state of the art. However, this issue is addressed in Section 5 and its 
solution is proposed. 
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Decompilation can achieve the best results in this case. An example of source-code recovery using 
debugging information can be seen in Fig. 4. In this example, the decompiler was able to reconstruct 
even most of the local variable names, which are usually not available because they are removed by 
compiler. The retargetable decompiler is capable to extract and reconstruct many program 
constructions, e.g. file names (modules), function names, names and types of function arguments, 
global and local variable names and types, positions of these constructions within modules (e.g. order 
of originally used functions). 

 

 

 

Fig. 4: Computing Pi using Monte Carlo method (left – original C code, right – decompiled C code). 
The debugging information in the DWARF format was used for decompilation. 

4.3 SOURCE CODE AND DEBUGGING INFORMATION AVAILABLE 

This is the ideal scenario of the executable-code analysis and it is also to most common one (e.g. 
software development, precompiled open-source applications). All the previously mentioned features 
are available as well as the source-level debugging. All the common debugging features are supported 
(e.g. highlighting position within the source code, stack backtrace, inspecting variable values). 
Although it is not obvious, the decompiler can be used too. It can be utilized for compiler testing via 

#include <stdlib.h> 
#include <stdio.h> 
#include <string.h> 
 
int main(int argc, char* argv[]) 
{ 
  int iter; 
  double x, y, z; 
 
  printf("Iterations: "); 
  scanf("%d",&iter); 
 
  /* initialize random numbers */ 
  srand(123456789); 
 
  /* cnt = number of points in the  
     1st quadrant of unit circle */ 
  int cnt = 0; 
  int i = 0; 
  while (i++ < iter){ 
    x = (double)rand() / RAND_MAX; 
    y = (double)rand() / RAND_MAX; 
    z = x*x + y*y; 
    if (z <= 1) cnt++; 
  } 
  double pi=(double)cnt / iter * 4; 
  printf("pi is %g\n", pi); 
  return 0; 
} 

 

#include <stdint.h> 
 
    #include <stdio.h> 
 
    #include <stdlib.h> 
 
typedef int int32_t; 
typedef double float64_t; 
 
int main(int argc, char **argv) { 
  int32_t cnt, i, iter; 
  float64_t y, x, y2, x2, x3, lemon; 
  cnt = i = iter = 0; 
 
  printf("Iterations: "); 
  scanf("%d", &iter); 
  lemon = (float64_t) 2147483647; 
  srand(123456789); 
  while (iter >= i) { 
    x3 = (float64_t) rand() / lemon; 
    y = (float64_t) rand() / lemon; 
    x = x3 * x3; 
    y2 = y * y; 
    x2 = x + y2; 
    cnt = x2 > 1.0 ? cnt : cnt + 1; 
    i = i + 1; 
  } 
  printf("pi is %g\n", 
         (float64_t)cnt / iter*4.0); 
  return 0; 
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comparison of the original source code and the code decompiled from the compiler-generated 
executables. 

Finally, the decompilation results can be further enhanced via information gathered during simulation. 
This can be done in all scenarios, i.e. with or without source-code or debugging information. The 
description of this approach is given in the following section. 

5 HYBRID ANALYSIS 

In present, the static and dynamic analyses are isolated from each other; each analysis can be used 
independently of the other one, e.g. we can use decompilation without running simulation and vice 
versa. However, the outputs of each of them can be enhanced by outputs obtained in the other ones. 
This concept is called hybrid analysis. Currently, we can find two fundamental techniques of hybrid 
analysis:  

 Exploitation of the run-time information (generated during simulation) within decompilation. 
This can be applied in all three scenarios described in Section 4.  

 Decompilation results (i.e. a HLL C code) can be used to support the source-code debugging 
in scenarios where the source code or debugging information is unavailable (i.e. scenarios 
described in Sections 4.1 and 4.2). 

5.1 EXPLOITATION OF RUN-TIME INFORMATION IN DECOMPILATION 

It is possible to gather a considerable amount of valuable information during the application’s  
run-time, e.g. a list of called functions, reachable instructions, values read and written into variables. 
On the other hand, it will be complicated or even impossible to get them during static analysis (e.g. 
during decompilation). 

The mentioned run-time information can be gathered by the simulator. Such mode of execution is 
often referred to as a trace mode. The simulator stores all demanded information in an internal 
database that aggregates the results (e.g. removal of duplicate values) and the database’s content is 
passed to the decompiler at the end of simulation. One of the open problems is simulation of 
applications that use dynamically linked code because the simulator must handle such situations (e.g. 
syscalls, invocation of standard-library functions). This task is related to code emulation. 

Afterwards, all of these values can be used during the decompilation. For example, the list of called 
functions is usable in the function-detection algorithm (e.g. revelation of function’s called by 
pointers), the list of positions can be employed for extracting targets of the indirect-branches (e.g. 
branch to the address stored in some register), variable’s content during execution is important for the 
value-range analysis. 

5.2 SOURCE-CODE DEBUGGING USING DECOMPILATION 

The second proposed technique can be done in two ways. (1) In the easier one, the debugging 
information is available and the decompiler has to generate the target HLL code that corresponds to 
given debugging information. The HLL code must satisfy the integrity, e.g. mapping of machine-code 
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instructions to HLL statements, mapping of variables to memory addresses, storage of local variables 
on stack in a given order. 

(2) The other case (i.e. both source-code and debugging information are unavailable) is a more 
challenging task because both information have to be recreated during decompilation. Recreation of 
the source code can be done in a classical way described in the previous sections. Recreation of the 
debugging information related to the decompiled program can be tricky because the existing 
debugging standards are complex and the size of debugging information is usually several times larger 
than the application’s code. Furthermore, the debugging standard can be undocumented and 
proprietary, such as Microsoft PDB. 

The easiest solution is to generate a HLL code and re-compile it with debugging support enabled (e.g. 

“-g” in GCC) using an appropriate compiler. Output of this process is a new executable with 

debugging information that corresponds to the decompiled HLL code. However this may be an 
unwanted behavior because it implies debugging of a different application. The other possible solution 
is to recreate only a simplified version of debugging information by the decompiler itself (e.g. only 
mapping of machine code to HLL statements).  

The debugger must be prepared for this situation and allow a lightweight-debugging mode with only  
a limited functionality. The DWARF standard suits this purpose better than PDB. Each type of 
debugging information (e.g. position mapping, variable information) is stored in a separated file 
section and its presence is optional. Furthermore, several existing libraries can be used for DWARF 
generation (e.g. libDWARF). 

6 CONCLUSION 

This paper was aimed on the retargetable analysis of executables. Several methods of static and 
dynamic analysis were presented, e.g. simulation, debugging, and decompilation. These methods are 
implemented within the Lissom project as the automatically generated toolchain. These tools are 
created based on the ISAC ADL models of the target architectures. 

Using these tools, it is possible to inspect behavior of our own applications as well as the third-party 
applications, which may be harmful (e.g. malware). The presented approach has been tested on the 
MIPS architecture, while other architectures such as ARM or Intel x86 are supported too. 

We close the paper by proposing an idea for the future research. We would like to interconnect the 
static and dynamic analysis within the hybrid analysis. Two possible ways of its usage in the given 
scenarios have been proposed; their implementation and evaluation is the primary target of the future 
research. 
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