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Abstract

In a theoretical analysis, a lump-integral model for freezing and melting of the bath material onto a cylindrical additive
having its thermal resistance negligible with respect to that of the bath is developed. It is regulated by independent non-
dimensional parameters, namely the Stefan number, St the heat capacity ratio, Cr and the modified conduction factor, Cofm.
Series solutions associated with short times for time variant growth of the frozen layer and rise in interface temperature
between the additive and the frozen  layer are obtained. For all times, numerical solutions concerning the frozen layer
growth with its melting and increase in the interface temperature are also found. Time for freezing and melting is estimated
for different values of Cr, St and Cofm. It is predicted that for lower total time of freezing and melting Cofm<2 or Cr<1 needs
to be maintained. When the bath temperature equals the freezing temperature of the bath material, the model is governed
by only Cr and St and gives closed-form expressions for the growth of the frozen layer and the interface temperature. For
the interface attaining the freezing temperature of the bath material the maximum thickness of the frozen layer becomes

. The model is validated once it is reduced to a problem of heating of the additive without freezing of
the bath material onto the additive. Its closed-form solution is exactly the same as that reported in the literature.
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1. Introduction

Production of steel and cast iron of different
grades at low cost with increased productivity and
without compromise of quality has gained great
importance owing to much global competition. For
any grade of these, alloying materials and scraps of
various sizes and shapes, called solid additives are
assimilated in the hot metal known as bath to prepare
the melt of requisite composition. Other process
phases are then followed. Here, the assimilation of
the additive in the bath undergoes a complex
phenomenon that constitutes several phases. In the
first phase, soon after the additive is immersed in the
bath, freezing of the bath material onto the surface of
the additive initiates with the interface between the
additive and the frozen layer attaining an instant
equilibrium temperature and the heat begins to
penetrate the additive. With the passage of time, the
frozen layer grows in thickness and both the
temperature at the interface and the heat penetration
depth increase. Subsequently, the frozen layer melts

but the interface temperature and the heat
penetration depth continue to increase. Ultimately,
the frozen layer completely melts exposing the
additive at an elevated temperature. The second
phase comprises of heating of the additive to its
melting temperature. In the third phase, it melts and
assimilates in the bath. The three phases are
accomplished in a certain time and are functions of
geometry and temperature of the additive,
temperature and condition of the bath and thermo-
physical properties of the additive-bath system. This
time controls the productivity of the product. For
increasing the productivity, its reduction is essential.
It can be achieved once the time taken in the
undesirable first phase of freezing and melting of the
bath material onto the additive in the assimilation
process is decreased. The occurrence of the first
phase is caused by the development of a steep
temperature gradient towards the additive side of the
interface soon after its immersion in the bath
resulting in heat conducted to the additive far greater
than the convective heat supplied by the bath. The
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remaining amount of the conductive heat is balanced
by the latent heat of fusion liberated owing to the
freezing of the bath material around the additive.
With passing of the time this heat raises the interface
temperature and decreases the temperature gradient
and the rate of the growth of the frozen layer.
Eventually, the heat conducted diminishes to such an
amount that the convective heat from the bath melts
completely the frozen layer uncovering the additive
at an elevated temperature. Since the temperature
gradient in the first phase is dependent upon the
order of magnitude of the thermal resistance of the
additive compared with that of the frozen layer and
the bath, the later becomes the regulating factor for
the time taken in the first phase and, in turn, the total
time of these phases.

A low value of the ratio of these two resistances
known as the Biot number, Bi decreases the
temperature gradient towards the additive side and
requirement of the conductive heat. These permit
completion of freezing and melting of the bath
material in a lesser time. Further reduction in this time
is possible if the additive of negligible thermal
resistance represented by Bi<0.1 that establishes a
uniform temperature in it is taken. The literature
seldom reports such a situation that is frequently
encountered in practice. However, freezing and
melting of the bath material onto the plate [1],
cylindrical [2] and spherical [3] shaped additives was
investigated for the comparable thermal resistance of
the additives with respect to those of the frozen layer
onto these additives. They are implicitly related to
0.1<Bi<100. In this condition, it was shown that the
time of freezing and melting of the bath material
around the cylindrical [4-8] additive made of steel [4],
titanium [5-7], niobium [8] and zirconium [9]
decreased once the radius of the cylindrical additive
reduced. The akin result was also obtained for
decreasing radius of the cored cylindrical wire
injected in the steel bath [10]. Decreased radius of the
spherical additive of aluminum in a salt-melt bath
[11], slag in slag melt [3] and ferro-magnese in steel
bath [12] diminished the time of freezing of the bath
material with its subsequent melting. This time was
also obtained theoretically for the freezing and
melting of the iron melt bath material around the
spherical shaped sponge iron [13] and
ferromanganese [14] when the temperature of the
frozen layer of bath material was assumed to be
uniform. In the latter situation [14], the
ferromanganese spherical particles were fed
continuously into the bath with the size distribution
employed from [15]. The mathematical model for
melting and mixing of alloys addition was also
devised [16]. For the development of the interface
temperature at the interface between the cylindrical
additive and the growing frozen layer of the bath

material onto the additive immediately after dunking
it in the bath, the present authors [17] provided a
closed-form expression. Such an expression was also
found for the same phenomenon in case of plate
shaped additive [18]. Closed-form solutions for the
frozen layer thickness, its maximum thickness, their
time of growth and the time of the freezing and
melting were recently obtained by the present authors
[19] when the freezing and melting of the bath
material occurred onto the cylindrical additive in an
agitated bath. Here, a thin frozen layer having
negligible thermal resistance and uniform temperature
was developed. For this situation, laboratory
experiment data for the growth of the frozen layer of
the steel melt bath onto the porous ferromolybdenum
cylinders of different densities during their melting
and dissolution [20] were obtained and compared with
the model results [21].

The present study concerns the development of a
lump-integral model related to freezing with its
subsequent melting of a bath material onto a
cylindrical additive in a bath-additive system. The
thermal resistance of the additive is taken as
negligible with respect to that of the bath including
the frozen layer. The model indicates the dependence
of this phenomenon on the independent
nondimensional parameters, the Stefan number, St, the
modified conduction factor, Cofm, and the heat
capacity ratio, Cr. The effect of these parameters upon
this phenomenon is examined graphically. For the
bath to be at the freezing temperature of the bath
material, the model gives closed-form solutions for
the interface temperature and the frozen layer. From
this, the closed-form expression for the maximum
frozen layer is deduced when the interface
temperature attains the freezing temperature of the
bath material. The model is validated once it is
converted to a problem of transient heating of a
cylindrical body having its thermal resistance
negligible with respect to that of the surroundings. 

2. Formulation of the problem

A cylindrical shaped solid additive at an initial
temperature, Tai is considered. Its significant radius is
ras defined by the ratio of its volume and the surface
area. Such an additive is immersed in a melt bath
maintained at a uniform temperature, Tb greater than
the melting or freezing temperature, Tmf of the bath
material. Immediately the bath material freezes
around the surface of the additive and the contact
interface between the frozen layer and the additive
attains an equilibrium temperature, Te that lies
between the initial temperature of the additive and its
melting temperature, Taf larger than the freezing
temperature, Tmf of the bath material. Moreover, the
bath-cylindrical solid additive system sets up a
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temperature field, Fig.1, Tai<Te<Tmf<Taf<Tb. As the
time of immersion elapses, the temperature, Te rises,
the heat penetrates radially to the cylindrical additive
and the axisymmetric growth of the frozen layer takes
place when the rate of heat conduction from the
frozen layer to the additive remains more than the
convective heat available to the frozen layer from the
bath. Once these two rates become equal, the growth
of the frozen layer ceases. Beyond this time, owing to
the convective heat from the bath to the frozen layer
greater than conductive heat from the frozen layer to
the additive, the frozen layer begins to melt but the
interface equilibrium temperature, Te continues to
increase with further heating of the additive. At time
t=tmc, the frozen layer completely melts leaving the
additive at an elevated temperature, Tem (Tem<Tmf). 

Figure 1. Schematic of freezing of bath material onto the
cylindrical shaped solid additive of negligible
resistance in bath. 

This phenomenon is simulated by axisymmetric
conjugated unsteady heat conduction. The
nondimensional integral form of heat conduction
equation applied to the frozen layer takes the
following form.

(1)

Physically, the first term of the right hand side of
Eq.(1) represents the rate of heat conducted in the
frozen layer through the freezing boundary surface at
ξm=ξ and the second term, the rate of heat conducted
out of the frozen layer to the additive through the
contact interface at ξm=Cr. The difference of these
two, the net rate of conducted heat is responsible for
increasing the net rate of internal thermal energy of
the frozen layer provided by left hand side of Eq.(1).
Its first term implies the rate of increase in the thermal
energy of the frozen layer whereas the combination of

its second and third terms is indicative of the rate of
acquired internal thermal energy due to the rate of
increase in the volume of the frozen layer.

Related initial and boundary conditions for Eq.(1)
are

(2) 

(3) 

(4)

If the cylindrical solid additive is assumed to be of
small radius ro and large length, l, its thermal
resistance becomes negligible with respect to
convective thermal resistance of the bath and the
conductive thermal resistance of the growing frozen
layer. This characteristic establishes a uniform
temperature in the entire volume of the additive which
is equal to the contact interface temperature, Te
between the additive and the frozen layer. The
additive behaves as a lump system [22, 23]. To this
system the application of an energy balance between
the heat conducted to the lump from the frozen layer
through the contact interface and the increase in the
thermal energy of the lump provides.

(5)

Its initial condition is

(6)

The interface conjugating conditions between the
additive and the frozen layer lead to 

(7)

(8)

Here, Eqs.(1) to (8) constituting the mathematical
model of lump-integral form are written when the
thermo-physical properties of the additive and the
frozen layer are uniform but different. This form is
arrived on the basis of the additive acting as a lump
and the frozen layer behaving as an integral system in
the direction of its growth. Equations (7) and (8)
assume the surface of the cylindrical additive in
perfect contact with the surface of the frozen layer.
Also no interface resistance exists between them.
Such assumptions taken in the recent studies for
freezing of the bath material onto the spherical [3] and
plate [1] shaped additives of comparative thermal
resistance of the additive with respect to the frozen
layer yielded reliable results. 

Note that equations (1) to (8) exhibit the
dependence of the problem upon independent non-
dimensional parameters- Cof, the conduction factor, St,
the Stefan number, B, the property-ratio, Cr, the heat
capacity-ratio and Kma, the conductivity-ratio.
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3. Solutions

The lump-integral model just developed for the
present problem is nonlinear owing to the moving
boundary of the frozen layer, Eq.(7) and coupled due
to conjugate conditions, Eqs.(7) and (8). These
preclude its closed-form solutions employing
available exact analyses. In such a case alternative
semi analytical methods become important. One of
these, the integral method that yielded closed- form
expressions pertaining to freezing [24] or melting [25-
27] in the previous investigations and reduced [28]
similar other problems to initial value problems is
applied. In view of this advantage, the equation
governing the frozen layer has already been written in
the integral form, Eq.(1) which after substitution of
Eqs.(3) and (4) reduces it to 

(9)

To find its solutions, a temperature field within the
frozen layer needs to be specified. A linear
temperature profile that fulfils Eqs.(3) and (4) is
chosen.

(10)

This type of profile is justified since it provided
reliable results for phase-change problems [27, 29] in
the past. Employing Eq.(10), the integral Eq.(9) takes
the form.

(11)

It is transformed to

(12)

when the boundary condition Eq.(4) is applied.
Substituting Eq.(10) in the governing Eq.(5) for the
additive gives.

(13)

whereas use of Eq.(10) reduces it to

(14)

Examination of Eq.(12) for the frozen layer ξ
indicates that it is coupled with Eq.(14) owing to

presence of Өe in it. For solutions, these two equations
are rearranged in standard format of simultaneous
differential equations of first order in time, τ. First
Eq.(12) is converted in terms of        and 

(15)

Where, 

then Eq.(14) is employed giving 

(16)

Equations (14) and (16) constitute an initial value
problem with initial conditions ξ=Cr, θe=0 at τ=0. As
they do not provide closed form solutions even after
application of exact analyses and their numerical
solutions do not get initiated using the standard fourth
order Runge-Kutta method due to the presence of ∞ at
the initial conditions, series solutions for small times
are resorted to. From these, starting values of ξ and θe
in the vicinity of τ→0 (i.e τ=10-4) are found.
Computer software of Runge-Kutta method is now
enable to calculate numerical values for ξ and θe for
all times once these starting values are used.

3.1 Series solutions for small times 

To find series solutions for small times residing
within the vicinity of initial time, τ=0, following
series solutions.

(17)

(18)

are assumed. They satisfy the initial conditions
ξ=Cr, θe=0 at τ=0 and provide ao=Cr and bo=0. To
quickly determine the coefficients of Eqs.(17) and
(18), Eqs.(14) and (16) need to be cast, respectively,
in

(19)

and

(20)

before Eqs.(17) and (18) are employed. On
application of Matlab, the other coefficients for higher
order of τ become
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3.2 Numerical solution for all times

As stated, the starting values of ξ and θe in
neighborhood of τ→0 i.e τ=10-4 are calculated from
above solutions of small times. They are then
employed in Runge-Kutta method to calculate
numerical values of ξ and θe for all times.

Note that since the growth of the frozen layer, ξ
with its subsequent melting may not be the same as
the rate of increase of temperature of the additive, the
faster rise of the later than the earlier permits the
additive to attain the melting temperature of the bath
material before the frozen layer completely melts. In
such a situation the temperature of the additive and
the melting front of the remaining frozen layer
become at the melting temperature of the bath
material. This results in the entire remaining frozen
layer and the additive including its interface between
the additive and the frozen layer to be at the melting
temperature. Beyond the time of this happening, the
convective heat from the bath is utilized only to melt
the remaining frozen layer. The equation that
regulates such a melting is provided by

(20a)

This equation can be also obtained directly from
Eq.(20) once θe=1 is substituted. Its closed-form
solution is 

(20b)

It satisfies the condition ξ= ξr , τ= τr
Here, ξr denotes the thickness of the remaining

frozen layer at the time, τr of the onset of the above

occurrence. It readily gives the total time of freezing
and melting once ξ becomes Cr.

Special cases: Bath temperature close to freezing
temperature of the bath material, Tb→Tmf.

In this situation the convective heat supplied by
the bath becomes zero, h(Tb-Tmf)=0 giving BCof
=Cofm= ∞. Its application reduces Eq.(12) to

(21)

whereas Eq.(16) takes the form

(22)

Using Eq.(14), Eq.(21) is transformed to

(23)

giving closed-form solution between θe and ξ
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(24)

For ξ= ξr , θe =0 

Employing it, Eq.(24) becomes

(25)

It satisfies the initial condition, τ=0, ξ=Cr, θe=0
and provides

(26)

Case-I: If the latent heat of fusion released due to
freezing of the bath material conducted to the additive
raises the interface temperature  to the freezing
temperature of the bath material,   =1 no more
freezing of the bath material occurs resulting in
providing maximum frozen layer thickness, ξmax.
These convert Eq.(26) to

(27)

It is cast in the following format

(28)

Note that under the condition of the bath
temperature, Tb>Tmf, the growth of the maximum
thickness of the frozen layer is smaller than that
obtained from Eq.(28). It happens because the part of
the latent heat of fusion supplied to the additive is
replaced by the convective heat of the bath.

Eq.(28) can be also obtained once an energy
balance between the latent heat of fusion evolved due
to freezing of the bath material over the cylindrical
additive and absorption of this heat to raise the
temperature of the additive to the freezing
temperature of the bath material is invoked. It gives

(29)

In nondimensional form it becomes

(30)

It is rearranged as

(31)

and validates Eq.(28) derived from the prime
analysis for Tb→Tmf. It may be noted that exactly the
same expression was derived in the previous study [3]
for a spherical additive immersed in the bath.

Case - II :   For   the  interface  temperature, 
remaining below the freezing temperature of the bath
material              , the time variant frozen layer thickness, (ξ-
Cr) can be found once Eq.(26) is substituted in Eq.(22)
providing 

when it is rearranged it becomes

(32)

To find its closed-form solution, it is written in
standard integrable forms

(33)

where 
Satisfying the initial condition τ=0, ξ=Cr and z=0,

its closed-form solution becomes

(34)

Here, 

For certain values of Cr and St, Eq.(34) readily
provides the time for the growth of the frozen layer
thickness whereas Eq.(26) gives the corresponding
rise in the interface temperature, θe.

validity: 
To validate the present problem, the convective

heat available from the bath is assumed to be more
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than the heat conducted to the additive resulting in no
growth of frozen layer. This reduces the present
problem to the transient heating of the cylindrical
additive of negligible thermal resistance by
convective heat supplied from the surrounding bath. It
is exactly the same that appeared in the literature [22,
23, 29]. In the present format it is given by

(35)

4. results and discussions

Mathematical model evolved in a lump-integral
form for freezing and melting of the bath material
onto the surface of a cylindrical additive with its
thermal resistance negligible with respect to that of
the bath and the frozen layer exhibits the dependence
of this phenomenon on the non-dimensional
parameters- the Stefan number, St the modified
conduction factor, Cofm and the heat capacity-ratio, Cr.
The Stefan number denotes the phase-change
parameter and is the ratio of sensible heat and latent
heat of fusion of the bath material. When its value is
low, it signifies the bath material of high latent heat of
fusion resulting in growth of small thickness of the
frozen layer despite liberation of large amount of heat
due to freezing for the same heat to be conducted to
the additive. The modified conduction factor is the
product of property-ratio, B and the conduction factor,
Cofm (Cofm =B Cof). The later represents the ratio
between the heat conducted, Ka(Tmf-Tai)/ro to the
additive due to the difference of freezing temperature
of the bath material and the initial temperature of the
additive, and the convective heat, h(Tb-Tmf) supplied
from the bath. Its values range from 0 to ∞. Zero
implies the preheated additive at the freezing
temperature of the bath material allowing no
conductive heat transfer to the additive with no
growth of the frozen layer. Infinity, ∞ indicates the
bath to be at the freezing temperature of the bath
material resulting in no supply of convective heat
from the bath. Here, only freezing around the surface
of the additive takes place with no subsequent
melting. Depending on the values of B, smaller or

greater than one, the modified conduction factor
becomes less or more than the conduction factor. The
small heat capacity-ratio, (Cr<1) signifies the
absorption of large heat within the heated region of
the additive than that in the frozen layer. Table1
presents the values of these independent parameters
for various bath-cylindrical additive systems often
used in practice.

Graphs for the time variant freezing and melting,
ξ-Cr and the interface temperature, θe are displayed in
Figs.2, 4 and 6. Here, the total time of freezing and
melting is the time between the start of the freezing
and the completion of the melting of the frozen layer.
The time of the growth of the maximum thickness of
the frozen layer is denoted by the time taken to grow
this thickness whereas the time of the complete
melting of the frozen layer is represented by the
difference between the total time for freezing and
melting and the time taken to grow the maximum
thickness of the frozen layer. All the figures exhibit
similar behavior. An early part of any graph of
freezing is attained swiftly after the immersion of the
additive in the bath whereas the melting of the frozen
layer is slow with the later portion of the melting
follows a linear behavior with time. This later
behavior is owing to the interface temperature, θe
rapidly rising to the freezing temperature of the bath
material before the complete melting of the frozen
layer. In such a situation, the remaining frozen layer
including the interface temperature and the freezing
front to be at the freezing temperature of the bath
material. Due to this it does not absorb the convective
heat supplied by the bath as sensible heat rather it is
completely utilised in melting this layer. It is
predicted by Eq.(20b) and varies linearly with time.
This type of behavior was also reported in the
previous study [12] for freezing and melting of the
bath material onto the spherical shaped additive. 

4.1 Influence of Modified Conduction Factor, Cofm

Fig.2 shows the effect of the modified conduction
factor, Cofm upon the time dependent frozen layer
thickness, ξ-Cr and the instant interface temperature,
θe for certain values of the Stefan number, St and the
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Bath Material Solid Additive Non-Dimensional parameters
Km W
/ mk

ρm
Kg/m3

Cpm
J/kgk

Lm x10-

3  J/ kg
Tmf 
0C

Tb 
0C

h W/
m2k

Ka W
/ mk

ρa Kg/
m3

Cpa J /
kgk

θb B *Bi Cofm St 

Hot metal
[12]  35 6850 670 275.7 1150 1500 1000 Ferro-

mang. [12]  75 7200 700 1.31 0.42 0.067 20.3 2.71

Cast- Iron
~4%C [23]   51.9 7304 417 275.7 1160 1550 1500 Nickel

[22]  90 8906 449 1.08 0.44 0.083 63 2.11

Slag [3] 1.063 2890 920 544 1500 1600 40 DRI [3] 2.13 2600 820 1.07 0.62 0.094 97 2.48

Table 1. Thermo-physical properties of typical Bath- Solid system and their dimensionless parameters.

* Based on radius of additive ro =.01m and Tai =350C



heat capacity-ratio, Cr . For each Cofm , the behaviour
of ξ-Cr and θe is similar to those stated earlier. But due
to increase in Cofm, the maximum frozen layer
thickness, its time of formation and the total time of
freezing and melting increase. The interface
temperature, θe falls almost on the same graph but the
time of attaining the freezing temperature (θe=1) of
the bath material gets delayed. The frozen layer does
not melt completely at this temperature θe=1. As
described earlier the remaining entire frozen layer
becomes at θe=1. The feature just stated is expected
because the heat conducted to the additive is sum of
the convective heat and the latent heat of fusion
liberated by freezing of the bath material onto the
additive, increased Cofm reduces the convective heat
resulting in its compensation by release of more latent
heat of fusion from the growth of large thickness of
the frozen layer.

For a prescribed bath material represented by St
and Cr, the total time of freezing and melting τt, the
time τmax required for the growth of maximum frozen
layer thickness developed with modified conduction
factor, Cofm appear in Fig.3. They indicate that these
times and the maximum frozen layer thickness rapidly
increase once Cofm rises from zero to two (0≤Cofm≤2).
For Cofm>2, they assume almost a linear behaviour.
However, the maximum frozen layer thickness and its
time of formation increase insignificantly. Rather
these two acquire an asymptotic behaviour. The total
time, τt for freezing and melting with respect to
increasing Cofm is also linear but the time of melting,
the difference between τt and τmax becomes
progressively much greater than that of the freezing.
This is possibly due to phenomenon of melting less
responsive to increasing Cofm and in turn, diminishing
convective heat transfer. For reduction in the total
time of freezing and melting, Cofm<2 needs to be

maintained in order to decrease the time of melt
preparation and, in turn the manufacturing time.

4.2 Effect of Heat Capacity-Ratio, Cr

In the Fig.4, the influence of heat capacity-ratio,
Cr upon the growth of the frozen layer, ξ-Cr with its
melting and the rise of the interface temperature, θe
with time for prescribed values of the Stefan number,
St and the modified conduction factor, Cofm is
exhibited. For all Cr (0.1≤Cr≤10), their behavior is
similar to those described in earlier section. However,
when Cr decreases, the maximum thickness of the
frozen layer, time taken for its growth and the total
time of the freezing and melting reduce whereas the
rise in the interface temperature, θe to reach the
freezing temperature (θe=1) of the bath material is
faster. At such a temperature, the frozen layer that
grew does not melt completely rather the entire left-
over frozen layer attains the freezing temperature of
the bath material. Beyond this occurrence, the
convective heat from the bath melts only the left-over
frozen layer. The melting follows a linear behavior
with time, Eq.(20b). This characteristic is realistic

because decreased Cr reduces the absorption of
sensible heat by the frozen layer due to which more
convective heat is available for conducting to the
additive. Consequently, less latent heat of fusion is
required to balance the conductive heat. It is met by
freezing a small thickness of the bath material onto
the additive.

Heat capacity-ratio, Cr dependent total time of
freezing and melting τt, the time τmax for the
development of maximum frozen layer thickness and
the formation of this thickness are exhibited in Fig.5
for certain bath material and its condition denoted by
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Figure 2. Time, τ variant freezing & melting (ξ-Cr) and the
interface temperature, θe for different values of
modified conduction factor, Cofm Stefan number, St
and heat capacity-ratio, Cr are taken as
parameters.

Figure 3. Variation of maximum frozen layer thickness, (ξ-
Cr), its growth time, τmax and total time, τt of
freezing and melting with modified conduction
factor, Cofm for certain values of Cr and St.



St and Cofm, respectively. All swiftly rise once Cr is
allowed to vary between 0 to 1 (0≤ Cr ≤1). For Cr>1,
they remain also constant. It is inferred that to have
lower total time of freezing and melting and
consequently, the manufacturing time, Cr is required
to be kept below one (Cr<1).

4.3 Impact of Stefan number, St

For certain values of Cofm and Cr, time-dependent
growth of the frozen layer, ξ-Cr with its subsequent
melting and associated rise in the interface
temperature, θe are exhibited in Fig.6. The Stefan
number, St is assumed to be a parameter. Their
behavior for each St is similar to those already
described. However, decreasing St diminishes the
maximum frozen layer thickness, its time of
formation and total time of freezing and melting. The

rise in interface temperature is faster allowing it to
attain the melting temperature of the bath material
earlier than the complete melting of the frozen layer.
As a result, the remaining frozen layer becomes at the
melting temperature and does not absorb the
convective heat as the sensible heat but this heat melts
the remaining frozen layer. The melting assumes
linearity with time, Eq.(20b). These behaviors are
anticipated since lower St is representative of large
latent heat of fusion of the freezing bath material
allowing the growth of a smaller frozen layer
thickness. It releases enough latent heat of fusion to
meet the conductive heat which is equal to the latent
heat of fusion and the convective heat available from
the bath.

Fig.7 depicts the behavior of the Stefan number, St
variant total time of freezing and melting, τt, the
maximum frozen layer thickness with its time of
growth. They state that τt and the maximum frozen
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Figure 4. Effect of heat capacity-ratio, Cr upon freezing &
melting (ξ- Cr ) and build up of interface
temperature, θe with time, τ for certain values of
Stefan number, St and modified conduction factor,
Cofm.

Figure 5. Heat capacity-ratio, Cr dependent maximum
frozen layer thickness, (ξ-Cr), its growth time, τmax
and total time of freezing with its subsequent
melting, τt for certain values of St and Cofm.

Figure 6. Time, τ dependent freezing & melting (ξ- Cr) and
the increase in interface temperature, θe for
different values of Stefan number, St for
prescribed values of modified conduction factor,
Cofm and heat capacity-ratio, Cr.

Figure 7. Variation of maximum frozen layer thickness, (ξ-
Cr), its time for growth, τmax and total time, τt of
freezing & melting with Stefan number, St for
certain values of heat capacity-ratio, Cr and
modified conduction factor, Cofm.



layer thickness increase with a faster rate for lower St
and τt assumes linearity for St<2 whereas that of the
maximum frozen layer thickness for St<4, but the time
required for the growth of the maximum frozen layer
thickness is linear in the entire range of St (0≤ St≤10).
In view of these predictions, need for the lower total
time of freezing and melting and associated
manufacturing time for a given additive-melt bath
system, St of the bath material is decreased only by
increasing the initial temperature of the additive, Tai in
St =Cpm(Tmf-Tai)/Lm.

4.4 The application of the model to the
manufacturing practices:

This model provides the governance of the
freezing and melting of the bath material onto a
cylindrical additive of negligible thermal resistance
with that of the bath by the independent parameters,
St, Cr and Cofm. Here, the cylindrical ferromanganese
additive-hot metal bath system, the thermo-physical
properties of which appear in Table1 is considered.
This Table1 for such a system provides St=2.71,
Bi=0.067, Cr=0.91, B=0.425 and Cofm=20.3 when the
radius of this additive is 0.01m and heat transfer
coefficient is 1000W/m2K. Bi=0.067<0.1 signifies
that the thermal resistance of this cylindrical additive
is negligible with that of the frozen bath material.
Using these values, the numerical solutions of the
present model give

maximum thickness of the frozen layer developed,
(ξmax-Cr)= 0.0542

time to develop this maximum frozen layer
thickness, τmax=0.1161

total time of freezing and melting, also called shell
period= τt=0.5671

Using the thermo-physical properties data from
Table1 and nomenclature for these, they become
respectively,

(36)

(37)

(38)

Using the above values of (ξmax-Cr) in Eq.(36), τmax
in Eq.(37) and tt in Eq.(38) provide the maximum
frozen layer thickness, 6x10-4m, time of its formation
tmax@2s and the total time of the freezing and melting,
tt@9s. For the spherical ferromanganese additive of
same radius-hot metal system having their resistances
comparable, the previous study [12] reported the time

of the freezing and melting of the bath material onto
the additive about 15s. It is higher because such
resistances decelerate the phenomenon of the freezing
and melting. 

4.5 Comparison with experimental results of the
literature

In the literature, experimental results of the
present problem are not available. However, for the
additive having its thermal resistance comparable
with that of the bath material experimental data were
provided by Sismanis and Argyropoulos [30] for
dissolution of titanium, zirconium, niobium and
tantalum cylinders in steel melt. Their dissolution was
preceded by the freezing and melting of the steel melt
onto them. From their experimental and predicted
data for the interface and centerline temperature of the
niobium cylinder of 2.54x10-2m diameter and 18x10-

2m length they inferred that the radial temperature was
almost uniform in the cylinder. This property permits
to assume the niobium cylinder of negligible thermal
resistance. Owing to this fact, the interface
temperature obtained from the present problem can be
compared with that of the niobium cylinder-steel melt
bath system. The data of this system [30] give
Cr=2.236, B=1.278, St=4.346, θb=1.053, Bi=9.22 and
Cofm =3.465. For these values the interface
temperature distribution with time is calculated for the
present problem and compared with that of the
niobium [30] in Fig.8. 

It is observed that during the initial time of the
freezing of the steel melt around the niobium cylinder
the agreement is close. With the elapse of time, the
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frozen layer grows to its maximum thickness and
subsequently melts but the interface temperature
continues to rise to acquire the freezing temperature
of the steel melt. In this time region, the time to attain
the same interface temperature is lesser for the present
problem than that of the literature [30]. This is due to
the fact that the comparative resistances of the
cylindrical niobium additive and steel melt bath
impedes the rate of the rise of the interface
temperature that takes place in the niobium additive of
negligible thermal resistance with respect to that of
the steel bath in the present work.

5. Conclusions

The mathematical model devised in a lump-
integral format for the unsteady axisymmetric
freezing and melting of the bath material around the
cylindrical solid additive of negligible thermal
resistance is controlled by independent
nondimensional parameters, the Stefan number, St,
the heat capacity-ratio, Cr and the modified
conduction factor, Cofm. The model predicts that
decreasing Cofm reduces the maximum frozen layer
thickness, its time of growth and the time of
freezing and melting. These are further decreased
once the Stefan number is reduced. The interface
temperature, θe reaches the freezing temperature of
the bath material earlier than the melting of the
frozen layer. In this situation, the convective heat
only melts this remaining layer. For the bath to be at
its material freezing temperature, the maximum
frozen  layer  thickness, 
when θe attains the bath material freezing temperature
by the latent heat of fusion evolved by the freezing of
the bath material. The instant problem is validated by
transforming it to convective heating of the additive
of negligible thermal resistance.
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Appendix - noMenCLAture

R0 radius of the cylindrical shaped solid additive, m
B property ratio, (KmCm/KaCa)
Bi Biot number, (hR0/Ka)
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Bim Modified Biot number, (hR0/Ka)*(KaCa/KmCm )
Ca heat capacity of the cylindrical additive, Jm-3K-1

Cm heat capacity of the frozen layer, Jm-3K-1

Cof conduction factor, (1- θai)/ Bi (θb -1)
Cr Heat capacity ratio, Cm/Ca

Ra radius of the heat penetration front in the additive at
any time, m

Rm radius of the frozen layer front onto the additive at any
time, m

h heat transfer coefficient, Wm-2K-1

Ka thermal conductivity of the additive, Wm-1K-1

Km thermal conductivity of the frozen layer, Wm-1K-1

Lm latent heat of fusion of the frozen layer, JKg-1

Qm heat transfer from the frozen layer to the additive, Wm-

2

Qmn non-dimensional heat transfer from the frozen layer to
the additive,  QmR0/ Ka (Tmf -Tai)B

St Stefan number, Cm(Tmf -Tai)/ Lm ρm

t time, s
tmc time for freezing and its subsequent melting, s
T temperature, K
Ta temperature of the additive, K
Tai initial temperature of the additive, K
Taf freezing or melting temperature of the additive, K
Tb bulk temperature of the bath material, K
Te instant equilibrium temperature at the interface

between the additive and the frozen layer, K
Tem instant equilibrium temperature at the interface

between the additive and the frozen layer when the
frozen layer completely melted, K

Tmf freezing or melting temperature of the frozen layer, K
ra radius within the heat penetration region in the

additive, m
rm radius within the frozen region, m
αa thermal diffusivity of the additive, m2s-1

αm thermal diffusivity of the frozen layer, m2s-1

ξ non-dimensional radius of the frozen layer front at any
time, (CmRm/ CaR0)

ξa non-dimensional radius in the heat penetration region
in the additive, (ra /R0)

ξm non-dimensional radius within the frozen layer region,
(Cm rm/ CaR0)

η non-dimensional radius of the heat penetration front in
the additive at any time, (Ra/R0)

ρm density of the frozen layer, Kgm-3

θ non-dimensional temperature, (T-Tai/ Tmf - Tai)
θa non-dimensional temperature of the additive at any

time, (Ta- Tai / Tmf- Tai)
θaf non-dimensional freezing or melting temperature of the

additive, (Taf-Tai /Tmf -Tai)
θb non-dimensional bulk temperature of the bath material,

(Tb -Tai /Tmf - Tai)
θe non-dimensional instant equilibrium temperature at the

interface between the additive and the frozen layer, (Te-
Tai /Tmf - Tai)

τ non-dimensional time, (KmCm/Ca
2 R0

2)t
qna non-dimensional heat transfer from  interface to the

additive, qar0/ Ka (Tmf -Tai)
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