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Abstract. Airborne in-situ observations of carbon diox-
ide (CO2) were made during 7 intensive measurement cam-
paigns between November 2001 and April 2003 as part of
the SPURT project. Vertical profiles and latitudinal gradi-
ents in the upper troposphere/lowermost stratosphere were
measured along the western shore of Europe from the sub-
tropics to high northern latitudes during different seasons. In
the boundary layer, CO2 exhibits a strong seasonal cycle with
the maximum mixing ratios in winter and minimum values in
summer, reflecting the strength of CO2 exchange with veg-
etation. Seasonal variations are strongest in high latitudes
and propagate to the free troposphere and lowermost strato-
sphere, although with reduced amplitude. In the lowermost
stratosphere, the CO2 seasonal cycle is phase-shifted rela-
tive to the free troposphere by approximately 3 months, with
highest mixing ratios during the summer. Modelling studies
support the interpretation that altitude gradients of CO2 are
likely due to stratosphere-troposphere-transport.

1 Introduction

Next to water vapour (H2O), carbon dioxide (CO2) is the
most important greenhouse gas in the atmosphere, and its
mixing ratio has increased from approximately 280 ppm in
the pre-industrial 19th century to approximately 380 ppm
today (WMO, 2006). Long-term observations since 1958
(Keeling, 1998) indicate that the atmospheric concentration
of CO2 has been increasing at a rate of approx. 1.9 ppm/year
(Forster et al., 2007) due to anthropogenic activities, in
particular the combustion of fossil fuels and deforestation.
This ongoing trend causes significant changes in the radia-
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tion budget of the atmosphere, affecting our climate (Taylor,
2005; Intergovernmental Panel on Climate Change, 2001).

To budget the sources and sinks of atmospheric CO2 high
precision measurements are needed. These are provided
for a large number of background ground-based stations
by the World Meteorological Organisation (WMO) Global
Atmospheric Watch (GAW) Global Greenhouse Gas Mon-
itoring Network (http://gaw.kishou.go.jp) and the National
Oceanic and Atmospheric Administration (NOAA) Earth
System Research Laboratory (ESRL) Global Monitoring Di-
vision (http://www.cmdl.noaa.gov), but information about
the vertical distribution of CO2 in the atmosphere is rather
limited. Stephens et al. (2007) in a recent publication em-
phasized that this vertical information is necessary to im-
prove CO2 budget calculations based on inverse modelling.
Despite recent progress in satellite-based CO2-column ob-
servations (e.g. Chedin et al., 2003; Buchwitz et al., 2005;
Engelen and McNally, 2005; Barclay et al., 2006; Tiwari
et al., 2006), measurements of CO2 in the free troposphere
and the lower stratosphere are restricted to a small number
of balloon- and airborne measurement campaigns (e.g. Pear-
man and Beardsmore, 1984; Nakazawa et al., 1991; Mat-
sueda and Inoue, 1996; Anderson et al., 1996; Boering et al.,
1996; Vay et al., 1999; Zahn et al., 1999; Matsueda et al.,
2002; Machida et al., 2003; Aoki et al., 2003; Sawa et al.,
2004; Lin et al., 2006).

In particular, systematic investigations of the seasonal and
latitudinal variation of CO2 above the boundary layer are
sparse and limited to the western Pacific region (Nakazawa et
al., 1991; Matsueda and Inoue, 1996; Matsueda et al., 2002;
Machida et al., 2003). Here we report measurements of free
tropospheric and lowermost stratospheric CO2 mixing ratios
during all seasons covering the latitude range from 35◦ N to
75◦ N in the European longitudinal sector between 10◦ W
and 20◦ E obtained during the SPURT (SPURenstofftrans-
port in der Tropopausenregion, German for “trace gas trans-
port in the tropopause region”) project (Engel et al., 2006).
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Fig. 1. Diagram of the gas flow for the FABLE instrument (MFC =
mass flow controller; PC = personal computer). See text for details.

We analyse the data and study seasonal and latitudinal varia-
tions of CO2 vertical profiles from the boundary layer to the
lowermost stratosphere up to potential temperatures of 370 K
at about 14 km altitude.

2 The FABLE instrument

Airborne CO2 measurements were made with the Fast
Aircraft-Borne Licor Experiment (FABLE), that consists of
a commercial CO2/H2O analyser (LI-6262, LI-COR Inc.)
modified for airborne operation. The principle of CO2
measurements with the LI-6262 relies on differential non-
dispersive infra-red (IR) absorption spectroscopy between
geometrically identical sampling and reference cells. A
vacuum-sealed IR-light beam is directed through both cells,
whose emission frequency corresponds to a black body at
1250 K. The optical path outside the cells is purged with H2O
and CO2 scrubbed air (Mg(ClO4)2-filter). The differential
absorption between signal- and reference cell is measured
with two PbSe-detectors. Water vapour is measured with a
filter centred at 2.59µm (filter width 50 nm) while CO2 is
detected at 4.26µm (width 150 nm).

A mechanical chopper alternatively blocks the transmis-
sion through either the reference or the signal cell, so that the
detectors receive a difference signal between both cells. The
signal is strongly dependent on the pressure in both cells and
the temperature of the gas. Since water affects the CO2 mea-
surements by spectroscopic interference in the CO2 band,
pressure broadening and dilution an accurate determination
of the water vapour concentration is necessary to correct the
CO2 readings of the instrument in particular for tropospheric
applications (Daube et al., 2002). Therefore the H2O mea-
surements of the LI-6262 have been compared to a dew point
hygrometer (Model 2003 Dewprime III, EdgeTech, Milford,
MA, USA), indicating a total uncertainty of the FABLE wa-
ter vapour measurements of 5% for concentrations above
100 ppm.

To operate the system on board of a research aircraft and
perform high precision measurements, several modifications
of the LI-6262 were necessary. In particular, a high preci-

sion flow system is required, since both the ambient pres-
sure outside the aircraft and the cabin pressure depend on
flight altitude. Figure 1 shows the flow system built for FA-
BLE. Ambient pressure varies between about 1030 hPa in the
boundary layer and less than 200 hPa at the highest flight lev-
els.

Sampling is accomplished via a 1/2′′ stainless steel sam-
pling tube pointing into the flight direction. The sample
gas is pressurized to about 1150 hPa by a three-stage Teflon
diaphragm-pump (model MD 1 VARIO, Vacuubrand, Ger-
many). A restrictor valve on the low-pressure side of the
pump controls the flow in the boundary layer. On the high-
pressure side, a pressure relief valve establishes a constant
pressure approximately 150 hPa higher than cabin pressure.
Via a low1p mass flow controller (MFC 1: Bronkhorst, The
Netherlands) the pressure ahead of the measurement cell is
regulated to 850 hPa, while the pressure ahead of the MFC
varies between 1150 and 950 hPa as a function of the cabin
pressure. The time resolution determined as the time con-
stant for a signal change from 5 to 95% is of the order of 4 s
for the system including the constant pressure inlet.

The reference cell is purged by a 100 sccm flow of refer-
ence gas from a gas tank, at a pressure of 850 hPa regulated
via MFC 2, to allow a differential measurement between the
two cells held at the same pressure. Since the cell absorp-
tion and thus the analyser output are non-linear functions of
the CO2 mixing ratio a multi-point polynominal calibration
function has been obtained in the laboratory by using 4 dif-
ferent NOAA reference gas standards.

In flight, the reference gas is used as a secondary calibra-
tion gas which can be added to the measurement cell via
valves V1 and V2. Additionally, a second standard (Span-
gas) is used for in-flight calibrations of the instrument span.
Both standards are compared in the laboratory to two primary
NOAA reference standards with concentrations of 366.34
and 390.11 ppm, respectively.

To avoid temperature drifts of the instrument, the whole
analyser is mounted in a sealed box that is actively tempera-
ture controlled.

The in-flight noise level determined from ambient mea-
surements during periods of low atmospheric variability is
about 0.06 ppm (1σ). This noise is a measure for the short-
term precision of the instrument. The long-term precision
of FABLE is additionally affected by changes in the instru-
ment sensitivity over the flight. It is determined as the repro-
ducibility of the in-flight calibrations that varies from flight
to flight between 0.050 and 0.300 ppm (1σ). The calibration
accuracy (0.109 ppm, 1σ ) is determined by the in-flight stan-
dards. Thus the total uncertainty of the CO2 measurement
with FABLE is estimated at 0.366 ppm (1σ), roughly 0.1%
of the ambient mixing ratio. This corresponds to an improve-
ment by roughly a factor 2 compared to the analyser speci-
fications provided by LI-Cor inc., which is mainly achieved
by the temperature and pressure stabilization of the FABLE
instrument.
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3 Measurements during SPURT

A total of eight 2-day measurement campaigns covering all
seasons were performed within SPURT during the time peri-
ods 10–11 November 2001; 17–19 January, 16–17 May, 22–
23 August and 17–18 October 2002; 15–16 February, 27–28
April and 9–10 July 2003. Carbon dioxide measurements
were obtained during the first 7 campaigns; for the last one
data are missing due to an instrument failure. All campaigns
were flown out of the aircraft’s home base Hohn in north-
ern Germany (54◦ N, 9◦ E). A typical campaign consisted
of at least two southbound flights within one day, followed
by two or more northbound flights performed on the next
day. Thus a series of flights covered the latitude range be-
tween approximately 35◦ and 75◦ N along the western shore
of Europe. During stop-over landings at airports in the sub-
tropics (Faro (Portugal, 37◦ N, 8◦ W), Casablanca (Morocco,
33◦ N, 7◦ W), Gran Canaria (28◦ N, 15◦ W), Lisbon (Por-
tugal, 38◦ N, 9◦ W), Jerez (Spain, 36◦ N, 6◦ W), Monastir
(Tunisia, 35◦ N, 10◦ E), Sevilla (Spain, 37◦ N, 5◦ W)) and
at high northern latitudes (Kiruna (Sweden, 68◦ N, 20◦ E),
Troms̈o (Norway, 69◦ N, 18◦ E), Keflavik (Iceland, 64◦ N,
22◦ W), Longyearbyen (Norway, 78◦ N, 15◦ E)) two profiles
between ground-level and approximately 14 km altitude were
obtained during landing and take-off (see Fig. 1 of Fischer et
al., 2006). Detailed descriptions of the individual campaigns
can be found in the overview article by Engel et al. (2006).

4 Results

4.1 Comparison with GAW observations

To compare the airborne measurements during SPURT with
ground-based observations, Fig. 2 shows data from the GAW
station Zugspitze (47.25◦ N, 10.59◦ E, 2960 m a.s.l.) (data
obtained from: (http://gaw.kishou.go.jp) as measured by the
German Umweltbundesamt. This site has been chosen be-
cause it is considered to be representative for mid-latitudes
where we obtained profiles from the SPURT measurements.
To avoid direct contamination at the surface in close prox-
imity to the airports, the comparison is made for a moun-
tain site. Also shown in the figure are SPURT observations
from landings and take offs in Hohn, averaged within 1 km
thick altitude bins corresponding to the height of the station.
The airborne observations closely follow the daily variations
at the station and deviations generally do not exceed 1 ppm
(mean difference =−0.2 ppmv), which underlies both the ac-
curacy and representativity of the SPURT data.

4.2 Vertical profiles

Average profiles of CO2 mixing ratios for the individual cam-
paigns are shown in Fig. 3. Mean values and 1σ -standard
deviations for 1 km altitude bins have been calculated from
take-offs and initial ascent as well as during the final descents
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Fig. 2. Comparison of mean airborne observations from SPURT
(black symbols) with daily measurements (grey symbols) at the
GAW stations Zugspitze.

at high (>65◦ N, blue lines), middle (approx. 55◦ N, green
lines) and subtropical latitudes (<40◦ N, red lines).

Significant latitudinal variations are observed in the lower
layers of the troposphere (below 5 km), in particular during
the summer/fall transition (August to October 2002). In the
boundary layer below∼1 km a latitudinal gradient of about
−0.2 ppm/degree latitude is observed between 35◦ N and
north of 55◦ N during August 2002, maximizing in October
2002 at about−0.35 ppm/degree latitude between<50◦ N
and 65◦ N. These strong latitudinal gradients at low altitudes
in summer reflect the enhanced up-take by vegetation during
the growing season. This sink is strongest at high latitudes
(blue lines in Fig. 3d and e) yielding a CO2 profile with low-
est concentrations close to the ground. This effect is much
smaller at lower latitudes. In the late winter/early spring sea-
sons (in particular during April 2003) when boundary layer
mixing ratios are highest, a latitudinal gradient is not discern-
able.

In general, only small seasonal differences between dif-
ferent latitude bands are found in the middle troposphere
between 5 and 9 km. Above 9 km in the upper tropo-
sphere/lowermost stratosphere again significant latitudinal
gradients are observed in particular during the spring sea-
son (May 2002 and April 2003). In the tropopause re-
gion these latitudinal differences are mainly related to differ-
ences in the tropopause height (determined as the 2 PVU sur-
face with 1 PVU=10−6 m2 s−1 Kkg−1), with a generally low
tropopause at high latitudes and a high tropopause at low lat-
itudes, in particular during the spring season (Fig. 3c and g).

The individual profiles shown in Fig. 3 can be influenced
by synoptic transport and mixing, leading to local variations
in atmospheric CO2 that do not necessarily reflect climato-
logical meridional gradients. Thus advection from different
latitudes and altitudes may be responsible for at least part of
the observed variability in individual profiles (Gerbig et al.,
2003).
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Fig. 3. Means and 1σ -standard deviation for 1 km altitude bins calculated from take-offs and landings at high (>65◦ N, blue lines), middle
(approx. 55◦ N, green lines) and subtropical latitudes (<40◦ N, red lines). Horizontal dashed lines indicate the tropopause altitude.

Fig. 4. Meridional cross-sections of CO2 observations from SPURT mission 7 in April 2003 in 5◦ latitude and 1 km altitude bins. The left
panel shows the in-situ observations while the middle and right panels show the calculated CO2 distributions 5 and 10 days back in time,
respectively, based on 10-day backward trajectories.

To study the effect of transport on the individual profiles
we used the Lagranto trajectory model (Wernli and Davies,
1997) to calculate 10-day backward trajectories based on 3-
hourly operational ECMWF analysis fields of horizontal and
vertical winds. The trajectories were started every 10 s along
the flight tracks of each SPURT mission. As an example,
Fig. 4 shows all CO2 measurements obtained during SPURT
mission 7 in April 2003, averaged in altitude (1 km) and lat-
itude (5◦) bins. The left panel shows the in-situ observations

with the average profiles obtained during take-off and land-
ing at Lisbon (38◦ N), Hohn (54◦ N) and Kiruna (68◦ N), as
well as the observations in the upper troposphere and lower-
most stratosphere during the flights between these airports.
As in Fig. 3g one can identify a small latitudinal gradient
in the lower troposphere, with lowest mixing ratios in the
subtropics, as well as local enhancements in the upper tro-
posphere at mid (around 8 km) and high latitudes (between 5
and 7 km).
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Fig. 5. Seasonal variation of CO2 mixing ratios in different atmospheric altitude sections relative to the 2-pvu tropopause and in the planetary
boundary layer at the measurement locations.

The middle and right panels of Fig. 4 show the distribu-
tion of the measured CO2 values advected backwards to the
corresponding altitude and latitude of the sampled air parcels
120 and 240 h back in time, respectively. In particular for the
240 h time period a large-scale ordering of the data appears,
with a high-altitude low-stratosphere cluster characterized by
CO2 mixing ratios below 374 ppm, and a weak though clear
latitudinal gradient in the troposphere with the highest values
toward the high latitudes. Note that a similar structuring has
been obtained for all campaigns. In general, the strongest
vertical gradients are observed around the tropopause, while
the latitudinal gradients in the troposphere are rather small.

4.3 Seasonal variations

The seasonal variation is illustrated in Fig. 5. Consider-
ing that Fig. 3 and 4 show only small latitudinal differences
above the boundary layer, all data have been grouped with
respect to distance to the local tropopause, defined as the
2 PVU (potential vorticity unit) surface (Hoor et al., 2004),
including constant level flight legs and independent of the
latitude of observation. For this purpose the data have been
averaged for the boundary layer (0–3 km, red line in Fig. 5),
the free troposphere (from the boundary layer to 1 km below
the tropopause, green line), the tropopause region defined as
1 km below to 1 km above the local tropopause (purple line),
the extra-tropical tropopause layer (1 to 3 km above the lo-
cal tropopause, blue line) and the lowermost stratosphere (3–
7 km above the tropopause, pink line).

The CO2 mixing ratios at all atmospheric levels ex-
hibit a temporal trend with increasing concentrations from
November 2001 to April 2003. This increase is strongest
in the lowest three kilometres (1CO2=4 ppm from January

2001 to February 2002), getting smaller (3.7 ppm) in the
free troposphere and smallest in the lowermost stratosphere
(1CO2=2 ppm from 1 to 7 km above the local tropopause).

In addition, a strong seasonal variation is observed. In the
boundary layer, lowest mixing ratios are observed during Au-
gust 2002 after a decrease of 9.3 ppm below the spring max-
imum, followed by a strong increase of about 11 ppm until
December 2002. A similar seasonal variation in phase with
the boundary layer concentrations is observed in the free tro-
posphere although with reduced amplitude (1CO2=−4 ppm
and +7 ppm from May 2002 to August 2002 and August 2002
to December 2002, respectively). This is in good agreement
with observations by Nakazawa et al. (1993) who observed
seasonal variations of the order of 10 ppm in the boundary
layer decreasing to 7 ppm in the altitude range between 8 km
to the local tropopause and confirms the model simulations
performed by Olsen and Randerson (2004), indicating that
column CO2 has less variability than surface CO2.

Note that the SPURT measurements are only snapshots
that do not provide a complete seasonal cycle. Thus the
stated temporal trends – in particular the exact timing of the
extremes in the seasonal variation – could well be spurious
and detailed comparisons with seasonal variations of CO2 at
ground-based sites are difficult.

As already mentioned by Hoor et al. (2004) the seasonal
variation differs between the lowermost stratosphere and the
troposphere. Contrary to a local maximum in spring and a
minimum in summer found in the troposphere, CO2 mix-
ing ratios in the lowermost stratosphere exhibit a pronounced
maximum in summer and a broad minimum in winter and
spring. The amplitude of the seasonal variation in the low-
ermost stratosphere is∼3 ppm, slightly lower than found in
the free troposphere and phase shifted by approx. 3 months,
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Fig. 6. Vertical profiles of the differences between measured CO2 and the marine boundary layer reference value at the same latitude
(obtained from GLOBALVIEW-CO2 2006 data set) at high (>65◦ N, blue lines), middle (approx. 55◦ N, green lines) and subtropical
latitudes (<40◦ N, red lines). Horizontal dashed lines indicate the tropopause altitude.

in agreement with observations by Nakazawa et al. (1991).
According to Hoor et al. (2004) this phase lag is due to
longer transit times for the tropospheric fraction of air mixed
into the lowermost stratosphere, and likely a different trans-
port pathway. For a detailed discussion of the CO2 seasonal
cycle in the lowermost stratosphere and its relationship to
cross-tropopause transport the reader is referred to Strahan et
al. (1998), Hoor et al. (2004, 2005) and Strahan et al. (2007).

4.4 Comparison to a marine boundary layer reference

Next we investigate the difference between the free tropo-
spheric CO2 values and mixing ratios observed in the ma-
rine boundary layer (MBL reference) (Masarie and Tans,
1995). The MBL reference includes longitudinally averaged
observations within the marine boundary layer as a func-
tion of time (weekly values) and sine of latitude (GLOB-
ALVIEW 2006 data products are available at (http://www.
esrl.noaa.gov/gmd/ccgg/globalview/). Considering the ab-
sence of direct observations and for comparison purposes we
use the MBL reference also for the free troposphere (Lin et
al., 2006).

In Fig. 6 the difference1CO2 between CO2 (SPURT) and
CO2 (MBL) is plotted as a function of altitude for the SPURT

profiles obtained during the 7 campaigns. In the boundary
layer (below 3 km)1CO2 is small during winter and spring
(less than 3 ppm), while larger deviations are observed during
summer at middle and high latitudes, a signature of strong
uptake by the vegetation. SPURT measurements at high lat-
itudes during October 2002 are still∼6 ppm lower than the
MBL reference, a remainder of the summertime biosphere
sink. In contrast, mixing ratios at middle and low latitudes
are higher than the MBL reference by 6–9 ppm. Probably
this is due to local emissions in the proximity of airports,
typically located in populous regions.

Above the boundary layer we find a gradual decrease of
1CO2 with altitude, in particular during the fall and winter
seasons. These negative values extend into the lowermost
stratosphere, were lowest values up to−9 ppm are reached.
The 1CO2-altitude gradient reverses in summer, with in-
creasing values of1CO2 up to +3 ppm above the tropopause.
In spring, during the transition from negative to positive gra-
dients,1CO2 is negligible throughout the troposphere and
only slightly negative in the lowermost stratosphere, in par-
ticular at low and middle latitudes. Systematic deviations
between free tropospheric observations and the MBL ref-
erence have been explained in the literature by advection
from different latitudes and time lags related to the vertical
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propagation of concentration changes from the surface to the
free troposphere (Gerbig et al., 2003).

The near-continual decrease of1CO2 with altitude in
fall and winter, as well as the steady increase during sum-
mer could also be caused by the influence of stratosphere-
troposphere transport (STT) on the vertical profiles (Sawa et
al., 2004; Shia et al., 2006). In the fall and winter seasons
the enhanced downward transport (compared to the summer
season) of aged CO2-poor air from the stratosphere yields
lower values of CO2 in the upper troposphere relative to the
MBL reference (1CO2<0). Thus the1CO2-altitude rela-
tion follows a mixing line between a CO2-poor stratospheric
reservoir and the MBL reference. Since the influence of STT
on trace gas concentrations decreases with distance from the
tropopause,1CO2 declines to zero at lower altitudes.

In summer the situation reverses due to the higher CO2
concentrations in the stratosphere relative to the MBL refer-
ence (1CO2>0), yielding higher1CO2 in the UT and zero
in the middle and lower troposphere. In spring, when altitude
gradients are weak, the signature of STT is negligible, since
the mixing line connects reservoirs with similar CO2 mixing
ratios in the stratosphere and troposphere.

This interpretation is in line with CO and O3 profiles si-
multaneously obtained during SPURT (not shown). Fis-
cher et al. (2006) compared the observed CO and O3 pro-
files to 3D-chemical transport model (CTM) simulations by
the MPI-C Model for Atmospheric Chemistry and Transport
(MATCH-MPIC) (Lawrence et al., 2003). A tracer for strato-
spheric O3 calculated in the model can be used to estimate the
contribution of stratospheric ozone to the O3 burden in the
troposphere. In Fig. 7 this fraction (modelled stratospheric
O3/modelled total O3) has been plotted versus1CO2 for
the summer and winter seasons, respectively. Both seasons
show a significant linear relationship. The strongest correla-
tions are found at middle and high latitudes (R2>0.8), while
weaker correlation coefficients are deduced for low latitudes
(R2 between 0.4 and 0.6). This finding from the model sim-
ulations supports the interpretation that the observed altitude
gradients of1CO2 are likely due to STT.

5 Summary and conclusions

In the present work we describe airborne CO2 measurements
over Western Europe covering altitudes from the planetary
boundary layer up to the lowermost stratosphere and lati-
tudes from the Artic to the sub-tropics. These measurements
have been performed during all seasons as part of the SPURT
project between November 2001 and April 2003. With the
exception of summer all seasons have been probed twice. In
addition to latitudinal gradients in the upper troposphere and
lowermost stratosphere, ascents and descents into airports at
high (>65◦ N), middle (∼55◦ N) and subtropical (<40◦ N)
latitudes provided data on vertical gradients over generally
small, low-duty airports. This allows a comparison of the
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O3 versus1CO2 for the summer (S) and winter (W) seasons, re-
spectively. The data are further subdivided into low latitudes (LL),
mid latitudes (ML) and high latitudes (HL).

seasonal variation of CO2 in the continental boundary layer
(CBL), the free troposphere and the region above the local
tropopause at different latitudes.

As expected, seasonal variations and latitudinal gradients
are largest in the CBL, reflecting the role of surface sources
and sinks. The strongest changes are due to the up take
by vegetation, which maximizes in late summer, resulting
in inverted profiles with increasing concentrations with alti-
tude. During the other seasons CO2 tends to decrease with
altitude. In the free troposphere, seasonal as well as lati-
tudinal variations typically have a strongly reduced ampli-
tude compared to the CBL. The comparison of our measure-
ments to a marine boundary layer reference obtained from
the GLOBALVIEW data indicates that the damping of the
free tropospheric seasonal cycle and latitudinal gradients are
due to mixing with aged air masses, probably transported
down from the lowermost stratosphere. Directly above the
tropopause, i.e. in the extra-tropical tropopause layer, the
seasonal cycle is in phase with the upper troposphere, but
deeper into the stratosphere it is phase-shifted by approxi-
mately 3 months, indicating transport of aged air from the
overworld mixed with air masses horizontally transported
from the tropics, as suggested by Hoor et al. (2004, 2005).

As a final note, the data presented in this paper are freely
available from the SPURT server (http://www.iac.ethz.ch/
staff/dominik/spurt/index.html) after signing the data proto-
col. These data could be of value in inverse modelling and
satellite validation studies.
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